1 /* Intel 387 floating point stuff.
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "floatformat.h"
30 #include "gdb_assert.h"
33 #include "i386-tdep.h"
34 #include "i387-tdep.h"
35 #include "i386-xstate.h"
37 /* Print the floating point number specified by RAW. */
40 print_i387_value (struct gdbarch *gdbarch,
41 const gdb_byte *raw, struct ui_file *file)
45 /* Using extract_typed_floating here might affect the representation
46 of certain numbers such as NaNs, even if GDB is running natively.
47 This is fine since our caller already detects such special
48 numbers and we print the hexadecimal representation anyway. */
49 value = extract_typed_floating (raw, i387_ext_type (gdbarch));
51 /* We try to print 19 digits. The last digit may or may not contain
52 garbage, but we'd better print one too many. We need enough room
53 to print the value, 1 position for the sign, 1 for the decimal
54 point, 19 for the digits and 6 for the exponent adds up to 27. */
55 #ifdef PRINTF_HAS_LONG_DOUBLE
56 fprintf_filtered (file, " %-+27.19Lg", (long double) value);
58 fprintf_filtered (file, " %-+27.19g", (double) value);
62 /* Print the classification for the register contents RAW. */
65 print_i387_ext (struct gdbarch *gdbarch,
66 const gdb_byte *raw, struct ui_file *file)
70 unsigned int exponent;
71 unsigned long fraction[2];
74 integer = raw[7] & 0x80;
75 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
76 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
77 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
78 | (raw[5] << 8) | raw[4]);
80 if (exponent == 0x7fff && integer)
82 if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
84 fprintf_filtered (file, " %cInf", (sign ? '-' : '+'));
85 else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
86 /* Real Indefinite (QNaN). */
87 fputs_unfiltered (" Real Indefinite (QNaN)", file);
88 else if (fraction[1] & 0x40000000)
90 fputs_filtered (" QNaN", file);
93 fputs_filtered (" SNaN", file);
95 else if (exponent < 0x7fff && exponent > 0x0000 && integer)
97 print_i387_value (gdbarch, raw, file);
98 else if (exponent == 0x0000)
100 /* Denormal or zero. */
101 print_i387_value (gdbarch, raw, file);
104 /* Pseudo-denormal. */
105 fputs_filtered (" Pseudo-denormal", file);
106 else if (fraction[0] || fraction[1])
108 fputs_filtered (" Denormal", file);
112 fputs_filtered (" Unsupported", file);
115 /* Print the status word STATUS. If STATUS_P is false, then STATUS
119 print_i387_status_word (int status_p,
120 unsigned int status, struct ui_file *file)
122 fprintf_filtered (file, "Status Word: ");
125 fprintf_filtered (file, "%s\n", _("<unavailable>"));
129 fprintf_filtered (file, "%s", hex_string_custom (status, 4));
130 fputs_filtered (" ", file);
131 fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " ");
132 fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " ");
133 fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " ");
134 fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " ");
135 fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " ");
136 fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " ");
137 fputs_filtered (" ", file);
138 fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " ");
139 fputs_filtered (" ", file);
140 fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " ");
141 fputs_filtered (" ", file);
142 fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " ");
143 fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " ");
144 fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " ");
145 fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " ");
147 fputs_filtered ("\n", file);
149 fprintf_filtered (file,
150 " TOP: %d\n", ((status >> 11) & 7));
153 /* Print the control word CONTROL. If CONTROL_P is false, then
154 CONTROL was unavailable. */
157 print_i387_control_word (int control_p,
158 unsigned int control, struct ui_file *file)
160 fprintf_filtered (file, "Control Word: ");
163 fprintf_filtered (file, "%s\n", _("<unavailable>"));
167 fprintf_filtered (file, "%s", hex_string_custom (control, 4));
168 fputs_filtered (" ", file);
169 fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " ");
170 fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " ");
171 fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " ");
172 fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " ");
173 fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " ");
174 fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " ");
176 fputs_filtered ("\n", file);
178 fputs_filtered (" PC: ", file);
179 switch ((control >> 8) & 3)
182 fputs_filtered ("Single Precision (24-bits)\n", file);
185 fputs_filtered ("Reserved\n", file);
188 fputs_filtered ("Double Precision (53-bits)\n", file);
191 fputs_filtered ("Extended Precision (64-bits)\n", file);
195 fputs_filtered (" RC: ", file);
196 switch ((control >> 10) & 3)
199 fputs_filtered ("Round to nearest\n", file);
202 fputs_filtered ("Round down\n", file);
205 fputs_filtered ("Round up\n", file);
208 fputs_filtered ("Round toward zero\n", file);
213 /* Print out the i387 floating point state. Note that we ignore FRAME
214 in the code below. That's OK since floating-point registers are
215 never saved on the stack. */
218 i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
219 struct frame_info *frame, const char *args)
221 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
241 gdb_assert (gdbarch == get_frame_arch (frame));
243 fctrl_p = read_frame_register_unsigned (frame,
244 I387_FCTRL_REGNUM (tdep), &fctrl);
245 fstat_p = read_frame_register_unsigned (frame,
246 I387_FSTAT_REGNUM (tdep), &fstat);
247 ftag_p = read_frame_register_unsigned (frame,
248 I387_FTAG_REGNUM (tdep), &ftag);
249 fiseg_p = read_frame_register_unsigned (frame,
250 I387_FISEG_REGNUM (tdep), &fiseg);
251 fioff_p = read_frame_register_unsigned (frame,
252 I387_FIOFF_REGNUM (tdep), &fioff);
253 foseg_p = read_frame_register_unsigned (frame,
254 I387_FOSEG_REGNUM (tdep), &foseg);
255 fooff_p = read_frame_register_unsigned (frame,
256 I387_FOOFF_REGNUM (tdep), &fooff);
257 fop_p = read_frame_register_unsigned (frame,
258 I387_FOP_REGNUM (tdep), &fop);
262 top = ((fstat >> 11) & 7);
264 for (fpreg = 7; fpreg >= 0; fpreg--)
266 struct value *regval;
271 fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg);
275 tag = (ftag >> (fpreg * 2)) & 3;
280 fputs_filtered ("Valid ", file);
283 fputs_filtered ("Zero ", file);
286 fputs_filtered ("Special ", file);
289 fputs_filtered ("Empty ", file);
294 fputs_filtered ("Unknown ", file);
296 regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep);
297 regval = get_frame_register_value (frame, regnum);
299 if (value_entirely_available (regval))
301 const gdb_byte *raw = value_contents (regval);
303 fputs_filtered ("0x", file);
304 for (i = 9; i >= 0; i--)
305 fprintf_filtered (file, "%02x", raw[i]);
307 if (tag != -1 && tag != 3)
308 print_i387_ext (gdbarch, raw, file);
311 fprintf_filtered (file, "%s", _("<unavailable>"));
313 fputs_filtered ("\n", file);
317 fputs_filtered ("\n", file);
318 print_i387_status_word (fstat_p, fstat, file);
319 print_i387_control_word (fctrl_p, fctrl, file);
320 fprintf_filtered (file, "Tag Word: %s\n",
321 ftag_p ? hex_string_custom (ftag, 4) : _("<unavailable>"));
322 fprintf_filtered (file, "Instruction Pointer: %s:",
323 fiseg_p ? hex_string_custom (fiseg, 2) : _("<unavailable>"));
324 fprintf_filtered (file, "%s\n",
325 fioff_p ? hex_string_custom (fioff, 8) : _("<unavailable>"));
326 fprintf_filtered (file, "Operand Pointer: %s:",
327 foseg_p ? hex_string_custom (foseg, 2) : _("<unavailable>"));
328 fprintf_filtered (file, "%s\n",
329 fooff_p ? hex_string_custom (fooff, 8) : _("<unavailable>"));
330 fprintf_filtered (file, "Opcode: %s\n",
332 ? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4))
333 : _("<unavailable>"));
337 /* Return nonzero if a value of type TYPE stored in register REGNUM
338 needs any special handling. */
341 i387_convert_register_p (struct gdbarch *gdbarch, int regnum,
344 if (i386_fp_regnum_p (gdbarch, regnum))
346 /* Floating point registers must be converted unless we are
347 accessing them in their hardware type. */
348 if (type == i387_ext_type (gdbarch))
357 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
358 return its contents in TO. */
361 i387_register_to_value (struct frame_info *frame, int regnum,
362 struct type *type, gdb_byte *to,
363 int *optimizedp, int *unavailablep)
365 struct gdbarch *gdbarch = get_frame_arch (frame);
366 gdb_byte from[I386_MAX_REGISTER_SIZE];
368 gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
370 /* We only support floating-point values. */
371 if (TYPE_CODE (type) != TYPE_CODE_FLT)
373 warning (_("Cannot convert floating-point register value "
374 "to non-floating-point type."));
375 *optimizedp = *unavailablep = 0;
379 /* Convert to TYPE. */
380 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
381 from, optimizedp, unavailablep))
384 convert_typed_floating (from, i387_ext_type (gdbarch), to, type);
385 *optimizedp = *unavailablep = 0;
389 /* Write the contents FROM of a value of type TYPE into register
390 REGNUM in frame FRAME. */
393 i387_value_to_register (struct frame_info *frame, int regnum,
394 struct type *type, const gdb_byte *from)
396 struct gdbarch *gdbarch = get_frame_arch (frame);
397 gdb_byte to[I386_MAX_REGISTER_SIZE];
399 gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
401 /* We only support floating-point values. */
402 if (TYPE_CODE (type) != TYPE_CODE_FLT)
404 warning (_("Cannot convert non-floating-point type "
405 "to floating-point register value."));
409 /* Convert from TYPE. */
410 convert_typed_floating (from, type, to, i387_ext_type (gdbarch));
411 put_frame_register (frame, regnum, to);
415 /* Handle FSAVE and FXSAVE formats. */
417 /* At fsave_offset[REGNUM] you'll find the offset to the location in
418 the data structure used by the "fsave" instruction where GDB
419 register REGNUM is stored. */
421 static int fsave_offset[] =
423 28 + 0 * 10, /* %st(0) ... */
430 28 + 7 * 10, /* ... %st(7). */
431 0, /* `fctrl' (16 bits). */
432 4, /* `fstat' (16 bits). */
433 8, /* `ftag' (16 bits). */
434 16, /* `fiseg' (16 bits). */
436 24, /* `foseg' (16 bits). */
438 18 /* `fop' (bottom 11 bits). */
441 #define FSAVE_ADDR(tdep, fsave, regnum) \
442 (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])
445 /* Fill register REGNUM in REGCACHE with the appropriate value from
446 *FSAVE. This function masks off any of the reserved bits in
450 i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
452 struct gdbarch *gdbarch = get_regcache_arch (regcache);
453 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
454 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
455 const gdb_byte *regs = fsave;
458 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
460 for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
461 if (regnum == -1 || regnum == i)
465 regcache_raw_supply (regcache, i, NULL);
469 /* Most of the FPU control registers occupy only 16 bits in the
470 fsave area. Give those a special treatment. */
471 if (i >= I387_FCTRL_REGNUM (tdep)
472 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
476 memcpy (val, FSAVE_ADDR (tdep, regs, i), 2);
478 if (i == I387_FOP_REGNUM (tdep))
479 val[1] &= ((1 << 3) - 1);
480 regcache_raw_supply (regcache, i, val);
483 regcache_raw_supply (regcache, i, FSAVE_ADDR (tdep, regs, i));
486 /* Provide dummy values for the SSE registers. */
487 for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
488 if (regnum == -1 || regnum == i)
489 regcache_raw_supply (regcache, i, NULL);
490 if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep))
494 store_unsigned_integer (buf, 4, byte_order, 0x1f80);
495 regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), buf);
499 /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
500 with the value from REGCACHE. If REGNUM is -1, do this for all
501 registers. This function doesn't touch any of the reserved bits in
505 i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
507 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
508 gdb_byte *regs = fsave;
511 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
513 for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
514 if (regnum == -1 || regnum == i)
516 /* Most of the FPU control registers occupy only 16 bits in
517 the fsave area. Give those a special treatment. */
518 if (i >= I387_FCTRL_REGNUM (tdep)
519 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
523 regcache_raw_collect (regcache, i, buf);
525 if (i == I387_FOP_REGNUM (tdep))
527 /* The opcode occupies only 11 bits. Make sure we
528 don't touch the other bits. */
529 buf[1] &= ((1 << 3) - 1);
530 buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
532 memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2);
535 regcache_raw_collect (regcache, i, FSAVE_ADDR (tdep, regs, i));
540 /* At fxsave_offset[REGNUM] you'll find the offset to the location in
541 the data structure used by the "fxsave" instruction where GDB
542 register REGNUM is stored. */
544 static int fxsave_offset[] =
546 32, /* %st(0) through ... */
553 144, /* ... %st(7) (80 bits each). */
554 0, /* `fctrl' (16 bits). */
555 2, /* `fstat' (16 bits). */
556 4, /* `ftag' (16 bits). */
557 12, /* `fiseg' (16 bits). */
559 20, /* `foseg' (16 bits). */
561 6, /* `fop' (bottom 11 bits). */
562 160 + 0 * 16, /* %xmm0 through ... */
577 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
580 #define FXSAVE_ADDR(tdep, fxsave, regnum) \
581 (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
583 /* We made an unfortunate choice in putting %mxcsr after the SSE
584 registers %xmm0-%xmm7 instead of before, since it makes supporting
585 the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
586 don't include the offset for %mxcsr here above. */
588 #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
590 static int i387_tag (const gdb_byte *raw);
593 /* Fill register REGNUM in REGCACHE with the appropriate
594 floating-point or SSE register value from *FXSAVE. This function
595 masks off any of the reserved bits in *FXSAVE. */
598 i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
600 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
601 const gdb_byte *regs = fxsave;
604 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
605 gdb_assert (tdep->num_xmm_regs > 0);
607 for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
608 if (regnum == -1 || regnum == i)
612 regcache_raw_supply (regcache, i, NULL);
616 /* Most of the FPU control registers occupy only 16 bits in
617 the fxsave area. Give those a special treatment. */
618 if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
619 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
623 memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
625 if (i == I387_FOP_REGNUM (tdep))
626 val[1] &= ((1 << 3) - 1);
627 else if (i== I387_FTAG_REGNUM (tdep))
629 /* The fxsave area contains a simplified version of
630 the tag word. We have to look at the actual 80-bit
631 FP data to recreate the traditional i387 tag word. */
633 unsigned long ftag = 0;
637 top = ((FXSAVE_ADDR (tdep, regs,
638 I387_FSTAT_REGNUM (tdep)))[1] >> 3);
641 for (fpreg = 7; fpreg >= 0; fpreg--)
645 if (val[0] & (1 << fpreg))
647 int thisreg = (fpreg + 8 - top) % 8
648 + I387_ST0_REGNUM (tdep);
649 tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
654 ftag |= tag << (2 * fpreg);
656 val[0] = ftag & 0xff;
657 val[1] = (ftag >> 8) & 0xff;
659 regcache_raw_supply (regcache, i, val);
662 regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i));
665 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
668 regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), NULL);
670 regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep),
671 FXSAVE_MXCSR_ADDR (regs));
675 /* Fill register REGNUM (if it is a floating-point or SSE register) in
676 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
677 all registers. This function doesn't touch any of the reserved
681 i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
683 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
684 gdb_byte *regs = fxsave;
687 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
688 gdb_assert (tdep->num_xmm_regs > 0);
690 for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
691 if (regnum == -1 || regnum == i)
693 /* Most of the FPU control registers occupy only 16 bits in
694 the fxsave area. Give those a special treatment. */
695 if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
696 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
700 regcache_raw_collect (regcache, i, buf);
702 if (i == I387_FOP_REGNUM (tdep))
704 /* The opcode occupies only 11 bits. Make sure we
705 don't touch the other bits. */
706 buf[1] &= ((1 << 3) - 1);
707 buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
709 else if (i == I387_FTAG_REGNUM (tdep))
711 /* Converting back is much easier. */
716 ftag = (buf[1] << 8) | buf[0];
720 for (fpreg = 7; fpreg >= 0; fpreg--)
722 int tag = (ftag >> (fpreg * 2)) & 3;
725 buf[0] |= (1 << fpreg);
728 memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
731 regcache_raw_collect (regcache, i, FXSAVE_ADDR (tdep, regs, i));
734 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
735 regcache_raw_collect (regcache, I387_MXCSR_REGNUM (tdep),
736 FXSAVE_MXCSR_ADDR (regs));
739 /* `xstate_bv' is at byte offset 512. */
740 #define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512)
742 /* At xsave_avxh_offset[REGNUM] you'll find the offset to the location in
743 the upper 128bit of AVX register data structure used by the "xsave"
744 instruction where GDB register REGNUM is stored. */
746 static int xsave_avxh_offset[] =
748 576 + 0 * 16, /* Upper 128bit of %ymm0 through ... */
763 576 + 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */
766 #define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \
767 (xsave + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)])
769 /* At xsave_ymm_avx512_offset[REGNUM] you'll find the offset to the location in
770 the upper 128bit of ZMM register data structure used by the "xsave"
771 instruction where GDB register REGNUM is stored. */
773 static int xsave_ymm_avx512_offset[] =
775 /* HI16_ZMM_area + 16 bytes + regnum* 64 bytes. */
776 1664 + 16 + 0 * 64, /* %ymm16 through... */
791 1664 + 16 + 15 * 64 /* ... %ymm31 (128 bits each). */
794 #define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \
795 (xsave + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)])
797 static int xsave_xmm_avx512_offset[] =
799 1664 + 0 * 64, /* %ymm16 through... */
814 1664 + 15 * 64 /* ... %ymm31 (128 bits each). */
817 #define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \
818 (xsave + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)])
820 static int xsave_mpx_offset[] = {
821 960 + 0 * 16, /* bnd0r...bnd3r registers. */
825 1024 + 0 * 8, /* bndcfg ... bndstatus. */
829 #define XSAVE_MPX_ADDR(tdep, xsave, regnum) \
830 (xsave + xsave_mpx_offset[regnum - I387_BND0R_REGNUM (tdep)])
832 /* At xsave_avx512__h_offset[REGNUM] you find the offset to the location
833 of the AVX512 opmask register data structure used by the "xsave"
834 instruction where GDB register REGNUM is stored. */
836 static int xsave_avx512_k_offset[] =
838 1088 + 0 * 8, /* %k0 through... */
845 1088 + 7 * 8 /* %k7 (64 bits each). */
848 #define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \
849 (xsave + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)])
851 /* At xsave_avx512_zmm_h_offset[REGNUM] you find the offset to the location in
852 the upper 256bit of AVX512 ZMMH register data structure used by the "xsave"
853 instruction where GDB register REGNUM is stored. */
855 static int xsave_avx512_zmm_h_offset[] =
858 1152 + 1 * 32, /* Upper 256bit of %zmmh0 through... */
872 1152 + 15 * 32, /* Upper 256bit of... %zmmh15 (256 bits each). */
873 1664 + 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */
888 1664 + 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */
891 #define XSAVE_AVX512_ZMM_H_ADDR(tdep, xsave, regnum) \
892 (xsave + xsave_avx512_zmm_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)])
894 /* Similar to i387_supply_fxsave, but use XSAVE extended state. */
897 i387_supply_xsave (struct regcache *regcache, int regnum,
900 struct gdbarch *gdbarch = get_regcache_arch (regcache);
901 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
902 const gdb_byte *regs = xsave;
904 unsigned int clear_bv;
905 static const gdb_byte zero[MAX_REGISTER_SIZE] = { 0 };
915 avx512_ymmh_avx512 = 0x40,
916 avx512_xmm_avx512 = 0x80,
917 all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h
918 | avx512_ymmh_avx512 | avx512_xmm_avx512
921 gdb_assert (regs != NULL);
922 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
923 gdb_assert (tdep->num_xmm_regs > 0);
927 else if (regnum >= I387_ZMM0H_REGNUM (tdep)
928 && regnum < I387_ZMMENDH_REGNUM (tdep))
929 regclass = avx512_zmm_h;
930 else if (regnum >= I387_K0_REGNUM (tdep)
931 && regnum < I387_KEND_REGNUM (tdep))
933 else if (regnum >= I387_YMM16H_REGNUM (tdep)
934 && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
935 regclass = avx512_ymmh_avx512;
936 else if (regnum >= I387_XMM16_REGNUM (tdep)
937 && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
938 regclass = avx512_xmm_avx512;
939 else if (regnum >= I387_YMM0H_REGNUM (tdep)
940 && regnum < I387_YMMENDH_REGNUM (tdep))
942 else if (regnum >= I387_BND0R_REGNUM (tdep)
943 && regnum < I387_MPXEND_REGNUM (tdep))
945 else if (regnum >= I387_XMM0_REGNUM (tdep)
946 && regnum < I387_MXCSR_REGNUM (tdep))
948 else if (regnum >= I387_ST0_REGNUM (tdep)
949 && regnum < I387_FCTRL_REGNUM (tdep))
954 if (regclass != none)
956 /* Get `xstat_bv'. */
957 const gdb_byte *xstate_bv_p = XSAVE_XSTATE_BV_ADDR (regs);
959 /* The supported bits in `xstat_bv' are 1 byte. Clear part in
960 vector registers if its bit in xstat_bv is zero. */
961 clear_bv = (~(*xstate_bv_p)) & tdep->xcr0;
964 clear_bv = I386_XSTATE_ALL_MASK;
966 /* With the delayed xsave mechanism, in between the program
967 starting, and the program accessing the vector registers for the
968 first time, the register's values are invalid. The kernel
969 initializes register states to zero when they are set the first
970 time in a program. This means that from the user-space programs'
971 perspective, it's the same as if the registers have always been
972 zero from the start of the program. Therefore, the debugger
973 should provide the same illusion to the user. */
981 if ((clear_bv & (I386_XSTATE_ZMM_H | I386_XSTATE_ZMM)))
982 regcache_raw_supply (regcache, regnum, zero);
984 regcache_raw_supply (regcache, regnum,
985 XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum));
989 if ((clear_bv & I386_XSTATE_K))
990 regcache_raw_supply (regcache, regnum, zero);
992 regcache_raw_supply (regcache, regnum,
993 XSAVE_AVX512_K_ADDR (tdep, regs, regnum));
996 case avx512_ymmh_avx512:
997 if ((clear_bv & I386_XSTATE_ZMM))
998 regcache_raw_supply (regcache, regnum, zero);
1000 regcache_raw_supply (regcache, regnum,
1001 XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum));
1004 case avx512_xmm_avx512:
1005 if ((clear_bv & I386_XSTATE_ZMM))
1006 regcache_raw_supply (regcache, regnum, zero);
1008 regcache_raw_supply (regcache, regnum,
1009 XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum));
1013 if ((clear_bv & I386_XSTATE_AVX))
1014 regcache_raw_supply (regcache, regnum, zero);
1016 regcache_raw_supply (regcache, regnum,
1017 XSAVE_AVXH_ADDR (tdep, regs, regnum));
1021 if ((clear_bv & I386_XSTATE_BNDREGS))
1022 regcache_raw_supply (regcache, regnum, zero);
1024 regcache_raw_supply (regcache, regnum,
1025 XSAVE_MPX_ADDR (tdep, regs, regnum));
1029 if ((clear_bv & I386_XSTATE_SSE))
1030 regcache_raw_supply (regcache, regnum, zero);
1032 regcache_raw_supply (regcache, regnum,
1033 FXSAVE_ADDR (tdep, regs, regnum));
1037 if ((clear_bv & I386_XSTATE_X87))
1038 regcache_raw_supply (regcache, regnum, zero);
1040 regcache_raw_supply (regcache, regnum,
1041 FXSAVE_ADDR (tdep, regs, regnum));
1045 /* Handle the upper ZMM registers. */
1046 if ((tdep->xcr0 & (I386_XSTATE_ZMM_H | I386_XSTATE_ZMM)))
1048 if ((clear_bv & (I386_XSTATE_ZMM_H | I386_XSTATE_ZMM)))
1050 for (i = I387_ZMM0H_REGNUM (tdep);
1051 i < I387_ZMMENDH_REGNUM (tdep);
1053 regcache_raw_supply (regcache, i, zero);
1057 for (i = I387_ZMM0H_REGNUM (tdep);
1058 i < I387_ZMMENDH_REGNUM (tdep);
1060 regcache_raw_supply (regcache, i,
1061 XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i));
1065 /* Handle AVX512 OpMask registers. */
1066 if ((tdep->xcr0 & I386_XSTATE_K))
1068 if ((clear_bv & I386_XSTATE_K))
1070 for (i = I387_K0_REGNUM (tdep);
1071 i < I387_KEND_REGNUM (tdep);
1073 regcache_raw_supply (regcache, i, zero);
1077 for (i = I387_K0_REGNUM (tdep);
1078 i < I387_KEND_REGNUM (tdep);
1080 regcache_raw_supply (regcache, i,
1081 XSAVE_AVX512_K_ADDR (tdep, regs, i));
1085 /* Handle the YMM_AVX512 registers. */
1086 if ((tdep->xcr0 & I386_XSTATE_ZMM))
1088 if ((clear_bv & I386_XSTATE_ZMM))
1090 for (i = I387_YMM16H_REGNUM (tdep);
1091 i < I387_YMMH_AVX512_END_REGNUM (tdep);
1093 regcache_raw_supply (regcache, i, zero);
1094 for (i = I387_XMM16_REGNUM (tdep);
1095 i < I387_XMM_AVX512_END_REGNUM (tdep);
1097 regcache_raw_supply (regcache, i, zero);
1101 for (i = I387_YMM16H_REGNUM (tdep);
1102 i < I387_YMMH_AVX512_END_REGNUM (tdep);
1104 regcache_raw_supply (regcache, i,
1105 XSAVE_YMM_AVX512_ADDR (tdep, regs, i));
1106 for (i = I387_XMM16_REGNUM (tdep);
1107 i < I387_XMM_AVX512_END_REGNUM (tdep);
1109 regcache_raw_supply (regcache, i,
1110 XSAVE_XMM_AVX512_ADDR (tdep, regs, i));
1113 /* Handle the upper YMM registers. */
1114 if ((tdep->xcr0 & I386_XSTATE_AVX))
1116 if ((clear_bv & I386_XSTATE_AVX))
1118 for (i = I387_YMM0H_REGNUM (tdep);
1119 i < I387_YMMENDH_REGNUM (tdep);
1121 regcache_raw_supply (regcache, i, zero);
1125 for (i = I387_YMM0H_REGNUM (tdep);
1126 i < I387_YMMENDH_REGNUM (tdep);
1128 regcache_raw_supply (regcache, i,
1129 XSAVE_AVXH_ADDR (tdep, regs, i));
1133 /* Handle the MPX registers. */
1134 if ((tdep->xcr0 & I386_XSTATE_BNDREGS))
1136 if (clear_bv & I386_XSTATE_BNDREGS)
1138 for (i = I387_BND0R_REGNUM (tdep);
1139 i < I387_BNDCFGU_REGNUM (tdep); i++)
1140 regcache_raw_supply (regcache, i, zero);
1144 for (i = I387_BND0R_REGNUM (tdep);
1145 i < I387_BNDCFGU_REGNUM (tdep); i++)
1146 regcache_raw_supply (regcache, i,
1147 XSAVE_MPX_ADDR (tdep, regs, i));
1151 /* Handle the MPX registers. */
1152 if ((tdep->xcr0 & I386_XSTATE_BNDCFG))
1154 if (clear_bv & I386_XSTATE_BNDCFG)
1156 for (i = I387_BNDCFGU_REGNUM (tdep);
1157 i < I387_MPXEND_REGNUM (tdep); i++)
1158 regcache_raw_supply (regcache, i, zero);
1162 for (i = I387_BNDCFGU_REGNUM (tdep);
1163 i < I387_MPXEND_REGNUM (tdep); i++)
1164 regcache_raw_supply (regcache, i,
1165 XSAVE_MPX_ADDR (tdep, regs, i));
1169 /* Handle the XMM registers. */
1170 if ((tdep->xcr0 & I386_XSTATE_SSE))
1172 if ((clear_bv & I386_XSTATE_SSE))
1174 for (i = I387_XMM0_REGNUM (tdep);
1175 i < I387_MXCSR_REGNUM (tdep);
1177 regcache_raw_supply (regcache, i, zero);
1181 for (i = I387_XMM0_REGNUM (tdep);
1182 i < I387_MXCSR_REGNUM (tdep); i++)
1183 regcache_raw_supply (regcache, i,
1184 FXSAVE_ADDR (tdep, regs, i));
1188 /* Handle the x87 registers. */
1189 if ((tdep->xcr0 & I386_XSTATE_X87))
1191 if ((clear_bv & I386_XSTATE_X87))
1193 for (i = I387_ST0_REGNUM (tdep);
1194 i < I387_FCTRL_REGNUM (tdep);
1196 regcache_raw_supply (regcache, i, zero);
1200 for (i = I387_ST0_REGNUM (tdep);
1201 i < I387_FCTRL_REGNUM (tdep);
1203 regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i));
1209 /* Only handle x87 control registers. */
1210 for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
1211 if (regnum == -1 || regnum == i)
1213 /* Most of the FPU control registers occupy only 16 bits in
1214 the xsave extended state. Give those a special treatment. */
1215 if (i != I387_FIOFF_REGNUM (tdep)
1216 && i != I387_FOOFF_REGNUM (tdep))
1220 memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
1221 val[2] = val[3] = 0;
1222 if (i == I387_FOP_REGNUM (tdep))
1223 val[1] &= ((1 << 3) - 1);
1224 else if (i== I387_FTAG_REGNUM (tdep))
1226 /* The fxsave area contains a simplified version of
1227 the tag word. We have to look at the actual 80-bit
1228 FP data to recreate the traditional i387 tag word. */
1230 unsigned long ftag = 0;
1234 top = ((FXSAVE_ADDR (tdep, regs,
1235 I387_FSTAT_REGNUM (tdep)))[1] >> 3);
1238 for (fpreg = 7; fpreg >= 0; fpreg--)
1242 if (val[0] & (1 << fpreg))
1244 int thisreg = (fpreg + 8 - top) % 8
1245 + I387_ST0_REGNUM (tdep);
1246 tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
1249 tag = 3; /* Empty */
1251 ftag |= tag << (2 * fpreg);
1253 val[0] = ftag & 0xff;
1254 val[1] = (ftag >> 8) & 0xff;
1256 regcache_raw_supply (regcache, i, val);
1259 regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i));
1262 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
1263 regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep),
1264 FXSAVE_MXCSR_ADDR (regs));
1267 /* Similar to i387_collect_fxsave, but use XSAVE extended state. */
1270 i387_collect_xsave (const struct regcache *regcache, int regnum,
1271 void *xsave, int gcore)
1273 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1275 gdb_byte *regs = xsave;
1285 avx512_k = 0x20 | check,
1286 avx512_zmm_h = 0x40 | check,
1287 avx512_ymmh_avx512 = 0x80 | check,
1288 avx512_xmm_avx512 = 0x100 | check,
1289 all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h
1290 | avx512_ymmh_avx512 | avx512_xmm_avx512
1293 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
1294 gdb_assert (tdep->num_xmm_regs > 0);
1298 else if (regnum >= I387_ZMM0H_REGNUM (tdep)
1299 && regnum < I387_ZMMENDH_REGNUM (tdep))
1300 regclass = avx512_zmm_h;
1301 else if (regnum >= I387_K0_REGNUM (tdep)
1302 && regnum < I387_KEND_REGNUM (tdep))
1303 regclass = avx512_k;
1304 else if (regnum >= I387_YMM16H_REGNUM (tdep)
1305 && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
1306 regclass = avx512_ymmh_avx512;
1307 else if (regnum >= I387_XMM16_REGNUM (tdep)
1308 && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
1309 regclass = avx512_xmm_avx512;
1310 else if (regnum >= I387_YMM0H_REGNUM (tdep)
1311 && regnum < I387_YMMENDH_REGNUM (tdep))
1313 else if (regnum >= I387_BND0R_REGNUM (tdep)
1314 && regnum < I387_MPXEND_REGNUM (tdep))
1316 else if (regnum >= I387_XMM0_REGNUM (tdep)
1317 && regnum < I387_MXCSR_REGNUM (tdep))
1319 else if (regnum >= I387_ST0_REGNUM (tdep)
1320 && regnum < I387_FCTRL_REGNUM (tdep))
1327 /* Clear XSAVE extended state. */
1328 memset (regs, 0, I386_XSTATE_SIZE (tdep->xcr0));
1330 /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */
1331 if (tdep->xsave_xcr0_offset != -1)
1332 memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8);
1333 memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8);
1336 if ((regclass & check))
1338 gdb_byte raw[I386_MAX_REGISTER_SIZE];
1339 gdb_byte *xstate_bv_p = XSAVE_XSTATE_BV_ADDR (regs);
1340 unsigned int xstate_bv = 0;
1341 /* The supported bits in `xstat_bv' are 1 byte. */
1342 unsigned int clear_bv = (~(*xstate_bv_p)) & tdep->xcr0;
1345 /* Clear register set if its bit in xstat_bv is zero. */
1348 if ((clear_bv & I386_XSTATE_BNDREGS))
1349 for (i = I387_BND0R_REGNUM (tdep);
1350 i < I387_BNDCFGU_REGNUM (tdep); i++)
1351 memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 16);
1353 if ((clear_bv & I386_XSTATE_BNDCFG))
1354 for (i = I387_BNDCFGU_REGNUM (tdep);
1355 i < I387_MPXEND_REGNUM (tdep); i++)
1356 memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 8);
1358 if ((clear_bv & (I386_XSTATE_ZMM_H | I386_XSTATE_ZMM)))
1359 for (i = I387_ZMM0H_REGNUM (tdep);
1360 i < I387_ZMMENDH_REGNUM (tdep); i++)
1361 memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32);
1363 if ((clear_bv & I386_XSTATE_K))
1364 for (i = I387_K0_REGNUM (tdep);
1365 i < I387_KEND_REGNUM (tdep); i++)
1366 memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8);
1368 if ((clear_bv & I386_XSTATE_ZMM))
1370 for (i = I387_YMM16H_REGNUM (tdep);
1371 i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
1372 memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16);
1373 for (i = I387_XMM16_REGNUM (tdep);
1374 i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
1375 memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16);
1378 if ((clear_bv & I386_XSTATE_AVX))
1379 for (i = I387_YMM0H_REGNUM (tdep);
1380 i < I387_YMMENDH_REGNUM (tdep); i++)
1381 memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16);
1383 if ((clear_bv & I386_XSTATE_SSE))
1384 for (i = I387_XMM0_REGNUM (tdep);
1385 i < I387_MXCSR_REGNUM (tdep); i++)
1386 memset (FXSAVE_ADDR (tdep, regs, i), 0, 16);
1388 if ((clear_bv & I386_XSTATE_X87))
1389 for (i = I387_ST0_REGNUM (tdep);
1390 i < I387_FCTRL_REGNUM (tdep); i++)
1391 memset (FXSAVE_ADDR (tdep, regs, i), 0, 10);
1394 if (regclass == all)
1396 /* Check if any ZMMH registers are changed. */
1397 if ((tdep->xcr0 & (I386_XSTATE_ZMM_H | I386_XSTATE_ZMM)))
1398 for (i = I387_ZMM0H_REGNUM (tdep);
1399 i < I387_ZMMENDH_REGNUM (tdep); i++)
1401 regcache_raw_collect (regcache, i, raw);
1402 p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i);
1403 if (memcmp (raw, p, 32) != 0)
1405 xstate_bv |= (I386_XSTATE_ZMM_H | I386_XSTATE_ZMM);
1406 memcpy (p, raw, 32);
1410 /* Check if any K registers are changed. */
1411 if ((tdep->xcr0 & I386_XSTATE_K))
1412 for (i = I387_K0_REGNUM (tdep);
1413 i < I387_KEND_REGNUM (tdep); i++)
1415 regcache_raw_collect (regcache, i, raw);
1416 p = XSAVE_AVX512_K_ADDR (tdep, regs, i);
1417 if (memcmp (raw, p, 8) != 0)
1419 xstate_bv |= I386_XSTATE_K;
1424 /* Check if any XMM or upper YMM registers are changed. */
1425 if ((tdep->xcr0 & I386_XSTATE_ZMM))
1427 for (i = I387_YMM16H_REGNUM (tdep);
1428 i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
1430 regcache_raw_collect (regcache, i, raw);
1431 p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i);
1432 if (memcmp (raw, p, 16) != 0)
1434 xstate_bv |= I386_XSTATE_ZMM;
1435 memcpy (p, raw, 16);
1438 for (i = I387_XMM16_REGNUM (tdep);
1439 i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
1441 regcache_raw_collect (regcache, i, raw);
1442 p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i);
1443 if (memcmp (raw, p, 16) != 0)
1445 xstate_bv |= I386_XSTATE_ZMM;
1446 memcpy (p, raw, 16);
1451 /* Check if any upper YMM registers are changed. */
1452 if ((tdep->xcr0 & I386_XSTATE_AVX))
1453 for (i = I387_YMM0H_REGNUM (tdep);
1454 i < I387_YMMENDH_REGNUM (tdep); i++)
1456 regcache_raw_collect (regcache, i, raw);
1457 p = XSAVE_AVXH_ADDR (tdep, regs, i);
1458 if (memcmp (raw, p, 16))
1460 xstate_bv |= I386_XSTATE_AVX;
1461 memcpy (p, raw, 16);
1464 /* Check if any upper MPX registers are changed. */
1465 if ((tdep->xcr0 & I386_XSTATE_BNDREGS))
1466 for (i = I387_BND0R_REGNUM (tdep);
1467 i < I387_BNDCFGU_REGNUM (tdep); i++)
1469 regcache_raw_collect (regcache, i, raw);
1470 p = XSAVE_MPX_ADDR (tdep, regs, i);
1471 if (memcmp (raw, p, 16))
1473 xstate_bv |= I386_XSTATE_BNDREGS;
1474 memcpy (p, raw, 16);
1478 /* Check if any upper MPX registers are changed. */
1479 if ((tdep->xcr0 & I386_XSTATE_BNDCFG))
1480 for (i = I387_BNDCFGU_REGNUM (tdep);
1481 i < I387_MPXEND_REGNUM (tdep); i++)
1483 regcache_raw_collect (regcache, i, raw);
1484 p = XSAVE_MPX_ADDR (tdep, regs, i);
1485 if (memcmp (raw, p, 8))
1487 xstate_bv |= I386_XSTATE_BNDCFG;
1492 /* Check if any SSE registers are changed. */
1493 if ((tdep->xcr0 & I386_XSTATE_SSE))
1494 for (i = I387_XMM0_REGNUM (tdep);
1495 i < I387_MXCSR_REGNUM (tdep); i++)
1497 regcache_raw_collect (regcache, i, raw);
1498 p = FXSAVE_ADDR (tdep, regs, i);
1499 if (memcmp (raw, p, 16))
1501 xstate_bv |= I386_XSTATE_SSE;
1502 memcpy (p, raw, 16);
1506 /* Check if any X87 registers are changed. */
1507 if ((tdep->xcr0 & I386_XSTATE_X87))
1508 for (i = I387_ST0_REGNUM (tdep);
1509 i < I387_FCTRL_REGNUM (tdep); i++)
1511 regcache_raw_collect (regcache, i, raw);
1512 p = FXSAVE_ADDR (tdep, regs, i);
1513 if (memcmp (raw, p, 10))
1515 xstate_bv |= I386_XSTATE_X87;
1516 memcpy (p, raw, 10);
1522 /* Check if REGNUM is changed. */
1523 regcache_raw_collect (regcache, regnum, raw);
1528 internal_error (__FILE__, __LINE__,
1529 _("invalid i387 regclass"));
1532 /* This is a ZMM register. */
1533 p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum);
1534 if (memcmp (raw, p, 32) != 0)
1536 xstate_bv |= (I386_XSTATE_ZMM_H | I386_XSTATE_ZMM);
1537 memcpy (p, raw, 32);
1541 /* This is a AVX512 mask register. */
1542 p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum);
1543 if (memcmp (raw, p, 8) != 0)
1545 xstate_bv |= I386_XSTATE_K;
1550 case avx512_ymmh_avx512:
1551 /* This is an upper YMM16-31 register. */
1552 p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum);
1553 if (memcmp (raw, p, 16) != 0)
1555 xstate_bv |= I386_XSTATE_ZMM;
1556 memcpy (p, raw, 16);
1560 case avx512_xmm_avx512:
1561 /* This is an upper XMM16-31 register. */
1562 p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum);
1563 if (memcmp (raw, p, 16) != 0)
1565 xstate_bv |= I386_XSTATE_ZMM;
1566 memcpy (p, raw, 16);
1571 /* This is an upper YMM register. */
1572 p = XSAVE_AVXH_ADDR (tdep, regs, regnum);
1573 if (memcmp (raw, p, 16))
1575 xstate_bv |= I386_XSTATE_AVX;
1576 memcpy (p, raw, 16);
1581 if (regnum < I387_BNDCFGU_REGNUM (tdep))
1583 regcache_raw_collect (regcache, regnum, raw);
1584 p = XSAVE_MPX_ADDR (tdep, regs, regnum);
1585 if (memcmp (raw, p, 16))
1587 xstate_bv |= I386_XSTATE_BNDREGS;
1588 memcpy (p, raw, 16);
1593 p = XSAVE_MPX_ADDR (tdep, regs, regnum);
1594 xstate_bv |= I386_XSTATE_BNDCFG;
1600 /* This is an SSE register. */
1601 p = FXSAVE_ADDR (tdep, regs, regnum);
1602 if (memcmp (raw, p, 16))
1604 xstate_bv |= I386_XSTATE_SSE;
1605 memcpy (p, raw, 16);
1610 /* This is an x87 register. */
1611 p = FXSAVE_ADDR (tdep, regs, regnum);
1612 if (memcmp (raw, p, 10))
1614 xstate_bv |= I386_XSTATE_X87;
1615 memcpy (p, raw, 10);
1621 /* Update the corresponding bits in `xstate_bv' if any SSE/AVX
1622 registers are changed. */
1625 /* The supported bits in `xstat_bv' are 1 byte. */
1626 *xstate_bv_p |= (gdb_byte) xstate_bv;
1631 internal_error (__FILE__, __LINE__,
1632 _("invalid i387 regclass"));
1643 case avx512_ymmh_avx512:
1644 case avx512_xmm_avx512:
1645 /* Register REGNUM has been updated. Return. */
1651 /* Return if REGNUM isn't changed. */
1652 if (regclass != all)
1657 /* Only handle x87 control registers. */
1658 for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
1659 if (regnum == -1 || regnum == i)
1661 /* Most of the FPU control registers occupy only 16 bits in
1662 the xsave extended state. Give those a special treatment. */
1663 if (i != I387_FIOFF_REGNUM (tdep)
1664 && i != I387_FOOFF_REGNUM (tdep))
1668 regcache_raw_collect (regcache, i, buf);
1670 if (i == I387_FOP_REGNUM (tdep))
1672 /* The opcode occupies only 11 bits. Make sure we
1673 don't touch the other bits. */
1674 buf[1] &= ((1 << 3) - 1);
1675 buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
1677 else if (i == I387_FTAG_REGNUM (tdep))
1679 /* Converting back is much easier. */
1681 unsigned short ftag;
1684 ftag = (buf[1] << 8) | buf[0];
1688 for (fpreg = 7; fpreg >= 0; fpreg--)
1690 int tag = (ftag >> (fpreg * 2)) & 3;
1693 buf[0] |= (1 << fpreg);
1696 memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
1699 regcache_raw_collect (regcache, i, FXSAVE_ADDR (tdep, regs, i));
1702 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
1703 regcache_raw_collect (regcache, I387_MXCSR_REGNUM (tdep),
1704 FXSAVE_MXCSR_ADDR (regs));
1707 /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
1711 i387_tag (const gdb_byte *raw)
1714 unsigned int exponent;
1715 unsigned long fraction[2];
1717 integer = raw[7] & 0x80;
1718 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
1719 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
1720 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
1721 | (raw[5] << 8) | raw[4]);
1723 if (exponent == 0x7fff)
1728 else if (exponent == 0x0000)
1730 if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
1756 /* Prepare the FPU stack in REGCACHE for a function return. */
1759 i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
1761 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1764 /* Set the top of the floating-point register stack to 7. The
1765 actual value doesn't really matter, but 7 is what a normal
1766 function return would end up with if the program started out with
1767 a freshly initialized FPU. */
1768 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1770 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1772 /* Mark %st(1) through %st(7) as empty. Since we set the top of the
1773 floating-point register stack to 7, the appropriate value for the
1774 tag word is 0x3fff. */
1775 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);