1 /* Functions specific to running gdb native on IA-64 running
4 Copyright (C) 1999-2013 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "gdb_string.h"
27 #include "ia64-tdep.h"
28 #include "linux-nat.h"
31 #include <sys/ptrace.h>
36 #include <sys/syscall.h>
39 #include <asm/ptrace_offsets.h>
40 #include <sys/procfs.h>
42 /* Prototypes for supply_gregset etc. */
45 /* These must match the order of the register names.
47 Some sort of lookup table is needed because the offsets associated
48 with the registers are all over the board. */
50 static int u_offsets[] =
52 /* general registers */
53 -1, /* gr0 not available; i.e, it's always zero. */
85 /* gr32 through gr127 not directly available via the ptrace interface. */
86 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 /* Floating point registers */
93 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
220 /* Predicate registers - we don't fetch these individually. */
221 -1, -1, -1, -1, -1, -1, -1, -1,
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 /* branch registers */
238 /* Virtual frame pointer and virtual return address pointer. */
240 /* other registers */
243 PT_CR_IPSR, /* psr */
245 /* kernel registers not visible via ptrace interface (?) */
246 -1, -1, -1, -1, -1, -1, -1, -1,
248 -1, -1, -1, -1, -1, -1, -1, -1,
254 -1, /* Not available: FCR, IA32 floating control register. */
256 -1, /* Not available: EFLAG */
257 -1, /* Not available: CSD */
258 -1, /* Not available: SSD */
259 -1, /* Not available: CFLG */
260 -1, /* Not available: FSR */
261 -1, /* Not available: FIR */
262 -1, /* Not available: FDR */
270 -1, /* Not available: ITC */
271 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1, -1,
276 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
283 /* nat bits - not fetched directly; instead we obtain these bits from
284 either rnat or unat or from memory. */
285 -1, -1, -1, -1, -1, -1, -1, -1,
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
304 ia64_register_addr (struct gdbarch *gdbarch, int regno)
308 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
309 error (_("Invalid register number %d."), regno);
311 if (u_offsets[regno] == -1)
314 addr = (CORE_ADDR) u_offsets[regno];
320 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
323 || regno >= gdbarch_num_regs (gdbarch)
324 || u_offsets[regno] == -1;
328 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
330 /* Rationale behind not permitting stores to bspstore...
332 The IA-64 architecture provides bspstore and bsp which refer
333 memory locations in the RSE's backing store. bspstore is the
334 next location which will be written when the RSE needs to write
335 to memory. bsp is the address at which r32 in the current frame
336 would be found if it were written to the backing store.
338 The IA-64 architecture provides read-only access to bsp and
339 read/write access to bspstore (but only when the RSE is in
340 the enforced lazy mode). It should be noted that stores
341 to bspstore also affect the value of bsp. Changing bspstore
342 does not affect the number of dirty entries between bspstore
343 and bsp, so changing bspstore by N words will also cause bsp
344 to be changed by (roughly) N as well. (It could be N-1 or N+1
345 depending upon where the NaT collection bits fall.)
347 OTOH, the Linux kernel provides read/write access to bsp (and
348 currently read/write access to bspstore as well). But it
349 is definitely the case that if you change one, the other
350 will change at the same time. It is more useful to gdb to
351 be able to change bsp. So in order to prevent strange and
352 undesirable things from happening when a dummy stack frame
353 is popped (after calling an inferior function), we allow
354 bspstore to be read, but not written. (Note that popping
355 a (generic) dummy stack frame causes all registers that
356 were previously read from the inferior process to be written
360 || regno >= gdbarch_num_regs (gdbarch)
361 || u_offsets[regno] == -1
362 || regno == IA64_BSPSTORE_REGNUM;
366 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
369 const greg_t *regp = (const greg_t *) gregsetp;
371 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
373 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
376 /* FIXME: NAT collection bits are at index 32; gotta deal with these
379 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
381 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
383 regcache_raw_supply (regcache, regi,
384 regp + 34 + (regi - IA64_BR0_REGNUM));
387 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
388 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
389 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
390 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
391 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
392 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
393 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
394 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
395 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
396 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
397 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
398 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
399 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
403 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
406 greg_t *regp = (greg_t *) gregsetp;
408 #define COPY_REG(_idx_,_regi_) \
409 if ((regno == -1) || regno == _regi_) \
410 regcache_raw_collect (regcache, _regi_, regp + _idx_)
412 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
414 COPY_REG (regi - IA64_GR0_REGNUM, regi);
417 /* FIXME: NAT collection bits at index 32? */
419 COPY_REG (33, IA64_PR_REGNUM);
421 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
423 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
426 COPY_REG (42, IA64_IP_REGNUM);
427 COPY_REG (43, IA64_CFM_REGNUM);
428 COPY_REG (44, IA64_PSR_REGNUM);
429 COPY_REG (45, IA64_RSC_REGNUM);
430 COPY_REG (46, IA64_BSP_REGNUM);
431 COPY_REG (47, IA64_BSPSTORE_REGNUM);
432 COPY_REG (48, IA64_RNAT_REGNUM);
433 COPY_REG (49, IA64_CCV_REGNUM);
434 COPY_REG (50, IA64_UNAT_REGNUM);
435 COPY_REG (51, IA64_FPSR_REGNUM);
436 COPY_REG (52, IA64_PFS_REGNUM);
437 COPY_REG (53, IA64_LC_REGNUM);
438 COPY_REG (54, IA64_EC_REGNUM);
441 /* Given a pointer to a floating point register set in /proc format
442 (fpregset_t *), unpack the register contents and supply them as gdb's
443 idea of the current floating point register values. */
446 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
450 const gdb_byte f_zero[16] = { 0 };
451 const gdb_byte f_one[16] =
452 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
454 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
455 did the same. So ignore whatever might be recorded in fpregset_t
456 for fr0/fr1 and always supply their expected values. */
458 /* fr0 is always read as zero. */
459 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
460 /* fr1 is always read as one (1.0). */
461 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
463 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
465 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
466 regcache_raw_supply (regcache, regi, from);
470 /* Given a pointer to a floating point register set in /proc format
471 (fpregset_t *), update the register specified by REGNO from gdb's idea
472 of the current floating point register set. If REGNO is -1, update
476 fill_fpregset (const struct regcache *regcache,
477 fpregset_t *fpregsetp, int regno)
481 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
483 if ((regno == -1) || (regno == regi))
484 regcache_raw_collect (regcache, regi,
485 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
489 #define IA64_PSR_DB (1UL << 24)
490 #define IA64_PSR_DD (1UL << 39)
493 enable_watchpoints_in_psr (ptid_t ptid)
495 struct regcache *regcache = get_thread_regcache (ptid);
498 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
499 if (!(psr & IA64_PSR_DB))
501 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
502 watchpoints and breakpoints. */
503 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
507 static long debug_registers[8];
510 store_debug_register (ptid_t ptid, int idx, long val)
518 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
522 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
526 store_debug_register (ptid, 2 * idx, *dbr_addr);
528 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
532 is_power_of_2 (int val)
537 for (i = 0; i < 8 * sizeof (val); i++)
541 return onecount <= 1;
545 ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
546 struct expression *cond)
550 long dbr_addr, dbr_mask;
551 int max_watchpoints = 4;
553 if (len <= 0 || !is_power_of_2 (len))
556 for (idx = 0; idx < max_watchpoints; idx++)
558 dbr_mask = debug_registers[idx * 2 + 1];
559 if ((dbr_mask & (0x3UL << 62)) == 0)
561 /* Exit loop if both r and w bits clear. */
566 if (idx == max_watchpoints)
569 dbr_addr = (long) addr;
570 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
571 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
575 dbr_mask |= (1L << 62); /* Set w bit */
578 dbr_mask |= (1L << 63); /* Set r bit */
581 dbr_mask |= (3L << 62); /* Set both r and w bits */
587 debug_registers[2 * idx] = dbr_addr;
588 debug_registers[2 * idx + 1] = dbr_mask;
591 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
592 enable_watchpoints_in_psr (lp->ptid);
599 ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
600 struct expression *cond)
603 long dbr_addr, dbr_mask;
604 int max_watchpoints = 4;
606 if (len <= 0 || !is_power_of_2 (len))
609 for (idx = 0; idx < max_watchpoints; idx++)
611 dbr_addr = debug_registers[2 * idx];
612 dbr_mask = debug_registers[2 * idx + 1];
613 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
617 debug_registers[2 * idx] = 0;
618 debug_registers[2 * idx + 1] = 0;
623 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
632 ia64_linux_new_thread (struct lwp_info *lp)
637 for (i = 0; i < 8; i++)
639 if (debug_registers[i] != 0)
641 store_debug_register (lp->ptid, i, debug_registers[i]);
645 enable_watchpoints_in_psr (lp->ptid);
649 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
653 struct regcache *regcache = get_current_regcache ();
655 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
658 if (siginfo.si_signo != SIGTRAP
659 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
662 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
663 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
664 for the next instruction. */
665 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
667 *addr_p = (CORE_ADDR) siginfo.si_addr;
672 ia64_linux_stopped_by_watchpoint (void)
675 return ia64_linux_stopped_data_address (¤t_target, &addr);
679 ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
685 /* Fetch register REGNUM from the inferior. */
688 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
690 struct gdbarch *gdbarch = get_regcache_arch (regcache);
693 PTRACE_TYPE_RET *buf;
696 /* r0 cannot be fetched but is always zero. */
697 if (regnum == IA64_GR0_REGNUM)
699 const gdb_byte zero[8] = { 0 };
701 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
702 regcache_raw_supply (regcache, regnum, zero);
706 /* fr0 cannot be fetched but is always zero. */
707 if (regnum == IA64_FR0_REGNUM)
709 const gdb_byte f_zero[16] = { 0 };
711 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
712 regcache_raw_supply (regcache, regnum, f_zero);
716 /* fr1 cannot be fetched but is always one (1.0). */
717 if (regnum == IA64_FR1_REGNUM)
719 const gdb_byte f_one[16] =
720 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
722 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
723 regcache_raw_supply (regcache, regnum, f_one);
727 if (ia64_cannot_fetch_register (gdbarch, regnum))
729 regcache_raw_supply (regcache, regnum, NULL);
733 /* Cater for systems like GNU/Linux, that implement threads as
734 separate processes. */
735 pid = ptid_get_lwp (inferior_ptid);
737 pid = ptid_get_pid (inferior_ptid);
739 /* This isn't really an address, but ptrace thinks of it as one. */
740 addr = ia64_register_addr (gdbarch, regnum);
741 size = register_size (gdbarch, regnum);
743 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
746 /* Read the register contents from the inferior a chunk at a time. */
747 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
750 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
752 error (_("Couldn't read register %s (#%d): %s."),
753 gdbarch_register_name (gdbarch, regnum),
754 regnum, safe_strerror (errno));
756 addr += sizeof (PTRACE_TYPE_RET);
758 regcache_raw_supply (regcache, regnum, buf);
761 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
762 for all registers. */
765 ia64_linux_fetch_registers (struct target_ops *ops,
766 struct regcache *regcache, int regnum)
770 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
772 ia64_linux_fetch_register (regcache, regnum);
774 ia64_linux_fetch_register (regcache, regnum);
777 /* Store register REGNUM into the inferior. */
780 ia64_linux_store_register (const struct regcache *regcache, int regnum)
782 struct gdbarch *gdbarch = get_regcache_arch (regcache);
785 PTRACE_TYPE_RET *buf;
788 if (ia64_cannot_store_register (gdbarch, regnum))
791 /* Cater for systems like GNU/Linux, that implement threads as
792 separate processes. */
793 pid = ptid_get_lwp (inferior_ptid);
795 pid = ptid_get_pid (inferior_ptid);
797 /* This isn't really an address, but ptrace thinks of it as one. */
798 addr = ia64_register_addr (gdbarch, regnum);
799 size = register_size (gdbarch, regnum);
801 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
804 /* Write the register contents into the inferior a chunk at a time. */
805 regcache_raw_collect (regcache, regnum, buf);
806 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
809 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
811 error (_("Couldn't write register %s (#%d): %s."),
812 gdbarch_register_name (gdbarch, regnum),
813 regnum, safe_strerror (errno));
815 addr += sizeof (PTRACE_TYPE_RET);
819 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
820 this for all registers. */
823 ia64_linux_store_registers (struct target_ops *ops,
824 struct regcache *regcache, int regnum)
828 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
830 ia64_linux_store_register (regcache, regnum);
832 ia64_linux_store_register (regcache, regnum);
836 static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
837 const char *, gdb_byte *,
838 const gdb_byte *, ULONGEST, LONGEST);
841 ia64_linux_xfer_partial (struct target_ops *ops,
842 enum target_object object,
844 gdb_byte *readbuf, const gdb_byte *writebuf,
845 ULONGEST offset, LONGEST len)
847 if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
848 return syscall (__NR_getunwind, readbuf, len);
850 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
854 /* For break.b instruction ia64 CPU forgets the immediate value and generates
855 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
856 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
857 difference for the signals here. */
860 ia64_linux_status_is_event (int status)
862 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
863 || WSTOPSIG (status) == SIGILL);
866 void _initialize_ia64_linux_nat (void);
869 _initialize_ia64_linux_nat (void)
871 struct target_ops *t;
873 /* Fill in the generic GNU/Linux methods. */
876 /* Override the default fetch/store register routines. */
877 t->to_fetch_registers = ia64_linux_fetch_registers;
878 t->to_store_registers = ia64_linux_store_registers;
880 /* Override the default to_xfer_partial. */
881 super_xfer_partial = t->to_xfer_partial;
882 t->to_xfer_partial = ia64_linux_xfer_partial;
884 /* Override watchpoint routines. */
886 /* The IA-64 architecture can step over a watch point (without triggering
887 it again) if the "dd" (data debug fault disable) bit in the processor
890 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
891 code there has determined that a hardware watchpoint has indeed
892 been hit. The CPU will then be able to execute one instruction
893 without triggering a watchpoint. */
895 t->to_have_steppable_watchpoint = 1;
896 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
897 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
898 t->to_stopped_data_address = ia64_linux_stopped_data_address;
899 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
900 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
902 /* Register the target. */
903 linux_nat_add_target (t);
904 linux_nat_set_new_thread (t, ia64_linux_new_thread);
905 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);