1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
37 #include "reggroups.h"
42 #include "target-float.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "common/x86-xstate.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
70 static const char *i386_register_names[] =
72 "eax", "ecx", "edx", "ebx",
73 "esp", "ebp", "esi", "edi",
74 "eip", "eflags", "cs", "ss",
75 "ds", "es", "fs", "gs",
76 "st0", "st1", "st2", "st3",
77 "st4", "st5", "st6", "st7",
78 "fctrl", "fstat", "ftag", "fiseg",
79 "fioff", "foseg", "fooff", "fop",
80 "xmm0", "xmm1", "xmm2", "xmm3",
81 "xmm4", "xmm5", "xmm6", "xmm7",
85 static const char *i386_zmm_names[] =
87 "zmm0", "zmm1", "zmm2", "zmm3",
88 "zmm4", "zmm5", "zmm6", "zmm7"
91 static const char *i386_zmmh_names[] =
93 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
94 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97 static const char *i386_k_names[] =
99 "k0", "k1", "k2", "k3",
100 "k4", "k5", "k6", "k7"
103 static const char *i386_ymm_names[] =
105 "ymm0", "ymm1", "ymm2", "ymm3",
106 "ymm4", "ymm5", "ymm6", "ymm7",
109 static const char *i386_ymmh_names[] =
111 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
112 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115 static const char *i386_mpx_names[] =
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120 static const char* i386_pkeys_names[] =
125 /* Register names for MPX pseudo-registers. */
127 static const char *i386_bnd_names[] =
129 "bnd0", "bnd1", "bnd2", "bnd3"
132 /* Register names for MMX pseudo-registers. */
134 static const char *i386_mmx_names[] =
136 "mm0", "mm1", "mm2", "mm3",
137 "mm4", "mm5", "mm6", "mm7"
140 /* Register names for byte pseudo-registers. */
142 static const char *i386_byte_names[] =
144 "al", "cl", "dl", "bl",
145 "ah", "ch", "dh", "bh"
148 /* Register names for word pseudo-registers. */
150 static const char *i386_word_names[] =
152 "ax", "cx", "dx", "bx",
156 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
157 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
158 we have 16 upper ZMM regs that have to be handled differently. */
160 const int num_lower_zmm_regs = 16;
165 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int mm0_regnum = tdep->mm0_regnum;
173 regnum -= mm0_regnum;
174 return regnum >= 0 && regnum < tdep->num_mmx_regs;
180 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184 regnum -= tdep->al_regnum;
185 return regnum >= 0 && regnum < tdep->num_byte_regs;
191 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 regnum -= tdep->ax_regnum;
196 return regnum >= 0 && regnum < tdep->num_word_regs;
199 /* Dword register? */
202 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205 int eax_regnum = tdep->eax_regnum;
210 regnum -= eax_regnum;
211 return regnum >= 0 && regnum < tdep->num_dword_regs;
214 /* AVX512 register? */
217 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
220 int zmm0h_regnum = tdep->zmm0h_regnum;
222 if (zmm0h_regnum < 0)
225 regnum -= zmm0h_regnum;
226 return regnum >= 0 && regnum < tdep->num_zmm_regs;
230 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
233 int zmm0_regnum = tdep->zmm0_regnum;
238 regnum -= zmm0_regnum;
239 return regnum >= 0 && regnum < tdep->num_zmm_regs;
243 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246 int k0_regnum = tdep->k0_regnum;
252 return regnum >= 0 && regnum < I387_NUM_K_REGS;
256 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
259 int ymm0h_regnum = tdep->ymm0h_regnum;
261 if (ymm0h_regnum < 0)
264 regnum -= ymm0h_regnum;
265 return regnum >= 0 && regnum < tdep->num_ymm_regs;
271 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
274 int ymm0_regnum = tdep->ymm0_regnum;
279 regnum -= ymm0_regnum;
280 return regnum >= 0 && regnum < tdep->num_ymm_regs;
284 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 int ymm16h_regnum = tdep->ymm16h_regnum;
289 if (ymm16h_regnum < 0)
292 regnum -= ymm16h_regnum;
293 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
297 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300 int ymm16_regnum = tdep->ymm16_regnum;
302 if (ymm16_regnum < 0)
305 regnum -= ymm16_regnum;
306 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
312 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315 int bnd0_regnum = tdep->bnd0_regnum;
320 regnum -= bnd0_regnum;
321 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
327 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
332 if (num_xmm_regs == 0)
335 regnum -= I387_XMM0_REGNUM (tdep);
336 return regnum >= 0 && regnum < num_xmm_regs;
339 /* XMM_512 register? */
342 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347 if (num_xmm_avx512_regs == 0)
350 regnum -= I387_XMM16_REGNUM (tdep);
351 return regnum >= 0 && regnum < num_xmm_avx512_regs;
355 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359 if (I387_NUM_XMM_REGS (tdep) == 0)
362 return (regnum == I387_MXCSR_REGNUM (tdep));
368 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372 if (I387_ST0_REGNUM (tdep) < 0)
375 return (I387_ST0_REGNUM (tdep) <= regnum
376 && regnum < I387_FCTRL_REGNUM (tdep));
380 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384 if (I387_ST0_REGNUM (tdep) < 0)
387 return (I387_FCTRL_REGNUM (tdep) <= regnum
388 && regnum < I387_XMM0_REGNUM (tdep));
391 /* BNDr (raw) register? */
394 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398 if (I387_BND0R_REGNUM (tdep) < 0)
401 regnum -= tdep->bnd0r_regnum;
402 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405 /* BND control register? */
408 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 regnum -= I387_BNDCFGU_REGNUM (tdep);
416 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
422 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
424 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425 int pkru_regnum = tdep->pkru_regnum;
430 regnum -= pkru_regnum;
431 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434 /* Return the name of register REGNUM, or the empty string if it is
435 an anonymous register. */
438 i386_register_name (struct gdbarch *gdbarch, int regnum)
440 /* Hide the upper YMM registers. */
441 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 /* Hide the upper YMM16-31 registers. */
445 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 /* Hide the upper ZMM registers. */
449 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return tdesc_register_name (gdbarch, regnum);
455 /* Return the name of register REGNUM. */
458 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
461 if (i386_bnd_regnum_p (gdbarch, regnum))
462 return i386_bnd_names[regnum - tdep->bnd0_regnum];
463 if (i386_mmx_regnum_p (gdbarch, regnum))
464 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
465 else if (i386_ymm_regnum_p (gdbarch, regnum))
466 return i386_ymm_names[regnum - tdep->ymm0_regnum];
467 else if (i386_zmm_regnum_p (gdbarch, regnum))
468 return i386_zmm_names[regnum - tdep->zmm0_regnum];
469 else if (i386_byte_regnum_p (gdbarch, regnum))
470 return i386_byte_names[regnum - tdep->al_regnum];
471 else if (i386_word_regnum_p (gdbarch, regnum))
472 return i386_word_names[regnum - tdep->ax_regnum];
474 internal_error (__FILE__, __LINE__, _("invalid regnum"));
477 /* Convert a dbx register number REG to the appropriate register
478 number used by GDB. */
481 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485 /* This implements what GCC calls the "default" register map
486 (dbx_register_map[]). */
488 if (reg >= 0 && reg <= 7)
490 /* General-purpose registers. The debug info calls %ebp
491 register 4, and %esp register 5. */
498 else if (reg >= 12 && reg <= 19)
500 /* Floating-point registers. */
501 return reg - 12 + I387_ST0_REGNUM (tdep);
503 else if (reg >= 21 && reg <= 28)
506 int ymm0_regnum = tdep->ymm0_regnum;
509 && i386_xmm_regnum_p (gdbarch, reg))
510 return reg - 21 + ymm0_regnum;
512 return reg - 21 + I387_XMM0_REGNUM (tdep);
514 else if (reg >= 29 && reg <= 36)
517 return reg - 29 + I387_MM0_REGNUM (tdep);
520 /* This will hopefully provoke a warning. */
521 return gdbarch_num_cooked_regs (gdbarch);
524 /* Convert SVR4 DWARF register number REG to the appropriate register number
528 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
532 /* This implements the GCC register map that tries to be compatible
533 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
535 /* The SVR4 register numbering includes %eip and %eflags, and
536 numbers the floating point registers differently. */
537 if (reg >= 0 && reg <= 9)
539 /* General-purpose registers. */
542 else if (reg >= 11 && reg <= 18)
544 /* Floating-point registers. */
545 return reg - 11 + I387_ST0_REGNUM (tdep);
547 else if (reg >= 21 && reg <= 36)
549 /* The SSE and MMX registers have the same numbers as with dbx. */
550 return i386_dbx_reg_to_regnum (gdbarch, reg);
555 case 37: return I387_FCTRL_REGNUM (tdep);
556 case 38: return I387_FSTAT_REGNUM (tdep);
557 case 39: return I387_MXCSR_REGNUM (tdep);
558 case 40: return I386_ES_REGNUM;
559 case 41: return I386_CS_REGNUM;
560 case 42: return I386_SS_REGNUM;
561 case 43: return I386_DS_REGNUM;
562 case 44: return I386_FS_REGNUM;
563 case 45: return I386_GS_REGNUM;
569 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
570 num_regs + num_pseudo_regs for other debug formats. */
573 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
575 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578 return gdbarch_num_cooked_regs (gdbarch);
584 /* This is the variable that is set with "set disassembly-flavor", and
585 its legitimate values. */
586 static const char att_flavor[] = "att";
587 static const char intel_flavor[] = "intel";
588 static const char *const valid_flavors[] =
594 static const char *disassembly_flavor = att_flavor;
597 /* Use the program counter to determine the contents and size of a
598 breakpoint instruction. Return a pointer to a string of bytes that
599 encode a breakpoint instruction, store the length of the string in
600 *LEN and optionally adjust *PC to point to the correct memory
601 location for inserting the breakpoint.
603 On the i386 we have a single breakpoint that fits in a single byte
604 and can be inserted anywhere.
606 This function is 64-bit safe. */
608 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
610 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
613 /* Displaced instruction handling. */
615 /* Skip the legacy instruction prefixes in INSN.
616 Not all prefixes are valid for any particular insn
617 but we needn't care, the insn will fault if it's invalid.
618 The result is a pointer to the first opcode byte,
619 or NULL if we run off the end of the buffer. */
622 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
624 gdb_byte *end = insn + max_len;
630 case DATA_PREFIX_OPCODE:
631 case ADDR_PREFIX_OPCODE:
632 case CS_PREFIX_OPCODE:
633 case DS_PREFIX_OPCODE:
634 case ES_PREFIX_OPCODE:
635 case FS_PREFIX_OPCODE:
636 case GS_PREFIX_OPCODE:
637 case SS_PREFIX_OPCODE:
638 case LOCK_PREFIX_OPCODE:
639 case REPE_PREFIX_OPCODE:
640 case REPNE_PREFIX_OPCODE:
652 i386_absolute_jmp_p (const gdb_byte *insn)
654 /* jmp far (absolute address in operand). */
660 /* jump near, absolute indirect (/4). */
661 if ((insn[1] & 0x38) == 0x20)
664 /* jump far, absolute indirect (/5). */
665 if ((insn[1] & 0x38) == 0x28)
672 /* Return non-zero if INSN is a jump, zero otherwise. */
675 i386_jmp_p (const gdb_byte *insn)
677 /* jump short, relative. */
681 /* jump near, relative. */
685 return i386_absolute_jmp_p (insn);
689 i386_absolute_call_p (const gdb_byte *insn)
691 /* call far, absolute. */
697 /* Call near, absolute indirect (/2). */
698 if ((insn[1] & 0x38) == 0x10)
701 /* Call far, absolute indirect (/3). */
702 if ((insn[1] & 0x38) == 0x18)
710 i386_ret_p (const gdb_byte *insn)
714 case 0xc2: /* ret near, pop N bytes. */
715 case 0xc3: /* ret near */
716 case 0xca: /* ret far, pop N bytes. */
717 case 0xcb: /* ret far */
718 case 0xcf: /* iret */
727 i386_call_p (const gdb_byte *insn)
729 if (i386_absolute_call_p (insn))
732 /* call near, relative. */
739 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
740 length in bytes. Otherwise, return zero. */
743 i386_syscall_p (const gdb_byte *insn, int *lengthp)
745 /* Is it 'int $0x80'? */
746 if ((insn[0] == 0xcd && insn[1] == 0x80)
747 /* Or is it 'sysenter'? */
748 || (insn[0] == 0x0f && insn[1] == 0x34)
749 /* Or is it 'syscall'? */
750 || (insn[0] == 0x0f && insn[1] == 0x05))
759 /* The gdbarch insn_is_call method. */
762 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
764 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766 read_code (addr, buf, I386_MAX_INSN_LEN);
767 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769 return i386_call_p (insn);
772 /* The gdbarch insn_is_ret method. */
775 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
777 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
779 read_code (addr, buf, I386_MAX_INSN_LEN);
780 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
782 return i386_ret_p (insn);
785 /* The gdbarch insn_is_jump method. */
788 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
790 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
792 read_code (addr, buf, I386_MAX_INSN_LEN);
793 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
795 return i386_jmp_p (insn);
798 /* Some kernels may run one past a syscall insn, so we have to cope. */
800 struct displaced_step_closure *
801 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
802 CORE_ADDR from, CORE_ADDR to,
803 struct regcache *regs)
805 size_t len = gdbarch_max_insn_length (gdbarch);
806 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
807 gdb_byte *buf = closure->buf.data ();
809 read_memory (from, buf, len);
811 /* GDB may get control back after the insn after the syscall.
812 Presumably this is a kernel bug.
813 If this is a syscall, make sure there's a nop afterwards. */
818 insn = i386_skip_prefixes (buf, len);
819 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
820 insn[syscall_length] = NOP_OPCODE;
823 write_memory (to, buf, len);
827 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
828 paddress (gdbarch, from), paddress (gdbarch, to));
829 displaced_step_dump_bytes (gdb_stdlog, buf, len);
835 /* Fix up the state of registers and memory after having single-stepped
836 a displaced instruction. */
839 i386_displaced_step_fixup (struct gdbarch *gdbarch,
840 struct displaced_step_closure *closure_,
841 CORE_ADDR from, CORE_ADDR to,
842 struct regcache *regs)
844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
846 /* The offset we applied to the instruction's address.
847 This could well be negative (when viewed as a signed 32-bit
848 value), but ULONGEST won't reflect that, so take care when
850 ULONGEST insn_offset = to - from;
852 i386_displaced_step_closure *closure
853 = (i386_displaced_step_closure *) closure_;
854 gdb_byte *insn = closure->buf.data ();
855 /* The start of the insn, needed in case we see some prefixes. */
856 gdb_byte *insn_start = insn;
859 fprintf_unfiltered (gdb_stdlog,
860 "displaced: fixup (%s, %s), "
861 "insn = 0x%02x 0x%02x ...\n",
862 paddress (gdbarch, from), paddress (gdbarch, to),
865 /* The list of issues to contend with here is taken from
866 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
867 Yay for Free Software! */
869 /* Relocate the %eip, if necessary. */
871 /* The instruction recognizers we use assume any leading prefixes
872 have been skipped. */
874 /* This is the size of the buffer in closure. */
875 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
876 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
877 /* If there are too many prefixes, just ignore the insn.
878 It will fault when run. */
883 /* Except in the case of absolute or indirect jump or call
884 instructions, or a return instruction, the new eip is relative to
885 the displaced instruction; make it relative. Well, signal
886 handler returns don't need relocation either, but we use the
887 value of %eip to recognize those; see below. */
888 if (! i386_absolute_jmp_p (insn)
889 && ! i386_absolute_call_p (insn)
890 && ! i386_ret_p (insn))
895 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
897 /* A signal trampoline system call changes the %eip, resuming
898 execution of the main program after the signal handler has
899 returned. That makes them like 'return' instructions; we
900 shouldn't relocate %eip.
902 But most system calls don't, and we do need to relocate %eip.
904 Our heuristic for distinguishing these cases: if stepping
905 over the system call instruction left control directly after
906 the instruction, the we relocate --- control almost certainly
907 doesn't belong in the displaced copy. Otherwise, we assume
908 the instruction has put control where it belongs, and leave
909 it unrelocated. Goodness help us if there are PC-relative
911 if (i386_syscall_p (insn, &insn_len)
912 && orig_eip != to + (insn - insn_start) + insn_len
913 /* GDB can get control back after the insn after the syscall.
914 Presumably this is a kernel bug.
915 i386_displaced_step_copy_insn ensures its a nop,
916 we add one to the length for it. */
917 && orig_eip != to + (insn - insn_start) + insn_len + 1)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: syscall changed %%eip; "
926 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
928 /* If we just stepped over a breakpoint insn, we don't backup
929 the pc on purpose; this is to match behaviour without
932 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
935 fprintf_unfiltered (gdb_stdlog,
937 "relocated %%eip from %s to %s\n",
938 paddress (gdbarch, orig_eip),
939 paddress (gdbarch, eip));
943 /* If the instruction was PUSHFL, then the TF bit will be set in the
944 pushed value, and should be cleared. We'll leave this for later,
945 since GDB already messes up the TF flag when stepping over a
948 /* If the instruction was a call, the return address now atop the
949 stack is the address following the copied instruction. We need
950 to make it the address following the original instruction. */
951 if (i386_call_p (insn))
955 const ULONGEST retaddr_len = 4;
957 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
958 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
959 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
960 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
963 fprintf_unfiltered (gdb_stdlog,
964 "displaced: relocated return addr at %s to %s\n",
965 paddress (gdbarch, esp),
966 paddress (gdbarch, retaddr));
971 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
973 target_write_memory (*to, buf, len);
978 i386_relocate_instruction (struct gdbarch *gdbarch,
979 CORE_ADDR *to, CORE_ADDR oldloc)
981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
982 gdb_byte buf[I386_MAX_INSN_LEN];
983 int offset = 0, rel32, newrel;
985 gdb_byte *insn = buf;
987 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
989 insn_length = gdb_buffered_insn_length (gdbarch, insn,
990 I386_MAX_INSN_LEN, oldloc);
992 /* Get past the prefixes. */
993 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
995 /* Adjust calls with 32-bit relative addresses as push/jump, with
996 the address pushed being the location where the original call in
997 the user program would return to. */
1000 gdb_byte push_buf[16];
1001 unsigned int ret_addr;
1003 /* Where "ret" in the original code will return to. */
1004 ret_addr = oldloc + insn_length;
1005 push_buf[0] = 0x68; /* pushq $... */
1006 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1007 /* Push the push. */
1008 append_insns (to, 5, push_buf);
1010 /* Convert the relative call to a relative jump. */
1013 /* Adjust the destination offset. */
1014 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1015 newrel = (oldloc - *to) + rel32;
1016 store_signed_integer (insn + 1, 4, byte_order, newrel);
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1025 /* Write the adjusted jump into its displaced location. */
1026 append_insns (to, 5, insn);
1030 /* Adjust jumps with 32-bit relative addresses. Calls are already
1032 if (insn[0] == 0xe9)
1034 /* Adjust conditional jumps. */
1035 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1041 newrel = (oldloc - *to) + rel32;
1042 store_signed_integer (insn + offset, 4, byte_order, newrel);
1043 if (debug_displaced)
1044 fprintf_unfiltered (gdb_stdlog,
1045 "Adjusted insn rel32=%s at %s to"
1046 " rel32=%s at %s\n",
1047 hex_string (rel32), paddress (gdbarch, oldloc),
1048 hex_string (newrel), paddress (gdbarch, *to));
1051 /* Write the adjusted instructions into their displaced
1053 append_insns (to, insn_length, buf);
1057 #ifdef I386_REGNO_TO_SYMMETRY
1058 #error "The Sequent Symmetry is no longer supported."
1061 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1062 and %esp "belong" to the calling function. Therefore these
1063 registers should be saved if they're going to be modified. */
1065 /* The maximum number of saved registers. This should include all
1066 registers mentioned above, and %eip. */
1067 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1069 struct i386_frame_cache
1077 /* Saved registers. */
1078 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1083 /* Stack space reserved for local variables. */
1087 /* Allocate and initialize a frame cache. */
1089 static struct i386_frame_cache *
1090 i386_alloc_frame_cache (void)
1092 struct i386_frame_cache *cache;
1095 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100 cache->sp_offset = -4;
1103 /* Saved registers. We initialize these to -1 since zero is a valid
1104 offset (that's where %ebp is supposed to be stored). */
1105 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1106 cache->saved_regs[i] = -1;
1107 cache->saved_sp = 0;
1108 cache->saved_sp_reg = -1;
1109 cache->pc_in_eax = 0;
1111 /* Frameless until proven otherwise. */
1117 /* If the instruction at PC is a jump, return the address of its
1118 target. Otherwise, return PC. */
1121 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1123 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1128 if (target_read_code (pc, &op, 1))
1135 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1141 /* Relative jump: if data16 == 0, disp32, else disp16. */
1144 delta = read_memory_integer (pc + 2, 2, byte_order);
1146 /* Include the size of the jmp instruction (including the
1152 delta = read_memory_integer (pc + 1, 4, byte_order);
1154 /* Include the size of the jmp instruction. */
1159 /* Relative jump, disp8 (ignore data16). */
1160 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1162 delta += data16 + 2;
1169 /* Check whether PC points at a prologue for a function returning a
1170 structure or union. If so, it updates CACHE and returns the
1171 address of the first instruction after the code sequence that
1172 removes the "hidden" argument from the stack or CURRENT_PC,
1173 whichever is smaller. Otherwise, return PC. */
1176 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1177 struct i386_frame_cache *cache)
1179 /* Functions that return a structure or union start with:
1182 xchgl %eax, (%esp) 0x87 0x04 0x24
1183 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1185 (the System V compiler puts out the second `xchg' instruction,
1186 and the assembler doesn't try to optimize it, so the 'sib' form
1187 gets generated). This sequence is used to get the address of the
1188 return buffer for a function that returns a structure. */
1189 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1190 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1194 if (current_pc <= pc)
1197 if (target_read_code (pc, &op, 1))
1200 if (op != 0x58) /* popl %eax */
1203 if (target_read_code (pc + 1, buf, 4))
1206 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1209 if (current_pc == pc)
1211 cache->sp_offset += 4;
1215 if (current_pc == pc + 1)
1217 cache->pc_in_eax = 1;
1221 if (buf[1] == proto1[1])
1228 i386_skip_probe (CORE_ADDR pc)
1230 /* A function may start with
1244 if (target_read_code (pc, &op, 1))
1247 if (op == 0x68 || op == 0x6a)
1251 /* Skip past the `pushl' instruction; it has either a one-byte or a
1252 four-byte operand, depending on the opcode. */
1258 /* Read the following 8 bytes, which should be `call _probe' (6
1259 bytes) followed by `addl $4,%esp' (2 bytes). */
1260 read_memory (pc + delta, buf, sizeof (buf));
1261 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1262 pc += delta + sizeof (buf);
1268 /* GCC 4.1 and later, can put code in the prologue to realign the
1269 stack pointer. Check whether PC points to such code, and update
1270 CACHE accordingly. Return the first instruction after the code
1271 sequence or CURRENT_PC, whichever is smaller. If we don't
1272 recognize the code, return PC. */
1275 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1276 struct i386_frame_cache *cache)
1278 /* There are 2 code sequences to re-align stack before the frame
1281 1. Use a caller-saved saved register:
1287 2. Use a callee-saved saved register:
1294 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1296 0x83 0xe4 0xf0 andl $-16, %esp
1297 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 int offset, offset_and;
1303 static int regnums[8] = {
1304 I386_EAX_REGNUM, /* %eax */
1305 I386_ECX_REGNUM, /* %ecx */
1306 I386_EDX_REGNUM, /* %edx */
1307 I386_EBX_REGNUM, /* %ebx */
1308 I386_ESP_REGNUM, /* %esp */
1309 I386_EBP_REGNUM, /* %ebp */
1310 I386_ESI_REGNUM, /* %esi */
1311 I386_EDI_REGNUM /* %edi */
1314 if (target_read_code (pc, buf, sizeof buf))
1317 /* Check caller-saved saved register. The first instruction has
1318 to be "leal 4(%esp), %reg". */
1319 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1321 /* MOD must be binary 10 and R/M must be binary 100. */
1322 if ((buf[1] & 0xc7) != 0x44)
1325 /* REG has register number. */
1326 reg = (buf[1] >> 3) & 7;
1331 /* Check callee-saved saved register. The first instruction
1332 has to be "pushl %reg". */
1333 if ((buf[0] & 0xf8) != 0x50)
1339 /* The next instruction has to be "leal 8(%esp), %reg". */
1340 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1343 /* MOD must be binary 10 and R/M must be binary 100. */
1344 if ((buf[2] & 0xc7) != 0x44)
1347 /* REG has register number. Registers in pushl and leal have to
1349 if (reg != ((buf[2] >> 3) & 7))
1355 /* Rigister can't be %esp nor %ebp. */
1356 if (reg == 4 || reg == 5)
1359 /* The next instruction has to be "andl $-XXX, %esp". */
1360 if (buf[offset + 1] != 0xe4
1361 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1364 offset_and = offset;
1365 offset += buf[offset] == 0x81 ? 6 : 3;
1367 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1368 0xfc. REG must be binary 110 and MOD must be binary 01. */
1369 if (buf[offset] != 0xff
1370 || buf[offset + 2] != 0xfc
1371 || (buf[offset + 1] & 0xf8) != 0x70)
1374 /* R/M has register. Registers in leal and pushl have to be the
1376 if (reg != (buf[offset + 1] & 7))
1379 if (current_pc > pc + offset_and)
1380 cache->saved_sp_reg = regnums[reg];
1382 return std::min (pc + offset + 3, current_pc);
1385 /* Maximum instruction length we need to handle. */
1386 #define I386_MAX_MATCHED_INSN_LEN 6
1388 /* Instruction description. */
1392 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1393 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1396 /* Return whether instruction at PC matches PATTERN. */
1399 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1403 if (target_read_code (pc, &op, 1))
1406 if ((op & pattern.mask[0]) == pattern.insn[0])
1408 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1409 int insn_matched = 1;
1412 gdb_assert (pattern.len > 1);
1413 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1415 if (target_read_code (pc + 1, buf, pattern.len - 1))
1418 for (i = 1; i < pattern.len; i++)
1420 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1423 return insn_matched;
1428 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1429 the first instruction description that matches. Otherwise, return
1432 static struct i386_insn *
1433 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1435 struct i386_insn *pattern;
1437 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1439 if (i386_match_pattern (pc, *pattern))
1446 /* Return whether PC points inside a sequence of instructions that
1447 matches INSN_PATTERNS. */
1450 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1452 CORE_ADDR current_pc;
1454 struct i386_insn *insn;
1456 insn = i386_match_insn (pc, insn_patterns);
1461 ix = insn - insn_patterns;
1462 for (i = ix - 1; i >= 0; i--)
1464 current_pc -= insn_patterns[i].len;
1466 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1470 current_pc = pc + insn->len;
1471 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1473 if (!i386_match_pattern (current_pc, *insn))
1476 current_pc += insn->len;
1482 /* Some special instructions that might be migrated by GCC into the
1483 part of the prologue that sets up the new stack frame. Because the
1484 stack frame hasn't been setup yet, no registers have been saved
1485 yet, and only the scratch registers %eax, %ecx and %edx can be
1488 struct i386_insn i386_frame_setup_skip_insns[] =
1490 /* Check for `movb imm8, r' and `movl imm32, r'.
1492 ??? Should we handle 16-bit operand-sizes here? */
1494 /* `movb imm8, %al' and `movb imm8, %ah' */
1495 /* `movb imm8, %cl' and `movb imm8, %ch' */
1496 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1497 /* `movb imm8, %dl' and `movb imm8, %dh' */
1498 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1499 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1500 { 5, { 0xb8 }, { 0xfe } },
1501 /* `movl imm32, %edx' */
1502 { 5, { 0xba }, { 0xff } },
1504 /* Check for `mov imm32, r32'. Note that there is an alternative
1505 encoding for `mov m32, %eax'.
1507 ??? Should we handle SIB adressing here?
1508 ??? Should we handle 16-bit operand-sizes here? */
1510 /* `movl m32, %eax' */
1511 { 5, { 0xa1 }, { 0xff } },
1512 /* `movl m32, %eax' and `mov; m32, %ecx' */
1513 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1514 /* `movl m32, %edx' */
1515 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1517 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1518 Because of the symmetry, there are actually two ways to encode
1519 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1520 opcode bytes 0x31 and 0x33 for `xorl'. */
1522 /* `subl %eax, %eax' */
1523 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1524 /* `subl %ecx, %ecx' */
1525 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1526 /* `subl %edx, %edx' */
1527 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1528 /* `xorl %eax, %eax' */
1529 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1530 /* `xorl %ecx, %ecx' */
1531 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1532 /* `xorl %edx, %edx' */
1533 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 /* Check whether PC points to a no-op instruction. */
1540 i386_skip_noop (CORE_ADDR pc)
1545 if (target_read_code (pc, &op, 1))
1551 /* Ignore `nop' instruction. */
1555 if (target_read_code (pc, &op, 1))
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1570 else if (op == 0x8b)
1572 if (target_read_code (pc + 1, &op, 1))
1578 if (target_read_code (pc, &op, 1))
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
1596 struct i386_frame_cache *cache)
1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599 struct i386_insn *insn;
1606 if (target_read_code (pc, &op, 1))
1609 if (op == 0x55) /* pushl %ebp */
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
1614 cache->sp_offset += 4;
1617 /* If that's all, return now. */
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of posibilities is sheer,
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc + skip < limit)
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1642 if (target_read_code (pc + skip, &op, 1))
1645 /* The i386 prologue looks like
1651 and a different prologue can be generated for atom.
1655 lea -0x10(%esp),%esp
1657 We handle both of them here. */
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1690 /* If that's all, return now. */
1694 /* Check for stack adjustment
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc, &op, 1))
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1716 else if (op == 0x81)
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1727 else if (op == 0x8d)
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1732 /* 'lea' with 8-bit displacement. */
1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1738 /* Some instruction other than `subl' nor 'lea'. */
1742 else if (op == 0xc8) /* enter */
1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
1760 CORE_ADDR offset = 0;
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1768 if (target_read_code (pc, &op, 1))
1770 if (op < 0x50 || op > 0x57)
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1786 We handle these cases:
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
1812 struct i386_frame_cache *cache)
1814 pc = i386_skip_noop (pc);
1815 pc = i386_follow_jump (gdbarch, pc);
1816 pc = i386_analyze_struct_return (pc, current_pc, cache);
1817 pc = i386_skip_probe (pc);
1818 pc = i386_analyze_stack_align (pc, current_pc, cache);
1819 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1820 return i386_analyze_register_saves (pc, current_pc, cache);
1823 /* Return PC of first real instruction. */
1826 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830 static gdb_byte pic_pat[6] =
1832 0xe8, 0, 0, 0, 0, /* call 0x0 */
1833 0x5b, /* popl %ebx */
1835 struct i386_frame_cache cache;
1839 CORE_ADDR func_addr;
1841 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1843 CORE_ADDR post_prologue_pc
1844 = skip_prologue_using_sal (gdbarch, func_addr);
1845 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1847 /* Clang always emits a line note before the prologue and another
1848 one after. We trust clang to emit usable line notes. */
1849 if (post_prologue_pc
1851 && COMPUNIT_PRODUCER (cust) != NULL
1852 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1853 return std::max (start_pc, post_prologue_pc);
1857 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1858 if (cache.locals < 0)
1861 /* Found valid frame setup. */
1863 /* The native cc on SVR4 in -K PIC mode inserts the following code
1864 to get the address of the global offset table (GOT) into register
1869 movl %ebx,x(%ebp) (optional)
1872 This code is with the rest of the prologue (at the end of the
1873 function), so we have to skip it to get to the first real
1874 instruction at the start of the function. */
1876 for (i = 0; i < 6; i++)
1878 if (target_read_code (pc + i, &op, 1))
1881 if (pic_pat[i] != op)
1888 if (target_read_code (pc + delta, &op, 1))
1891 if (op == 0x89) /* movl %ebx, x(%ebp) */
1893 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1895 if (op == 0x5d) /* One byte offset from %ebp. */
1897 else if (op == 0x9d) /* Four byte offset from %ebp. */
1899 else /* Unexpected instruction. */
1902 if (target_read_code (pc + delta, &op, 1))
1907 if (delta > 0 && op == 0x81
1908 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1915 /* If the function starts with a branch (to startup code at the end)
1916 the last instruction should bring us back to the first
1917 instruction of the real code. */
1918 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1919 pc = i386_follow_jump (gdbarch, pc);
1924 /* Check that the code pointed to by PC corresponds to a call to
1925 __main, skip it if so. Return PC otherwise. */
1928 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1930 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1933 if (target_read_code (pc, &op, 1))
1939 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1941 /* Make sure address is computed correctly as a 32bit
1942 integer even if CORE_ADDR is 64 bit wide. */
1943 struct bound_minimal_symbol s;
1944 CORE_ADDR call_dest;
1946 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1947 call_dest = call_dest & 0xffffffffU;
1948 s = lookup_minimal_symbol_by_pc (call_dest);
1949 if (s.minsym != NULL
1950 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1951 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1959 /* This function is 64-bit safe. */
1962 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1966 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1967 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1971 /* Normal frames. */
1974 i386_frame_cache_1 (struct frame_info *this_frame,
1975 struct i386_frame_cache *cache)
1977 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1982 cache->pc = get_frame_func (this_frame);
1984 /* In principle, for normal frames, %ebp holds the frame pointer,
1985 which holds the base address for the current stack frame.
1986 However, for functions that don't need it, the frame pointer is
1987 optional. For these "frameless" functions the frame pointer is
1988 actually the frame pointer of the calling frame. Signal
1989 trampolines are just a special case of a "frameless" function.
1990 They (usually) share their frame pointer with the frame that was
1991 in progress when the signal occurred. */
1993 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1994 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1995 if (cache->base == 0)
2001 /* For normal frames, %eip is stored at 4(%ebp). */
2002 cache->saved_regs[I386_EIP_REGNUM] = 4;
2005 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2008 if (cache->locals < 0)
2010 /* We didn't find a valid frame, which means that CACHE->base
2011 currently holds the frame pointer for our calling frame. If
2012 we're at the start of a function, or somewhere half-way its
2013 prologue, the function's frame probably hasn't been fully
2014 setup yet. Try to reconstruct the base address for the stack
2015 frame by looking at the stack pointer. For truly "frameless"
2016 functions this might work too. */
2018 if (cache->saved_sp_reg != -1)
2020 /* Saved stack pointer has been saved. */
2021 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2022 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2024 /* We're halfway aligning the stack. */
2025 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2026 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2028 /* This will be added back below. */
2029 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2031 else if (cache->pc != 0
2032 || target_read_code (get_frame_pc (this_frame), buf, 1))
2034 /* We're in a known function, but did not find a frame
2035 setup. Assume that the function does not use %ebp.
2036 Alternatively, we may have jumped to an invalid
2037 address; in that case there is definitely no new
2039 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2040 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2044 /* We're in an unknown function. We could not find the start
2045 of the function to analyze the prologue; our best option is
2046 to assume a typical frame layout with the caller's %ebp
2048 cache->saved_regs[I386_EBP_REGNUM] = 0;
2051 if (cache->saved_sp_reg != -1)
2053 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2054 register may be unavailable). */
2055 if (cache->saved_sp == 0
2056 && deprecated_frame_register_read (this_frame,
2057 cache->saved_sp_reg, buf))
2058 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2060 /* Now that we have the base address for the stack frame we can
2061 calculate the value of %esp in the calling frame. */
2062 else if (cache->saved_sp == 0)
2063 cache->saved_sp = cache->base + 8;
2065 /* Adjust all the saved registers such that they contain addresses
2066 instead of offsets. */
2067 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2068 if (cache->saved_regs[i] != -1)
2069 cache->saved_regs[i] += cache->base;
2074 static struct i386_frame_cache *
2075 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2077 struct i386_frame_cache *cache;
2080 return (struct i386_frame_cache *) *this_cache;
2082 cache = i386_alloc_frame_cache ();
2083 *this_cache = cache;
2087 i386_frame_cache_1 (this_frame, cache);
2089 catch (const gdb_exception_error &ex)
2091 if (ex.error != NOT_AVAILABLE_ERROR)
2099 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2100 struct frame_id *this_id)
2102 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2105 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2106 else if (cache->base == 0)
2108 /* This marks the outermost frame. */
2112 /* See the end of i386_push_dummy_call. */
2113 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2117 static enum unwind_stop_reason
2118 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2121 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2124 return UNWIND_UNAVAILABLE;
2126 /* This marks the outermost frame. */
2127 if (cache->base == 0)
2128 return UNWIND_OUTERMOST;
2130 return UNWIND_NO_REASON;
2133 static struct value *
2134 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2137 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2139 gdb_assert (regnum >= 0);
2141 /* The System V ABI says that:
2143 "The flags register contains the system flags, such as the
2144 direction flag and the carry flag. The direction flag must be
2145 set to the forward (that is, zero) direction before entry and
2146 upon exit from a function. Other user flags have no specified
2147 role in the standard calling sequence and are not preserved."
2149 To guarantee the "upon exit" part of that statement we fake a
2150 saved flags register that has its direction flag cleared.
2152 Note that GCC doesn't seem to rely on the fact that the direction
2153 flag is cleared after a function return; it always explicitly
2154 clears the flag before operations where it matters.
2156 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2157 right thing to do. The way we fake the flags register here makes
2158 it impossible to change it. */
2160 if (regnum == I386_EFLAGS_REGNUM)
2164 val = get_frame_register_unsigned (this_frame, regnum);
2166 return frame_unwind_got_constant (this_frame, regnum, val);
2169 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2170 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2172 if (regnum == I386_ESP_REGNUM
2173 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2175 /* If the SP has been saved, but we don't know where, then this
2176 means that SAVED_SP_REG register was found unavailable back
2177 when we built the cache. */
2178 if (cache->saved_sp == 0)
2179 return frame_unwind_got_register (this_frame, regnum,
2180 cache->saved_sp_reg);
2182 return frame_unwind_got_constant (this_frame, regnum,
2186 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2187 return frame_unwind_got_memory (this_frame, regnum,
2188 cache->saved_regs[regnum]);
2190 return frame_unwind_got_register (this_frame, regnum, regnum);
2193 static const struct frame_unwind i386_frame_unwind =
2196 i386_frame_unwind_stop_reason,
2198 i386_frame_prev_register,
2200 default_frame_sniffer
2203 /* Normal frames, but in a function epilogue. */
2205 /* Implement the stack_frame_destroyed_p gdbarch method.
2207 The epilogue is defined here as the 'ret' instruction, which will
2208 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2209 the function's stack frame. */
2212 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2215 struct compunit_symtab *cust;
2217 cust = find_pc_compunit_symtab (pc);
2218 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2221 if (target_read_memory (pc, &insn, 1))
2222 return 0; /* Can't read memory at pc. */
2224 if (insn != 0xc3) /* 'ret' instruction. */
2231 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2232 struct frame_info *this_frame,
2233 void **this_prologue_cache)
2235 if (frame_relative_level (this_frame) == 0)
2236 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2237 get_frame_pc (this_frame));
2242 static struct i386_frame_cache *
2243 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2245 struct i386_frame_cache *cache;
2249 return (struct i386_frame_cache *) *this_cache;
2251 cache = i386_alloc_frame_cache ();
2252 *this_cache = cache;
2256 cache->pc = get_frame_func (this_frame);
2258 /* At this point the stack looks as if we just entered the
2259 function, with the return address at the top of the
2261 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2262 cache->base = sp + cache->sp_offset;
2263 cache->saved_sp = cache->base + 8;
2264 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2268 catch (const gdb_exception_error &ex)
2270 if (ex.error != NOT_AVAILABLE_ERROR)
2277 static enum unwind_stop_reason
2278 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 struct i386_frame_cache *cache =
2282 i386_epilogue_frame_cache (this_frame, this_cache);
2285 return UNWIND_UNAVAILABLE;
2287 return UNWIND_NO_REASON;
2291 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2293 struct frame_id *this_id)
2295 struct i386_frame_cache *cache =
2296 i386_epilogue_frame_cache (this_frame, this_cache);
2299 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2301 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2304 static struct value *
2305 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2306 void **this_cache, int regnum)
2308 /* Make sure we've initialized the cache. */
2309 i386_epilogue_frame_cache (this_frame, this_cache);
2311 return i386_frame_prev_register (this_frame, this_cache, regnum);
2314 static const struct frame_unwind i386_epilogue_frame_unwind =
2317 i386_epilogue_frame_unwind_stop_reason,
2318 i386_epilogue_frame_this_id,
2319 i386_epilogue_frame_prev_register,
2321 i386_epilogue_frame_sniffer
2325 /* Stack-based trampolines. */
2327 /* These trampolines are used on cross x86 targets, when taking the
2328 address of a nested function. When executing these trampolines,
2329 no stack frame is set up, so we are in a similar situation as in
2330 epilogues and i386_epilogue_frame_this_id can be re-used. */
2332 /* Static chain passed in register. */
2334 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2336 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2337 { 5, { 0xb8 }, { 0xfe } },
2340 { 5, { 0xe9 }, { 0xff } },
2345 /* Static chain passed on stack (when regparm=3). */
2347 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2350 { 5, { 0x68 }, { 0xff } },
2353 { 5, { 0xe9 }, { 0xff } },
2358 /* Return whether PC points inside a stack trampoline. */
2361 i386_in_stack_tramp_p (CORE_ADDR pc)
2366 /* A stack trampoline is detected if no name is associated
2367 to the current pc and if it points inside a trampoline
2370 find_pc_partial_function (pc, &name, NULL, NULL);
2374 if (target_read_memory (pc, &insn, 1))
2377 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2378 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2386 struct frame_info *this_frame,
2389 if (frame_relative_level (this_frame) == 0)
2390 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2395 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398 i386_epilogue_frame_unwind_stop_reason,
2399 i386_epilogue_frame_this_id,
2400 i386_epilogue_frame_prev_register,
2402 i386_stack_tramp_frame_sniffer
2405 /* Generate a bytecode expression to get the value of the saved PC. */
2408 i386_gen_return_address (struct gdbarch *gdbarch,
2409 struct agent_expr *ax, struct axs_value *value,
2412 /* The following sequence assumes the traditional use of the base
2414 ax_reg (ax, I386_EBP_REGNUM);
2416 ax_simple (ax, aop_add);
2417 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2418 value->kind = axs_lvalue_memory;
2422 /* Signal trampolines. */
2424 static struct i386_frame_cache *
2425 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2427 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2430 struct i386_frame_cache *cache;
2435 return (struct i386_frame_cache *) *this_cache;
2437 cache = i386_alloc_frame_cache ();
2441 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2442 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2444 addr = tdep->sigcontext_addr (this_frame);
2445 if (tdep->sc_reg_offset)
2449 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2451 for (i = 0; i < tdep->sc_num_regs; i++)
2452 if (tdep->sc_reg_offset[i] != -1)
2453 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2457 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2458 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2463 catch (const gdb_exception_error &ex)
2465 if (ex.error != NOT_AVAILABLE_ERROR)
2469 *this_cache = cache;
2473 static enum unwind_stop_reason
2474 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 struct i386_frame_cache *cache =
2478 i386_sigtramp_frame_cache (this_frame, this_cache);
2481 return UNWIND_UNAVAILABLE;
2483 return UNWIND_NO_REASON;
2487 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2488 struct frame_id *this_id)
2490 struct i386_frame_cache *cache =
2491 i386_sigtramp_frame_cache (this_frame, this_cache);
2494 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2497 /* See the end of i386_push_dummy_call. */
2498 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2502 static struct value *
2503 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2504 void **this_cache, int regnum)
2506 /* Make sure we've initialized the cache. */
2507 i386_sigtramp_frame_cache (this_frame, this_cache);
2509 return i386_frame_prev_register (this_frame, this_cache, regnum);
2513 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2514 struct frame_info *this_frame,
2515 void **this_prologue_cache)
2517 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2519 /* We shouldn't even bother if we don't have a sigcontext_addr
2521 if (tdep->sigcontext_addr == NULL)
2524 if (tdep->sigtramp_p != NULL)
2526 if (tdep->sigtramp_p (this_frame))
2530 if (tdep->sigtramp_start != 0)
2532 CORE_ADDR pc = get_frame_pc (this_frame);
2534 gdb_assert (tdep->sigtramp_end != 0);
2535 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2542 static const struct frame_unwind i386_sigtramp_frame_unwind =
2545 i386_sigtramp_frame_unwind_stop_reason,
2546 i386_sigtramp_frame_this_id,
2547 i386_sigtramp_frame_prev_register,
2549 i386_sigtramp_frame_sniffer
2554 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2556 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2561 static const struct frame_base i386_frame_base =
2564 i386_frame_base_address,
2565 i386_frame_base_address,
2566 i386_frame_base_address
2569 static struct frame_id
2570 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2574 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2576 /* See the end of i386_push_dummy_call. */
2577 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2580 /* _Decimal128 function return values need 16-byte alignment on the
2584 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2586 return sp & -(CORE_ADDR)16;
2590 /* Figure out where the longjmp will land. Slurp the args out of the
2591 stack. We expect the first arg to be a pointer to the jmp_buf
2592 structure from which we extract the address that we will land at.
2593 This address is copied into PC. This routine returns non-zero on
2597 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2600 CORE_ADDR sp, jb_addr;
2601 struct gdbarch *gdbarch = get_frame_arch (frame);
2602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2603 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2605 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2606 longjmp will land. */
2607 if (jb_pc_offset == -1)
2610 get_frame_register (frame, I386_ESP_REGNUM, buf);
2611 sp = extract_unsigned_integer (buf, 4, byte_order);
2612 if (target_read_memory (sp + 4, buf, 4))
2615 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2616 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2619 *pc = extract_unsigned_integer (buf, 4, byte_order);
2624 /* Check whether TYPE must be 16-byte-aligned when passed as a
2625 function argument. 16-byte vectors, _Decimal128 and structures or
2626 unions containing such types must be 16-byte-aligned; other
2627 arguments are 4-byte-aligned. */
2630 i386_16_byte_align_p (struct type *type)
2632 type = check_typedef (type);
2633 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2634 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2635 && TYPE_LENGTH (type) == 16)
2637 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2638 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2639 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2640 || TYPE_CODE (type) == TYPE_CODE_UNION)
2643 for (i = 0; i < TYPE_NFIELDS (type); i++)
2645 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2652 /* Implementation for set_gdbarch_push_dummy_code. */
2655 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2656 struct value **args, int nargs, struct type *value_type,
2657 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2658 struct regcache *regcache)
2660 /* Use 0xcc breakpoint - 1 byte. */
2664 /* Keep the stack aligned. */
2669 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2670 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2671 struct value **args, CORE_ADDR sp,
2672 function_call_return_method return_method,
2673 CORE_ADDR struct_addr)
2675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2681 /* BND registers can be in arbitrary values at the moment of the
2682 inferior call. This can cause boundary violations that are not
2683 due to a real bug or even desired by the user. The best to be done
2684 is set the BND registers to allow access to the whole memory, INIT
2685 state, before pushing the inferior call. */
2686 i387_reset_bnd_regs (gdbarch, regcache);
2688 /* Determine the total space required for arguments and struct
2689 return address in a first pass (allowing for 16-byte-aligned
2690 arguments), then push arguments in a second pass. */
2692 for (write_pass = 0; write_pass < 2; write_pass++)
2694 int args_space_used = 0;
2696 if (return_method == return_method_struct)
2700 /* Push value address. */
2701 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2702 write_memory (sp, buf, 4);
2703 args_space_used += 4;
2709 for (i = 0; i < nargs; i++)
2711 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2715 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2716 args_space_used = align_up (args_space_used, 16);
2718 write_memory (sp + args_space_used,
2719 value_contents_all (args[i]), len);
2720 /* The System V ABI says that:
2722 "An argument's size is increased, if necessary, to make it a
2723 multiple of [32-bit] words. This may require tail padding,
2724 depending on the size of the argument."
2726 This makes sure the stack stays word-aligned. */
2727 args_space_used += align_up (len, 4);
2731 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2732 args_space = align_up (args_space, 16);
2733 args_space += align_up (len, 4);
2741 /* The original System V ABI only requires word alignment,
2742 but modern incarnations need 16-byte alignment in order
2743 to support SSE. Since wasting a few bytes here isn't
2744 harmful we unconditionally enforce 16-byte alignment. */
2749 /* Store return address. */
2751 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2752 write_memory (sp, buf, 4);
2754 /* Finally, update the stack pointer... */
2755 store_unsigned_integer (buf, 4, byte_order, sp);
2756 regcache->cooked_write (I386_ESP_REGNUM, buf);
2758 /* ...and fake a frame pointer. */
2759 regcache->cooked_write (I386_EBP_REGNUM, buf);
2761 /* MarkK wrote: This "+ 8" is all over the place:
2762 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2763 i386_dummy_id). It's there, since all frame unwinders for
2764 a given target have to agree (within a certain margin) on the
2765 definition of the stack address of a frame. Otherwise frame id
2766 comparison might not work correctly. Since DWARF2/GCC uses the
2767 stack address *before* the function call as a frame's CFA. On
2768 the i386, when %ebp is used as a frame pointer, the offset
2769 between the contents %ebp and the CFA as defined by GCC. */
2773 /* These registers are used for returning integers (and on some
2774 targets also for returning `struct' and `union' values when their
2775 size and alignment match an integer type). */
2776 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2777 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2779 /* Read, for architecture GDBARCH, a function return value of TYPE
2780 from REGCACHE, and copy that into VALBUF. */
2783 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2784 struct regcache *regcache, gdb_byte *valbuf)
2786 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2787 int len = TYPE_LENGTH (type);
2788 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2790 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2792 if (tdep->st0_regnum < 0)
2794 warning (_("Cannot find floating-point return value."));
2795 memset (valbuf, 0, len);
2799 /* Floating-point return values can be found in %st(0). Convert
2800 its contents to the desired type. This is probably not
2801 exactly how it would happen on the target itself, but it is
2802 the best we can do. */
2803 regcache->raw_read (I386_ST0_REGNUM, buf);
2804 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2808 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2809 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2811 if (len <= low_size)
2813 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2814 memcpy (valbuf, buf, len);
2816 else if (len <= (low_size + high_size))
2818 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2819 memcpy (valbuf, buf, low_size);
2820 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2821 memcpy (valbuf + low_size, buf, len - low_size);
2824 internal_error (__FILE__, __LINE__,
2825 _("Cannot extract return value of %d bytes long."),
2830 /* Write, for architecture GDBARCH, a function return value of TYPE
2831 from VALBUF into REGCACHE. */
2834 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2835 struct regcache *regcache, const gdb_byte *valbuf)
2837 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2838 int len = TYPE_LENGTH (type);
2840 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2843 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2845 if (tdep->st0_regnum < 0)
2847 warning (_("Cannot set floating-point return value."));
2851 /* Returning floating-point values is a bit tricky. Apart from
2852 storing the return value in %st(0), we have to simulate the
2853 state of the FPU at function return point. */
2855 /* Convert the value found in VALBUF to the extended
2856 floating-point format used by the FPU. This is probably
2857 not exactly how it would happen on the target itself, but
2858 it is the best we can do. */
2859 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2860 regcache->raw_write (I386_ST0_REGNUM, buf);
2862 /* Set the top of the floating-point register stack to 7. The
2863 actual value doesn't really matter, but 7 is what a normal
2864 function return would end up with if the program started out
2865 with a freshly initialized FPU. */
2866 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2868 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2870 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2871 the floating-point register stack to 7, the appropriate value
2872 for the tag word is 0x3fff. */
2873 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2877 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2878 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2880 if (len <= low_size)
2881 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2882 else if (len <= (low_size + high_size))
2884 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2885 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2889 internal_error (__FILE__, __LINE__,
2890 _("Cannot store return value of %d bytes long."), len);
2895 /* This is the variable that is set with "set struct-convention", and
2896 its legitimate values. */
2897 static const char default_struct_convention[] = "default";
2898 static const char pcc_struct_convention[] = "pcc";
2899 static const char reg_struct_convention[] = "reg";
2900 static const char *const valid_conventions[] =
2902 default_struct_convention,
2903 pcc_struct_convention,
2904 reg_struct_convention,
2907 static const char *struct_convention = default_struct_convention;
2909 /* Return non-zero if TYPE, which is assumed to be a structure,
2910 a union type, or an array type, should be returned in registers
2911 for architecture GDBARCH. */
2914 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2916 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2917 enum type_code code = TYPE_CODE (type);
2918 int len = TYPE_LENGTH (type);
2920 gdb_assert (code == TYPE_CODE_STRUCT
2921 || code == TYPE_CODE_UNION
2922 || code == TYPE_CODE_ARRAY);
2924 if (struct_convention == pcc_struct_convention
2925 || (struct_convention == default_struct_convention
2926 && tdep->struct_return == pcc_struct_return))
2929 /* Structures consisting of a single `float', `double' or 'long
2930 double' member are returned in %st(0). */
2931 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2933 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2934 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2935 return (len == 4 || len == 8 || len == 12);
2938 return (len == 1 || len == 2 || len == 4 || len == 8);
2941 /* Determine, for architecture GDBARCH, how a return value of TYPE
2942 should be returned. If it is supposed to be returned in registers,
2943 and READBUF is non-zero, read the appropriate value from REGCACHE,
2944 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2945 from WRITEBUF into REGCACHE. */
2947 static enum return_value_convention
2948 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2949 struct type *type, struct regcache *regcache,
2950 gdb_byte *readbuf, const gdb_byte *writebuf)
2952 enum type_code code = TYPE_CODE (type);
2954 if (((code == TYPE_CODE_STRUCT
2955 || code == TYPE_CODE_UNION
2956 || code == TYPE_CODE_ARRAY)
2957 && !i386_reg_struct_return_p (gdbarch, type))
2958 /* Complex double and long double uses the struct return covention. */
2959 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2960 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2961 /* 128-bit decimal float uses the struct return convention. */
2962 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2964 /* The System V ABI says that:
2966 "A function that returns a structure or union also sets %eax
2967 to the value of the original address of the caller's area
2968 before it returns. Thus when the caller receives control
2969 again, the address of the returned object resides in register
2970 %eax and can be used to access the object."
2972 So the ABI guarantees that we can always find the return
2973 value just after the function has returned. */
2975 /* Note that the ABI doesn't mention functions returning arrays,
2976 which is something possible in certain languages such as Ada.
2977 In this case, the value is returned as if it was wrapped in
2978 a record, so the convention applied to records also applies
2985 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2986 read_memory (addr, readbuf, TYPE_LENGTH (type));
2989 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2992 /* This special case is for structures consisting of a single
2993 `float', `double' or 'long double' member. These structures are
2994 returned in %st(0). For these structures, we call ourselves
2995 recursively, changing TYPE into the type of the first member of
2996 the structure. Since that should work for all structures that
2997 have only one member, we don't bother to check the member's type
2999 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3001 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3002 return i386_return_value (gdbarch, function, type, regcache,
3007 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3009 i386_store_return_value (gdbarch, type, regcache, writebuf);
3011 return RETURN_VALUE_REGISTER_CONVENTION;
3016 i387_ext_type (struct gdbarch *gdbarch)
3018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3020 if (!tdep->i387_ext_type)
3022 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3023 gdb_assert (tdep->i387_ext_type != NULL);
3026 return tdep->i387_ext_type;
3029 /* Construct type for pseudo BND registers. We can't use
3030 tdesc_find_type since a complement of one value has to be used
3031 to describe the upper bound. */
3033 static struct type *
3034 i386_bnd_type (struct gdbarch *gdbarch)
3036 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3039 if (!tdep->i386_bnd_type)
3042 const struct builtin_type *bt = builtin_type (gdbarch);
3044 /* The type we're building is described bellow: */
3049 void *ubound; /* One complement of raw ubound field. */
3053 t = arch_composite_type (gdbarch,
3054 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3056 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3057 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3059 TYPE_NAME (t) = "builtin_type_bound128";
3060 tdep->i386_bnd_type = t;
3063 return tdep->i386_bnd_type;
3066 /* Construct vector type for pseudo ZMM registers. We can't use
3067 tdesc_find_type since ZMM isn't described in target description. */
3069 static struct type *
3070 i386_zmm_type (struct gdbarch *gdbarch)
3072 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3074 if (!tdep->i386_zmm_type)
3076 const struct builtin_type *bt = builtin_type (gdbarch);
3078 /* The type we're building is this: */
3080 union __gdb_builtin_type_vec512i
3082 int128_t uint128[4];
3083 int64_t v4_int64[8];
3084 int32_t v8_int32[16];
3085 int16_t v16_int16[32];
3086 int8_t v32_int8[64];
3087 double v4_double[8];
3094 t = arch_composite_type (gdbarch,
3095 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3096 append_composite_type_field (t, "v16_float",
3097 init_vector_type (bt->builtin_float, 16));
3098 append_composite_type_field (t, "v8_double",
3099 init_vector_type (bt->builtin_double, 8));
3100 append_composite_type_field (t, "v64_int8",
3101 init_vector_type (bt->builtin_int8, 64));
3102 append_composite_type_field (t, "v32_int16",
3103 init_vector_type (bt->builtin_int16, 32));
3104 append_composite_type_field (t, "v16_int32",
3105 init_vector_type (bt->builtin_int32, 16));
3106 append_composite_type_field (t, "v8_int64",
3107 init_vector_type (bt->builtin_int64, 8));
3108 append_composite_type_field (t, "v4_int128",
3109 init_vector_type (bt->builtin_int128, 4));
3111 TYPE_VECTOR (t) = 1;
3112 TYPE_NAME (t) = "builtin_type_vec512i";
3113 tdep->i386_zmm_type = t;
3116 return tdep->i386_zmm_type;
3119 /* Construct vector type for pseudo YMM registers. We can't use
3120 tdesc_find_type since YMM isn't described in target description. */
3122 static struct type *
3123 i386_ymm_type (struct gdbarch *gdbarch)
3125 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3127 if (!tdep->i386_ymm_type)
3129 const struct builtin_type *bt = builtin_type (gdbarch);
3131 /* The type we're building is this: */
3133 union __gdb_builtin_type_vec256i
3135 int128_t uint128[2];
3136 int64_t v2_int64[4];
3137 int32_t v4_int32[8];
3138 int16_t v8_int16[16];
3139 int8_t v16_int8[32];
3140 double v2_double[4];
3147 t = arch_composite_type (gdbarch,
3148 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3149 append_composite_type_field (t, "v8_float",
3150 init_vector_type (bt->builtin_float, 8));
3151 append_composite_type_field (t, "v4_double",
3152 init_vector_type (bt->builtin_double, 4));
3153 append_composite_type_field (t, "v32_int8",
3154 init_vector_type (bt->builtin_int8, 32));
3155 append_composite_type_field (t, "v16_int16",
3156 init_vector_type (bt->builtin_int16, 16));
3157 append_composite_type_field (t, "v8_int32",
3158 init_vector_type (bt->builtin_int32, 8));
3159 append_composite_type_field (t, "v4_int64",
3160 init_vector_type (bt->builtin_int64, 4));
3161 append_composite_type_field (t, "v2_int128",
3162 init_vector_type (bt->builtin_int128, 2));
3164 TYPE_VECTOR (t) = 1;
3165 TYPE_NAME (t) = "builtin_type_vec256i";
3166 tdep->i386_ymm_type = t;
3169 return tdep->i386_ymm_type;
3172 /* Construct vector type for MMX registers. */
3173 static struct type *
3174 i386_mmx_type (struct gdbarch *gdbarch)
3176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3178 if (!tdep->i386_mmx_type)
3180 const struct builtin_type *bt = builtin_type (gdbarch);
3182 /* The type we're building is this: */
3184 union __gdb_builtin_type_vec64i
3187 int32_t v2_int32[2];
3188 int16_t v4_int16[4];
3195 t = arch_composite_type (gdbarch,
3196 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3198 append_composite_type_field (t, "uint64", bt->builtin_int64);
3199 append_composite_type_field (t, "v2_int32",
3200 init_vector_type (bt->builtin_int32, 2));
3201 append_composite_type_field (t, "v4_int16",
3202 init_vector_type (bt->builtin_int16, 4));
3203 append_composite_type_field (t, "v8_int8",
3204 init_vector_type (bt->builtin_int8, 8));
3206 TYPE_VECTOR (t) = 1;
3207 TYPE_NAME (t) = "builtin_type_vec64i";
3208 tdep->i386_mmx_type = t;
3211 return tdep->i386_mmx_type;
3214 /* Return the GDB type object for the "standard" data type of data in
3218 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3220 if (i386_bnd_regnum_p (gdbarch, regnum))
3221 return i386_bnd_type (gdbarch);
3222 if (i386_mmx_regnum_p (gdbarch, regnum))
3223 return i386_mmx_type (gdbarch);
3224 else if (i386_ymm_regnum_p (gdbarch, regnum))
3225 return i386_ymm_type (gdbarch);
3226 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3227 return i386_ymm_type (gdbarch);
3228 else if (i386_zmm_regnum_p (gdbarch, regnum))
3229 return i386_zmm_type (gdbarch);
3232 const struct builtin_type *bt = builtin_type (gdbarch);
3233 if (i386_byte_regnum_p (gdbarch, regnum))
3234 return bt->builtin_int8;
3235 else if (i386_word_regnum_p (gdbarch, regnum))
3236 return bt->builtin_int16;
3237 else if (i386_dword_regnum_p (gdbarch, regnum))
3238 return bt->builtin_int32;
3239 else if (i386_k_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int64;
3243 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3246 /* Map a cooked register onto a raw register or memory. For the i386,
3247 the MMX registers need to be mapped onto floating point registers. */
3250 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3252 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3257 mmxreg = regnum - tdep->mm0_regnum;
3258 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3259 tos = (fstat >> 11) & 0x7;
3260 fpreg = (mmxreg + tos) % 8;
3262 return (I387_ST0_REGNUM (tdep) + fpreg);
3265 /* A helper function for us by i386_pseudo_register_read_value and
3266 amd64_pseudo_register_read_value. It does all the work but reads
3267 the data into an already-allocated value. */
3270 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3271 readable_regcache *regcache,
3273 struct value *result_value)
3275 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3276 enum register_status status;
3277 gdb_byte *buf = value_contents_raw (result_value);
3279 if (i386_mmx_regnum_p (gdbarch, regnum))
3281 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3283 /* Extract (always little endian). */
3284 status = regcache->raw_read (fpnum, raw_buf);
3285 if (status != REG_VALID)
3286 mark_value_bytes_unavailable (result_value, 0,
3287 TYPE_LENGTH (value_type (result_value)));
3289 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3294 if (i386_bnd_regnum_p (gdbarch, regnum))
3296 regnum -= tdep->bnd0_regnum;
3298 /* Extract (always little endian). Read lower 128bits. */
3299 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3305 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3306 LONGEST upper, lower;
3307 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3309 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3310 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3313 memcpy (buf, &lower, size);
3314 memcpy (buf + size, &upper, size);
3317 else if (i386_k_regnum_p (gdbarch, regnum))
3319 regnum -= tdep->k0_regnum;
3321 /* Extract (always little endian). */
3322 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3323 if (status != REG_VALID)
3324 mark_value_bytes_unavailable (result_value, 0, 8);
3326 memcpy (buf, raw_buf, 8);
3328 else if (i386_zmm_regnum_p (gdbarch, regnum))
3330 regnum -= tdep->zmm0_regnum;
3332 if (regnum < num_lower_zmm_regs)
3334 /* Extract (always little endian). Read lower 128bits. */
3335 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3337 if (status != REG_VALID)
3338 mark_value_bytes_unavailable (result_value, 0, 16);
3340 memcpy (buf, raw_buf, 16);
3342 /* Extract (always little endian). Read upper 128bits. */
3343 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3345 if (status != REG_VALID)
3346 mark_value_bytes_unavailable (result_value, 16, 16);
3348 memcpy (buf + 16, raw_buf, 16);
3352 /* Extract (always little endian). Read lower 128bits. */
3353 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3354 - num_lower_zmm_regs,
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 0, 16);
3359 memcpy (buf, raw_buf, 16);
3361 /* Extract (always little endian). Read upper 128bits. */
3362 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3363 - num_lower_zmm_regs,
3365 if (status != REG_VALID)
3366 mark_value_bytes_unavailable (result_value, 16, 16);
3368 memcpy (buf + 16, raw_buf, 16);
3371 /* Read upper 256bits. */
3372 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3374 if (status != REG_VALID)
3375 mark_value_bytes_unavailable (result_value, 32, 32);
3377 memcpy (buf + 32, raw_buf, 32);
3379 else if (i386_ymm_regnum_p (gdbarch, regnum))
3381 regnum -= tdep->ymm0_regnum;
3383 /* Extract (always little endian). Read lower 128bits. */
3384 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3386 if (status != REG_VALID)
3387 mark_value_bytes_unavailable (result_value, 0, 16);
3389 memcpy (buf, raw_buf, 16);
3390 /* Read upper 128bits. */
3391 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3393 if (status != REG_VALID)
3394 mark_value_bytes_unavailable (result_value, 16, 32);
3396 memcpy (buf + 16, raw_buf, 16);
3398 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3400 regnum -= tdep->ymm16_regnum;
3401 /* Extract (always little endian). Read lower 128bits. */
3402 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3404 if (status != REG_VALID)
3405 mark_value_bytes_unavailable (result_value, 0, 16);
3407 memcpy (buf, raw_buf, 16);
3408 /* Read upper 128bits. */
3409 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3411 if (status != REG_VALID)
3412 mark_value_bytes_unavailable (result_value, 16, 16);
3414 memcpy (buf + 16, raw_buf, 16);
3416 else if (i386_word_regnum_p (gdbarch, regnum))
3418 int gpnum = regnum - tdep->ax_regnum;
3420 /* Extract (always little endian). */
3421 status = regcache->raw_read (gpnum, raw_buf);
3422 if (status != REG_VALID)
3423 mark_value_bytes_unavailable (result_value, 0,
3424 TYPE_LENGTH (value_type (result_value)));
3426 memcpy (buf, raw_buf, 2);
3428 else if (i386_byte_regnum_p (gdbarch, regnum))
3430 int gpnum = regnum - tdep->al_regnum;
3432 /* Extract (always little endian). We read both lower and
3434 status = regcache->raw_read (gpnum % 4, raw_buf);
3435 if (status != REG_VALID)
3436 mark_value_bytes_unavailable (result_value, 0,
3437 TYPE_LENGTH (value_type (result_value)));
3438 else if (gpnum >= 4)
3439 memcpy (buf, raw_buf + 1, 1);
3441 memcpy (buf, raw_buf, 1);
3444 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3448 static struct value *
3449 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3450 readable_regcache *regcache,
3453 struct value *result;
3455 result = allocate_value (register_type (gdbarch, regnum));
3456 VALUE_LVAL (result) = lval_register;
3457 VALUE_REGNUM (result) = regnum;
3459 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3465 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3466 int regnum, const gdb_byte *buf)
3468 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3470 if (i386_mmx_regnum_p (gdbarch, regnum))
3472 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3475 regcache->raw_read (fpnum, raw_buf);
3476 /* ... Modify ... (always little endian). */
3477 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3479 regcache->raw_write (fpnum, raw_buf);
3483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3485 if (i386_bnd_regnum_p (gdbarch, regnum))
3487 ULONGEST upper, lower;
3488 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3489 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3491 /* New values from input value. */
3492 regnum -= tdep->bnd0_regnum;
3493 lower = extract_unsigned_integer (buf, size, byte_order);
3494 upper = extract_unsigned_integer (buf + size, size, byte_order);
3496 /* Fetching register buffer. */
3497 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3502 /* Set register bits. */
3503 memcpy (raw_buf, &lower, 8);
3504 memcpy (raw_buf + 8, &upper, 8);
3506 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3508 else if (i386_k_regnum_p (gdbarch, regnum))
3510 regnum -= tdep->k0_regnum;
3512 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3514 else if (i386_zmm_regnum_p (gdbarch, regnum))
3516 regnum -= tdep->zmm0_regnum;
3518 if (regnum < num_lower_zmm_regs)
3520 /* Write lower 128bits. */
3521 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3522 /* Write upper 128bits. */
3523 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3527 /* Write lower 128bits. */
3528 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3529 - num_lower_zmm_regs, buf);
3530 /* Write upper 128bits. */
3531 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3532 - num_lower_zmm_regs, buf + 16);
3534 /* Write upper 256bits. */
3535 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3537 else if (i386_ymm_regnum_p (gdbarch, regnum))
3539 regnum -= tdep->ymm0_regnum;
3541 /* ... Write lower 128bits. */
3542 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3543 /* ... Write upper 128bits. */
3544 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3546 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3548 regnum -= tdep->ymm16_regnum;
3550 /* ... Write lower 128bits. */
3551 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3552 /* ... Write upper 128bits. */
3553 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3555 else if (i386_word_regnum_p (gdbarch, regnum))
3557 int gpnum = regnum - tdep->ax_regnum;
3560 regcache->raw_read (gpnum, raw_buf);
3561 /* ... Modify ... (always little endian). */
3562 memcpy (raw_buf, buf, 2);
3564 regcache->raw_write (gpnum, raw_buf);
3566 else if (i386_byte_regnum_p (gdbarch, regnum))
3568 int gpnum = regnum - tdep->al_regnum;
3570 /* Read ... We read both lower and upper registers. */
3571 regcache->raw_read (gpnum % 4, raw_buf);
3572 /* ... Modify ... (always little endian). */
3574 memcpy (raw_buf + 1, buf, 1);
3576 memcpy (raw_buf, buf, 1);
3578 regcache->raw_write (gpnum % 4, raw_buf);
3581 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3585 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3588 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3589 struct agent_expr *ax, int regnum)
3591 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3593 if (i386_mmx_regnum_p (gdbarch, regnum))
3595 /* MMX to FPU register mapping depends on current TOS. Let's just
3596 not care and collect everything... */
3599 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3600 for (i = 0; i < 8; i++)
3601 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3604 else if (i386_bnd_regnum_p (gdbarch, regnum))
3606 regnum -= tdep->bnd0_regnum;
3607 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3610 else if (i386_k_regnum_p (gdbarch, regnum))
3612 regnum -= tdep->k0_regnum;
3613 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3616 else if (i386_zmm_regnum_p (gdbarch, regnum))
3618 regnum -= tdep->zmm0_regnum;
3619 if (regnum < num_lower_zmm_regs)
3621 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3622 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3626 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3627 - num_lower_zmm_regs);
3628 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3629 - num_lower_zmm_regs);
3631 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3634 else if (i386_ymm_regnum_p (gdbarch, regnum))
3636 regnum -= tdep->ymm0_regnum;
3637 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3638 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3641 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3643 regnum -= tdep->ymm16_regnum;
3644 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3645 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3648 else if (i386_word_regnum_p (gdbarch, regnum))
3650 int gpnum = regnum - tdep->ax_regnum;
3652 ax_reg_mask (ax, gpnum);
3655 else if (i386_byte_regnum_p (gdbarch, regnum))
3657 int gpnum = regnum - tdep->al_regnum;
3659 ax_reg_mask (ax, gpnum % 4);
3663 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3668 /* Return the register number of the register allocated by GCC after
3669 REGNUM, or -1 if there is no such register. */
3672 i386_next_regnum (int regnum)
3674 /* GCC allocates the registers in the order:
3676 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3678 Since storing a variable in %esp doesn't make any sense we return
3679 -1 for %ebp and for %esp itself. */
3680 static int next_regnum[] =
3682 I386_EDX_REGNUM, /* Slot for %eax. */
3683 I386_EBX_REGNUM, /* Slot for %ecx. */
3684 I386_ECX_REGNUM, /* Slot for %edx. */
3685 I386_ESI_REGNUM, /* Slot for %ebx. */
3686 -1, -1, /* Slots for %esp and %ebp. */
3687 I386_EDI_REGNUM, /* Slot for %esi. */
3688 I386_EBP_REGNUM /* Slot for %edi. */
3691 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3692 return next_regnum[regnum];
3697 /* Return nonzero if a value of type TYPE stored in register REGNUM
3698 needs any special handling. */
3701 i386_convert_register_p (struct gdbarch *gdbarch,
3702 int regnum, struct type *type)
3704 int len = TYPE_LENGTH (type);
3706 /* Values may be spread across multiple registers. Most debugging
3707 formats aren't expressive enough to specify the locations, so
3708 some heuristics is involved. Right now we only handle types that
3709 have a length that is a multiple of the word size, since GCC
3710 doesn't seem to put any other types into registers. */
3711 if (len > 4 && len % 4 == 0)
3713 int last_regnum = regnum;
3717 last_regnum = i386_next_regnum (last_regnum);
3721 if (last_regnum != -1)
3725 return i387_convert_register_p (gdbarch, regnum, type);
3728 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3729 return its contents in TO. */
3732 i386_register_to_value (struct frame_info *frame, int regnum,
3733 struct type *type, gdb_byte *to,
3734 int *optimizedp, int *unavailablep)
3736 struct gdbarch *gdbarch = get_frame_arch (frame);
3737 int len = TYPE_LENGTH (type);
3739 if (i386_fp_regnum_p (gdbarch, regnum))
3740 return i387_register_to_value (frame, regnum, type, to,
3741 optimizedp, unavailablep);
3743 /* Read a value spread across multiple registers. */
3745 gdb_assert (len > 4 && len % 4 == 0);
3749 gdb_assert (regnum != -1);
3750 gdb_assert (register_size (gdbarch, regnum) == 4);
3752 if (!get_frame_register_bytes (frame, regnum, 0,
3753 register_size (gdbarch, regnum),
3754 to, optimizedp, unavailablep))
3757 regnum = i386_next_regnum (regnum);
3762 *optimizedp = *unavailablep = 0;
3766 /* Write the contents FROM of a value of type TYPE into register
3767 REGNUM in frame FRAME. */
3770 i386_value_to_register (struct frame_info *frame, int regnum,
3771 struct type *type, const gdb_byte *from)
3773 int len = TYPE_LENGTH (type);
3775 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3777 i387_value_to_register (frame, regnum, type, from);
3781 /* Write a value spread across multiple registers. */
3783 gdb_assert (len > 4 && len % 4 == 0);
3787 gdb_assert (regnum != -1);
3788 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3790 put_frame_register (frame, regnum, from);
3791 regnum = i386_next_regnum (regnum);
3797 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3798 in the general-purpose register set REGSET to register cache
3799 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3802 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3803 int regnum, const void *gregs, size_t len)
3805 struct gdbarch *gdbarch = regcache->arch ();
3806 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3807 const gdb_byte *regs = (const gdb_byte *) gregs;
3810 gdb_assert (len >= tdep->sizeof_gregset);
3812 for (i = 0; i < tdep->gregset_num_regs; i++)
3814 if ((regnum == i || regnum == -1)
3815 && tdep->gregset_reg_offset[i] != -1)
3816 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3820 /* Collect register REGNUM from the register cache REGCACHE and store
3821 it in the buffer specified by GREGS and LEN as described by the
3822 general-purpose register set REGSET. If REGNUM is -1, do this for
3823 all registers in REGSET. */
3826 i386_collect_gregset (const struct regset *regset,
3827 const struct regcache *regcache,
3828 int regnum, void *gregs, size_t len)
3830 struct gdbarch *gdbarch = regcache->arch ();
3831 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3832 gdb_byte *regs = (gdb_byte *) gregs;
3835 gdb_assert (len >= tdep->sizeof_gregset);
3837 for (i = 0; i < tdep->gregset_num_regs; i++)
3839 if ((regnum == i || regnum == -1)
3840 && tdep->gregset_reg_offset[i] != -1)
3841 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3845 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3846 in the floating-point register set REGSET to register cache
3847 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3850 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3851 int regnum, const void *fpregs, size_t len)
3853 struct gdbarch *gdbarch = regcache->arch ();
3854 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3856 if (len == I387_SIZEOF_FXSAVE)
3858 i387_supply_fxsave (regcache, regnum, fpregs);
3862 gdb_assert (len >= tdep->sizeof_fpregset);
3863 i387_supply_fsave (regcache, regnum, fpregs);
3866 /* Collect register REGNUM from the register cache REGCACHE and store
3867 it in the buffer specified by FPREGS and LEN as described by the
3868 floating-point register set REGSET. If REGNUM is -1, do this for
3869 all registers in REGSET. */
3872 i386_collect_fpregset (const struct regset *regset,
3873 const struct regcache *regcache,
3874 int regnum, void *fpregs, size_t len)
3876 struct gdbarch *gdbarch = regcache->arch ();
3877 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3879 if (len == I387_SIZEOF_FXSAVE)
3881 i387_collect_fxsave (regcache, regnum, fpregs);
3885 gdb_assert (len >= tdep->sizeof_fpregset);
3886 i387_collect_fsave (regcache, regnum, fpregs);
3889 /* Register set definitions. */
3891 const struct regset i386_gregset =
3893 NULL, i386_supply_gregset, i386_collect_gregset
3896 const struct regset i386_fpregset =
3898 NULL, i386_supply_fpregset, i386_collect_fpregset
3901 /* Default iterator over core file register note sections. */
3904 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3905 iterate_over_regset_sections_cb *cb,
3907 const struct regcache *regcache)
3909 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3911 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3913 if (tdep->sizeof_fpregset)
3914 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3919 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3922 i386_pe_skip_trampoline_code (struct frame_info *frame,
3923 CORE_ADDR pc, char *name)
3925 struct gdbarch *gdbarch = get_frame_arch (frame);
3926 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3929 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3931 unsigned long indirect =
3932 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3933 struct minimal_symbol *indsym =
3934 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3935 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3939 if (startswith (symname, "__imp_")
3940 || startswith (symname, "_imp_"))
3942 read_memory_unsigned_integer (indirect, 4, byte_order);
3945 return 0; /* Not a trampoline. */
3949 /* Return whether the THIS_FRAME corresponds to a sigtramp
3953 i386_sigtramp_p (struct frame_info *this_frame)
3955 CORE_ADDR pc = get_frame_pc (this_frame);
3958 find_pc_partial_function (pc, &name, NULL, NULL);
3959 return (name && strcmp ("_sigtramp", name) == 0);
3963 /* We have two flavours of disassembly. The machinery on this page
3964 deals with switching between those. */
3967 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3969 gdb_assert (disassembly_flavor == att_flavor
3970 || disassembly_flavor == intel_flavor);
3972 info->disassembler_options = disassembly_flavor;
3974 return default_print_insn (pc, info);
3978 /* There are a few i386 architecture variants that differ only
3979 slightly from the generic i386 target. For now, we don't give them
3980 their own source file, but include them here. As a consequence,
3981 they'll always be included. */
3983 /* System V Release 4 (SVR4). */
3985 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3989 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3991 CORE_ADDR pc = get_frame_pc (this_frame);
3994 /* The origin of these symbols is currently unknown. */
3995 find_pc_partial_function (pc, &name, NULL, NULL);
3996 return (name && (strcmp ("_sigreturn", name) == 0
3997 || strcmp ("sigvechandler", name) == 0));
4000 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4001 address of the associated sigcontext (ucontext) structure. */
4004 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4006 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4007 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4011 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4012 sp = extract_unsigned_integer (buf, 4, byte_order);
4014 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4019 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4023 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4025 return (*s == '$' /* Literal number. */
4026 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4027 || (*s == '(' && s[1] == '%') /* Register indirection. */
4028 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4031 /* Helper function for i386_stap_parse_special_token.
4033 This function parses operands of the form `-8+3+1(%rbp)', which
4034 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4036 Return 1 if the operand was parsed successfully, zero
4040 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4041 struct stap_parse_info *p)
4043 const char *s = p->arg;
4045 if (isdigit (*s) || *s == '-' || *s == '+')
4049 long displacements[3];
4065 if (!isdigit ((unsigned char) *s))
4068 displacements[0] = strtol (s, &endp, 10);
4071 if (*s != '+' && *s != '-')
4073 /* We are not dealing with a triplet. */
4086 if (!isdigit ((unsigned char) *s))
4089 displacements[1] = strtol (s, &endp, 10);
4092 if (*s != '+' && *s != '-')
4094 /* We are not dealing with a triplet. */
4107 if (!isdigit ((unsigned char) *s))
4110 displacements[2] = strtol (s, &endp, 10);
4113 if (*s != '(' || s[1] != '%')
4119 while (isalnum (*s))
4125 len = s - start - 1;
4126 regname = (char *) alloca (len + 1);
4128 strncpy (regname, start, len);
4129 regname[len] = '\0';
4131 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4132 error (_("Invalid register name `%s' on expression `%s'."),
4133 regname, p->saved_arg);
4135 for (i = 0; i < 3; i++)
4137 write_exp_elt_opcode (&p->pstate, OP_LONG);
4139 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4140 write_exp_elt_longcst (&p->pstate, displacements[i]);
4141 write_exp_elt_opcode (&p->pstate, OP_LONG);
4143 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4146 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4149 write_exp_string (&p->pstate, str);
4150 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4152 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4153 write_exp_elt_type (&p->pstate,
4154 builtin_type (gdbarch)->builtin_data_ptr);
4155 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4157 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4158 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4159 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4161 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4162 write_exp_elt_type (&p->pstate,
4163 lookup_pointer_type (p->arg_type));
4164 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4166 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4176 /* Helper function for i386_stap_parse_special_token.
4178 This function parses operands of the form `register base +
4179 (register index * size) + offset', as represented in
4180 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4182 Return 1 if the operand was parsed successfully, zero
4186 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4187 struct stap_parse_info *p)
4189 const char *s = p->arg;
4191 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4193 int offset_minus = 0;
4202 struct stoken base_token, index_token;
4212 if (offset_minus && !isdigit (*s))
4219 offset = strtol (s, &endp, 10);
4223 if (*s != '(' || s[1] != '%')
4229 while (isalnum (*s))
4232 if (*s != ',' || s[1] != '%')
4235 len_base = s - start;
4236 base = (char *) alloca (len_base + 1);
4237 strncpy (base, start, len_base);
4238 base[len_base] = '\0';
4240 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4241 error (_("Invalid register name `%s' on expression `%s'."),
4242 base, p->saved_arg);
4247 while (isalnum (*s))
4250 len_index = s - start;
4251 index = (char *) alloca (len_index + 1);
4252 strncpy (index, start, len_index);
4253 index[len_index] = '\0';
4255 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4256 error (_("Invalid register name `%s' on expression `%s'."),
4257 index, p->saved_arg);
4259 if (*s != ',' && *s != ')')
4275 size = strtol (s, &endp, 10);
4286 write_exp_elt_opcode (&p->pstate, OP_LONG);
4287 write_exp_elt_type (&p->pstate,
4288 builtin_type (gdbarch)->builtin_long);
4289 write_exp_elt_longcst (&p->pstate, offset);
4290 write_exp_elt_opcode (&p->pstate, OP_LONG);
4292 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4295 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4296 base_token.ptr = base;
4297 base_token.length = len_base;
4298 write_exp_string (&p->pstate, base_token);
4299 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4302 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4304 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4305 index_token.ptr = index;
4306 index_token.length = len_index;
4307 write_exp_string (&p->pstate, index_token);
4308 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4312 write_exp_elt_opcode (&p->pstate, OP_LONG);
4313 write_exp_elt_type (&p->pstate,
4314 builtin_type (gdbarch)->builtin_long);
4315 write_exp_elt_longcst (&p->pstate, size);
4316 write_exp_elt_opcode (&p->pstate, OP_LONG);
4318 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4319 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4322 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4324 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4325 write_exp_elt_type (&p->pstate,
4326 lookup_pointer_type (p->arg_type));
4327 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4329 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4339 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4343 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4344 struct stap_parse_info *p)
4346 /* In order to parse special tokens, we use a state-machine that go
4347 through every known token and try to get a match. */
4351 THREE_ARG_DISPLACEMENT,
4356 current_state = TRIPLET;
4358 /* The special tokens to be parsed here are:
4360 - `register base + (register index * size) + offset', as represented
4361 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4363 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4364 `*(-8 + 3 - 1 + (void *) $eax)'. */
4366 while (current_state != DONE)
4368 switch (current_state)
4371 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4375 case THREE_ARG_DISPLACEMENT:
4376 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4381 /* Advancing to the next state. */
4390 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4391 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4394 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4396 return "(x86_64|i.86)";
4401 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4404 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4406 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4407 I386_EAX_REGNUM, I386_EIP_REGNUM);
4413 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4415 static const char *const stap_integer_prefixes[] = { "$", NULL };
4416 static const char *const stap_register_prefixes[] = { "%", NULL };
4417 static const char *const stap_register_indirection_prefixes[] = { "(",
4419 static const char *const stap_register_indirection_suffixes[] = { ")",
4422 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4423 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4425 /* Registering SystemTap handlers. */
4426 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4427 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4428 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4429 stap_register_indirection_prefixes);
4430 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4431 stap_register_indirection_suffixes);
4432 set_gdbarch_stap_is_single_operand (gdbarch,
4433 i386_stap_is_single_operand);
4434 set_gdbarch_stap_parse_special_token (gdbarch,
4435 i386_stap_parse_special_token);
4437 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4438 i386_in_indirect_branch_thunk);
4441 /* System V Release 4 (SVR4). */
4444 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4448 /* System V Release 4 uses ELF. */
4449 i386_elf_init_abi (info, gdbarch);
4451 /* System V Release 4 has shared libraries. */
4452 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4454 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4455 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4456 tdep->sc_pc_offset = 36 + 14 * 4;
4457 tdep->sc_sp_offset = 36 + 17 * 4;
4459 tdep->jb_pc_offset = 20;
4464 /* i386 register groups. In addition to the normal groups, add "mmx"
4467 static struct reggroup *i386_sse_reggroup;
4468 static struct reggroup *i386_mmx_reggroup;
4471 i386_init_reggroups (void)
4473 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4474 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4478 i386_add_reggroups (struct gdbarch *gdbarch)
4480 reggroup_add (gdbarch, i386_sse_reggroup);
4481 reggroup_add (gdbarch, i386_mmx_reggroup);
4482 reggroup_add (gdbarch, general_reggroup);
4483 reggroup_add (gdbarch, float_reggroup);
4484 reggroup_add (gdbarch, all_reggroup);
4485 reggroup_add (gdbarch, save_reggroup);
4486 reggroup_add (gdbarch, restore_reggroup);
4487 reggroup_add (gdbarch, vector_reggroup);
4488 reggroup_add (gdbarch, system_reggroup);
4492 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4493 struct reggroup *group)
4495 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4496 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4497 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4498 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4499 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4500 avx512_p, avx_p, sse_p, pkru_regnum_p;
4502 /* Don't include pseudo registers, except for MMX, in any register
4504 if (i386_byte_regnum_p (gdbarch, regnum))
4507 if (i386_word_regnum_p (gdbarch, regnum))
4510 if (i386_dword_regnum_p (gdbarch, regnum))
4513 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4514 if (group == i386_mmx_reggroup)
4515 return mmx_regnum_p;
4517 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4518 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4519 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4520 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4521 if (group == i386_sse_reggroup)
4522 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4524 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4525 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4526 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4528 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4529 == X86_XSTATE_AVX_AVX512_MASK);
4530 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4531 == X86_XSTATE_AVX_MASK) && !avx512_p;
4532 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4533 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4535 if (group == vector_reggroup)
4536 return (mmx_regnum_p
4537 || (zmm_regnum_p && avx512_p)
4538 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4539 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4542 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4543 || i386_fpc_regnum_p (gdbarch, regnum));
4544 if (group == float_reggroup)
4547 /* For "info reg all", don't include upper YMM registers nor XMM
4548 registers when AVX is supported. */
4549 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4550 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4551 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4552 if (group == all_reggroup
4553 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4554 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4556 || ymmh_avx512_regnum_p
4560 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4561 if (group == all_reggroup
4562 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4563 return bnd_regnum_p;
4565 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4566 if (group == all_reggroup
4567 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4570 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4571 if (group == all_reggroup
4572 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4573 return mpx_ctrl_regnum_p;
4575 if (group == general_reggroup)
4576 return (!fp_regnum_p
4580 && !xmm_avx512_regnum_p
4583 && !ymm_avx512_regnum_p
4584 && !ymmh_avx512_regnum_p
4587 && !mpx_ctrl_regnum_p
4592 return default_register_reggroup_p (gdbarch, regnum, group);
4596 /* Get the ARGIth function argument for the current function. */
4599 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4602 struct gdbarch *gdbarch = get_frame_arch (frame);
4603 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4604 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4605 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4608 #define PREFIX_REPZ 0x01
4609 #define PREFIX_REPNZ 0x02
4610 #define PREFIX_LOCK 0x04
4611 #define PREFIX_DATA 0x08
4612 #define PREFIX_ADDR 0x10
4624 /* i386 arith/logic operations */
4637 struct i386_record_s
4639 struct gdbarch *gdbarch;
4640 struct regcache *regcache;
4641 CORE_ADDR orig_addr;
4647 uint8_t mod, reg, rm;
4656 /* Parse the "modrm" part of the memory address irp->addr points at.
4657 Returns -1 if something goes wrong, 0 otherwise. */
4660 i386_record_modrm (struct i386_record_s *irp)
4662 struct gdbarch *gdbarch = irp->gdbarch;
4664 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4668 irp->mod = (irp->modrm >> 6) & 3;
4669 irp->reg = (irp->modrm >> 3) & 7;
4670 irp->rm = irp->modrm & 7;
4675 /* Extract the memory address that the current instruction writes to,
4676 and return it in *ADDR. Return -1 if something goes wrong. */
4679 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4681 struct gdbarch *gdbarch = irp->gdbarch;
4682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4687 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4694 uint8_t base = irp->rm;
4699 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4702 scale = (byte >> 6) & 3;
4703 index = ((byte >> 3) & 7) | irp->rex_x;
4711 if ((base & 7) == 5)
4714 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4717 *addr = extract_signed_integer (buf, 4, byte_order);
4718 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4719 *addr += irp->addr + irp->rip_offset;
4723 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4726 *addr = (int8_t) buf[0];
4729 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4731 *addr = extract_signed_integer (buf, 4, byte_order);
4739 if (base == 4 && irp->popl_esp_hack)
4740 *addr += irp->popl_esp_hack;
4741 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4744 if (irp->aflag == 2)
4749 *addr = (uint32_t) (offset64 + *addr);
4751 if (havesib && (index != 4 || scale != 0))
4753 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4755 if (irp->aflag == 2)
4756 *addr += offset64 << scale;
4758 *addr = (uint32_t) (*addr + (offset64 << scale));
4763 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4764 address from 32-bit to 64-bit. */
4765 *addr = (uint32_t) *addr;
4776 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4779 *addr = extract_signed_integer (buf, 2, byte_order);
4785 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4788 *addr = (int8_t) buf[0];
4791 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4794 *addr = extract_signed_integer (buf, 2, byte_order);
4801 regcache_raw_read_unsigned (irp->regcache,
4802 irp->regmap[X86_RECORD_REBX_REGNUM],
4804 *addr = (uint32_t) (*addr + offset64);
4805 regcache_raw_read_unsigned (irp->regcache,
4806 irp->regmap[X86_RECORD_RESI_REGNUM],
4808 *addr = (uint32_t) (*addr + offset64);
4811 regcache_raw_read_unsigned (irp->regcache,
4812 irp->regmap[X86_RECORD_REBX_REGNUM],
4814 *addr = (uint32_t) (*addr + offset64);
4815 regcache_raw_read_unsigned (irp->regcache,
4816 irp->regmap[X86_RECORD_REDI_REGNUM],
4818 *addr = (uint32_t) (*addr + offset64);
4821 regcache_raw_read_unsigned (irp->regcache,
4822 irp->regmap[X86_RECORD_REBP_REGNUM],
4824 *addr = (uint32_t) (*addr + offset64);
4825 regcache_raw_read_unsigned (irp->regcache,
4826 irp->regmap[X86_RECORD_RESI_REGNUM],
4828 *addr = (uint32_t) (*addr + offset64);
4831 regcache_raw_read_unsigned (irp->regcache,
4832 irp->regmap[X86_RECORD_REBP_REGNUM],
4834 *addr = (uint32_t) (*addr + offset64);
4835 regcache_raw_read_unsigned (irp->regcache,
4836 irp->regmap[X86_RECORD_REDI_REGNUM],
4838 *addr = (uint32_t) (*addr + offset64);
4841 regcache_raw_read_unsigned (irp->regcache,
4842 irp->regmap[X86_RECORD_RESI_REGNUM],
4844 *addr = (uint32_t) (*addr + offset64);
4847 regcache_raw_read_unsigned (irp->regcache,
4848 irp->regmap[X86_RECORD_REDI_REGNUM],
4850 *addr = (uint32_t) (*addr + offset64);
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_REBP_REGNUM],
4856 *addr = (uint32_t) (*addr + offset64);
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REBX_REGNUM],
4862 *addr = (uint32_t) (*addr + offset64);
4872 /* Record the address and contents of the memory that will be changed
4873 by the current instruction. Return -1 if something goes wrong, 0
4877 i386_record_lea_modrm (struct i386_record_s *irp)
4879 struct gdbarch *gdbarch = irp->gdbarch;
4882 if (irp->override >= 0)
4884 if (record_full_memory_query)
4887 Process record ignores the memory change of instruction at address %s\n\
4888 because it can't get the value of the segment register.\n\
4889 Do you want to stop the program?"),
4890 paddress (gdbarch, irp->orig_addr)))
4897 if (i386_record_lea_modrm_addr (irp, &addr))
4900 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4906 /* Record the effects of a push operation. Return -1 if something
4907 goes wrong, 0 otherwise. */
4910 i386_record_push (struct i386_record_s *irp, int size)
4914 if (record_full_arch_list_add_reg (irp->regcache,
4915 irp->regmap[X86_RECORD_RESP_REGNUM]))
4917 regcache_raw_read_unsigned (irp->regcache,
4918 irp->regmap[X86_RECORD_RESP_REGNUM],
4920 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4927 /* Defines contents to record. */
4928 #define I386_SAVE_FPU_REGS 0xfffd
4929 #define I386_SAVE_FPU_ENV 0xfffe
4930 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4932 /* Record the values of the floating point registers which will be
4933 changed by the current instruction. Returns -1 if something is
4934 wrong, 0 otherwise. */
4936 static int i386_record_floats (struct gdbarch *gdbarch,
4937 struct i386_record_s *ir,
4940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4943 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4944 happen. Currently we store st0-st7 registers, but we need not store all
4945 registers all the time, in future we use ftag register and record only
4946 those who are not marked as an empty. */
4948 if (I386_SAVE_FPU_REGS == iregnum)
4950 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4952 if (record_full_arch_list_add_reg (ir->regcache, i))
4956 else if (I386_SAVE_FPU_ENV == iregnum)
4958 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4960 if (record_full_arch_list_add_reg (ir->regcache, i))
4964 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4966 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4968 if (record_full_arch_list_add_reg (ir->regcache, i))
4972 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4973 (iregnum <= I387_FOP_REGNUM (tdep)))
4975 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4980 /* Parameter error. */
4983 if(I386_SAVE_FPU_ENV != iregnum)
4985 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4987 if (record_full_arch_list_add_reg (ir->regcache, i))
4994 /* Parse the current instruction, and record the values of the
4995 registers and memory that will be changed by the current
4996 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4998 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4999 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5002 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5003 CORE_ADDR input_addr)
5005 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5011 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5012 struct i386_record_s ir;
5013 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5017 memset (&ir, 0, sizeof (struct i386_record_s));
5018 ir.regcache = regcache;
5019 ir.addr = input_addr;
5020 ir.orig_addr = input_addr;
5024 ir.popl_esp_hack = 0;
5025 ir.regmap = tdep->record_regmap;
5026 ir.gdbarch = gdbarch;
5028 if (record_debug > 1)
5029 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5031 paddress (gdbarch, ir.addr));
5036 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5039 switch (opcode8) /* Instruction prefixes */
5041 case REPE_PREFIX_OPCODE:
5042 prefixes |= PREFIX_REPZ;
5044 case REPNE_PREFIX_OPCODE:
5045 prefixes |= PREFIX_REPNZ;
5047 case LOCK_PREFIX_OPCODE:
5048 prefixes |= PREFIX_LOCK;
5050 case CS_PREFIX_OPCODE:
5051 ir.override = X86_RECORD_CS_REGNUM;
5053 case SS_PREFIX_OPCODE:
5054 ir.override = X86_RECORD_SS_REGNUM;
5056 case DS_PREFIX_OPCODE:
5057 ir.override = X86_RECORD_DS_REGNUM;
5059 case ES_PREFIX_OPCODE:
5060 ir.override = X86_RECORD_ES_REGNUM;
5062 case FS_PREFIX_OPCODE:
5063 ir.override = X86_RECORD_FS_REGNUM;
5065 case GS_PREFIX_OPCODE:
5066 ir.override = X86_RECORD_GS_REGNUM;
5068 case DATA_PREFIX_OPCODE:
5069 prefixes |= PREFIX_DATA;
5071 case ADDR_PREFIX_OPCODE:
5072 prefixes |= PREFIX_ADDR;
5074 case 0x40: /* i386 inc %eax */
5075 case 0x41: /* i386 inc %ecx */
5076 case 0x42: /* i386 inc %edx */
5077 case 0x43: /* i386 inc %ebx */
5078 case 0x44: /* i386 inc %esp */
5079 case 0x45: /* i386 inc %ebp */
5080 case 0x46: /* i386 inc %esi */
5081 case 0x47: /* i386 inc %edi */
5082 case 0x48: /* i386 dec %eax */
5083 case 0x49: /* i386 dec %ecx */
5084 case 0x4a: /* i386 dec %edx */
5085 case 0x4b: /* i386 dec %ebx */
5086 case 0x4c: /* i386 dec %esp */
5087 case 0x4d: /* i386 dec %ebp */
5088 case 0x4e: /* i386 dec %esi */
5089 case 0x4f: /* i386 dec %edi */
5090 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5093 rex_w = (opcode8 >> 3) & 1;
5094 rex_r = (opcode8 & 0x4) << 1;
5095 ir.rex_x = (opcode8 & 0x2) << 2;
5096 ir.rex_b = (opcode8 & 0x1) << 3;
5098 else /* 32 bit target */
5107 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5113 if (prefixes & PREFIX_DATA)
5116 if (prefixes & PREFIX_ADDR)
5118 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5121 /* Now check op code. */
5122 opcode = (uint32_t) opcode8;
5127 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5130 opcode = (uint32_t) opcode8 | 0x0f00;
5134 case 0x00: /* arith & logic */
5182 if (((opcode >> 3) & 7) != OP_CMPL)
5184 if ((opcode & 1) == 0)
5187 ir.ot = ir.dflag + OT_WORD;
5189 switch ((opcode >> 1) & 3)
5191 case 0: /* OP Ev, Gv */
5192 if (i386_record_modrm (&ir))
5196 if (i386_record_lea_modrm (&ir))
5202 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5207 case 1: /* OP Gv, Ev */
5208 if (i386_record_modrm (&ir))
5211 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5215 case 2: /* OP A, Iv */
5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5220 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5223 case 0x80: /* GRP1 */
5227 if (i386_record_modrm (&ir))
5230 if (ir.reg != OP_CMPL)
5232 if ((opcode & 1) == 0)
5235 ir.ot = ir.dflag + OT_WORD;
5242 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5243 if (i386_record_lea_modrm (&ir))
5247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5252 case 0x40: /* inc */
5261 case 0x48: /* dec */
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5274 case 0xf6: /* GRP3 */
5276 if ((opcode & 1) == 0)
5279 ir.ot = ir.dflag + OT_WORD;
5280 if (i386_record_modrm (&ir))
5283 if (ir.mod != 3 && ir.reg == 0)
5284 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5289 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5295 if (i386_record_lea_modrm (&ir))
5301 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5305 if (ir.reg == 3) /* neg */
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5312 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5313 if (ir.ot != OT_BYTE)
5314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5319 opcode = opcode << 8 | ir.modrm;
5325 case 0xfe: /* GRP4 */
5326 case 0xff: /* GRP5 */
5327 if (i386_record_modrm (&ir))
5329 if (ir.reg >= 2 && opcode == 0xfe)
5332 opcode = opcode << 8 | ir.modrm;
5339 if ((opcode & 1) == 0)
5342 ir.ot = ir.dflag + OT_WORD;
5345 if (i386_record_lea_modrm (&ir))
5351 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5358 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5360 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5366 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5375 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5377 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5382 opcode = opcode << 8 | ir.modrm;
5388 case 0x84: /* test */
5392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5395 case 0x98: /* CWDE/CBW */
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5399 case 0x99: /* CDQ/CWD */
5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5404 case 0x0faf: /* imul */
5407 ir.ot = ir.dflag + OT_WORD;
5408 if (i386_record_modrm (&ir))
5411 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5412 else if (opcode == 0x6b)
5415 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 case 0x0fc0: /* xadd */
5423 if ((opcode & 1) == 0)
5426 ir.ot = ir.dflag + OT_WORD;
5427 if (i386_record_modrm (&ir))
5432 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5434 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5435 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5441 if (i386_record_lea_modrm (&ir))
5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5450 case 0x0fb0: /* cmpxchg */
5452 if ((opcode & 1) == 0)
5455 ir.ot = ir.dflag + OT_WORD;
5456 if (i386_record_modrm (&ir))
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5462 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5469 if (i386_record_lea_modrm (&ir))
5472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5475 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5476 if (i386_record_modrm (&ir))
5480 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5481 an extended opcode. rdrand has bits 110 (/6) and rdseed
5482 has bits 111 (/7). */
5483 if (ir.reg == 6 || ir.reg == 7)
5485 /* The storage register is described by the 3 R/M bits, but the
5486 REX.B prefix may be used to give access to registers
5487 R8~R15. In this case ir.rex_b + R/M will give us the register
5488 in the range R8~R15.
5490 REX.W may also be used to access 64-bit registers, but we
5491 already record entire registers and not just partial bits
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5494 /* These instructions also set conditional bits. */
5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5500 /* We don't handle this particular instruction yet. */
5502 opcode = opcode << 8 | ir.modrm;
5506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5508 if (i386_record_lea_modrm (&ir))
5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5513 case 0x50: /* push */
5523 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5525 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5529 case 0x06: /* push es */
5530 case 0x0e: /* push cs */
5531 case 0x16: /* push ss */
5532 case 0x1e: /* push ds */
5533 if (ir.regmap[X86_RECORD_R8_REGNUM])
5538 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5542 case 0x0fa0: /* push fs */
5543 case 0x0fa8: /* push gs */
5544 if (ir.regmap[X86_RECORD_R8_REGNUM])
5549 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5553 case 0x60: /* pusha */
5554 if (ir.regmap[X86_RECORD_R8_REGNUM])
5559 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5563 case 0x58: /* pop */
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5575 case 0x61: /* popa */
5576 if (ir.regmap[X86_RECORD_R8_REGNUM])
5581 for (regnum = X86_RECORD_REAX_REGNUM;
5582 regnum <= X86_RECORD_REDI_REGNUM;
5584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5587 case 0x8f: /* pop */
5588 if (ir.regmap[X86_RECORD_R8_REGNUM])
5589 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5591 ir.ot = ir.dflag + OT_WORD;
5592 if (i386_record_modrm (&ir))
5595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5598 ir.popl_esp_hack = 1 << ir.ot;
5599 if (i386_record_lea_modrm (&ir))
5602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5605 case 0xc8: /* enter */
5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5607 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5609 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5613 case 0xc9: /* leave */
5614 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5615 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5618 case 0x07: /* pop es */
5619 if (ir.regmap[X86_RECORD_R8_REGNUM])
5624 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5629 case 0x17: /* pop ss */
5630 if (ir.regmap[X86_RECORD_R8_REGNUM])
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5640 case 0x1f: /* pop ds */
5641 if (ir.regmap[X86_RECORD_R8_REGNUM])
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5651 case 0x0fa1: /* pop fs */
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5657 case 0x0fa9: /* pop gs */
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5663 case 0x88: /* mov */
5667 if ((opcode & 1) == 0)
5670 ir.ot = ir.dflag + OT_WORD;
5672 if (i386_record_modrm (&ir))
5677 if (opcode == 0xc6 || opcode == 0xc7)
5678 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5679 if (i386_record_lea_modrm (&ir))
5684 if (opcode == 0xc6 || opcode == 0xc7)
5686 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5692 case 0x8a: /* mov */
5694 if ((opcode & 1) == 0)
5697 ir.ot = ir.dflag + OT_WORD;
5698 if (i386_record_modrm (&ir))
5701 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5706 case 0x8c: /* mov seg */
5707 if (i386_record_modrm (&ir))
5712 opcode = opcode << 8 | ir.modrm;
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5721 if (i386_record_lea_modrm (&ir))
5726 case 0x8e: /* mov seg */
5727 if (i386_record_modrm (&ir))
5732 regnum = X86_RECORD_ES_REGNUM;
5735 regnum = X86_RECORD_SS_REGNUM;
5738 regnum = X86_RECORD_DS_REGNUM;
5741 regnum = X86_RECORD_FS_REGNUM;
5744 regnum = X86_RECORD_GS_REGNUM;
5748 opcode = opcode << 8 | ir.modrm;
5752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5756 case 0x0fb6: /* movzbS */
5757 case 0x0fb7: /* movzwS */
5758 case 0x0fbe: /* movsbS */
5759 case 0x0fbf: /* movswS */
5760 if (i386_record_modrm (&ir))
5762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5765 case 0x8d: /* lea */
5766 if (i386_record_modrm (&ir))
5771 opcode = opcode << 8 | ir.modrm;
5776 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5781 case 0xa0: /* mov EAX */
5784 case 0xd7: /* xlat */
5785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5788 case 0xa2: /* mov EAX */
5790 if (ir.override >= 0)
5792 if (record_full_memory_query)
5795 Process record ignores the memory change of instruction at address %s\n\
5796 because it can't get the value of the segment register.\n\
5797 Do you want to stop the program?"),
5798 paddress (gdbarch, ir.orig_addr)))
5804 if ((opcode & 1) == 0)
5807 ir.ot = ir.dflag + OT_WORD;
5810 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5813 addr = extract_unsigned_integer (buf, 8, byte_order);
5817 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5820 addr = extract_unsigned_integer (buf, 4, byte_order);
5824 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5827 addr = extract_unsigned_integer (buf, 2, byte_order);
5829 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5834 case 0xb0: /* mov R, Ib */
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5843 ? ((opcode & 0x7) | ir.rex_b)
5844 : ((opcode & 0x7) & 0x3));
5847 case 0xb8: /* mov R, Iv */
5855 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5858 case 0x91: /* xchg R, EAX */
5865 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5869 case 0x86: /* xchg Ev, Gv */
5871 if ((opcode & 1) == 0)
5874 ir.ot = ir.dflag + OT_WORD;
5875 if (i386_record_modrm (&ir))
5880 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5882 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5886 if (i386_record_lea_modrm (&ir))
5890 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5895 case 0xc4: /* les Gv */
5896 case 0xc5: /* lds Gv */
5897 if (ir.regmap[X86_RECORD_R8_REGNUM])
5903 case 0x0fb2: /* lss Gv */
5904 case 0x0fb4: /* lfs Gv */
5905 case 0x0fb5: /* lgs Gv */
5906 if (i386_record_modrm (&ir))
5914 opcode = opcode << 8 | ir.modrm;
5919 case 0xc4: /* les Gv */
5920 regnum = X86_RECORD_ES_REGNUM;
5922 case 0xc5: /* lds Gv */
5923 regnum = X86_RECORD_DS_REGNUM;
5925 case 0x0fb2: /* lss Gv */
5926 regnum = X86_RECORD_SS_REGNUM;
5928 case 0x0fb4: /* lfs Gv */
5929 regnum = X86_RECORD_FS_REGNUM;
5931 case 0x0fb5: /* lgs Gv */
5932 regnum = X86_RECORD_GS_REGNUM;
5935 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5940 case 0xc0: /* shifts */
5946 if ((opcode & 1) == 0)
5949 ir.ot = ir.dflag + OT_WORD;
5950 if (i386_record_modrm (&ir))
5952 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5954 if (i386_record_lea_modrm (&ir))
5960 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5971 if (i386_record_modrm (&ir))
5975 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5980 if (i386_record_lea_modrm (&ir))
5985 case 0xd8: /* Floats. */
5993 if (i386_record_modrm (&ir))
5995 ir.reg |= ((opcode & 7) << 3);
6001 if (i386_record_lea_modrm_addr (&ir, &addr64))
6009 /* For fcom, ficom nothing to do. */
6015 /* For fcomp, ficomp pop FPU stack, store all. */
6016 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6043 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6044 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6045 of code, always affects st(0) register. */
6046 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6070 /* Handling fld, fild. */
6071 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6075 switch (ir.reg >> 4)
6078 if (record_full_arch_list_add_mem (addr64, 4))
6082 if (record_full_arch_list_add_mem (addr64, 8))
6088 if (record_full_arch_list_add_mem (addr64, 2))
6094 switch (ir.reg >> 4)
6097 if (record_full_arch_list_add_mem (addr64, 4))
6099 if (3 == (ir.reg & 7))
6101 /* For fstp m32fp. */
6102 if (i386_record_floats (gdbarch, &ir,
6103 I386_SAVE_FPU_REGS))
6108 if (record_full_arch_list_add_mem (addr64, 4))
6110 if ((3 == (ir.reg & 7))
6111 || (5 == (ir.reg & 7))
6112 || (7 == (ir.reg & 7)))
6114 /* For fstp insn. */
6115 if (i386_record_floats (gdbarch, &ir,
6116 I386_SAVE_FPU_REGS))
6121 if (record_full_arch_list_add_mem (addr64, 8))
6123 if (3 == (ir.reg & 7))
6125 /* For fstp m64fp. */
6126 if (i386_record_floats (gdbarch, &ir,
6127 I386_SAVE_FPU_REGS))
6132 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6134 /* For fistp, fbld, fild, fbstp. */
6135 if (i386_record_floats (gdbarch, &ir,
6136 I386_SAVE_FPU_REGS))
6141 if (record_full_arch_list_add_mem (addr64, 2))
6150 if (i386_record_floats (gdbarch, &ir,
6151 I386_SAVE_FPU_ENV_REG_STACK))
6156 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_ENV_REG_STACK))
6168 if (record_full_arch_list_add_mem (addr64, 28))
6173 if (record_full_arch_list_add_mem (addr64, 14))
6179 if (record_full_arch_list_add_mem (addr64, 2))
6181 /* Insn fstp, fbstp. */
6182 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6187 if (record_full_arch_list_add_mem (addr64, 10))
6193 if (record_full_arch_list_add_mem (addr64, 28))
6199 if (record_full_arch_list_add_mem (addr64, 14))
6203 if (record_full_arch_list_add_mem (addr64, 80))
6206 if (i386_record_floats (gdbarch, &ir,
6207 I386_SAVE_FPU_ENV_REG_STACK))
6211 if (record_full_arch_list_add_mem (addr64, 8))
6214 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6219 opcode = opcode << 8 | ir.modrm;
6224 /* Opcode is an extension of modR/M byte. */
6230 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6234 if (0x0c == (ir.modrm >> 4))
6236 if ((ir.modrm & 0x0f) <= 7)
6238 if (i386_record_floats (gdbarch, &ir,
6239 I386_SAVE_FPU_REGS))
6244 if (i386_record_floats (gdbarch, &ir,
6245 I387_ST0_REGNUM (tdep)))
6247 /* If only st(0) is changing, then we have already
6249 if ((ir.modrm & 0x0f) - 0x08)
6251 if (i386_record_floats (gdbarch, &ir,
6252 I387_ST0_REGNUM (tdep) +
6253 ((ir.modrm & 0x0f) - 0x08)))
6271 if (i386_record_floats (gdbarch, &ir,
6272 I387_ST0_REGNUM (tdep)))
6290 if (i386_record_floats (gdbarch, &ir,
6291 I386_SAVE_FPU_REGS))
6295 if (i386_record_floats (gdbarch, &ir,
6296 I387_ST0_REGNUM (tdep)))
6298 if (i386_record_floats (gdbarch, &ir,
6299 I387_ST0_REGNUM (tdep) + 1))
6306 if (0xe9 == ir.modrm)
6308 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6311 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6313 if (i386_record_floats (gdbarch, &ir,
6314 I387_ST0_REGNUM (tdep)))
6316 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6318 if (i386_record_floats (gdbarch, &ir,
6319 I387_ST0_REGNUM (tdep) +
6323 else if ((ir.modrm & 0x0f) - 0x08)
6325 if (i386_record_floats (gdbarch, &ir,
6326 I387_ST0_REGNUM (tdep) +
6327 ((ir.modrm & 0x0f) - 0x08)))
6333 if (0xe3 == ir.modrm)
6335 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6338 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6340 if (i386_record_floats (gdbarch, &ir,
6341 I387_ST0_REGNUM (tdep)))
6343 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6345 if (i386_record_floats (gdbarch, &ir,
6346 I387_ST0_REGNUM (tdep) +
6350 else if ((ir.modrm & 0x0f) - 0x08)
6352 if (i386_record_floats (gdbarch, &ir,
6353 I387_ST0_REGNUM (tdep) +
6354 ((ir.modrm & 0x0f) - 0x08)))
6360 if ((0x0c == ir.modrm >> 4)
6361 || (0x0d == ir.modrm >> 4)
6362 || (0x0f == ir.modrm >> 4))
6364 if ((ir.modrm & 0x0f) <= 7)
6366 if (i386_record_floats (gdbarch, &ir,
6367 I387_ST0_REGNUM (tdep) +
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep) +
6375 ((ir.modrm & 0x0f) - 0x08)))
6381 if (0x0c == ir.modrm >> 4)
6383 if (i386_record_floats (gdbarch, &ir,
6384 I387_FTAG_REGNUM (tdep)))
6387 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6389 if ((ir.modrm & 0x0f) <= 7)
6391 if (i386_record_floats (gdbarch, &ir,
6392 I387_ST0_REGNUM (tdep) +
6398 if (i386_record_floats (gdbarch, &ir,
6399 I386_SAVE_FPU_REGS))
6405 if ((0x0c == ir.modrm >> 4)
6406 || (0x0e == ir.modrm >> 4)
6407 || (0x0f == ir.modrm >> 4)
6408 || (0xd9 == ir.modrm))
6410 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6415 if (0xe0 == ir.modrm)
6417 if (record_full_arch_list_add_reg (ir.regcache,
6421 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6423 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6431 case 0xa4: /* movsS */
6433 case 0xaa: /* stosS */
6435 case 0x6c: /* insS */
6437 regcache_raw_read_unsigned (ir.regcache,
6438 ir.regmap[X86_RECORD_RECX_REGNUM],
6444 if ((opcode & 1) == 0)
6447 ir.ot = ir.dflag + OT_WORD;
6448 regcache_raw_read_unsigned (ir.regcache,
6449 ir.regmap[X86_RECORD_REDI_REGNUM],
6452 regcache_raw_read_unsigned (ir.regcache,
6453 ir.regmap[X86_RECORD_ES_REGNUM],
6455 regcache_raw_read_unsigned (ir.regcache,
6456 ir.regmap[X86_RECORD_DS_REGNUM],
6458 if (ir.aflag && (es != ds))
6460 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6461 if (record_full_memory_query)
6464 Process record ignores the memory change of instruction at address %s\n\
6465 because it can't get the value of the segment register.\n\
6466 Do you want to stop the program?"),
6467 paddress (gdbarch, ir.orig_addr)))
6473 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6477 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6478 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6479 if (opcode == 0xa4 || opcode == 0xa5)
6480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6486 case 0xa6: /* cmpsS */
6488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6490 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6495 case 0xac: /* lodsS */
6497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6499 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 case 0xae: /* scasS */
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6507 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512 case 0x6e: /* outsS */
6514 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6515 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6520 case 0xe4: /* port I/O */
6524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6535 case 0xc2: /* ret im */
6536 case 0xc3: /* ret */
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6541 case 0xca: /* lret im */
6542 case 0xcb: /* lret */
6543 case 0xcf: /* iret */
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6549 case 0xe8: /* call im */
6550 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6552 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6556 case 0x9a: /* lcall im */
6557 if (ir.regmap[X86_RECORD_R8_REGNUM])
6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6563 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6567 case 0xe9: /* jmp im */
6568 case 0xea: /* ljmp im */
6569 case 0xeb: /* jmp Jb */
6570 case 0x70: /* jcc Jb */
6586 case 0x0f80: /* jcc Jv */
6604 case 0x0f90: /* setcc Gv */
6620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6622 if (i386_record_modrm (&ir))
6625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6629 if (i386_record_lea_modrm (&ir))
6634 case 0x0f40: /* cmov Gv, Ev */
6650 if (i386_record_modrm (&ir))
6653 if (ir.dflag == OT_BYTE)
6655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6659 case 0x9c: /* pushf */
6660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6661 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6663 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6667 case 0x9d: /* popf */
6668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6672 case 0x9e: /* sahf */
6673 if (ir.regmap[X86_RECORD_R8_REGNUM])
6679 case 0xf5: /* cmc */
6680 case 0xf8: /* clc */
6681 case 0xf9: /* stc */
6682 case 0xfc: /* cld */
6683 case 0xfd: /* std */
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6687 case 0x9f: /* lahf */
6688 if (ir.regmap[X86_RECORD_R8_REGNUM])
6693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6697 /* bit operations */
6698 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6699 ir.ot = ir.dflag + OT_WORD;
6700 if (i386_record_modrm (&ir))
6705 opcode = opcode << 8 | ir.modrm;
6711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6714 if (i386_record_lea_modrm (&ir))
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6721 case 0x0fa3: /* bt Gv, Ev */
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6725 case 0x0fab: /* bts */
6726 case 0x0fb3: /* btr */
6727 case 0x0fbb: /* btc */
6728 ir.ot = ir.dflag + OT_WORD;
6729 if (i386_record_modrm (&ir))
6732 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6736 if (i386_record_lea_modrm_addr (&ir, &addr64))
6738 regcache_raw_read_unsigned (ir.regcache,
6739 ir.regmap[ir.reg | rex_r],
6744 addr64 += ((int16_t) addr >> 4) << 4;
6747 addr64 += ((int32_t) addr >> 5) << 5;
6750 addr64 += ((int64_t) addr >> 6) << 6;
6753 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6755 if (i386_record_lea_modrm (&ir))
6758 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6761 case 0x0fbc: /* bsf */
6762 case 0x0fbd: /* bsr */
6763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6768 case 0x27: /* daa */
6769 case 0x2f: /* das */
6770 case 0x37: /* aaa */
6771 case 0x3f: /* aas */
6772 case 0xd4: /* aam */
6773 case 0xd5: /* aad */
6774 if (ir.regmap[X86_RECORD_R8_REGNUM])
6779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6784 case 0x90: /* nop */
6785 if (prefixes & PREFIX_LOCK)
6792 case 0x9b: /* fwait */
6793 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6795 opcode = (uint32_t) opcode8;
6801 case 0xcc: /* int3 */
6802 printf_unfiltered (_("Process record does not support instruction "
6809 case 0xcd: /* int */
6813 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6816 if (interrupt != 0x80
6817 || tdep->i386_intx80_record == NULL)
6819 printf_unfiltered (_("Process record does not support "
6820 "instruction int 0x%02x.\n"),
6825 ret = tdep->i386_intx80_record (ir.regcache);
6832 case 0xce: /* into */
6833 printf_unfiltered (_("Process record does not support "
6834 "instruction into.\n"));
6839 case 0xfa: /* cli */
6840 case 0xfb: /* sti */
6843 case 0x62: /* bound */
6844 printf_unfiltered (_("Process record does not support "
6845 "instruction bound.\n"));
6850 case 0x0fc8: /* bswap reg */
6858 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6861 case 0xd6: /* salc */
6862 if (ir.regmap[X86_RECORD_R8_REGNUM])
6867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6871 case 0xe0: /* loopnz */
6872 case 0xe1: /* loopz */
6873 case 0xe2: /* loop */
6874 case 0xe3: /* jecxz */
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6879 case 0x0f30: /* wrmsr */
6880 printf_unfiltered (_("Process record does not support "
6881 "instruction wrmsr.\n"));
6886 case 0x0f32: /* rdmsr */
6887 printf_unfiltered (_("Process record does not support "
6888 "instruction rdmsr.\n"));
6893 case 0x0f31: /* rdtsc */
6894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6898 case 0x0f34: /* sysenter */
6901 if (ir.regmap[X86_RECORD_R8_REGNUM])
6906 if (tdep->i386_sysenter_record == NULL)
6908 printf_unfiltered (_("Process record does not support "
6909 "instruction sysenter.\n"));
6913 ret = tdep->i386_sysenter_record (ir.regcache);
6919 case 0x0f35: /* sysexit */
6920 printf_unfiltered (_("Process record does not support "
6921 "instruction sysexit.\n"));
6926 case 0x0f05: /* syscall */
6929 if (tdep->i386_syscall_record == NULL)
6931 printf_unfiltered (_("Process record does not support "
6932 "instruction syscall.\n"));
6936 ret = tdep->i386_syscall_record (ir.regcache);
6942 case 0x0f07: /* sysret */
6943 printf_unfiltered (_("Process record does not support "
6944 "instruction sysret.\n"));
6949 case 0x0fa2: /* cpuid */
6950 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6956 case 0xf4: /* hlt */
6957 printf_unfiltered (_("Process record does not support "
6958 "instruction hlt.\n"));
6964 if (i386_record_modrm (&ir))
6971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6975 if (i386_record_lea_modrm (&ir))
6984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6988 opcode = opcode << 8 | ir.modrm;
6995 if (i386_record_modrm (&ir))
7006 opcode = opcode << 8 | ir.modrm;
7009 if (ir.override >= 0)
7011 if (record_full_memory_query)
7014 Process record ignores the memory change of instruction at address %s\n\
7015 because it can't get the value of the segment register.\n\
7016 Do you want to stop the program?"),
7017 paddress (gdbarch, ir.orig_addr)))
7023 if (i386_record_lea_modrm_addr (&ir, &addr64))
7025 if (record_full_arch_list_add_mem (addr64, 2))
7028 if (ir.regmap[X86_RECORD_R8_REGNUM])
7030 if (record_full_arch_list_add_mem (addr64, 8))
7035 if (record_full_arch_list_add_mem (addr64, 4))
7046 case 0: /* monitor */
7049 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7053 opcode = opcode << 8 | ir.modrm;
7061 if (ir.override >= 0)
7063 if (record_full_memory_query)
7066 Process record ignores the memory change of instruction at address %s\n\
7067 because it can't get the value of the segment register.\n\
7068 Do you want to stop the program?"),
7069 paddress (gdbarch, ir.orig_addr)))
7077 if (i386_record_lea_modrm_addr (&ir, &addr64))
7079 if (record_full_arch_list_add_mem (addr64, 2))
7082 if (ir.regmap[X86_RECORD_R8_REGNUM])
7084 if (record_full_arch_list_add_mem (addr64, 8))
7089 if (record_full_arch_list_add_mem (addr64, 4))
7101 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7102 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7106 else if (ir.rm == 1)
7114 opcode = opcode << 8 | ir.modrm;
7121 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7127 if (i386_record_lea_modrm (&ir))
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7135 case 7: /* invlpg */
7138 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7139 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7143 opcode = opcode << 8 | ir.modrm;
7148 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7152 opcode = opcode << 8 | ir.modrm;
7158 case 0x0f08: /* invd */
7159 case 0x0f09: /* wbinvd */
7162 case 0x63: /* arpl */
7163 if (i386_record_modrm (&ir))
7165 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7167 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7168 ? (ir.reg | rex_r) : ir.rm);
7172 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7173 if (i386_record_lea_modrm (&ir))
7176 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7180 case 0x0f02: /* lar */
7181 case 0x0f03: /* lsl */
7182 if (i386_record_modrm (&ir))
7184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7189 if (i386_record_modrm (&ir))
7191 if (ir.mod == 3 && ir.reg == 3)
7194 opcode = opcode << 8 | ir.modrm;
7206 /* nop (multi byte) */
7209 case 0x0f20: /* mov reg, crN */
7210 case 0x0f22: /* mov crN, reg */
7211 if (i386_record_modrm (&ir))
7213 if ((ir.modrm & 0xc0) != 0xc0)
7216 opcode = opcode << 8 | ir.modrm;
7227 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7233 opcode = opcode << 8 | ir.modrm;
7239 case 0x0f21: /* mov reg, drN */
7240 case 0x0f23: /* mov drN, reg */
7241 if (i386_record_modrm (&ir))
7243 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7244 || ir.reg == 5 || ir.reg >= 8)
7247 opcode = opcode << 8 | ir.modrm;
7251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7256 case 0x0f06: /* clts */
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7260 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7262 case 0x0f0d: /* 3DNow! prefetch */
7265 case 0x0f0e: /* 3DNow! femms */
7266 case 0x0f77: /* emms */
7267 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7269 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7272 case 0x0f0f: /* 3DNow! data */
7273 if (i386_record_modrm (&ir))
7275 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7280 case 0x0c: /* 3DNow! pi2fw */
7281 case 0x0d: /* 3DNow! pi2fd */
7282 case 0x1c: /* 3DNow! pf2iw */
7283 case 0x1d: /* 3DNow! pf2id */
7284 case 0x8a: /* 3DNow! pfnacc */
7285 case 0x8e: /* 3DNow! pfpnacc */
7286 case 0x90: /* 3DNow! pfcmpge */
7287 case 0x94: /* 3DNow! pfmin */
7288 case 0x96: /* 3DNow! pfrcp */
7289 case 0x97: /* 3DNow! pfrsqrt */
7290 case 0x9a: /* 3DNow! pfsub */
7291 case 0x9e: /* 3DNow! pfadd */
7292 case 0xa0: /* 3DNow! pfcmpgt */
7293 case 0xa4: /* 3DNow! pfmax */
7294 case 0xa6: /* 3DNow! pfrcpit1 */
7295 case 0xa7: /* 3DNow! pfrsqit1 */
7296 case 0xaa: /* 3DNow! pfsubr */
7297 case 0xae: /* 3DNow! pfacc */
7298 case 0xb0: /* 3DNow! pfcmpeq */
7299 case 0xb4: /* 3DNow! pfmul */
7300 case 0xb6: /* 3DNow! pfrcpit2 */
7301 case 0xb7: /* 3DNow! pmulhrw */
7302 case 0xbb: /* 3DNow! pswapd */
7303 case 0xbf: /* 3DNow! pavgusb */
7304 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7305 goto no_support_3dnow_data;
7306 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7310 no_support_3dnow_data:
7311 opcode = (opcode << 8) | opcode8;
7317 case 0x0faa: /* rsm */
7318 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7319 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7330 if (i386_record_modrm (&ir))
7334 case 0: /* fxsave */
7338 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7339 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7341 if (record_full_arch_list_add_mem (tmpu64, 512))
7346 case 1: /* fxrstor */
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7352 for (i = I387_MM0_REGNUM (tdep);
7353 i386_mmx_regnum_p (gdbarch, i); i++)
7354 record_full_arch_list_add_reg (ir.regcache, i);
7356 for (i = I387_XMM0_REGNUM (tdep);
7357 i386_xmm_regnum_p (gdbarch, i); i++)
7358 record_full_arch_list_add_reg (ir.regcache, i);
7360 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7361 record_full_arch_list_add_reg (ir.regcache,
7362 I387_MXCSR_REGNUM(tdep));
7364 for (i = I387_ST0_REGNUM (tdep);
7365 i386_fp_regnum_p (gdbarch, i); i++)
7366 record_full_arch_list_add_reg (ir.regcache, i);
7368 for (i = I387_FCTRL_REGNUM (tdep);
7369 i386_fpc_regnum_p (gdbarch, i); i++)
7370 record_full_arch_list_add_reg (ir.regcache, i);
7374 case 2: /* ldmxcsr */
7375 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7377 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7380 case 3: /* stmxcsr */
7382 if (i386_record_lea_modrm (&ir))
7386 case 5: /* lfence */
7387 case 6: /* mfence */
7388 case 7: /* sfence clflush */
7392 opcode = (opcode << 8) | ir.modrm;
7398 case 0x0fc3: /* movnti */
7399 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7400 if (i386_record_modrm (&ir))
7405 if (i386_record_lea_modrm (&ir))
7409 /* Add prefix to opcode. */
7524 /* Mask out PREFIX_ADDR. */
7525 switch ((prefixes & ~PREFIX_ADDR))
7537 reswitch_prefix_add:
7545 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7548 opcode = (uint32_t) opcode8 | opcode << 8;
7549 goto reswitch_prefix_add;
7552 case 0x0f10: /* movups */
7553 case 0x660f10: /* movupd */
7554 case 0xf30f10: /* movss */
7555 case 0xf20f10: /* movsd */
7556 case 0x0f12: /* movlps */
7557 case 0x660f12: /* movlpd */
7558 case 0xf30f12: /* movsldup */
7559 case 0xf20f12: /* movddup */
7560 case 0x0f14: /* unpcklps */
7561 case 0x660f14: /* unpcklpd */
7562 case 0x0f15: /* unpckhps */
7563 case 0x660f15: /* unpckhpd */
7564 case 0x0f16: /* movhps */
7565 case 0x660f16: /* movhpd */
7566 case 0xf30f16: /* movshdup */
7567 case 0x0f28: /* movaps */
7568 case 0x660f28: /* movapd */
7569 case 0x0f2a: /* cvtpi2ps */
7570 case 0x660f2a: /* cvtpi2pd */
7571 case 0xf30f2a: /* cvtsi2ss */
7572 case 0xf20f2a: /* cvtsi2sd */
7573 case 0x0f2c: /* cvttps2pi */
7574 case 0x660f2c: /* cvttpd2pi */
7575 case 0x0f2d: /* cvtps2pi */
7576 case 0x660f2d: /* cvtpd2pi */
7577 case 0x660f3800: /* pshufb */
7578 case 0x660f3801: /* phaddw */
7579 case 0x660f3802: /* phaddd */
7580 case 0x660f3803: /* phaddsw */
7581 case 0x660f3804: /* pmaddubsw */
7582 case 0x660f3805: /* phsubw */
7583 case 0x660f3806: /* phsubd */
7584 case 0x660f3807: /* phsubsw */
7585 case 0x660f3808: /* psignb */
7586 case 0x660f3809: /* psignw */
7587 case 0x660f380a: /* psignd */
7588 case 0x660f380b: /* pmulhrsw */
7589 case 0x660f3810: /* pblendvb */
7590 case 0x660f3814: /* blendvps */
7591 case 0x660f3815: /* blendvpd */
7592 case 0x660f381c: /* pabsb */
7593 case 0x660f381d: /* pabsw */
7594 case 0x660f381e: /* pabsd */
7595 case 0x660f3820: /* pmovsxbw */
7596 case 0x660f3821: /* pmovsxbd */
7597 case 0x660f3822: /* pmovsxbq */
7598 case 0x660f3823: /* pmovsxwd */
7599 case 0x660f3824: /* pmovsxwq */
7600 case 0x660f3825: /* pmovsxdq */
7601 case 0x660f3828: /* pmuldq */
7602 case 0x660f3829: /* pcmpeqq */
7603 case 0x660f382a: /* movntdqa */
7604 case 0x660f3a08: /* roundps */
7605 case 0x660f3a09: /* roundpd */
7606 case 0x660f3a0a: /* roundss */
7607 case 0x660f3a0b: /* roundsd */
7608 case 0x660f3a0c: /* blendps */
7609 case 0x660f3a0d: /* blendpd */
7610 case 0x660f3a0e: /* pblendw */
7611 case 0x660f3a0f: /* palignr */
7612 case 0x660f3a20: /* pinsrb */
7613 case 0x660f3a21: /* insertps */
7614 case 0x660f3a22: /* pinsrd pinsrq */
7615 case 0x660f3a40: /* dpps */
7616 case 0x660f3a41: /* dppd */
7617 case 0x660f3a42: /* mpsadbw */
7618 case 0x660f3a60: /* pcmpestrm */
7619 case 0x660f3a61: /* pcmpestri */
7620 case 0x660f3a62: /* pcmpistrm */
7621 case 0x660f3a63: /* pcmpistri */
7622 case 0x0f51: /* sqrtps */
7623 case 0x660f51: /* sqrtpd */
7624 case 0xf20f51: /* sqrtsd */
7625 case 0xf30f51: /* sqrtss */
7626 case 0x0f52: /* rsqrtps */
7627 case 0xf30f52: /* rsqrtss */
7628 case 0x0f53: /* rcpps */
7629 case 0xf30f53: /* rcpss */
7630 case 0x0f54: /* andps */
7631 case 0x660f54: /* andpd */
7632 case 0x0f55: /* andnps */
7633 case 0x660f55: /* andnpd */
7634 case 0x0f56: /* orps */
7635 case 0x660f56: /* orpd */
7636 case 0x0f57: /* xorps */
7637 case 0x660f57: /* xorpd */
7638 case 0x0f58: /* addps */
7639 case 0x660f58: /* addpd */
7640 case 0xf20f58: /* addsd */
7641 case 0xf30f58: /* addss */
7642 case 0x0f59: /* mulps */
7643 case 0x660f59: /* mulpd */
7644 case 0xf20f59: /* mulsd */
7645 case 0xf30f59: /* mulss */
7646 case 0x0f5a: /* cvtps2pd */
7647 case 0x660f5a: /* cvtpd2ps */
7648 case 0xf20f5a: /* cvtsd2ss */
7649 case 0xf30f5a: /* cvtss2sd */
7650 case 0x0f5b: /* cvtdq2ps */
7651 case 0x660f5b: /* cvtps2dq */
7652 case 0xf30f5b: /* cvttps2dq */
7653 case 0x0f5c: /* subps */
7654 case 0x660f5c: /* subpd */
7655 case 0xf20f5c: /* subsd */
7656 case 0xf30f5c: /* subss */
7657 case 0x0f5d: /* minps */
7658 case 0x660f5d: /* minpd */
7659 case 0xf20f5d: /* minsd */
7660 case 0xf30f5d: /* minss */
7661 case 0x0f5e: /* divps */
7662 case 0x660f5e: /* divpd */
7663 case 0xf20f5e: /* divsd */
7664 case 0xf30f5e: /* divss */
7665 case 0x0f5f: /* maxps */
7666 case 0x660f5f: /* maxpd */
7667 case 0xf20f5f: /* maxsd */
7668 case 0xf30f5f: /* maxss */
7669 case 0x660f60: /* punpcklbw */
7670 case 0x660f61: /* punpcklwd */
7671 case 0x660f62: /* punpckldq */
7672 case 0x660f63: /* packsswb */
7673 case 0x660f64: /* pcmpgtb */
7674 case 0x660f65: /* pcmpgtw */
7675 case 0x660f66: /* pcmpgtd */
7676 case 0x660f67: /* packuswb */
7677 case 0x660f68: /* punpckhbw */
7678 case 0x660f69: /* punpckhwd */
7679 case 0x660f6a: /* punpckhdq */
7680 case 0x660f6b: /* packssdw */
7681 case 0x660f6c: /* punpcklqdq */
7682 case 0x660f6d: /* punpckhqdq */
7683 case 0x660f6e: /* movd */
7684 case 0x660f6f: /* movdqa */
7685 case 0xf30f6f: /* movdqu */
7686 case 0x660f70: /* pshufd */
7687 case 0xf20f70: /* pshuflw */
7688 case 0xf30f70: /* pshufhw */
7689 case 0x660f74: /* pcmpeqb */
7690 case 0x660f75: /* pcmpeqw */
7691 case 0x660f76: /* pcmpeqd */
7692 case 0x660f7c: /* haddpd */
7693 case 0xf20f7c: /* haddps */
7694 case 0x660f7d: /* hsubpd */
7695 case 0xf20f7d: /* hsubps */
7696 case 0xf30f7e: /* movq */
7697 case 0x0fc2: /* cmpps */
7698 case 0x660fc2: /* cmppd */
7699 case 0xf20fc2: /* cmpsd */
7700 case 0xf30fc2: /* cmpss */
7701 case 0x660fc4: /* pinsrw */
7702 case 0x0fc6: /* shufps */
7703 case 0x660fc6: /* shufpd */
7704 case 0x660fd0: /* addsubpd */
7705 case 0xf20fd0: /* addsubps */
7706 case 0x660fd1: /* psrlw */
7707 case 0x660fd2: /* psrld */
7708 case 0x660fd3: /* psrlq */
7709 case 0x660fd4: /* paddq */
7710 case 0x660fd5: /* pmullw */
7711 case 0xf30fd6: /* movq2dq */
7712 case 0x660fd8: /* psubusb */
7713 case 0x660fd9: /* psubusw */
7714 case 0x660fda: /* pminub */
7715 case 0x660fdb: /* pand */
7716 case 0x660fdc: /* paddusb */
7717 case 0x660fdd: /* paddusw */
7718 case 0x660fde: /* pmaxub */
7719 case 0x660fdf: /* pandn */
7720 case 0x660fe0: /* pavgb */
7721 case 0x660fe1: /* psraw */
7722 case 0x660fe2: /* psrad */
7723 case 0x660fe3: /* pavgw */
7724 case 0x660fe4: /* pmulhuw */
7725 case 0x660fe5: /* pmulhw */
7726 case 0x660fe6: /* cvttpd2dq */
7727 case 0xf20fe6: /* cvtpd2dq */
7728 case 0xf30fe6: /* cvtdq2pd */
7729 case 0x660fe8: /* psubsb */
7730 case 0x660fe9: /* psubsw */
7731 case 0x660fea: /* pminsw */
7732 case 0x660feb: /* por */
7733 case 0x660fec: /* paddsb */
7734 case 0x660fed: /* paddsw */
7735 case 0x660fee: /* pmaxsw */
7736 case 0x660fef: /* pxor */
7737 case 0xf20ff0: /* lddqu */
7738 case 0x660ff1: /* psllw */
7739 case 0x660ff2: /* pslld */
7740 case 0x660ff3: /* psllq */
7741 case 0x660ff4: /* pmuludq */
7742 case 0x660ff5: /* pmaddwd */
7743 case 0x660ff6: /* psadbw */
7744 case 0x660ff8: /* psubb */
7745 case 0x660ff9: /* psubw */
7746 case 0x660ffa: /* psubd */
7747 case 0x660ffb: /* psubq */
7748 case 0x660ffc: /* paddb */
7749 case 0x660ffd: /* paddw */
7750 case 0x660ffe: /* paddd */
7751 if (i386_record_modrm (&ir))
7754 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7756 record_full_arch_list_add_reg (ir.regcache,
7757 I387_XMM0_REGNUM (tdep) + ir.reg);
7758 if ((opcode & 0xfffffffc) == 0x660f3a60)
7759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7762 case 0x0f11: /* movups */
7763 case 0x660f11: /* movupd */
7764 case 0xf30f11: /* movss */
7765 case 0xf20f11: /* movsd */
7766 case 0x0f13: /* movlps */
7767 case 0x660f13: /* movlpd */
7768 case 0x0f17: /* movhps */
7769 case 0x660f17: /* movhpd */
7770 case 0x0f29: /* movaps */
7771 case 0x660f29: /* movapd */
7772 case 0x660f3a14: /* pextrb */
7773 case 0x660f3a15: /* pextrw */
7774 case 0x660f3a16: /* pextrd pextrq */
7775 case 0x660f3a17: /* extractps */
7776 case 0x660f7f: /* movdqa */
7777 case 0xf30f7f: /* movdqu */
7778 if (i386_record_modrm (&ir))
7782 if (opcode == 0x0f13 || opcode == 0x660f13
7783 || opcode == 0x0f17 || opcode == 0x660f17)
7786 if (!i386_xmm_regnum_p (gdbarch,
7787 I387_XMM0_REGNUM (tdep) + ir.rm))
7789 record_full_arch_list_add_reg (ir.regcache,
7790 I387_XMM0_REGNUM (tdep) + ir.rm);
7812 if (i386_record_lea_modrm (&ir))
7817 case 0x0f2b: /* movntps */
7818 case 0x660f2b: /* movntpd */
7819 case 0x0fe7: /* movntq */
7820 case 0x660fe7: /* movntdq */
7823 if (opcode == 0x0fe7)
7827 if (i386_record_lea_modrm (&ir))
7831 case 0xf30f2c: /* cvttss2si */
7832 case 0xf20f2c: /* cvttsd2si */
7833 case 0xf30f2d: /* cvtss2si */
7834 case 0xf20f2d: /* cvtsd2si */
7835 case 0xf20f38f0: /* crc32 */
7836 case 0xf20f38f1: /* crc32 */
7837 case 0x0f50: /* movmskps */
7838 case 0x660f50: /* movmskpd */
7839 case 0x0fc5: /* pextrw */
7840 case 0x660fc5: /* pextrw */
7841 case 0x0fd7: /* pmovmskb */
7842 case 0x660fd7: /* pmovmskb */
7843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7846 case 0x0f3800: /* pshufb */
7847 case 0x0f3801: /* phaddw */
7848 case 0x0f3802: /* phaddd */
7849 case 0x0f3803: /* phaddsw */
7850 case 0x0f3804: /* pmaddubsw */
7851 case 0x0f3805: /* phsubw */
7852 case 0x0f3806: /* phsubd */
7853 case 0x0f3807: /* phsubsw */
7854 case 0x0f3808: /* psignb */
7855 case 0x0f3809: /* psignw */
7856 case 0x0f380a: /* psignd */
7857 case 0x0f380b: /* pmulhrsw */
7858 case 0x0f381c: /* pabsb */
7859 case 0x0f381d: /* pabsw */
7860 case 0x0f381e: /* pabsd */
7861 case 0x0f382b: /* packusdw */
7862 case 0x0f3830: /* pmovzxbw */
7863 case 0x0f3831: /* pmovzxbd */
7864 case 0x0f3832: /* pmovzxbq */
7865 case 0x0f3833: /* pmovzxwd */
7866 case 0x0f3834: /* pmovzxwq */
7867 case 0x0f3835: /* pmovzxdq */
7868 case 0x0f3837: /* pcmpgtq */
7869 case 0x0f3838: /* pminsb */
7870 case 0x0f3839: /* pminsd */
7871 case 0x0f383a: /* pminuw */
7872 case 0x0f383b: /* pminud */
7873 case 0x0f383c: /* pmaxsb */
7874 case 0x0f383d: /* pmaxsd */
7875 case 0x0f383e: /* pmaxuw */
7876 case 0x0f383f: /* pmaxud */
7877 case 0x0f3840: /* pmulld */
7878 case 0x0f3841: /* phminposuw */
7879 case 0x0f3a0f: /* palignr */
7880 case 0x0f60: /* punpcklbw */
7881 case 0x0f61: /* punpcklwd */
7882 case 0x0f62: /* punpckldq */
7883 case 0x0f63: /* packsswb */
7884 case 0x0f64: /* pcmpgtb */
7885 case 0x0f65: /* pcmpgtw */
7886 case 0x0f66: /* pcmpgtd */
7887 case 0x0f67: /* packuswb */
7888 case 0x0f68: /* punpckhbw */
7889 case 0x0f69: /* punpckhwd */
7890 case 0x0f6a: /* punpckhdq */
7891 case 0x0f6b: /* packssdw */
7892 case 0x0f6e: /* movd */
7893 case 0x0f6f: /* movq */
7894 case 0x0f70: /* pshufw */
7895 case 0x0f74: /* pcmpeqb */
7896 case 0x0f75: /* pcmpeqw */
7897 case 0x0f76: /* pcmpeqd */
7898 case 0x0fc4: /* pinsrw */
7899 case 0x0fd1: /* psrlw */
7900 case 0x0fd2: /* psrld */
7901 case 0x0fd3: /* psrlq */
7902 case 0x0fd4: /* paddq */
7903 case 0x0fd5: /* pmullw */
7904 case 0xf20fd6: /* movdq2q */
7905 case 0x0fd8: /* psubusb */
7906 case 0x0fd9: /* psubusw */
7907 case 0x0fda: /* pminub */
7908 case 0x0fdb: /* pand */
7909 case 0x0fdc: /* paddusb */
7910 case 0x0fdd: /* paddusw */
7911 case 0x0fde: /* pmaxub */
7912 case 0x0fdf: /* pandn */
7913 case 0x0fe0: /* pavgb */
7914 case 0x0fe1: /* psraw */
7915 case 0x0fe2: /* psrad */
7916 case 0x0fe3: /* pavgw */
7917 case 0x0fe4: /* pmulhuw */
7918 case 0x0fe5: /* pmulhw */
7919 case 0x0fe8: /* psubsb */
7920 case 0x0fe9: /* psubsw */
7921 case 0x0fea: /* pminsw */
7922 case 0x0feb: /* por */
7923 case 0x0fec: /* paddsb */
7924 case 0x0fed: /* paddsw */
7925 case 0x0fee: /* pmaxsw */
7926 case 0x0fef: /* pxor */
7927 case 0x0ff1: /* psllw */
7928 case 0x0ff2: /* pslld */
7929 case 0x0ff3: /* psllq */
7930 case 0x0ff4: /* pmuludq */
7931 case 0x0ff5: /* pmaddwd */
7932 case 0x0ff6: /* psadbw */
7933 case 0x0ff8: /* psubb */
7934 case 0x0ff9: /* psubw */
7935 case 0x0ffa: /* psubd */
7936 case 0x0ffb: /* psubq */
7937 case 0x0ffc: /* paddb */
7938 case 0x0ffd: /* paddw */
7939 case 0x0ffe: /* paddd */
7940 if (i386_record_modrm (&ir))
7942 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7944 record_full_arch_list_add_reg (ir.regcache,
7945 I387_MM0_REGNUM (tdep) + ir.reg);
7948 case 0x0f71: /* psllw */
7949 case 0x0f72: /* pslld */
7950 case 0x0f73: /* psllq */
7951 if (i386_record_modrm (&ir))
7953 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7955 record_full_arch_list_add_reg (ir.regcache,
7956 I387_MM0_REGNUM (tdep) + ir.rm);
7959 case 0x660f71: /* psllw */
7960 case 0x660f72: /* pslld */
7961 case 0x660f73: /* psllq */
7962 if (i386_record_modrm (&ir))
7965 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7967 record_full_arch_list_add_reg (ir.regcache,
7968 I387_XMM0_REGNUM (tdep) + ir.rm);
7971 case 0x0f7e: /* movd */
7972 case 0x660f7e: /* movd */
7973 if (i386_record_modrm (&ir))
7976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7983 if (i386_record_lea_modrm (&ir))
7988 case 0x0f7f: /* movq */
7989 if (i386_record_modrm (&ir))
7993 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7995 record_full_arch_list_add_reg (ir.regcache,
7996 I387_MM0_REGNUM (tdep) + ir.rm);
8001 if (i386_record_lea_modrm (&ir))
8006 case 0xf30fb8: /* popcnt */
8007 if (i386_record_modrm (&ir))
8009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8013 case 0x660fd6: /* movq */
8014 if (i386_record_modrm (&ir))
8019 if (!i386_xmm_regnum_p (gdbarch,
8020 I387_XMM0_REGNUM (tdep) + ir.rm))
8022 record_full_arch_list_add_reg (ir.regcache,
8023 I387_XMM0_REGNUM (tdep) + ir.rm);
8028 if (i386_record_lea_modrm (&ir))
8033 case 0x660f3817: /* ptest */
8034 case 0x0f2e: /* ucomiss */
8035 case 0x660f2e: /* ucomisd */
8036 case 0x0f2f: /* comiss */
8037 case 0x660f2f: /* comisd */
8038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8041 case 0x0ff7: /* maskmovq */
8042 regcache_raw_read_unsigned (ir.regcache,
8043 ir.regmap[X86_RECORD_REDI_REGNUM],
8045 if (record_full_arch_list_add_mem (addr, 64))
8049 case 0x660ff7: /* maskmovdqu */
8050 regcache_raw_read_unsigned (ir.regcache,
8051 ir.regmap[X86_RECORD_REDI_REGNUM],
8053 if (record_full_arch_list_add_mem (addr, 128))
8068 /* In the future, maybe still need to deal with need_dasm. */
8069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8070 if (record_full_arch_list_add_end ())
8076 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8077 "at address %s.\n"),
8078 (unsigned int) (opcode),
8079 paddress (gdbarch, ir.orig_addr));
8083 static const int i386_record_regmap[] =
8085 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8086 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8087 0, 0, 0, 0, 0, 0, 0, 0,
8088 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8089 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8092 /* Check that the given address appears suitable for a fast
8093 tracepoint, which on x86-64 means that we need an instruction of at
8094 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8095 jump and not have to worry about program jumps to an address in the
8096 middle of the tracepoint jump. On x86, it may be possible to use
8097 4-byte jumps with a 2-byte offset to a trampoline located in the
8098 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8099 of instruction to replace, and 0 if not, plus an explanatory
8103 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8108 /* Ask the target for the minimum instruction length supported. */
8109 jumplen = target_get_min_fast_tracepoint_insn_len ();
8113 /* If the target does not support the get_min_fast_tracepoint_insn_len
8114 operation, assume that fast tracepoints will always be implemented
8115 using 4-byte relative jumps on both x86 and x86-64. */
8118 else if (jumplen == 0)
8120 /* If the target does support get_min_fast_tracepoint_insn_len but
8121 returns zero, then the IPA has not loaded yet. In this case,
8122 we optimistically assume that truncated 2-byte relative jumps
8123 will be available on x86, and compensate later if this assumption
8124 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8125 jumps will always be used. */
8126 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8129 /* Check for fit. */
8130 len = gdb_insn_length (gdbarch, addr);
8134 /* Return a bit of target-specific detail to add to the caller's
8135 generic failure message. */
8137 *msg = string_printf (_("; instruction is only %d bytes long, "
8138 "need at least %d bytes for the jump"),
8150 /* Return a floating-point format for a floating-point variable of
8151 length LEN in bits. If non-NULL, NAME is the name of its type.
8152 If no suitable type is found, return NULL. */
8154 const struct floatformat **
8155 i386_floatformat_for_type (struct gdbarch *gdbarch,
8156 const char *name, int len)
8158 if (len == 128 && name)
8159 if (strcmp (name, "__float128") == 0
8160 || strcmp (name, "_Float128") == 0
8161 || strcmp (name, "complex _Float128") == 0)
8162 return floatformats_ia64_quad;
8164 return default_floatformat_for_type (gdbarch, name, len);
8168 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8169 struct tdesc_arch_data *tdesc_data)
8171 const struct target_desc *tdesc = tdep->tdesc;
8172 const struct tdesc_feature *feature_core;
8174 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8175 *feature_avx512, *feature_pkeys, *feature_segments;
8176 int i, num_regs, valid_p;
8178 if (! tdesc_has_registers (tdesc))
8181 /* Get core registers. */
8182 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8183 if (feature_core == NULL)
8186 /* Get SSE registers. */
8187 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8189 /* Try AVX registers. */
8190 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8192 /* Try MPX registers. */
8193 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8195 /* Try AVX512 registers. */
8196 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8198 /* Try segment base registers. */
8199 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8202 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8206 /* The XCR0 bits. */
8209 /* AVX512 register description requires AVX register description. */
8213 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8215 /* It may have been set by OSABI initialization function. */
8216 if (tdep->k0_regnum < 0)
8218 tdep->k_register_names = i386_k_names;
8219 tdep->k0_regnum = I386_K0_REGNUM;
8222 for (i = 0; i < I387_NUM_K_REGS; i++)
8223 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8224 tdep->k0_regnum + i,
8227 if (tdep->num_zmm_regs == 0)
8229 tdep->zmmh_register_names = i386_zmmh_names;
8230 tdep->num_zmm_regs = 8;
8231 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8234 for (i = 0; i < tdep->num_zmm_regs; i++)
8235 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8236 tdep->zmm0h_regnum + i,
8237 tdep->zmmh_register_names[i]);
8239 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8240 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8241 tdep->xmm16_regnum + i,
8242 tdep->xmm_avx512_register_names[i]);
8244 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8245 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8246 tdep->ymm16h_regnum + i,
8247 tdep->ymm16h_register_names[i]);
8251 /* AVX register description requires SSE register description. */
8255 if (!feature_avx512)
8256 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8258 /* It may have been set by OSABI initialization function. */
8259 if (tdep->num_ymm_regs == 0)
8261 tdep->ymmh_register_names = i386_ymmh_names;
8262 tdep->num_ymm_regs = 8;
8263 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8266 for (i = 0; i < tdep->num_ymm_regs; i++)
8267 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8268 tdep->ymm0h_regnum + i,
8269 tdep->ymmh_register_names[i]);
8271 else if (feature_sse)
8272 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8275 tdep->xcr0 = X86_XSTATE_X87_MASK;
8276 tdep->num_xmm_regs = 0;
8279 num_regs = tdep->num_core_regs;
8280 for (i = 0; i < num_regs; i++)
8281 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8282 tdep->register_names[i]);
8286 /* Need to include %mxcsr, so add one. */
8287 num_regs += tdep->num_xmm_regs + 1;
8288 for (; i < num_regs; i++)
8289 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8290 tdep->register_names[i]);
8295 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8297 if (tdep->bnd0r_regnum < 0)
8299 tdep->mpx_register_names = i386_mpx_names;
8300 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8301 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8304 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8305 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8306 I387_BND0R_REGNUM (tdep) + i,
8307 tdep->mpx_register_names[i]);
8310 if (feature_segments)
8312 if (tdep->fsbase_regnum < 0)
8313 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8314 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8315 tdep->fsbase_regnum, "fs_base");
8316 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8317 tdep->fsbase_regnum + 1, "gs_base");
8322 tdep->xcr0 |= X86_XSTATE_PKRU;
8323 if (tdep->pkru_regnum < 0)
8325 tdep->pkeys_register_names = i386_pkeys_names;
8326 tdep->pkru_regnum = I386_PKRU_REGNUM;
8327 tdep->num_pkeys_regs = 1;
8330 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8331 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8332 I387_PKRU_REGNUM (tdep) + i,
8333 tdep->pkeys_register_names[i]);
8341 /* Implement the type_align gdbarch function. */
8344 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8346 type = check_typedef (type);
8348 if (gdbarch_ptr_bit (gdbarch) == 32)
8350 if ((TYPE_CODE (type) == TYPE_CODE_INT
8351 || TYPE_CODE (type) == TYPE_CODE_FLT)
8352 && TYPE_LENGTH (type) > 4)
8355 /* Handle x86's funny long double. */
8356 if (TYPE_CODE (type) == TYPE_CODE_FLT
8357 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8365 /* Note: This is called for both i386 and amd64. */
8367 static struct gdbarch *
8368 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8370 struct gdbarch_tdep *tdep;
8371 struct gdbarch *gdbarch;
8372 struct tdesc_arch_data *tdesc_data;
8373 const struct target_desc *tdesc;
8379 /* If there is already a candidate, use it. */
8380 arches = gdbarch_list_lookup_by_info (arches, &info);
8382 return arches->gdbarch;
8384 /* Allocate space for the new architecture. Assume i386 for now. */
8385 tdep = XCNEW (struct gdbarch_tdep);
8386 gdbarch = gdbarch_alloc (&info, tdep);
8388 /* General-purpose registers. */
8389 tdep->gregset_reg_offset = NULL;
8390 tdep->gregset_num_regs = I386_NUM_GREGS;
8391 tdep->sizeof_gregset = 0;
8393 /* Floating-point registers. */
8394 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8395 tdep->fpregset = &i386_fpregset;
8397 /* The default settings include the FPU registers, the MMX registers
8398 and the SSE registers. This can be overridden for a specific ABI
8399 by adjusting the members `st0_regnum', `mm0_regnum' and
8400 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8401 will show up in the output of "info all-registers". */
8403 tdep->st0_regnum = I386_ST0_REGNUM;
8405 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8406 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8408 tdep->jb_pc_offset = -1;
8409 tdep->struct_return = pcc_struct_return;
8410 tdep->sigtramp_start = 0;
8411 tdep->sigtramp_end = 0;
8412 tdep->sigtramp_p = i386_sigtramp_p;
8413 tdep->sigcontext_addr = NULL;
8414 tdep->sc_reg_offset = NULL;
8415 tdep->sc_pc_offset = -1;
8416 tdep->sc_sp_offset = -1;
8418 tdep->xsave_xcr0_offset = -1;
8420 tdep->record_regmap = i386_record_regmap;
8422 set_gdbarch_type_align (gdbarch, i386_type_align);
8424 /* The format used for `long double' on almost all i386 targets is
8425 the i387 extended floating-point format. In fact, of all targets
8426 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8427 on having a `long double' that's not `long' at all. */
8428 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8430 /* Although the i387 extended floating-point has only 80 significant
8431 bits, a `long double' actually takes up 96, probably to enforce
8433 set_gdbarch_long_double_bit (gdbarch, 96);
8435 /* Support for floating-point data type variants. */
8436 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8438 /* Register numbers of various important registers. */
8439 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8440 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8441 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8442 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8444 /* NOTE: kettenis/20040418: GCC does have two possible register
8445 numbering schemes on the i386: dbx and SVR4. These schemes
8446 differ in how they number %ebp, %esp, %eflags, and the
8447 floating-point registers, and are implemented by the arrays
8448 dbx_register_map[] and svr4_dbx_register_map in
8449 gcc/config/i386.c. GCC also defines a third numbering scheme in
8450 gcc/config/i386.c, which it designates as the "default" register
8451 map used in 64bit mode. This last register numbering scheme is
8452 implemented in dbx64_register_map, and is used for AMD64; see
8455 Currently, each GCC i386 target always uses the same register
8456 numbering scheme across all its supported debugging formats
8457 i.e. SDB (COFF), stabs and DWARF 2. This is because
8458 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8459 DBX_REGISTER_NUMBER macro which is defined by each target's
8460 respective config header in a manner independent of the requested
8461 output debugging format.
8463 This does not match the arrangement below, which presumes that
8464 the SDB and stabs numbering schemes differ from the DWARF and
8465 DWARF 2 ones. The reason for this arrangement is that it is
8466 likely to get the numbering scheme for the target's
8467 default/native debug format right. For targets where GCC is the
8468 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8469 targets where the native toolchain uses a different numbering
8470 scheme for a particular debug format (stabs-in-ELF on Solaris)
8471 the defaults below will have to be overridden, like
8472 i386_elf_init_abi() does. */
8474 /* Use the dbx register numbering scheme for stabs and COFF. */
8475 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8476 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8478 /* Use the SVR4 register numbering scheme for DWARF 2. */
8479 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8481 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8482 be in use on any of the supported i386 targets. */
8484 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8486 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8488 /* Call dummy code. */
8489 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8490 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8491 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8492 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8494 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8495 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8496 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8498 set_gdbarch_return_value (gdbarch, i386_return_value);
8500 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8502 /* Stack grows downward. */
8503 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8505 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8506 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8508 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8509 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8511 set_gdbarch_frame_args_skip (gdbarch, 8);
8513 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8515 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8517 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8519 /* Add the i386 register groups. */
8520 i386_add_reggroups (gdbarch);
8521 tdep->register_reggroup_p = i386_register_reggroup_p;
8523 /* Helper for function argument information. */
8524 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8526 /* Hook the function epilogue frame unwinder. This unwinder is
8527 appended to the list first, so that it supercedes the DWARF
8528 unwinder in function epilogues (where the DWARF unwinder
8529 currently fails). */
8530 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8532 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8533 to the list before the prologue-based unwinders, so that DWARF
8534 CFI info will be used if it is available. */
8535 dwarf2_append_unwinders (gdbarch);
8537 frame_base_set_default (gdbarch, &i386_frame_base);
8539 /* Pseudo registers may be changed by amd64_init_abi. */
8540 set_gdbarch_pseudo_register_read_value (gdbarch,
8541 i386_pseudo_register_read_value);
8542 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8543 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8544 i386_ax_pseudo_register_collect);
8546 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8547 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8549 /* Override the normal target description method to make the AVX
8550 upper halves anonymous. */
8551 set_gdbarch_register_name (gdbarch, i386_register_name);
8553 /* Even though the default ABI only includes general-purpose registers,
8554 floating-point registers and the SSE registers, we have to leave a
8555 gap for the upper AVX, MPX and AVX512 registers. */
8556 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8558 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8560 /* Get the x86 target description from INFO. */
8561 tdesc = info.target_desc;
8562 if (! tdesc_has_registers (tdesc))
8563 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8564 tdep->tdesc = tdesc;
8566 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8567 tdep->register_names = i386_register_names;
8569 /* No upper YMM registers. */
8570 tdep->ymmh_register_names = NULL;
8571 tdep->ymm0h_regnum = -1;
8573 /* No upper ZMM registers. */
8574 tdep->zmmh_register_names = NULL;
8575 tdep->zmm0h_regnum = -1;
8577 /* No high XMM registers. */
8578 tdep->xmm_avx512_register_names = NULL;
8579 tdep->xmm16_regnum = -1;
8581 /* No upper YMM16-31 registers. */
8582 tdep->ymm16h_register_names = NULL;
8583 tdep->ymm16h_regnum = -1;
8585 tdep->num_byte_regs = 8;
8586 tdep->num_word_regs = 8;
8587 tdep->num_dword_regs = 0;
8588 tdep->num_mmx_regs = 8;
8589 tdep->num_ymm_regs = 0;
8591 /* No MPX registers. */
8592 tdep->bnd0r_regnum = -1;
8593 tdep->bndcfgu_regnum = -1;
8595 /* No AVX512 registers. */
8596 tdep->k0_regnum = -1;
8597 tdep->num_zmm_regs = 0;
8598 tdep->num_ymm_avx512_regs = 0;
8599 tdep->num_xmm_avx512_regs = 0;
8601 /* No PKEYS registers */
8602 tdep->pkru_regnum = -1;
8603 tdep->num_pkeys_regs = 0;
8605 /* No segment base registers. */
8606 tdep->fsbase_regnum = -1;
8608 tdesc_data = tdesc_data_alloc ();
8610 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8612 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8614 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8615 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8616 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8618 /* Hook in ABI-specific overrides, if they have been registered.
8619 Note: If INFO specifies a 64 bit arch, this is where we turn
8620 a 32-bit i386 into a 64-bit amd64. */
8621 info.tdesc_data = tdesc_data;
8622 gdbarch_init_osabi (info, gdbarch);
8624 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8626 tdesc_data_cleanup (tdesc_data);
8628 gdbarch_free (gdbarch);
8632 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8634 /* Wire in pseudo registers. Number of pseudo registers may be
8636 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8637 + tdep->num_word_regs
8638 + tdep->num_dword_regs
8639 + tdep->num_mmx_regs
8640 + tdep->num_ymm_regs
8642 + tdep->num_ymm_avx512_regs
8643 + tdep->num_zmm_regs));
8645 /* Target description may be changed. */
8646 tdesc = tdep->tdesc;
8648 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8650 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8651 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8653 /* Make %al the first pseudo-register. */
8654 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8655 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8657 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8658 if (tdep->num_dword_regs)
8660 /* Support dword pseudo-register if it hasn't been disabled. */
8661 tdep->eax_regnum = ymm0_regnum;
8662 ymm0_regnum += tdep->num_dword_regs;
8665 tdep->eax_regnum = -1;
8667 mm0_regnum = ymm0_regnum;
8668 if (tdep->num_ymm_regs)
8670 /* Support YMM pseudo-register if it is available. */
8671 tdep->ymm0_regnum = ymm0_regnum;
8672 mm0_regnum += tdep->num_ymm_regs;
8675 tdep->ymm0_regnum = -1;
8677 if (tdep->num_ymm_avx512_regs)
8679 /* Support YMM16-31 pseudo registers if available. */
8680 tdep->ymm16_regnum = mm0_regnum;
8681 mm0_regnum += tdep->num_ymm_avx512_regs;
8684 tdep->ymm16_regnum = -1;
8686 if (tdep->num_zmm_regs)
8688 /* Support ZMM pseudo-register if it is available. */
8689 tdep->zmm0_regnum = mm0_regnum;
8690 mm0_regnum += tdep->num_zmm_regs;
8693 tdep->zmm0_regnum = -1;
8695 bnd0_regnum = mm0_regnum;
8696 if (tdep->num_mmx_regs != 0)
8698 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8699 tdep->mm0_regnum = mm0_regnum;
8700 bnd0_regnum += tdep->num_mmx_regs;
8703 tdep->mm0_regnum = -1;
8705 if (tdep->bnd0r_regnum > 0)
8706 tdep->bnd0_regnum = bnd0_regnum;
8708 tdep-> bnd0_regnum = -1;
8710 /* Hook in the legacy prologue-based unwinders last (fallback). */
8711 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8712 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8713 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8715 /* If we have a register mapping, enable the generic core file
8716 support, unless it has already been enabled. */
8717 if (tdep->gregset_reg_offset
8718 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8719 set_gdbarch_iterate_over_regset_sections
8720 (gdbarch, i386_iterate_over_regset_sections);
8722 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8723 i386_fast_tracepoint_valid_at);
8730 /* Return the target description for a specified XSAVE feature mask. */
8732 const struct target_desc *
8733 i386_target_description (uint64_t xcr0, bool segments)
8735 static target_desc *i386_tdescs \
8736 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8737 target_desc **tdesc;
8739 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8740 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8741 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8742 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8743 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8747 *tdesc = i386_create_target_description (xcr0, false, segments);
8752 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8754 /* Find the bound directory base address. */
8756 static unsigned long
8757 i386_mpx_bd_base (void)
8759 struct regcache *rcache;
8760 struct gdbarch_tdep *tdep;
8762 enum register_status regstatus;
8764 rcache = get_current_regcache ();
8765 tdep = gdbarch_tdep (rcache->arch ());
8767 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8769 if (regstatus != REG_VALID)
8770 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8772 return ret & MPX_BASE_MASK;
8776 i386_mpx_enabled (void)
8778 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8779 const struct target_desc *tdesc = tdep->tdesc;
8781 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8784 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8785 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8786 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8787 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8789 /* Find the bound table entry given the pointer location and the base
8790 address of the table. */
8793 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8797 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8798 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8799 CORE_ADDR bd_entry_addr;
8802 struct gdbarch *gdbarch = get_current_arch ();
8803 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8806 if (gdbarch_ptr_bit (gdbarch) == 64)
8808 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8809 bd_ptr_r_shift = 20;
8811 bt_select_r_shift = 3;
8812 bt_select_l_shift = 5;
8813 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8815 if ( sizeof (CORE_ADDR) == 4)
8816 error (_("bound table examination not supported\
8817 for 64-bit process with 32-bit GDB"));
8821 mpx_bd_mask = MPX_BD_MASK_32;
8822 bd_ptr_r_shift = 12;
8824 bt_select_r_shift = 2;
8825 bt_select_l_shift = 4;
8826 bt_mask = MPX_BT_MASK_32;
8829 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8830 bd_entry_addr = bd_base + offset1;
8831 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8833 if ((bd_entry & 0x1) == 0)
8834 error (_("Invalid bounds directory entry at %s."),
8835 paddress (get_current_arch (), bd_entry_addr));
8837 /* Clearing status bit. */
8839 bt_addr = bd_entry & ~bt_select_r_shift;
8840 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8842 return bt_addr + offset2;
8845 /* Print routine for the mpx bounds. */
8848 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8850 struct ui_out *uiout = current_uiout;
8852 struct gdbarch *gdbarch = get_current_arch ();
8853 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8854 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8856 if (bounds_in_map == 1)
8858 uiout->text ("Null bounds on map:");
8859 uiout->text (" pointer value = ");
8860 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8866 uiout->text ("{lbound = ");
8867 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8868 uiout->text (", ubound = ");
8870 /* The upper bound is stored in 1's complement. */
8871 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8872 uiout->text ("}: pointer value = ");
8873 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8875 if (gdbarch_ptr_bit (gdbarch) == 64)
8876 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8878 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8880 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8881 -1 represents in this sense full memory access, and there is no need
8884 size = (size > -1 ? size + 1 : size);
8885 uiout->text (", size = ");
8886 uiout->field_fmt ("size", "%s", plongest (size));
8888 uiout->text (", metadata = ");
8889 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8894 /* Implement the command "show mpx bound". */
8897 i386_mpx_info_bounds (const char *args, int from_tty)
8899 CORE_ADDR bd_base = 0;
8901 CORE_ADDR bt_entry_addr = 0;
8902 CORE_ADDR bt_entry[4];
8904 struct gdbarch *gdbarch = get_current_arch ();
8905 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8907 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8908 || !i386_mpx_enabled ())
8910 printf_unfiltered (_("Intel Memory Protection Extensions not "
8911 "supported on this target.\n"));
8917 printf_unfiltered (_("Address of pointer variable expected.\n"));
8921 addr = parse_and_eval_address (args);
8923 bd_base = i386_mpx_bd_base ();
8924 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8926 memset (bt_entry, 0, sizeof (bt_entry));
8928 for (i = 0; i < 4; i++)
8929 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8930 + i * TYPE_LENGTH (data_ptr_type),
8933 i386_mpx_print_bounds (bt_entry);
8936 /* Implement the command "set mpx bound". */
8939 i386_mpx_set_bounds (const char *args, int from_tty)
8941 CORE_ADDR bd_base = 0;
8942 CORE_ADDR addr, lower, upper;
8943 CORE_ADDR bt_entry_addr = 0;
8944 CORE_ADDR bt_entry[2];
8945 const char *input = args;
8947 struct gdbarch *gdbarch = get_current_arch ();
8948 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8949 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8951 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8952 || !i386_mpx_enabled ())
8953 error (_("Intel Memory Protection Extensions not supported\
8957 error (_("Pointer value expected."));
8959 addr = value_as_address (parse_to_comma_and_eval (&input));
8961 if (input[0] == ',')
8963 if (input[0] == '\0')
8964 error (_("wrong number of arguments: missing lower and upper bound."));
8965 lower = value_as_address (parse_to_comma_and_eval (&input));
8967 if (input[0] == ',')
8969 if (input[0] == '\0')
8970 error (_("Wrong number of arguments; Missing upper bound."));
8971 upper = value_as_address (parse_to_comma_and_eval (&input));
8973 bd_base = i386_mpx_bd_base ();
8974 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8975 for (i = 0; i < 2; i++)
8976 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8977 + i * TYPE_LENGTH (data_ptr_type),
8979 bt_entry[0] = (uint64_t) lower;
8980 bt_entry[1] = ~(uint64_t) upper;
8982 for (i = 0; i < 2; i++)
8983 write_memory_unsigned_integer (bt_entry_addr
8984 + i * TYPE_LENGTH (data_ptr_type),
8985 TYPE_LENGTH (data_ptr_type), byte_order,
8989 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8991 /* Helper function for the CLI commands. */
8994 set_mpx_cmd (const char *args, int from_tty)
8996 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8999 /* Helper function for the CLI commands. */
9002 show_mpx_cmd (const char *args, int from_tty)
9004 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9008 _initialize_i386_tdep (void)
9010 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9012 /* Add the variable that controls the disassembly flavor. */
9013 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9014 &disassembly_flavor, _("\
9015 Set the disassembly flavor."), _("\
9016 Show the disassembly flavor."), _("\
9017 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9019 NULL, /* FIXME: i18n: */
9020 &setlist, &showlist);
9022 /* Add the variable that controls the convention for returning
9024 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9025 &struct_convention, _("\
9026 Set the convention for returning small structs."), _("\
9027 Show the convention for returning small structs."), _("\
9028 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9031 NULL, /* FIXME: i18n: */
9032 &setlist, &showlist);
9034 /* Add "mpx" prefix for the set commands. */
9036 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9037 Set Intel Memory Protection Extensions specific variables."),
9038 &mpx_set_cmdlist, "set mpx ",
9039 0 /* allow-unknown */, &setlist);
9041 /* Add "mpx" prefix for the show commands. */
9043 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9044 Show Intel Memory Protection Extensions specific variables."),
9045 &mpx_show_cmdlist, "show mpx ",
9046 0 /* allow-unknown */, &showlist);
9048 /* Add "bound" command for the show mpx commands list. */
9050 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9051 "Show the memory bounds for a given array/pointer storage\
9052 in the bound table.",
9055 /* Add "bound" command for the set mpx commands list. */
9057 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9058 "Set the memory bounds for a given array/pointer storage\
9059 in the bound table.",
9062 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9063 i386_svr4_init_abi);
9065 /* Initialize the i386-specific register groups. */
9066 i386_init_reggroups ();
9068 /* Tell remote stub that we support XML target description. */
9069 register_remote_support_xml ("i386");
9077 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9078 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9079 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9080 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9081 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9082 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9083 { "i386/i386-avx-mpx-avx512-pku.xml",
9084 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9087 for (auto &a : xml_masks)
9089 auto tdesc = i386_target_description (a.mask, false);
9091 selftests::record_xml_tdesc (a.xml, tdesc);
9093 #endif /* GDB_SELF_TEST */