1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
37 #include "reggroups.h"
42 #include "target-float.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
70 static const char *i386_register_names[] =
72 "eax", "ecx", "edx", "ebx",
73 "esp", "ebp", "esi", "edi",
74 "eip", "eflags", "cs", "ss",
75 "ds", "es", "fs", "gs",
76 "st0", "st1", "st2", "st3",
77 "st4", "st5", "st6", "st7",
78 "fctrl", "fstat", "ftag", "fiseg",
79 "fioff", "foseg", "fooff", "fop",
80 "xmm0", "xmm1", "xmm2", "xmm3",
81 "xmm4", "xmm5", "xmm6", "xmm7",
85 static const char *i386_zmm_names[] =
87 "zmm0", "zmm1", "zmm2", "zmm3",
88 "zmm4", "zmm5", "zmm6", "zmm7"
91 static const char *i386_zmmh_names[] =
93 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
94 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97 static const char *i386_k_names[] =
99 "k0", "k1", "k2", "k3",
100 "k4", "k5", "k6", "k7"
103 static const char *i386_ymm_names[] =
105 "ymm0", "ymm1", "ymm2", "ymm3",
106 "ymm4", "ymm5", "ymm6", "ymm7",
109 static const char *i386_ymmh_names[] =
111 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
112 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115 static const char *i386_mpx_names[] =
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120 static const char* i386_pkeys_names[] =
125 /* Register names for MPX pseudo-registers. */
127 static const char *i386_bnd_names[] =
129 "bnd0", "bnd1", "bnd2", "bnd3"
132 /* Register names for MMX pseudo-registers. */
134 static const char *i386_mmx_names[] =
136 "mm0", "mm1", "mm2", "mm3",
137 "mm4", "mm5", "mm6", "mm7"
140 /* Register names for byte pseudo-registers. */
142 static const char *i386_byte_names[] =
144 "al", "cl", "dl", "bl",
145 "ah", "ch", "dh", "bh"
148 /* Register names for word pseudo-registers. */
150 static const char *i386_word_names[] =
152 "ax", "cx", "dx", "bx",
156 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
157 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
158 we have 16 upper ZMM regs that have to be handled differently. */
160 const int num_lower_zmm_regs = 16;
165 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int mm0_regnum = tdep->mm0_regnum;
173 regnum -= mm0_regnum;
174 return regnum >= 0 && regnum < tdep->num_mmx_regs;
180 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184 regnum -= tdep->al_regnum;
185 return regnum >= 0 && regnum < tdep->num_byte_regs;
191 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 regnum -= tdep->ax_regnum;
196 return regnum >= 0 && regnum < tdep->num_word_regs;
199 /* Dword register? */
202 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205 int eax_regnum = tdep->eax_regnum;
210 regnum -= eax_regnum;
211 return regnum >= 0 && regnum < tdep->num_dword_regs;
214 /* AVX512 register? */
217 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
220 int zmm0h_regnum = tdep->zmm0h_regnum;
222 if (zmm0h_regnum < 0)
225 regnum -= zmm0h_regnum;
226 return regnum >= 0 && regnum < tdep->num_zmm_regs;
230 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
233 int zmm0_regnum = tdep->zmm0_regnum;
238 regnum -= zmm0_regnum;
239 return regnum >= 0 && regnum < tdep->num_zmm_regs;
243 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246 int k0_regnum = tdep->k0_regnum;
252 return regnum >= 0 && regnum < I387_NUM_K_REGS;
256 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
259 int ymm0h_regnum = tdep->ymm0h_regnum;
261 if (ymm0h_regnum < 0)
264 regnum -= ymm0h_regnum;
265 return regnum >= 0 && regnum < tdep->num_ymm_regs;
271 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
274 int ymm0_regnum = tdep->ymm0_regnum;
279 regnum -= ymm0_regnum;
280 return regnum >= 0 && regnum < tdep->num_ymm_regs;
284 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 int ymm16h_regnum = tdep->ymm16h_regnum;
289 if (ymm16h_regnum < 0)
292 regnum -= ymm16h_regnum;
293 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
297 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300 int ymm16_regnum = tdep->ymm16_regnum;
302 if (ymm16_regnum < 0)
305 regnum -= ymm16_regnum;
306 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
312 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315 int bnd0_regnum = tdep->bnd0_regnum;
320 regnum -= bnd0_regnum;
321 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
327 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
332 if (num_xmm_regs == 0)
335 regnum -= I387_XMM0_REGNUM (tdep);
336 return regnum >= 0 && regnum < num_xmm_regs;
339 /* XMM_512 register? */
342 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347 if (num_xmm_avx512_regs == 0)
350 regnum -= I387_XMM16_REGNUM (tdep);
351 return regnum >= 0 && regnum < num_xmm_avx512_regs;
355 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359 if (I387_NUM_XMM_REGS (tdep) == 0)
362 return (regnum == I387_MXCSR_REGNUM (tdep));
368 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372 if (I387_ST0_REGNUM (tdep) < 0)
375 return (I387_ST0_REGNUM (tdep) <= regnum
376 && regnum < I387_FCTRL_REGNUM (tdep));
380 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384 if (I387_ST0_REGNUM (tdep) < 0)
387 return (I387_FCTRL_REGNUM (tdep) <= regnum
388 && regnum < I387_XMM0_REGNUM (tdep));
391 /* BNDr (raw) register? */
394 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398 if (I387_BND0R_REGNUM (tdep) < 0)
401 regnum -= tdep->bnd0r_regnum;
402 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405 /* BND control register? */
408 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 regnum -= I387_BNDCFGU_REGNUM (tdep);
416 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
422 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
424 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425 int pkru_regnum = tdep->pkru_regnum;
430 regnum -= pkru_regnum;
431 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434 /* Return the name of register REGNUM, or the empty string if it is
435 an anonymous register. */
438 i386_register_name (struct gdbarch *gdbarch, int regnum)
440 /* Hide the upper YMM registers. */
441 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 /* Hide the upper YMM16-31 registers. */
445 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 /* Hide the upper ZMM registers. */
449 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return tdesc_register_name (gdbarch, regnum);
455 /* Return the name of register REGNUM. */
458 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
461 if (i386_bnd_regnum_p (gdbarch, regnum))
462 return i386_bnd_names[regnum - tdep->bnd0_regnum];
463 if (i386_mmx_regnum_p (gdbarch, regnum))
464 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
465 else if (i386_ymm_regnum_p (gdbarch, regnum))
466 return i386_ymm_names[regnum - tdep->ymm0_regnum];
467 else if (i386_zmm_regnum_p (gdbarch, regnum))
468 return i386_zmm_names[regnum - tdep->zmm0_regnum];
469 else if (i386_byte_regnum_p (gdbarch, regnum))
470 return i386_byte_names[regnum - tdep->al_regnum];
471 else if (i386_word_regnum_p (gdbarch, regnum))
472 return i386_word_names[regnum - tdep->ax_regnum];
474 internal_error (__FILE__, __LINE__, _("invalid regnum"));
477 /* Convert a dbx register number REG to the appropriate register
478 number used by GDB. */
481 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485 /* This implements what GCC calls the "default" register map
486 (dbx_register_map[]). */
488 if (reg >= 0 && reg <= 7)
490 /* General-purpose registers. The debug info calls %ebp
491 register 4, and %esp register 5. */
498 else if (reg >= 12 && reg <= 19)
500 /* Floating-point registers. */
501 return reg - 12 + I387_ST0_REGNUM (tdep);
503 else if (reg >= 21 && reg <= 28)
506 int ymm0_regnum = tdep->ymm0_regnum;
509 && i386_xmm_regnum_p (gdbarch, reg))
510 return reg - 21 + ymm0_regnum;
512 return reg - 21 + I387_XMM0_REGNUM (tdep);
514 else if (reg >= 29 && reg <= 36)
517 return reg - 29 + I387_MM0_REGNUM (tdep);
520 /* This will hopefully provoke a warning. */
521 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
524 /* Convert SVR4 DWARF register number REG to the appropriate register number
528 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
532 /* This implements the GCC register map that tries to be compatible
533 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
535 /* The SVR4 register numbering includes %eip and %eflags, and
536 numbers the floating point registers differently. */
537 if (reg >= 0 && reg <= 9)
539 /* General-purpose registers. */
542 else if (reg >= 11 && reg <= 18)
544 /* Floating-point registers. */
545 return reg - 11 + I387_ST0_REGNUM (tdep);
547 else if (reg >= 21 && reg <= 36)
549 /* The SSE and MMX registers have the same numbers as with dbx. */
550 return i386_dbx_reg_to_regnum (gdbarch, reg);
555 case 37: return I387_FCTRL_REGNUM (tdep);
556 case 38: return I387_FSTAT_REGNUM (tdep);
557 case 39: return I387_MXCSR_REGNUM (tdep);
558 case 40: return I386_ES_REGNUM;
559 case 41: return I386_CS_REGNUM;
560 case 42: return I386_SS_REGNUM;
561 case 43: return I386_DS_REGNUM;
562 case 44: return I386_FS_REGNUM;
563 case 45: return I386_GS_REGNUM;
569 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
570 num_regs + num_pseudo_regs for other debug formats. */
573 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
575 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
584 /* This is the variable that is set with "set disassembly-flavor", and
585 its legitimate values. */
586 static const char att_flavor[] = "att";
587 static const char intel_flavor[] = "intel";
588 static const char *const valid_flavors[] =
594 static const char *disassembly_flavor = att_flavor;
597 /* Use the program counter to determine the contents and size of a
598 breakpoint instruction. Return a pointer to a string of bytes that
599 encode a breakpoint instruction, store the length of the string in
600 *LEN and optionally adjust *PC to point to the correct memory
601 location for inserting the breakpoint.
603 On the i386 we have a single breakpoint that fits in a single byte
604 and can be inserted anywhere.
606 This function is 64-bit safe. */
608 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
610 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
613 /* Displaced instruction handling. */
615 /* Skip the legacy instruction prefixes in INSN.
616 Not all prefixes are valid for any particular insn
617 but we needn't care, the insn will fault if it's invalid.
618 The result is a pointer to the first opcode byte,
619 or NULL if we run off the end of the buffer. */
622 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
624 gdb_byte *end = insn + max_len;
630 case DATA_PREFIX_OPCODE:
631 case ADDR_PREFIX_OPCODE:
632 case CS_PREFIX_OPCODE:
633 case DS_PREFIX_OPCODE:
634 case ES_PREFIX_OPCODE:
635 case FS_PREFIX_OPCODE:
636 case GS_PREFIX_OPCODE:
637 case SS_PREFIX_OPCODE:
638 case LOCK_PREFIX_OPCODE:
639 case REPE_PREFIX_OPCODE:
640 case REPNE_PREFIX_OPCODE:
652 i386_absolute_jmp_p (const gdb_byte *insn)
654 /* jmp far (absolute address in operand). */
660 /* jump near, absolute indirect (/4). */
661 if ((insn[1] & 0x38) == 0x20)
664 /* jump far, absolute indirect (/5). */
665 if ((insn[1] & 0x38) == 0x28)
672 /* Return non-zero if INSN is a jump, zero otherwise. */
675 i386_jmp_p (const gdb_byte *insn)
677 /* jump short, relative. */
681 /* jump near, relative. */
685 return i386_absolute_jmp_p (insn);
689 i386_absolute_call_p (const gdb_byte *insn)
691 /* call far, absolute. */
697 /* Call near, absolute indirect (/2). */
698 if ((insn[1] & 0x38) == 0x10)
701 /* Call far, absolute indirect (/3). */
702 if ((insn[1] & 0x38) == 0x18)
710 i386_ret_p (const gdb_byte *insn)
714 case 0xc2: /* ret near, pop N bytes. */
715 case 0xc3: /* ret near */
716 case 0xca: /* ret far, pop N bytes. */
717 case 0xcb: /* ret far */
718 case 0xcf: /* iret */
727 i386_call_p (const gdb_byte *insn)
729 if (i386_absolute_call_p (insn))
732 /* call near, relative. */
739 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
740 length in bytes. Otherwise, return zero. */
743 i386_syscall_p (const gdb_byte *insn, int *lengthp)
745 /* Is it 'int $0x80'? */
746 if ((insn[0] == 0xcd && insn[1] == 0x80)
747 /* Or is it 'sysenter'? */
748 || (insn[0] == 0x0f && insn[1] == 0x34)
749 /* Or is it 'syscall'? */
750 || (insn[0] == 0x0f && insn[1] == 0x05))
759 /* The gdbarch insn_is_call method. */
762 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
764 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766 read_code (addr, buf, I386_MAX_INSN_LEN);
767 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769 return i386_call_p (insn);
772 /* The gdbarch insn_is_ret method. */
775 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
777 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
779 read_code (addr, buf, I386_MAX_INSN_LEN);
780 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
782 return i386_ret_p (insn);
785 /* The gdbarch insn_is_jump method. */
788 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
790 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
792 read_code (addr, buf, I386_MAX_INSN_LEN);
793 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
795 return i386_jmp_p (insn);
798 /* Some kernels may run one past a syscall insn, so we have to cope. */
800 struct displaced_step_closure *
801 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
802 CORE_ADDR from, CORE_ADDR to,
803 struct regcache *regs)
805 size_t len = gdbarch_max_insn_length (gdbarch);
806 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
807 gdb_byte *buf = closure->buf.data ();
809 read_memory (from, buf, len);
811 /* GDB may get control back after the insn after the syscall.
812 Presumably this is a kernel bug.
813 If this is a syscall, make sure there's a nop afterwards. */
818 insn = i386_skip_prefixes (buf, len);
819 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
820 insn[syscall_length] = NOP_OPCODE;
823 write_memory (to, buf, len);
827 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
828 paddress (gdbarch, from), paddress (gdbarch, to));
829 displaced_step_dump_bytes (gdb_stdlog, buf, len);
835 /* Fix up the state of registers and memory after having single-stepped
836 a displaced instruction. */
839 i386_displaced_step_fixup (struct gdbarch *gdbarch,
840 struct displaced_step_closure *closure_,
841 CORE_ADDR from, CORE_ADDR to,
842 struct regcache *regs)
844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
846 /* The offset we applied to the instruction's address.
847 This could well be negative (when viewed as a signed 32-bit
848 value), but ULONGEST won't reflect that, so take care when
850 ULONGEST insn_offset = to - from;
852 i386_displaced_step_closure *closure
853 = (i386_displaced_step_closure *) closure_;
854 gdb_byte *insn = closure->buf.data ();
855 /* The start of the insn, needed in case we see some prefixes. */
856 gdb_byte *insn_start = insn;
859 fprintf_unfiltered (gdb_stdlog,
860 "displaced: fixup (%s, %s), "
861 "insn = 0x%02x 0x%02x ...\n",
862 paddress (gdbarch, from), paddress (gdbarch, to),
865 /* The list of issues to contend with here is taken from
866 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
867 Yay for Free Software! */
869 /* Relocate the %eip, if necessary. */
871 /* The instruction recognizers we use assume any leading prefixes
872 have been skipped. */
874 /* This is the size of the buffer in closure. */
875 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
876 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
877 /* If there are too many prefixes, just ignore the insn.
878 It will fault when run. */
883 /* Except in the case of absolute or indirect jump or call
884 instructions, or a return instruction, the new eip is relative to
885 the displaced instruction; make it relative. Well, signal
886 handler returns don't need relocation either, but we use the
887 value of %eip to recognize those; see below. */
888 if (! i386_absolute_jmp_p (insn)
889 && ! i386_absolute_call_p (insn)
890 && ! i386_ret_p (insn))
895 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
897 /* A signal trampoline system call changes the %eip, resuming
898 execution of the main program after the signal handler has
899 returned. That makes them like 'return' instructions; we
900 shouldn't relocate %eip.
902 But most system calls don't, and we do need to relocate %eip.
904 Our heuristic for distinguishing these cases: if stepping
905 over the system call instruction left control directly after
906 the instruction, the we relocate --- control almost certainly
907 doesn't belong in the displaced copy. Otherwise, we assume
908 the instruction has put control where it belongs, and leave
909 it unrelocated. Goodness help us if there are PC-relative
911 if (i386_syscall_p (insn, &insn_len)
912 && orig_eip != to + (insn - insn_start) + insn_len
913 /* GDB can get control back after the insn after the syscall.
914 Presumably this is a kernel bug.
915 i386_displaced_step_copy_insn ensures its a nop,
916 we add one to the length for it. */
917 && orig_eip != to + (insn - insn_start) + insn_len + 1)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: syscall changed %%eip; "
926 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
928 /* If we just stepped over a breakpoint insn, we don't backup
929 the pc on purpose; this is to match behaviour without
932 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
935 fprintf_unfiltered (gdb_stdlog,
937 "relocated %%eip from %s to %s\n",
938 paddress (gdbarch, orig_eip),
939 paddress (gdbarch, eip));
943 /* If the instruction was PUSHFL, then the TF bit will be set in the
944 pushed value, and should be cleared. We'll leave this for later,
945 since GDB already messes up the TF flag when stepping over a
948 /* If the instruction was a call, the return address now atop the
949 stack is the address following the copied instruction. We need
950 to make it the address following the original instruction. */
951 if (i386_call_p (insn))
955 const ULONGEST retaddr_len = 4;
957 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
958 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
959 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
960 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
963 fprintf_unfiltered (gdb_stdlog,
964 "displaced: relocated return addr at %s to %s\n",
965 paddress (gdbarch, esp),
966 paddress (gdbarch, retaddr));
971 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
973 target_write_memory (*to, buf, len);
978 i386_relocate_instruction (struct gdbarch *gdbarch,
979 CORE_ADDR *to, CORE_ADDR oldloc)
981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
982 gdb_byte buf[I386_MAX_INSN_LEN];
983 int offset = 0, rel32, newrel;
985 gdb_byte *insn = buf;
987 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
989 insn_length = gdb_buffered_insn_length (gdbarch, insn,
990 I386_MAX_INSN_LEN, oldloc);
992 /* Get past the prefixes. */
993 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
995 /* Adjust calls with 32-bit relative addresses as push/jump, with
996 the address pushed being the location where the original call in
997 the user program would return to. */
1000 gdb_byte push_buf[16];
1001 unsigned int ret_addr;
1003 /* Where "ret" in the original code will return to. */
1004 ret_addr = oldloc + insn_length;
1005 push_buf[0] = 0x68; /* pushq $... */
1006 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1007 /* Push the push. */
1008 append_insns (to, 5, push_buf);
1010 /* Convert the relative call to a relative jump. */
1013 /* Adjust the destination offset. */
1014 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1015 newrel = (oldloc - *to) + rel32;
1016 store_signed_integer (insn + 1, 4, byte_order, newrel);
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1025 /* Write the adjusted jump into its displaced location. */
1026 append_insns (to, 5, insn);
1030 /* Adjust jumps with 32-bit relative addresses. Calls are already
1032 if (insn[0] == 0xe9)
1034 /* Adjust conditional jumps. */
1035 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1041 newrel = (oldloc - *to) + rel32;
1042 store_signed_integer (insn + offset, 4, byte_order, newrel);
1043 if (debug_displaced)
1044 fprintf_unfiltered (gdb_stdlog,
1045 "Adjusted insn rel32=%s at %s to"
1046 " rel32=%s at %s\n",
1047 hex_string (rel32), paddress (gdbarch, oldloc),
1048 hex_string (newrel), paddress (gdbarch, *to));
1051 /* Write the adjusted instructions into their displaced
1053 append_insns (to, insn_length, buf);
1057 #ifdef I386_REGNO_TO_SYMMETRY
1058 #error "The Sequent Symmetry is no longer supported."
1061 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1062 and %esp "belong" to the calling function. Therefore these
1063 registers should be saved if they're going to be modified. */
1065 /* The maximum number of saved registers. This should include all
1066 registers mentioned above, and %eip. */
1067 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1069 struct i386_frame_cache
1077 /* Saved registers. */
1078 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1083 /* Stack space reserved for local variables. */
1087 /* Allocate and initialize a frame cache. */
1089 static struct i386_frame_cache *
1090 i386_alloc_frame_cache (void)
1092 struct i386_frame_cache *cache;
1095 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100 cache->sp_offset = -4;
1103 /* Saved registers. We initialize these to -1 since zero is a valid
1104 offset (that's where %ebp is supposed to be stored). */
1105 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1106 cache->saved_regs[i] = -1;
1107 cache->saved_sp = 0;
1108 cache->saved_sp_reg = -1;
1109 cache->pc_in_eax = 0;
1111 /* Frameless until proven otherwise. */
1117 /* If the instruction at PC is a jump, return the address of its
1118 target. Otherwise, return PC. */
1121 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1123 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1128 if (target_read_code (pc, &op, 1))
1135 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1141 /* Relative jump: if data16 == 0, disp32, else disp16. */
1144 delta = read_memory_integer (pc + 2, 2, byte_order);
1146 /* Include the size of the jmp instruction (including the
1152 delta = read_memory_integer (pc + 1, 4, byte_order);
1154 /* Include the size of the jmp instruction. */
1159 /* Relative jump, disp8 (ignore data16). */
1160 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1162 delta += data16 + 2;
1169 /* Check whether PC points at a prologue for a function returning a
1170 structure or union. If so, it updates CACHE and returns the
1171 address of the first instruction after the code sequence that
1172 removes the "hidden" argument from the stack or CURRENT_PC,
1173 whichever is smaller. Otherwise, return PC. */
1176 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1177 struct i386_frame_cache *cache)
1179 /* Functions that return a structure or union start with:
1182 xchgl %eax, (%esp) 0x87 0x04 0x24
1183 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1185 (the System V compiler puts out the second `xchg' instruction,
1186 and the assembler doesn't try to optimize it, so the 'sib' form
1187 gets generated). This sequence is used to get the address of the
1188 return buffer for a function that returns a structure. */
1189 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1190 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1194 if (current_pc <= pc)
1197 if (target_read_code (pc, &op, 1))
1200 if (op != 0x58) /* popl %eax */
1203 if (target_read_code (pc + 1, buf, 4))
1206 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1209 if (current_pc == pc)
1211 cache->sp_offset += 4;
1215 if (current_pc == pc + 1)
1217 cache->pc_in_eax = 1;
1221 if (buf[1] == proto1[1])
1228 i386_skip_probe (CORE_ADDR pc)
1230 /* A function may start with
1244 if (target_read_code (pc, &op, 1))
1247 if (op == 0x68 || op == 0x6a)
1251 /* Skip past the `pushl' instruction; it has either a one-byte or a
1252 four-byte operand, depending on the opcode. */
1258 /* Read the following 8 bytes, which should be `call _probe' (6
1259 bytes) followed by `addl $4,%esp' (2 bytes). */
1260 read_memory (pc + delta, buf, sizeof (buf));
1261 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1262 pc += delta + sizeof (buf);
1268 /* GCC 4.1 and later, can put code in the prologue to realign the
1269 stack pointer. Check whether PC points to such code, and update
1270 CACHE accordingly. Return the first instruction after the code
1271 sequence or CURRENT_PC, whichever is smaller. If we don't
1272 recognize the code, return PC. */
1275 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1276 struct i386_frame_cache *cache)
1278 /* There are 2 code sequences to re-align stack before the frame
1281 1. Use a caller-saved saved register:
1287 2. Use a callee-saved saved register:
1294 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1296 0x83 0xe4 0xf0 andl $-16, %esp
1297 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 int offset, offset_and;
1303 static int regnums[8] = {
1304 I386_EAX_REGNUM, /* %eax */
1305 I386_ECX_REGNUM, /* %ecx */
1306 I386_EDX_REGNUM, /* %edx */
1307 I386_EBX_REGNUM, /* %ebx */
1308 I386_ESP_REGNUM, /* %esp */
1309 I386_EBP_REGNUM, /* %ebp */
1310 I386_ESI_REGNUM, /* %esi */
1311 I386_EDI_REGNUM /* %edi */
1314 if (target_read_code (pc, buf, sizeof buf))
1317 /* Check caller-saved saved register. The first instruction has
1318 to be "leal 4(%esp), %reg". */
1319 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1321 /* MOD must be binary 10 and R/M must be binary 100. */
1322 if ((buf[1] & 0xc7) != 0x44)
1325 /* REG has register number. */
1326 reg = (buf[1] >> 3) & 7;
1331 /* Check callee-saved saved register. The first instruction
1332 has to be "pushl %reg". */
1333 if ((buf[0] & 0xf8) != 0x50)
1339 /* The next instruction has to be "leal 8(%esp), %reg". */
1340 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1343 /* MOD must be binary 10 and R/M must be binary 100. */
1344 if ((buf[2] & 0xc7) != 0x44)
1347 /* REG has register number. Registers in pushl and leal have to
1349 if (reg != ((buf[2] >> 3) & 7))
1355 /* Rigister can't be %esp nor %ebp. */
1356 if (reg == 4 || reg == 5)
1359 /* The next instruction has to be "andl $-XXX, %esp". */
1360 if (buf[offset + 1] != 0xe4
1361 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1364 offset_and = offset;
1365 offset += buf[offset] == 0x81 ? 6 : 3;
1367 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1368 0xfc. REG must be binary 110 and MOD must be binary 01. */
1369 if (buf[offset] != 0xff
1370 || buf[offset + 2] != 0xfc
1371 || (buf[offset + 1] & 0xf8) != 0x70)
1374 /* R/M has register. Registers in leal and pushl have to be the
1376 if (reg != (buf[offset + 1] & 7))
1379 if (current_pc > pc + offset_and)
1380 cache->saved_sp_reg = regnums[reg];
1382 return std::min (pc + offset + 3, current_pc);
1385 /* Maximum instruction length we need to handle. */
1386 #define I386_MAX_MATCHED_INSN_LEN 6
1388 /* Instruction description. */
1392 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1393 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1396 /* Return whether instruction at PC matches PATTERN. */
1399 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1403 if (target_read_code (pc, &op, 1))
1406 if ((op & pattern.mask[0]) == pattern.insn[0])
1408 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1409 int insn_matched = 1;
1412 gdb_assert (pattern.len > 1);
1413 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1415 if (target_read_code (pc + 1, buf, pattern.len - 1))
1418 for (i = 1; i < pattern.len; i++)
1420 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1423 return insn_matched;
1428 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1429 the first instruction description that matches. Otherwise, return
1432 static struct i386_insn *
1433 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1435 struct i386_insn *pattern;
1437 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1439 if (i386_match_pattern (pc, *pattern))
1446 /* Return whether PC points inside a sequence of instructions that
1447 matches INSN_PATTERNS. */
1450 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1452 CORE_ADDR current_pc;
1454 struct i386_insn *insn;
1456 insn = i386_match_insn (pc, insn_patterns);
1461 ix = insn - insn_patterns;
1462 for (i = ix - 1; i >= 0; i--)
1464 current_pc -= insn_patterns[i].len;
1466 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1470 current_pc = pc + insn->len;
1471 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1473 if (!i386_match_pattern (current_pc, *insn))
1476 current_pc += insn->len;
1482 /* Some special instructions that might be migrated by GCC into the
1483 part of the prologue that sets up the new stack frame. Because the
1484 stack frame hasn't been setup yet, no registers have been saved
1485 yet, and only the scratch registers %eax, %ecx and %edx can be
1488 struct i386_insn i386_frame_setup_skip_insns[] =
1490 /* Check for `movb imm8, r' and `movl imm32, r'.
1492 ??? Should we handle 16-bit operand-sizes here? */
1494 /* `movb imm8, %al' and `movb imm8, %ah' */
1495 /* `movb imm8, %cl' and `movb imm8, %ch' */
1496 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1497 /* `movb imm8, %dl' and `movb imm8, %dh' */
1498 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1499 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1500 { 5, { 0xb8 }, { 0xfe } },
1501 /* `movl imm32, %edx' */
1502 { 5, { 0xba }, { 0xff } },
1504 /* Check for `mov imm32, r32'. Note that there is an alternative
1505 encoding for `mov m32, %eax'.
1507 ??? Should we handle SIB adressing here?
1508 ??? Should we handle 16-bit operand-sizes here? */
1510 /* `movl m32, %eax' */
1511 { 5, { 0xa1 }, { 0xff } },
1512 /* `movl m32, %eax' and `mov; m32, %ecx' */
1513 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1514 /* `movl m32, %edx' */
1515 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1517 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1518 Because of the symmetry, there are actually two ways to encode
1519 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1520 opcode bytes 0x31 and 0x33 for `xorl'. */
1522 /* `subl %eax, %eax' */
1523 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1524 /* `subl %ecx, %ecx' */
1525 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1526 /* `subl %edx, %edx' */
1527 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1528 /* `xorl %eax, %eax' */
1529 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1530 /* `xorl %ecx, %ecx' */
1531 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1532 /* `xorl %edx, %edx' */
1533 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 /* Check whether PC points to a no-op instruction. */
1540 i386_skip_noop (CORE_ADDR pc)
1545 if (target_read_code (pc, &op, 1))
1551 /* Ignore `nop' instruction. */
1555 if (target_read_code (pc, &op, 1))
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1570 else if (op == 0x8b)
1572 if (target_read_code (pc + 1, &op, 1))
1578 if (target_read_code (pc, &op, 1))
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
1596 struct i386_frame_cache *cache)
1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599 struct i386_insn *insn;
1606 if (target_read_code (pc, &op, 1))
1609 if (op == 0x55) /* pushl %ebp */
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
1614 cache->sp_offset += 4;
1617 /* If that's all, return now. */
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of posibilities is sheer,
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc + skip < limit)
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1642 if (target_read_code (pc + skip, &op, 1))
1645 /* The i386 prologue looks like
1651 and a different prologue can be generated for atom.
1655 lea -0x10(%esp),%esp
1657 We handle both of them here. */
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1690 /* If that's all, return now. */
1694 /* Check for stack adjustment
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc, &op, 1))
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1716 else if (op == 0x81)
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1727 else if (op == 0x8d)
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1732 /* 'lea' with 8-bit displacement. */
1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1738 /* Some instruction other than `subl' nor 'lea'. */
1742 else if (op == 0xc8) /* enter */
1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
1760 CORE_ADDR offset = 0;
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1768 if (target_read_code (pc, &op, 1))
1770 if (op < 0x50 || op > 0x57)
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1786 We handle these cases:
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
1812 struct i386_frame_cache *cache)
1814 pc = i386_skip_noop (pc);
1815 pc = i386_follow_jump (gdbarch, pc);
1816 pc = i386_analyze_struct_return (pc, current_pc, cache);
1817 pc = i386_skip_probe (pc);
1818 pc = i386_analyze_stack_align (pc, current_pc, cache);
1819 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1820 return i386_analyze_register_saves (pc, current_pc, cache);
1823 /* Return PC of first real instruction. */
1826 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830 static gdb_byte pic_pat[6] =
1832 0xe8, 0, 0, 0, 0, /* call 0x0 */
1833 0x5b, /* popl %ebx */
1835 struct i386_frame_cache cache;
1839 CORE_ADDR func_addr;
1841 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1843 CORE_ADDR post_prologue_pc
1844 = skip_prologue_using_sal (gdbarch, func_addr);
1845 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1847 /* Clang always emits a line note before the prologue and another
1848 one after. We trust clang to emit usable line notes. */
1849 if (post_prologue_pc
1851 && COMPUNIT_PRODUCER (cust) != NULL
1852 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1853 return std::max (start_pc, post_prologue_pc);
1857 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1858 if (cache.locals < 0)
1861 /* Found valid frame setup. */
1863 /* The native cc on SVR4 in -K PIC mode inserts the following code
1864 to get the address of the global offset table (GOT) into register
1869 movl %ebx,x(%ebp) (optional)
1872 This code is with the rest of the prologue (at the end of the
1873 function), so we have to skip it to get to the first real
1874 instruction at the start of the function. */
1876 for (i = 0; i < 6; i++)
1878 if (target_read_code (pc + i, &op, 1))
1881 if (pic_pat[i] != op)
1888 if (target_read_code (pc + delta, &op, 1))
1891 if (op == 0x89) /* movl %ebx, x(%ebp) */
1893 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1895 if (op == 0x5d) /* One byte offset from %ebp. */
1897 else if (op == 0x9d) /* Four byte offset from %ebp. */
1899 else /* Unexpected instruction. */
1902 if (target_read_code (pc + delta, &op, 1))
1907 if (delta > 0 && op == 0x81
1908 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1915 /* If the function starts with a branch (to startup code at the end)
1916 the last instruction should bring us back to the first
1917 instruction of the real code. */
1918 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1919 pc = i386_follow_jump (gdbarch, pc);
1924 /* Check that the code pointed to by PC corresponds to a call to
1925 __main, skip it if so. Return PC otherwise. */
1928 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1930 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1933 if (target_read_code (pc, &op, 1))
1939 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1941 /* Make sure address is computed correctly as a 32bit
1942 integer even if CORE_ADDR is 64 bit wide. */
1943 struct bound_minimal_symbol s;
1944 CORE_ADDR call_dest;
1946 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1947 call_dest = call_dest & 0xffffffffU;
1948 s = lookup_minimal_symbol_by_pc (call_dest);
1949 if (s.minsym != NULL
1950 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1951 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1959 /* This function is 64-bit safe. */
1962 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1966 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1967 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1971 /* Normal frames. */
1974 i386_frame_cache_1 (struct frame_info *this_frame,
1975 struct i386_frame_cache *cache)
1977 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1982 cache->pc = get_frame_func (this_frame);
1984 /* In principle, for normal frames, %ebp holds the frame pointer,
1985 which holds the base address for the current stack frame.
1986 However, for functions that don't need it, the frame pointer is
1987 optional. For these "frameless" functions the frame pointer is
1988 actually the frame pointer of the calling frame. Signal
1989 trampolines are just a special case of a "frameless" function.
1990 They (usually) share their frame pointer with the frame that was
1991 in progress when the signal occurred. */
1993 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1994 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1995 if (cache->base == 0)
2001 /* For normal frames, %eip is stored at 4(%ebp). */
2002 cache->saved_regs[I386_EIP_REGNUM] = 4;
2005 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2008 if (cache->locals < 0)
2010 /* We didn't find a valid frame, which means that CACHE->base
2011 currently holds the frame pointer for our calling frame. If
2012 we're at the start of a function, or somewhere half-way its
2013 prologue, the function's frame probably hasn't been fully
2014 setup yet. Try to reconstruct the base address for the stack
2015 frame by looking at the stack pointer. For truly "frameless"
2016 functions this might work too. */
2018 if (cache->saved_sp_reg != -1)
2020 /* Saved stack pointer has been saved. */
2021 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2022 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2024 /* We're halfway aligning the stack. */
2025 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2026 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2028 /* This will be added back below. */
2029 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2031 else if (cache->pc != 0
2032 || target_read_code (get_frame_pc (this_frame), buf, 1))
2034 /* We're in a known function, but did not find a frame
2035 setup. Assume that the function does not use %ebp.
2036 Alternatively, we may have jumped to an invalid
2037 address; in that case there is definitely no new
2039 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2040 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2044 /* We're in an unknown function. We could not find the start
2045 of the function to analyze the prologue; our best option is
2046 to assume a typical frame layout with the caller's %ebp
2048 cache->saved_regs[I386_EBP_REGNUM] = 0;
2051 if (cache->saved_sp_reg != -1)
2053 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2054 register may be unavailable). */
2055 if (cache->saved_sp == 0
2056 && deprecated_frame_register_read (this_frame,
2057 cache->saved_sp_reg, buf))
2058 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2060 /* Now that we have the base address for the stack frame we can
2061 calculate the value of %esp in the calling frame. */
2062 else if (cache->saved_sp == 0)
2063 cache->saved_sp = cache->base + 8;
2065 /* Adjust all the saved registers such that they contain addresses
2066 instead of offsets. */
2067 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2068 if (cache->saved_regs[i] != -1)
2069 cache->saved_regs[i] += cache->base;
2074 static struct i386_frame_cache *
2075 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2077 struct i386_frame_cache *cache;
2080 return (struct i386_frame_cache *) *this_cache;
2082 cache = i386_alloc_frame_cache ();
2083 *this_cache = cache;
2087 i386_frame_cache_1 (this_frame, cache);
2089 CATCH (ex, RETURN_MASK_ERROR)
2091 if (ex.error != NOT_AVAILABLE_ERROR)
2092 throw_exception (ex);
2100 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2101 struct frame_id *this_id)
2103 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2106 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2107 else if (cache->base == 0)
2109 /* This marks the outermost frame. */
2113 /* See the end of i386_push_dummy_call. */
2114 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2118 static enum unwind_stop_reason
2119 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2122 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2125 return UNWIND_UNAVAILABLE;
2127 /* This marks the outermost frame. */
2128 if (cache->base == 0)
2129 return UNWIND_OUTERMOST;
2131 return UNWIND_NO_REASON;
2134 static struct value *
2135 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2138 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2140 gdb_assert (regnum >= 0);
2142 /* The System V ABI says that:
2144 "The flags register contains the system flags, such as the
2145 direction flag and the carry flag. The direction flag must be
2146 set to the forward (that is, zero) direction before entry and
2147 upon exit from a function. Other user flags have no specified
2148 role in the standard calling sequence and are not preserved."
2150 To guarantee the "upon exit" part of that statement we fake a
2151 saved flags register that has its direction flag cleared.
2153 Note that GCC doesn't seem to rely on the fact that the direction
2154 flag is cleared after a function return; it always explicitly
2155 clears the flag before operations where it matters.
2157 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2158 right thing to do. The way we fake the flags register here makes
2159 it impossible to change it. */
2161 if (regnum == I386_EFLAGS_REGNUM)
2165 val = get_frame_register_unsigned (this_frame, regnum);
2167 return frame_unwind_got_constant (this_frame, regnum, val);
2170 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2171 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2173 if (regnum == I386_ESP_REGNUM
2174 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2176 /* If the SP has been saved, but we don't know where, then this
2177 means that SAVED_SP_REG register was found unavailable back
2178 when we built the cache. */
2179 if (cache->saved_sp == 0)
2180 return frame_unwind_got_register (this_frame, regnum,
2181 cache->saved_sp_reg);
2183 return frame_unwind_got_constant (this_frame, regnum,
2187 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2188 return frame_unwind_got_memory (this_frame, regnum,
2189 cache->saved_regs[regnum]);
2191 return frame_unwind_got_register (this_frame, regnum, regnum);
2194 static const struct frame_unwind i386_frame_unwind =
2197 i386_frame_unwind_stop_reason,
2199 i386_frame_prev_register,
2201 default_frame_sniffer
2204 /* Normal frames, but in a function epilogue. */
2206 /* Implement the stack_frame_destroyed_p gdbarch method.
2208 The epilogue is defined here as the 'ret' instruction, which will
2209 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2210 the function's stack frame. */
2213 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2216 struct compunit_symtab *cust;
2218 cust = find_pc_compunit_symtab (pc);
2219 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2222 if (target_read_memory (pc, &insn, 1))
2223 return 0; /* Can't read memory at pc. */
2225 if (insn != 0xc3) /* 'ret' instruction. */
2232 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2233 struct frame_info *this_frame,
2234 void **this_prologue_cache)
2236 if (frame_relative_level (this_frame) == 0)
2237 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2238 get_frame_pc (this_frame));
2243 static struct i386_frame_cache *
2244 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2246 struct i386_frame_cache *cache;
2250 return (struct i386_frame_cache *) *this_cache;
2252 cache = i386_alloc_frame_cache ();
2253 *this_cache = cache;
2257 cache->pc = get_frame_func (this_frame);
2259 /* At this point the stack looks as if we just entered the
2260 function, with the return address at the top of the
2262 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2263 cache->base = sp + cache->sp_offset;
2264 cache->saved_sp = cache->base + 8;
2265 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2269 CATCH (ex, RETURN_MASK_ERROR)
2271 if (ex.error != NOT_AVAILABLE_ERROR)
2272 throw_exception (ex);
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2287 return UNWIND_UNAVAILABLE;
2289 return UNWIND_NO_REASON;
2293 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2295 struct frame_id *this_id)
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2306 static struct value *
2307 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2316 static const struct frame_unwind i386_epilogue_frame_unwind =
2319 i386_epilogue_frame_unwind_stop_reason,
2320 i386_epilogue_frame_this_id,
2321 i386_epilogue_frame_prev_register,
2323 i386_epilogue_frame_sniffer
2327 /* Stack-based trampolines. */
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2334 /* Static chain passed in register. */
2336 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2342 { 5, { 0xe9 }, { 0xff } },
2347 /* Static chain passed on stack (when regparm=3). */
2349 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2352 { 5, { 0x68 }, { 0xff } },
2355 { 5, { 0xe9 }, { 0xff } },
2360 /* Return whether PC points inside a stack trampoline. */
2363 i386_in_stack_tramp_p (CORE_ADDR pc)
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2376 if (target_read_memory (pc, &insn, 1))
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2388 struct frame_info *this_frame,
2391 if (frame_relative_level (this_frame) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
2402 i386_epilogue_frame_prev_register,
2404 i386_stack_tramp_frame_sniffer
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2410 i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2414 /* The following sequence assumes the traditional use of the base
2416 ax_reg (ax, I386_EBP_REGNUM);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2424 /* Signal trampolines. */
2426 static struct i386_frame_cache *
2427 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432 struct i386_frame_cache *cache;
2437 return (struct i386_frame_cache *) *this_cache;
2439 cache = i386_alloc_frame_cache ();
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2465 CATCH (ex, RETURN_MASK_ERROR)
2467 if (ex.error != NOT_AVAILABLE_ERROR)
2468 throw_exception (ex);
2472 *this_cache = cache;
2476 static enum unwind_stop_reason
2477 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2484 return UNWIND_UNAVAILABLE;
2486 return UNWIND_NO_REASON;
2490 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2491 struct frame_id *this_id)
2493 struct i386_frame_cache *cache =
2494 i386_sigtramp_frame_cache (this_frame, this_cache);
2497 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2500 /* See the end of i386_push_dummy_call. */
2501 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2505 static struct value *
2506 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 void **this_cache, int regnum)
2509 /* Make sure we've initialized the cache. */
2510 i386_sigtramp_frame_cache (this_frame, this_cache);
2512 return i386_frame_prev_register (this_frame, this_cache, regnum);
2516 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 struct frame_info *this_frame,
2518 void **this_prologue_cache)
2520 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2522 /* We shouldn't even bother if we don't have a sigcontext_addr
2524 if (tdep->sigcontext_addr == NULL)
2527 if (tdep->sigtramp_p != NULL)
2529 if (tdep->sigtramp_p (this_frame))
2533 if (tdep->sigtramp_start != 0)
2535 CORE_ADDR pc = get_frame_pc (this_frame);
2537 gdb_assert (tdep->sigtramp_end != 0);
2538 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2545 static const struct frame_unwind i386_sigtramp_frame_unwind =
2548 i386_sigtramp_frame_unwind_stop_reason,
2549 i386_sigtramp_frame_this_id,
2550 i386_sigtramp_frame_prev_register,
2552 i386_sigtramp_frame_sniffer
2557 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2559 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2564 static const struct frame_base i386_frame_base =
2567 i386_frame_base_address,
2568 i386_frame_base_address,
2569 i386_frame_base_address
2572 static struct frame_id
2573 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2577 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2579 /* See the end of i386_push_dummy_call. */
2580 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2583 /* _Decimal128 function return values need 16-byte alignment on the
2587 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2589 return sp & -(CORE_ADDR)16;
2593 /* Figure out where the longjmp will land. Slurp the args out of the
2594 stack. We expect the first arg to be a pointer to the jmp_buf
2595 structure from which we extract the address that we will land at.
2596 This address is copied into PC. This routine returns non-zero on
2600 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2603 CORE_ADDR sp, jb_addr;
2604 struct gdbarch *gdbarch = get_frame_arch (frame);
2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2606 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2608 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609 longjmp will land. */
2610 if (jb_pc_offset == -1)
2613 get_frame_register (frame, I386_ESP_REGNUM, buf);
2614 sp = extract_unsigned_integer (buf, 4, byte_order);
2615 if (target_read_memory (sp + 4, buf, 4))
2618 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2622 *pc = extract_unsigned_integer (buf, 4, byte_order);
2627 /* Check whether TYPE must be 16-byte-aligned when passed as a
2628 function argument. 16-byte vectors, _Decimal128 and structures or
2629 unions containing such types must be 16-byte-aligned; other
2630 arguments are 4-byte-aligned. */
2633 i386_16_byte_align_p (struct type *type)
2635 type = check_typedef (type);
2636 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2637 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2638 && TYPE_LENGTH (type) == 16)
2640 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2641 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2642 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2643 || TYPE_CODE (type) == TYPE_CODE_UNION)
2646 for (i = 0; i < TYPE_NFIELDS (type); i++)
2648 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2655 /* Implementation for set_gdbarch_push_dummy_code. */
2658 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2659 struct value **args, int nargs, struct type *value_type,
2660 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2661 struct regcache *regcache)
2663 /* Use 0xcc breakpoint - 1 byte. */
2667 /* Keep the stack aligned. */
2672 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2673 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2674 struct value **args, CORE_ADDR sp, int struct_return,
2675 CORE_ADDR struct_addr)
2677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2683 /* BND registers can be in arbitrary values at the moment of the
2684 inferior call. This can cause boundary violations that are not
2685 due to a real bug or even desired by the user. The best to be done
2686 is set the BND registers to allow access to the whole memory, INIT
2687 state, before pushing the inferior call. */
2688 i387_reset_bnd_regs (gdbarch, regcache);
2690 /* Determine the total space required for arguments and struct
2691 return address in a first pass (allowing for 16-byte-aligned
2692 arguments), then push arguments in a second pass. */
2694 for (write_pass = 0; write_pass < 2; write_pass++)
2696 int args_space_used = 0;
2702 /* Push value address. */
2703 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2704 write_memory (sp, buf, 4);
2705 args_space_used += 4;
2711 for (i = 0; i < nargs; i++)
2713 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2717 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2718 args_space_used = align_up (args_space_used, 16);
2720 write_memory (sp + args_space_used,
2721 value_contents_all (args[i]), len);
2722 /* The System V ABI says that:
2724 "An argument's size is increased, if necessary, to make it a
2725 multiple of [32-bit] words. This may require tail padding,
2726 depending on the size of the argument."
2728 This makes sure the stack stays word-aligned. */
2729 args_space_used += align_up (len, 4);
2733 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2734 args_space = align_up (args_space, 16);
2735 args_space += align_up (len, 4);
2743 /* The original System V ABI only requires word alignment,
2744 but modern incarnations need 16-byte alignment in order
2745 to support SSE. Since wasting a few bytes here isn't
2746 harmful we unconditionally enforce 16-byte alignment. */
2751 /* Store return address. */
2753 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2754 write_memory (sp, buf, 4);
2756 /* Finally, update the stack pointer... */
2757 store_unsigned_integer (buf, 4, byte_order, sp);
2758 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2760 /* ...and fake a frame pointer. */
2761 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2763 /* MarkK wrote: This "+ 8" is all over the place:
2764 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2765 i386_dummy_id). It's there, since all frame unwinders for
2766 a given target have to agree (within a certain margin) on the
2767 definition of the stack address of a frame. Otherwise frame id
2768 comparison might not work correctly. Since DWARF2/GCC uses the
2769 stack address *before* the function call as a frame's CFA. On
2770 the i386, when %ebp is used as a frame pointer, the offset
2771 between the contents %ebp and the CFA as defined by GCC. */
2775 /* These registers are used for returning integers (and on some
2776 targets also for returning `struct' and `union' values when their
2777 size and alignment match an integer type). */
2778 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2779 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2781 /* Read, for architecture GDBARCH, a function return value of TYPE
2782 from REGCACHE, and copy that into VALBUF. */
2785 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2786 struct regcache *regcache, gdb_byte *valbuf)
2788 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2789 int len = TYPE_LENGTH (type);
2790 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2792 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2794 if (tdep->st0_regnum < 0)
2796 warning (_("Cannot find floating-point return value."));
2797 memset (valbuf, 0, len);
2801 /* Floating-point return values can be found in %st(0). Convert
2802 its contents to the desired type. This is probably not
2803 exactly how it would happen on the target itself, but it is
2804 the best we can do. */
2805 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2806 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2810 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2811 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2813 if (len <= low_size)
2815 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2816 memcpy (valbuf, buf, len);
2818 else if (len <= (low_size + high_size))
2820 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2821 memcpy (valbuf, buf, low_size);
2822 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2823 memcpy (valbuf + low_size, buf, len - low_size);
2826 internal_error (__FILE__, __LINE__,
2827 _("Cannot extract return value of %d bytes long."),
2832 /* Write, for architecture GDBARCH, a function return value of TYPE
2833 from VALBUF into REGCACHE. */
2836 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2837 struct regcache *regcache, const gdb_byte *valbuf)
2839 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2840 int len = TYPE_LENGTH (type);
2842 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2845 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2847 if (tdep->st0_regnum < 0)
2849 warning (_("Cannot set floating-point return value."));
2853 /* Returning floating-point values is a bit tricky. Apart from
2854 storing the return value in %st(0), we have to simulate the
2855 state of the FPU at function return point. */
2857 /* Convert the value found in VALBUF to the extended
2858 floating-point format used by the FPU. This is probably
2859 not exactly how it would happen on the target itself, but
2860 it is the best we can do. */
2861 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2862 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2864 /* Set the top of the floating-point register stack to 7. The
2865 actual value doesn't really matter, but 7 is what a normal
2866 function return would end up with if the program started out
2867 with a freshly initialized FPU. */
2868 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2870 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2872 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2873 the floating-point register stack to 7, the appropriate value
2874 for the tag word is 0x3fff. */
2875 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2879 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2880 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2882 if (len <= low_size)
2883 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2884 else if (len <= (low_size + high_size))
2886 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2887 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2888 len - low_size, valbuf + low_size);
2891 internal_error (__FILE__, __LINE__,
2892 _("Cannot store return value of %d bytes long."), len);
2897 /* This is the variable that is set with "set struct-convention", and
2898 its legitimate values. */
2899 static const char default_struct_convention[] = "default";
2900 static const char pcc_struct_convention[] = "pcc";
2901 static const char reg_struct_convention[] = "reg";
2902 static const char *const valid_conventions[] =
2904 default_struct_convention,
2905 pcc_struct_convention,
2906 reg_struct_convention,
2909 static const char *struct_convention = default_struct_convention;
2911 /* Return non-zero if TYPE, which is assumed to be a structure,
2912 a union type, or an array type, should be returned in registers
2913 for architecture GDBARCH. */
2916 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2918 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2919 enum type_code code = TYPE_CODE (type);
2920 int len = TYPE_LENGTH (type);
2922 gdb_assert (code == TYPE_CODE_STRUCT
2923 || code == TYPE_CODE_UNION
2924 || code == TYPE_CODE_ARRAY);
2926 if (struct_convention == pcc_struct_convention
2927 || (struct_convention == default_struct_convention
2928 && tdep->struct_return == pcc_struct_return))
2931 /* Structures consisting of a single `float', `double' or 'long
2932 double' member are returned in %st(0). */
2933 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2935 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2936 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2937 return (len == 4 || len == 8 || len == 12);
2940 return (len == 1 || len == 2 || len == 4 || len == 8);
2943 /* Determine, for architecture GDBARCH, how a return value of TYPE
2944 should be returned. If it is supposed to be returned in registers,
2945 and READBUF is non-zero, read the appropriate value from REGCACHE,
2946 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2947 from WRITEBUF into REGCACHE. */
2949 static enum return_value_convention
2950 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2951 struct type *type, struct regcache *regcache,
2952 gdb_byte *readbuf, const gdb_byte *writebuf)
2954 enum type_code code = TYPE_CODE (type);
2956 if (((code == TYPE_CODE_STRUCT
2957 || code == TYPE_CODE_UNION
2958 || code == TYPE_CODE_ARRAY)
2959 && !i386_reg_struct_return_p (gdbarch, type))
2960 /* Complex double and long double uses the struct return covention. */
2961 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2962 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2963 /* 128-bit decimal float uses the struct return convention. */
2964 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2966 /* The System V ABI says that:
2968 "A function that returns a structure or union also sets %eax
2969 to the value of the original address of the caller's area
2970 before it returns. Thus when the caller receives control
2971 again, the address of the returned object resides in register
2972 %eax and can be used to access the object."
2974 So the ABI guarantees that we can always find the return
2975 value just after the function has returned. */
2977 /* Note that the ABI doesn't mention functions returning arrays,
2978 which is something possible in certain languages such as Ada.
2979 In this case, the value is returned as if it was wrapped in
2980 a record, so the convention applied to records also applies
2987 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2988 read_memory (addr, readbuf, TYPE_LENGTH (type));
2991 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2994 /* This special case is for structures consisting of a single
2995 `float', `double' or 'long double' member. These structures are
2996 returned in %st(0). For these structures, we call ourselves
2997 recursively, changing TYPE into the type of the first member of
2998 the structure. Since that should work for all structures that
2999 have only one member, we don't bother to check the member's type
3001 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3003 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3004 return i386_return_value (gdbarch, function, type, regcache,
3009 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3011 i386_store_return_value (gdbarch, type, regcache, writebuf);
3013 return RETURN_VALUE_REGISTER_CONVENTION;
3018 i387_ext_type (struct gdbarch *gdbarch)
3020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3022 if (!tdep->i387_ext_type)
3024 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3025 gdb_assert (tdep->i387_ext_type != NULL);
3028 return tdep->i387_ext_type;
3031 /* Construct type for pseudo BND registers. We can't use
3032 tdesc_find_type since a complement of one value has to be used
3033 to describe the upper bound. */
3035 static struct type *
3036 i386_bnd_type (struct gdbarch *gdbarch)
3038 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3041 if (!tdep->i386_bnd_type)
3044 const struct builtin_type *bt = builtin_type (gdbarch);
3046 /* The type we're building is described bellow: */
3051 void *ubound; /* One complement of raw ubound field. */
3055 t = arch_composite_type (gdbarch,
3056 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3058 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3059 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3061 TYPE_NAME (t) = "builtin_type_bound128";
3062 tdep->i386_bnd_type = t;
3065 return tdep->i386_bnd_type;
3068 /* Construct vector type for pseudo ZMM registers. We can't use
3069 tdesc_find_type since ZMM isn't described in target description. */
3071 static struct type *
3072 i386_zmm_type (struct gdbarch *gdbarch)
3074 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3076 if (!tdep->i386_zmm_type)
3078 const struct builtin_type *bt = builtin_type (gdbarch);
3080 /* The type we're building is this: */
3082 union __gdb_builtin_type_vec512i
3084 int128_t uint128[4];
3085 int64_t v4_int64[8];
3086 int32_t v8_int32[16];
3087 int16_t v16_int16[32];
3088 int8_t v32_int8[64];
3089 double v4_double[8];
3096 t = arch_composite_type (gdbarch,
3097 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3098 append_composite_type_field (t, "v16_float",
3099 init_vector_type (bt->builtin_float, 16));
3100 append_composite_type_field (t, "v8_double",
3101 init_vector_type (bt->builtin_double, 8));
3102 append_composite_type_field (t, "v64_int8",
3103 init_vector_type (bt->builtin_int8, 64));
3104 append_composite_type_field (t, "v32_int16",
3105 init_vector_type (bt->builtin_int16, 32));
3106 append_composite_type_field (t, "v16_int32",
3107 init_vector_type (bt->builtin_int32, 16));
3108 append_composite_type_field (t, "v8_int64",
3109 init_vector_type (bt->builtin_int64, 8));
3110 append_composite_type_field (t, "v4_int128",
3111 init_vector_type (bt->builtin_int128, 4));
3113 TYPE_VECTOR (t) = 1;
3114 TYPE_NAME (t) = "builtin_type_vec512i";
3115 tdep->i386_zmm_type = t;
3118 return tdep->i386_zmm_type;
3121 /* Construct vector type for pseudo YMM registers. We can't use
3122 tdesc_find_type since YMM isn't described in target description. */
3124 static struct type *
3125 i386_ymm_type (struct gdbarch *gdbarch)
3127 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3129 if (!tdep->i386_ymm_type)
3131 const struct builtin_type *bt = builtin_type (gdbarch);
3133 /* The type we're building is this: */
3135 union __gdb_builtin_type_vec256i
3137 int128_t uint128[2];
3138 int64_t v2_int64[4];
3139 int32_t v4_int32[8];
3140 int16_t v8_int16[16];
3141 int8_t v16_int8[32];
3142 double v2_double[4];
3149 t = arch_composite_type (gdbarch,
3150 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3151 append_composite_type_field (t, "v8_float",
3152 init_vector_type (bt->builtin_float, 8));
3153 append_composite_type_field (t, "v4_double",
3154 init_vector_type (bt->builtin_double, 4));
3155 append_composite_type_field (t, "v32_int8",
3156 init_vector_type (bt->builtin_int8, 32));
3157 append_composite_type_field (t, "v16_int16",
3158 init_vector_type (bt->builtin_int16, 16));
3159 append_composite_type_field (t, "v8_int32",
3160 init_vector_type (bt->builtin_int32, 8));
3161 append_composite_type_field (t, "v4_int64",
3162 init_vector_type (bt->builtin_int64, 4));
3163 append_composite_type_field (t, "v2_int128",
3164 init_vector_type (bt->builtin_int128, 2));
3166 TYPE_VECTOR (t) = 1;
3167 TYPE_NAME (t) = "builtin_type_vec256i";
3168 tdep->i386_ymm_type = t;
3171 return tdep->i386_ymm_type;
3174 /* Construct vector type for MMX registers. */
3175 static struct type *
3176 i386_mmx_type (struct gdbarch *gdbarch)
3178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3180 if (!tdep->i386_mmx_type)
3182 const struct builtin_type *bt = builtin_type (gdbarch);
3184 /* The type we're building is this: */
3186 union __gdb_builtin_type_vec64i
3189 int32_t v2_int32[2];
3190 int16_t v4_int16[4];
3197 t = arch_composite_type (gdbarch,
3198 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3200 append_composite_type_field (t, "uint64", bt->builtin_int64);
3201 append_composite_type_field (t, "v2_int32",
3202 init_vector_type (bt->builtin_int32, 2));
3203 append_composite_type_field (t, "v4_int16",
3204 init_vector_type (bt->builtin_int16, 4));
3205 append_composite_type_field (t, "v8_int8",
3206 init_vector_type (bt->builtin_int8, 8));
3208 TYPE_VECTOR (t) = 1;
3209 TYPE_NAME (t) = "builtin_type_vec64i";
3210 tdep->i386_mmx_type = t;
3213 return tdep->i386_mmx_type;
3216 /* Return the GDB type object for the "standard" data type of data in
3220 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3222 if (i386_bnd_regnum_p (gdbarch, regnum))
3223 return i386_bnd_type (gdbarch);
3224 if (i386_mmx_regnum_p (gdbarch, regnum))
3225 return i386_mmx_type (gdbarch);
3226 else if (i386_ymm_regnum_p (gdbarch, regnum))
3227 return i386_ymm_type (gdbarch);
3228 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3229 return i386_ymm_type (gdbarch);
3230 else if (i386_zmm_regnum_p (gdbarch, regnum))
3231 return i386_zmm_type (gdbarch);
3234 const struct builtin_type *bt = builtin_type (gdbarch);
3235 if (i386_byte_regnum_p (gdbarch, regnum))
3236 return bt->builtin_int8;
3237 else if (i386_word_regnum_p (gdbarch, regnum))
3238 return bt->builtin_int16;
3239 else if (i386_dword_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int32;
3241 else if (i386_k_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int64;
3245 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3248 /* Map a cooked register onto a raw register or memory. For the i386,
3249 the MMX registers need to be mapped onto floating point registers. */
3252 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3254 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3259 mmxreg = regnum - tdep->mm0_regnum;
3260 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3261 tos = (fstat >> 11) & 0x7;
3262 fpreg = (mmxreg + tos) % 8;
3264 return (I387_ST0_REGNUM (tdep) + fpreg);
3267 /* A helper function for us by i386_pseudo_register_read_value and
3268 amd64_pseudo_register_read_value. It does all the work but reads
3269 the data into an already-allocated value. */
3272 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3273 readable_regcache *regcache,
3275 struct value *result_value)
3277 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3278 enum register_status status;
3279 gdb_byte *buf = value_contents_raw (result_value);
3281 if (i386_mmx_regnum_p (gdbarch, regnum))
3283 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3285 /* Extract (always little endian). */
3286 status = regcache->raw_read (fpnum, raw_buf);
3287 if (status != REG_VALID)
3288 mark_value_bytes_unavailable (result_value, 0,
3289 TYPE_LENGTH (value_type (result_value)));
3291 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3296 if (i386_bnd_regnum_p (gdbarch, regnum))
3298 regnum -= tdep->bnd0_regnum;
3300 /* Extract (always little endian). Read lower 128bits. */
3301 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3303 if (status != REG_VALID)
3304 mark_value_bytes_unavailable (result_value, 0, 16);
3307 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3308 LONGEST upper, lower;
3309 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3311 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3312 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3315 memcpy (buf, &lower, size);
3316 memcpy (buf + size, &upper, size);
3319 else if (i386_k_regnum_p (gdbarch, regnum))
3321 regnum -= tdep->k0_regnum;
3323 /* Extract (always little endian). */
3324 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3325 if (status != REG_VALID)
3326 mark_value_bytes_unavailable (result_value, 0, 8);
3328 memcpy (buf, raw_buf, 8);
3330 else if (i386_zmm_regnum_p (gdbarch, regnum))
3332 regnum -= tdep->zmm0_regnum;
3334 if (regnum < num_lower_zmm_regs)
3336 /* Extract (always little endian). Read lower 128bits. */
3337 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3339 if (status != REG_VALID)
3340 mark_value_bytes_unavailable (result_value, 0, 16);
3342 memcpy (buf, raw_buf, 16);
3344 /* Extract (always little endian). Read upper 128bits. */
3345 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 16, 16);
3350 memcpy (buf + 16, raw_buf, 16);
3354 /* Extract (always little endian). Read lower 128bits. */
3355 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3356 - num_lower_zmm_regs,
3358 if (status != REG_VALID)
3359 mark_value_bytes_unavailable (result_value, 0, 16);
3361 memcpy (buf, raw_buf, 16);
3363 /* Extract (always little endian). Read upper 128bits. */
3364 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3365 - num_lower_zmm_regs,
3367 if (status != REG_VALID)
3368 mark_value_bytes_unavailable (result_value, 16, 16);
3370 memcpy (buf + 16, raw_buf, 16);
3373 /* Read upper 256bits. */
3374 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3376 if (status != REG_VALID)
3377 mark_value_bytes_unavailable (result_value, 32, 32);
3379 memcpy (buf + 32, raw_buf, 32);
3381 else if (i386_ymm_regnum_p (gdbarch, regnum))
3383 regnum -= tdep->ymm0_regnum;
3385 /* Extract (always little endian). Read lower 128bits. */
3386 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 0, 16);
3391 memcpy (buf, raw_buf, 16);
3392 /* Read upper 128bits. */
3393 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3395 if (status != REG_VALID)
3396 mark_value_bytes_unavailable (result_value, 16, 32);
3398 memcpy (buf + 16, raw_buf, 16);
3400 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3402 regnum -= tdep->ymm16_regnum;
3403 /* Extract (always little endian). Read lower 128bits. */
3404 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3406 if (status != REG_VALID)
3407 mark_value_bytes_unavailable (result_value, 0, 16);
3409 memcpy (buf, raw_buf, 16);
3410 /* Read upper 128bits. */
3411 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3413 if (status != REG_VALID)
3414 mark_value_bytes_unavailable (result_value, 16, 16);
3416 memcpy (buf + 16, raw_buf, 16);
3418 else if (i386_word_regnum_p (gdbarch, regnum))
3420 int gpnum = regnum - tdep->ax_regnum;
3422 /* Extract (always little endian). */
3423 status = regcache->raw_read (gpnum, raw_buf);
3424 if (status != REG_VALID)
3425 mark_value_bytes_unavailable (result_value, 0,
3426 TYPE_LENGTH (value_type (result_value)));
3428 memcpy (buf, raw_buf, 2);
3430 else if (i386_byte_regnum_p (gdbarch, regnum))
3432 int gpnum = regnum - tdep->al_regnum;
3434 /* Extract (always little endian). We read both lower and
3436 status = regcache->raw_read (gpnum % 4, raw_buf);
3437 if (status != REG_VALID)
3438 mark_value_bytes_unavailable (result_value, 0,
3439 TYPE_LENGTH (value_type (result_value)));
3440 else if (gpnum >= 4)
3441 memcpy (buf, raw_buf + 1, 1);
3443 memcpy (buf, raw_buf, 1);
3446 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3450 static struct value *
3451 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3452 readable_regcache *regcache,
3455 struct value *result;
3457 result = allocate_value (register_type (gdbarch, regnum));
3458 VALUE_LVAL (result) = lval_register;
3459 VALUE_REGNUM (result) = regnum;
3461 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3467 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3468 int regnum, const gdb_byte *buf)
3470 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3472 if (i386_mmx_regnum_p (gdbarch, regnum))
3474 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3477 regcache_raw_read (regcache, fpnum, raw_buf);
3478 /* ... Modify ... (always little endian). */
3479 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3481 regcache_raw_write (regcache, fpnum, raw_buf);
3485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3487 if (i386_bnd_regnum_p (gdbarch, regnum))
3489 ULONGEST upper, lower;
3490 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3491 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3493 /* New values from input value. */
3494 regnum -= tdep->bnd0_regnum;
3495 lower = extract_unsigned_integer (buf, size, byte_order);
3496 upper = extract_unsigned_integer (buf + size, size, byte_order);
3498 /* Fetching register buffer. */
3499 regcache_raw_read (regcache,
3500 I387_BND0R_REGNUM (tdep) + regnum,
3505 /* Set register bits. */
3506 memcpy (raw_buf, &lower, 8);
3507 memcpy (raw_buf + 8, &upper, 8);
3510 regcache_raw_write (regcache,
3511 I387_BND0R_REGNUM (tdep) + regnum,
3514 else if (i386_k_regnum_p (gdbarch, regnum))
3516 regnum -= tdep->k0_regnum;
3518 regcache_raw_write (regcache,
3519 tdep->k0_regnum + regnum,
3522 else if (i386_zmm_regnum_p (gdbarch, regnum))
3524 regnum -= tdep->zmm0_regnum;
3526 if (regnum < num_lower_zmm_regs)
3528 /* Write lower 128bits. */
3529 regcache_raw_write (regcache,
3530 I387_XMM0_REGNUM (tdep) + regnum,
3532 /* Write upper 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_YMM0_REGNUM (tdep) + regnum,
3539 /* Write lower 128bits. */
3540 regcache_raw_write (regcache,
3541 I387_XMM16_REGNUM (tdep) + regnum
3542 - num_lower_zmm_regs,
3544 /* Write upper 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_YMM16H_REGNUM (tdep) + regnum
3547 - num_lower_zmm_regs,
3550 /* Write upper 256bits. */
3551 regcache_raw_write (regcache,
3552 tdep->zmm0h_regnum + regnum,
3555 else if (i386_ymm_regnum_p (gdbarch, regnum))
3557 regnum -= tdep->ymm0_regnum;
3559 /* ... Write lower 128bits. */
3560 regcache_raw_write (regcache,
3561 I387_XMM0_REGNUM (tdep) + regnum,
3563 /* ... Write upper 128bits. */
3564 regcache_raw_write (regcache,
3565 tdep->ymm0h_regnum + regnum,
3568 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3570 regnum -= tdep->ymm16_regnum;
3572 /* ... Write lower 128bits. */
3573 regcache_raw_write (regcache,
3574 I387_XMM16_REGNUM (tdep) + regnum,
3576 /* ... Write upper 128bits. */
3577 regcache_raw_write (regcache,
3578 tdep->ymm16h_regnum + regnum,
3581 else if (i386_word_regnum_p (gdbarch, regnum))
3583 int gpnum = regnum - tdep->ax_regnum;
3586 regcache_raw_read (regcache, gpnum, raw_buf);
3587 /* ... Modify ... (always little endian). */
3588 memcpy (raw_buf, buf, 2);
3590 regcache_raw_write (regcache, gpnum, raw_buf);
3592 else if (i386_byte_regnum_p (gdbarch, regnum))
3594 int gpnum = regnum - tdep->al_regnum;
3596 /* Read ... We read both lower and upper registers. */
3597 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3598 /* ... Modify ... (always little endian). */
3600 memcpy (raw_buf + 1, buf, 1);
3602 memcpy (raw_buf, buf, 1);
3604 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3607 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3611 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3614 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3615 struct agent_expr *ax, int regnum)
3617 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3619 if (i386_mmx_regnum_p (gdbarch, regnum))
3621 /* MMX to FPU register mapping depends on current TOS. Let's just
3622 not care and collect everything... */
3625 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3626 for (i = 0; i < 8; i++)
3627 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3630 else if (i386_bnd_regnum_p (gdbarch, regnum))
3632 regnum -= tdep->bnd0_regnum;
3633 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3636 else if (i386_k_regnum_p (gdbarch, regnum))
3638 regnum -= tdep->k0_regnum;
3639 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3642 else if (i386_zmm_regnum_p (gdbarch, regnum))
3644 regnum -= tdep->zmm0_regnum;
3645 if (regnum < num_lower_zmm_regs)
3647 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3648 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3652 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3653 - num_lower_zmm_regs);
3654 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3655 - num_lower_zmm_regs);
3657 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3660 else if (i386_ymm_regnum_p (gdbarch, regnum))
3662 regnum -= tdep->ymm0_regnum;
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3667 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3669 regnum -= tdep->ymm16_regnum;
3670 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3671 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3674 else if (i386_word_regnum_p (gdbarch, regnum))
3676 int gpnum = regnum - tdep->ax_regnum;
3678 ax_reg_mask (ax, gpnum);
3681 else if (i386_byte_regnum_p (gdbarch, regnum))
3683 int gpnum = regnum - tdep->al_regnum;
3685 ax_reg_mask (ax, gpnum % 4);
3689 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3694 /* Return the register number of the register allocated by GCC after
3695 REGNUM, or -1 if there is no such register. */
3698 i386_next_regnum (int regnum)
3700 /* GCC allocates the registers in the order:
3702 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3704 Since storing a variable in %esp doesn't make any sense we return
3705 -1 for %ebp and for %esp itself. */
3706 static int next_regnum[] =
3708 I386_EDX_REGNUM, /* Slot for %eax. */
3709 I386_EBX_REGNUM, /* Slot for %ecx. */
3710 I386_ECX_REGNUM, /* Slot for %edx. */
3711 I386_ESI_REGNUM, /* Slot for %ebx. */
3712 -1, -1, /* Slots for %esp and %ebp. */
3713 I386_EDI_REGNUM, /* Slot for %esi. */
3714 I386_EBP_REGNUM /* Slot for %edi. */
3717 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3718 return next_regnum[regnum];
3723 /* Return nonzero if a value of type TYPE stored in register REGNUM
3724 needs any special handling. */
3727 i386_convert_register_p (struct gdbarch *gdbarch,
3728 int regnum, struct type *type)
3730 int len = TYPE_LENGTH (type);
3732 /* Values may be spread across multiple registers. Most debugging
3733 formats aren't expressive enough to specify the locations, so
3734 some heuristics is involved. Right now we only handle types that
3735 have a length that is a multiple of the word size, since GCC
3736 doesn't seem to put any other types into registers. */
3737 if (len > 4 && len % 4 == 0)
3739 int last_regnum = regnum;
3743 last_regnum = i386_next_regnum (last_regnum);
3747 if (last_regnum != -1)
3751 return i387_convert_register_p (gdbarch, regnum, type);
3754 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3755 return its contents in TO. */
3758 i386_register_to_value (struct frame_info *frame, int regnum,
3759 struct type *type, gdb_byte *to,
3760 int *optimizedp, int *unavailablep)
3762 struct gdbarch *gdbarch = get_frame_arch (frame);
3763 int len = TYPE_LENGTH (type);
3765 if (i386_fp_regnum_p (gdbarch, regnum))
3766 return i387_register_to_value (frame, regnum, type, to,
3767 optimizedp, unavailablep);
3769 /* Read a value spread across multiple registers. */
3771 gdb_assert (len > 4 && len % 4 == 0);
3775 gdb_assert (regnum != -1);
3776 gdb_assert (register_size (gdbarch, regnum) == 4);
3778 if (!get_frame_register_bytes (frame, regnum, 0,
3779 register_size (gdbarch, regnum),
3780 to, optimizedp, unavailablep))
3783 regnum = i386_next_regnum (regnum);
3788 *optimizedp = *unavailablep = 0;
3792 /* Write the contents FROM of a value of type TYPE into register
3793 REGNUM in frame FRAME. */
3796 i386_value_to_register (struct frame_info *frame, int regnum,
3797 struct type *type, const gdb_byte *from)
3799 int len = TYPE_LENGTH (type);
3801 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3803 i387_value_to_register (frame, regnum, type, from);
3807 /* Write a value spread across multiple registers. */
3809 gdb_assert (len > 4 && len % 4 == 0);
3813 gdb_assert (regnum != -1);
3814 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3816 put_frame_register (frame, regnum, from);
3817 regnum = i386_next_regnum (regnum);
3823 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3824 in the general-purpose register set REGSET to register cache
3825 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3828 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3829 int regnum, const void *gregs, size_t len)
3831 struct gdbarch *gdbarch = regcache->arch ();
3832 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3833 const gdb_byte *regs = (const gdb_byte *) gregs;
3836 gdb_assert (len >= tdep->sizeof_gregset);
3838 for (i = 0; i < tdep->gregset_num_regs; i++)
3840 if ((regnum == i || regnum == -1)
3841 && tdep->gregset_reg_offset[i] != -1)
3842 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3846 /* Collect register REGNUM from the register cache REGCACHE and store
3847 it in the buffer specified by GREGS and LEN as described by the
3848 general-purpose register set REGSET. If REGNUM is -1, do this for
3849 all registers in REGSET. */
3852 i386_collect_gregset (const struct regset *regset,
3853 const struct regcache *regcache,
3854 int regnum, void *gregs, size_t len)
3856 struct gdbarch *gdbarch = regcache->arch ();
3857 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3858 gdb_byte *regs = (gdb_byte *) gregs;
3861 gdb_assert (len >= tdep->sizeof_gregset);
3863 for (i = 0; i < tdep->gregset_num_regs; i++)
3865 if ((regnum == i || regnum == -1)
3866 && tdep->gregset_reg_offset[i] != -1)
3867 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3871 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3872 in the floating-point register set REGSET to register cache
3873 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3876 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3877 int regnum, const void *fpregs, size_t len)
3879 struct gdbarch *gdbarch = regcache->arch ();
3880 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3882 if (len == I387_SIZEOF_FXSAVE)
3884 i387_supply_fxsave (regcache, regnum, fpregs);
3888 gdb_assert (len >= tdep->sizeof_fpregset);
3889 i387_supply_fsave (regcache, regnum, fpregs);
3892 /* Collect register REGNUM from the register cache REGCACHE and store
3893 it in the buffer specified by FPREGS and LEN as described by the
3894 floating-point register set REGSET. If REGNUM is -1, do this for
3895 all registers in REGSET. */
3898 i386_collect_fpregset (const struct regset *regset,
3899 const struct regcache *regcache,
3900 int regnum, void *fpregs, size_t len)
3902 struct gdbarch *gdbarch = regcache->arch ();
3903 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3905 if (len == I387_SIZEOF_FXSAVE)
3907 i387_collect_fxsave (regcache, regnum, fpregs);
3911 gdb_assert (len >= tdep->sizeof_fpregset);
3912 i387_collect_fsave (regcache, regnum, fpregs);
3915 /* Register set definitions. */
3917 const struct regset i386_gregset =
3919 NULL, i386_supply_gregset, i386_collect_gregset
3922 const struct regset i386_fpregset =
3924 NULL, i386_supply_fpregset, i386_collect_fpregset
3927 /* Default iterator over core file register note sections. */
3930 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3931 iterate_over_regset_sections_cb *cb,
3933 const struct regcache *regcache)
3935 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3937 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3938 if (tdep->sizeof_fpregset)
3939 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3943 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3946 i386_pe_skip_trampoline_code (struct frame_info *frame,
3947 CORE_ADDR pc, char *name)
3949 struct gdbarch *gdbarch = get_frame_arch (frame);
3950 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3953 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3955 unsigned long indirect =
3956 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3957 struct minimal_symbol *indsym =
3958 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3959 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3963 if (startswith (symname, "__imp_")
3964 || startswith (symname, "_imp_"))
3966 read_memory_unsigned_integer (indirect, 4, byte_order);
3969 return 0; /* Not a trampoline. */
3973 /* Return whether the THIS_FRAME corresponds to a sigtramp
3977 i386_sigtramp_p (struct frame_info *this_frame)
3979 CORE_ADDR pc = get_frame_pc (this_frame);
3982 find_pc_partial_function (pc, &name, NULL, NULL);
3983 return (name && strcmp ("_sigtramp", name) == 0);
3987 /* We have two flavours of disassembly. The machinery on this page
3988 deals with switching between those. */
3991 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3993 gdb_assert (disassembly_flavor == att_flavor
3994 || disassembly_flavor == intel_flavor);
3996 info->disassembler_options = disassembly_flavor;
3998 return default_print_insn (pc, info);
4002 /* There are a few i386 architecture variants that differ only
4003 slightly from the generic i386 target. For now, we don't give them
4004 their own source file, but include them here. As a consequence,
4005 they'll always be included. */
4007 /* System V Release 4 (SVR4). */
4009 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4013 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4015 CORE_ADDR pc = get_frame_pc (this_frame);
4018 /* The origin of these symbols is currently unknown. */
4019 find_pc_partial_function (pc, &name, NULL, NULL);
4020 return (name && (strcmp ("_sigreturn", name) == 0
4021 || strcmp ("sigvechandler", name) == 0));
4024 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4025 address of the associated sigcontext (ucontext) structure. */
4028 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4030 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4031 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4035 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4036 sp = extract_unsigned_integer (buf, 4, byte_order);
4038 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4043 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4047 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4049 return (*s == '$' /* Literal number. */
4050 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4051 || (*s == '(' && s[1] == '%') /* Register indirection. */
4052 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4055 /* Helper function for i386_stap_parse_special_token.
4057 This function parses operands of the form `-8+3+1(%rbp)', which
4058 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4060 Return 1 if the operand was parsed successfully, zero
4064 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4065 struct stap_parse_info *p)
4067 const char *s = p->arg;
4069 if (isdigit (*s) || *s == '-' || *s == '+')
4073 long displacements[3];
4089 if (!isdigit ((unsigned char) *s))
4092 displacements[0] = strtol (s, &endp, 10);
4095 if (*s != '+' && *s != '-')
4097 /* We are not dealing with a triplet. */
4110 if (!isdigit ((unsigned char) *s))
4113 displacements[1] = strtol (s, &endp, 10);
4116 if (*s != '+' && *s != '-')
4118 /* We are not dealing with a triplet. */
4131 if (!isdigit ((unsigned char) *s))
4134 displacements[2] = strtol (s, &endp, 10);
4137 if (*s != '(' || s[1] != '%')
4143 while (isalnum (*s))
4149 len = s - start - 1;
4150 regname = (char *) alloca (len + 1);
4152 strncpy (regname, start, len);
4153 regname[len] = '\0';
4155 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4156 error (_("Invalid register name `%s' on expression `%s'."),
4157 regname, p->saved_arg);
4159 for (i = 0; i < 3; i++)
4161 write_exp_elt_opcode (&p->pstate, OP_LONG);
4163 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4164 write_exp_elt_longcst (&p->pstate, displacements[i]);
4165 write_exp_elt_opcode (&p->pstate, OP_LONG);
4167 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4170 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4173 write_exp_string (&p->pstate, str);
4174 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4176 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4177 write_exp_elt_type (&p->pstate,
4178 builtin_type (gdbarch)->builtin_data_ptr);
4179 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4181 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4182 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4183 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4185 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4186 write_exp_elt_type (&p->pstate,
4187 lookup_pointer_type (p->arg_type));
4188 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4190 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4200 /* Helper function for i386_stap_parse_special_token.
4202 This function parses operands of the form `register base +
4203 (register index * size) + offset', as represented in
4204 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4206 Return 1 if the operand was parsed successfully, zero
4210 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4211 struct stap_parse_info *p)
4213 const char *s = p->arg;
4215 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4217 int offset_minus = 0;
4226 struct stoken base_token, index_token;
4236 if (offset_minus && !isdigit (*s))
4243 offset = strtol (s, &endp, 10);
4247 if (*s != '(' || s[1] != '%')
4253 while (isalnum (*s))
4256 if (*s != ',' || s[1] != '%')
4259 len_base = s - start;
4260 base = (char *) alloca (len_base + 1);
4261 strncpy (base, start, len_base);
4262 base[len_base] = '\0';
4264 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4265 error (_("Invalid register name `%s' on expression `%s'."),
4266 base, p->saved_arg);
4271 while (isalnum (*s))
4274 len_index = s - start;
4275 index = (char *) alloca (len_index + 1);
4276 strncpy (index, start, len_index);
4277 index[len_index] = '\0';
4279 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4280 error (_("Invalid register name `%s' on expression `%s'."),
4281 index, p->saved_arg);
4283 if (*s != ',' && *s != ')')
4299 size = strtol (s, &endp, 10);
4310 write_exp_elt_opcode (&p->pstate, OP_LONG);
4311 write_exp_elt_type (&p->pstate,
4312 builtin_type (gdbarch)->builtin_long);
4313 write_exp_elt_longcst (&p->pstate, offset);
4314 write_exp_elt_opcode (&p->pstate, OP_LONG);
4316 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4319 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4320 base_token.ptr = base;
4321 base_token.length = len_base;
4322 write_exp_string (&p->pstate, base_token);
4323 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4326 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4328 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4329 index_token.ptr = index;
4330 index_token.length = len_index;
4331 write_exp_string (&p->pstate, index_token);
4332 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4336 write_exp_elt_opcode (&p->pstate, OP_LONG);
4337 write_exp_elt_type (&p->pstate,
4338 builtin_type (gdbarch)->builtin_long);
4339 write_exp_elt_longcst (&p->pstate, size);
4340 write_exp_elt_opcode (&p->pstate, OP_LONG);
4342 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4343 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4346 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4348 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4349 write_exp_elt_type (&p->pstate,
4350 lookup_pointer_type (p->arg_type));
4351 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4353 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4363 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4367 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4368 struct stap_parse_info *p)
4370 /* In order to parse special tokens, we use a state-machine that go
4371 through every known token and try to get a match. */
4375 THREE_ARG_DISPLACEMENT,
4380 current_state = TRIPLET;
4382 /* The special tokens to be parsed here are:
4384 - `register base + (register index * size) + offset', as represented
4385 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4387 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4388 `*(-8 + 3 - 1 + (void *) $eax)'. */
4390 while (current_state != DONE)
4392 switch (current_state)
4395 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4399 case THREE_ARG_DISPLACEMENT:
4400 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4405 /* Advancing to the next state. */
4414 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4415 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4418 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4420 return "(x86_64|i.86)";
4425 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4428 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4430 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4431 I386_EAX_REGNUM, I386_EIP_REGNUM);
4437 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4439 static const char *const stap_integer_prefixes[] = { "$", NULL };
4440 static const char *const stap_register_prefixes[] = { "%", NULL };
4441 static const char *const stap_register_indirection_prefixes[] = { "(",
4443 static const char *const stap_register_indirection_suffixes[] = { ")",
4446 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4447 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4449 /* Registering SystemTap handlers. */
4450 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4451 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4452 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4453 stap_register_indirection_prefixes);
4454 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4455 stap_register_indirection_suffixes);
4456 set_gdbarch_stap_is_single_operand (gdbarch,
4457 i386_stap_is_single_operand);
4458 set_gdbarch_stap_parse_special_token (gdbarch,
4459 i386_stap_parse_special_token);
4461 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4462 i386_in_indirect_branch_thunk);
4465 /* System V Release 4 (SVR4). */
4468 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4470 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4472 /* System V Release 4 uses ELF. */
4473 i386_elf_init_abi (info, gdbarch);
4475 /* System V Release 4 has shared libraries. */
4476 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4478 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4479 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4480 tdep->sc_pc_offset = 36 + 14 * 4;
4481 tdep->sc_sp_offset = 36 + 17 * 4;
4483 tdep->jb_pc_offset = 20;
4488 /* i386 register groups. In addition to the normal groups, add "mmx"
4491 static struct reggroup *i386_sse_reggroup;
4492 static struct reggroup *i386_mmx_reggroup;
4495 i386_init_reggroups (void)
4497 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4498 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4502 i386_add_reggroups (struct gdbarch *gdbarch)
4504 reggroup_add (gdbarch, i386_sse_reggroup);
4505 reggroup_add (gdbarch, i386_mmx_reggroup);
4506 reggroup_add (gdbarch, general_reggroup);
4507 reggroup_add (gdbarch, float_reggroup);
4508 reggroup_add (gdbarch, all_reggroup);
4509 reggroup_add (gdbarch, save_reggroup);
4510 reggroup_add (gdbarch, restore_reggroup);
4511 reggroup_add (gdbarch, vector_reggroup);
4512 reggroup_add (gdbarch, system_reggroup);
4516 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4517 struct reggroup *group)
4519 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4520 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4521 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4522 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4523 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4524 avx512_p, avx_p, sse_p, pkru_regnum_p;
4526 /* Don't include pseudo registers, except for MMX, in any register
4528 if (i386_byte_regnum_p (gdbarch, regnum))
4531 if (i386_word_regnum_p (gdbarch, regnum))
4534 if (i386_dword_regnum_p (gdbarch, regnum))
4537 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4538 if (group == i386_mmx_reggroup)
4539 return mmx_regnum_p;
4541 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4542 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4543 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4544 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4545 if (group == i386_sse_reggroup)
4546 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4548 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4549 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4550 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4552 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4553 == X86_XSTATE_AVX_AVX512_MASK);
4554 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4555 == X86_XSTATE_AVX_MASK) && !avx512_p;
4556 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4557 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4559 if (group == vector_reggroup)
4560 return (mmx_regnum_p
4561 || (zmm_regnum_p && avx512_p)
4562 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4563 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4566 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4567 || i386_fpc_regnum_p (gdbarch, regnum));
4568 if (group == float_reggroup)
4571 /* For "info reg all", don't include upper YMM registers nor XMM
4572 registers when AVX is supported. */
4573 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4574 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4575 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4576 if (group == all_reggroup
4577 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4578 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4580 || ymmh_avx512_regnum_p
4584 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4585 if (group == all_reggroup
4586 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4587 return bnd_regnum_p;
4589 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4590 if (group == all_reggroup
4591 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4594 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4595 if (group == all_reggroup
4596 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4597 return mpx_ctrl_regnum_p;
4599 if (group == general_reggroup)
4600 return (!fp_regnum_p
4604 && !xmm_avx512_regnum_p
4607 && !ymm_avx512_regnum_p
4608 && !ymmh_avx512_regnum_p
4611 && !mpx_ctrl_regnum_p
4616 return default_register_reggroup_p (gdbarch, regnum, group);
4620 /* Get the ARGIth function argument for the current function. */
4623 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4626 struct gdbarch *gdbarch = get_frame_arch (frame);
4627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4628 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4629 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4632 #define PREFIX_REPZ 0x01
4633 #define PREFIX_REPNZ 0x02
4634 #define PREFIX_LOCK 0x04
4635 #define PREFIX_DATA 0x08
4636 #define PREFIX_ADDR 0x10
4648 /* i386 arith/logic operations */
4661 struct i386_record_s
4663 struct gdbarch *gdbarch;
4664 struct regcache *regcache;
4665 CORE_ADDR orig_addr;
4671 uint8_t mod, reg, rm;
4680 /* Parse the "modrm" part of the memory address irp->addr points at.
4681 Returns -1 if something goes wrong, 0 otherwise. */
4684 i386_record_modrm (struct i386_record_s *irp)
4686 struct gdbarch *gdbarch = irp->gdbarch;
4688 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4692 irp->mod = (irp->modrm >> 6) & 3;
4693 irp->reg = (irp->modrm >> 3) & 7;
4694 irp->rm = irp->modrm & 7;
4699 /* Extract the memory address that the current instruction writes to,
4700 and return it in *ADDR. Return -1 if something goes wrong. */
4703 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4705 struct gdbarch *gdbarch = irp->gdbarch;
4706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4711 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4718 uint8_t base = irp->rm;
4723 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4726 scale = (byte >> 6) & 3;
4727 index = ((byte >> 3) & 7) | irp->rex_x;
4735 if ((base & 7) == 5)
4738 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4741 *addr = extract_signed_integer (buf, 4, byte_order);
4742 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4743 *addr += irp->addr + irp->rip_offset;
4747 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4750 *addr = (int8_t) buf[0];
4753 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4755 *addr = extract_signed_integer (buf, 4, byte_order);
4763 if (base == 4 && irp->popl_esp_hack)
4764 *addr += irp->popl_esp_hack;
4765 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4768 if (irp->aflag == 2)
4773 *addr = (uint32_t) (offset64 + *addr);
4775 if (havesib && (index != 4 || scale != 0))
4777 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4779 if (irp->aflag == 2)
4780 *addr += offset64 << scale;
4782 *addr = (uint32_t) (*addr + (offset64 << scale));
4787 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4788 address from 32-bit to 64-bit. */
4789 *addr = (uint32_t) *addr;
4800 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4803 *addr = extract_signed_integer (buf, 2, byte_order);
4809 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4812 *addr = (int8_t) buf[0];
4815 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4818 *addr = extract_signed_integer (buf, 2, byte_order);
4825 regcache_raw_read_unsigned (irp->regcache,
4826 irp->regmap[X86_RECORD_REBX_REGNUM],
4828 *addr = (uint32_t) (*addr + offset64);
4829 regcache_raw_read_unsigned (irp->regcache,
4830 irp->regmap[X86_RECORD_RESI_REGNUM],
4832 *addr = (uint32_t) (*addr + offset64);
4835 regcache_raw_read_unsigned (irp->regcache,
4836 irp->regmap[X86_RECORD_REBX_REGNUM],
4838 *addr = (uint32_t) (*addr + offset64);
4839 regcache_raw_read_unsigned (irp->regcache,
4840 irp->regmap[X86_RECORD_REDI_REGNUM],
4842 *addr = (uint32_t) (*addr + offset64);
4845 regcache_raw_read_unsigned (irp->regcache,
4846 irp->regmap[X86_RECORD_REBP_REGNUM],
4848 *addr = (uint32_t) (*addr + offset64);
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_RESI_REGNUM],
4852 *addr = (uint32_t) (*addr + offset64);
4855 regcache_raw_read_unsigned (irp->regcache,
4856 irp->regmap[X86_RECORD_REBP_REGNUM],
4858 *addr = (uint32_t) (*addr + offset64);
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REDI_REGNUM],
4862 *addr = (uint32_t) (*addr + offset64);
4865 regcache_raw_read_unsigned (irp->regcache,
4866 irp->regmap[X86_RECORD_RESI_REGNUM],
4868 *addr = (uint32_t) (*addr + offset64);
4871 regcache_raw_read_unsigned (irp->regcache,
4872 irp->regmap[X86_RECORD_REDI_REGNUM],
4874 *addr = (uint32_t) (*addr + offset64);
4877 regcache_raw_read_unsigned (irp->regcache,
4878 irp->regmap[X86_RECORD_REBP_REGNUM],
4880 *addr = (uint32_t) (*addr + offset64);
4883 regcache_raw_read_unsigned (irp->regcache,
4884 irp->regmap[X86_RECORD_REBX_REGNUM],
4886 *addr = (uint32_t) (*addr + offset64);
4896 /* Record the address and contents of the memory that will be changed
4897 by the current instruction. Return -1 if something goes wrong, 0
4901 i386_record_lea_modrm (struct i386_record_s *irp)
4903 struct gdbarch *gdbarch = irp->gdbarch;
4906 if (irp->override >= 0)
4908 if (record_full_memory_query)
4911 Process record ignores the memory change of instruction at address %s\n\
4912 because it can't get the value of the segment register.\n\
4913 Do you want to stop the program?"),
4914 paddress (gdbarch, irp->orig_addr)))
4921 if (i386_record_lea_modrm_addr (irp, &addr))
4924 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4930 /* Record the effects of a push operation. Return -1 if something
4931 goes wrong, 0 otherwise. */
4934 i386_record_push (struct i386_record_s *irp, int size)
4938 if (record_full_arch_list_add_reg (irp->regcache,
4939 irp->regmap[X86_RECORD_RESP_REGNUM]))
4941 regcache_raw_read_unsigned (irp->regcache,
4942 irp->regmap[X86_RECORD_RESP_REGNUM],
4944 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4951 /* Defines contents to record. */
4952 #define I386_SAVE_FPU_REGS 0xfffd
4953 #define I386_SAVE_FPU_ENV 0xfffe
4954 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4956 /* Record the values of the floating point registers which will be
4957 changed by the current instruction. Returns -1 if something is
4958 wrong, 0 otherwise. */
4960 static int i386_record_floats (struct gdbarch *gdbarch,
4961 struct i386_record_s *ir,
4964 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4967 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4968 happen. Currently we store st0-st7 registers, but we need not store all
4969 registers all the time, in future we use ftag register and record only
4970 those who are not marked as an empty. */
4972 if (I386_SAVE_FPU_REGS == iregnum)
4974 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4976 if (record_full_arch_list_add_reg (ir->regcache, i))
4980 else if (I386_SAVE_FPU_ENV == iregnum)
4982 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4984 if (record_full_arch_list_add_reg (ir->regcache, i))
4988 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4990 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4992 if (record_full_arch_list_add_reg (ir->regcache, i))
4996 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4997 (iregnum <= I387_FOP_REGNUM (tdep)))
4999 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5004 /* Parameter error. */
5007 if(I386_SAVE_FPU_ENV != iregnum)
5009 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5011 if (record_full_arch_list_add_reg (ir->regcache, i))
5018 /* Parse the current instruction, and record the values of the
5019 registers and memory that will be changed by the current
5020 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5022 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5023 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5026 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5027 CORE_ADDR input_addr)
5029 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5035 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5036 struct i386_record_s ir;
5037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5041 memset (&ir, 0, sizeof (struct i386_record_s));
5042 ir.regcache = regcache;
5043 ir.addr = input_addr;
5044 ir.orig_addr = input_addr;
5048 ir.popl_esp_hack = 0;
5049 ir.regmap = tdep->record_regmap;
5050 ir.gdbarch = gdbarch;
5052 if (record_debug > 1)
5053 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5055 paddress (gdbarch, ir.addr));
5060 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5063 switch (opcode8) /* Instruction prefixes */
5065 case REPE_PREFIX_OPCODE:
5066 prefixes |= PREFIX_REPZ;
5068 case REPNE_PREFIX_OPCODE:
5069 prefixes |= PREFIX_REPNZ;
5071 case LOCK_PREFIX_OPCODE:
5072 prefixes |= PREFIX_LOCK;
5074 case CS_PREFIX_OPCODE:
5075 ir.override = X86_RECORD_CS_REGNUM;
5077 case SS_PREFIX_OPCODE:
5078 ir.override = X86_RECORD_SS_REGNUM;
5080 case DS_PREFIX_OPCODE:
5081 ir.override = X86_RECORD_DS_REGNUM;
5083 case ES_PREFIX_OPCODE:
5084 ir.override = X86_RECORD_ES_REGNUM;
5086 case FS_PREFIX_OPCODE:
5087 ir.override = X86_RECORD_FS_REGNUM;
5089 case GS_PREFIX_OPCODE:
5090 ir.override = X86_RECORD_GS_REGNUM;
5092 case DATA_PREFIX_OPCODE:
5093 prefixes |= PREFIX_DATA;
5095 case ADDR_PREFIX_OPCODE:
5096 prefixes |= PREFIX_ADDR;
5098 case 0x40: /* i386 inc %eax */
5099 case 0x41: /* i386 inc %ecx */
5100 case 0x42: /* i386 inc %edx */
5101 case 0x43: /* i386 inc %ebx */
5102 case 0x44: /* i386 inc %esp */
5103 case 0x45: /* i386 inc %ebp */
5104 case 0x46: /* i386 inc %esi */
5105 case 0x47: /* i386 inc %edi */
5106 case 0x48: /* i386 dec %eax */
5107 case 0x49: /* i386 dec %ecx */
5108 case 0x4a: /* i386 dec %edx */
5109 case 0x4b: /* i386 dec %ebx */
5110 case 0x4c: /* i386 dec %esp */
5111 case 0x4d: /* i386 dec %ebp */
5112 case 0x4e: /* i386 dec %esi */
5113 case 0x4f: /* i386 dec %edi */
5114 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5117 rex_w = (opcode8 >> 3) & 1;
5118 rex_r = (opcode8 & 0x4) << 1;
5119 ir.rex_x = (opcode8 & 0x2) << 2;
5120 ir.rex_b = (opcode8 & 0x1) << 3;
5122 else /* 32 bit target */
5131 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5137 if (prefixes & PREFIX_DATA)
5140 if (prefixes & PREFIX_ADDR)
5142 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5145 /* Now check op code. */
5146 opcode = (uint32_t) opcode8;
5151 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5154 opcode = (uint32_t) opcode8 | 0x0f00;
5158 case 0x00: /* arith & logic */
5206 if (((opcode >> 3) & 7) != OP_CMPL)
5208 if ((opcode & 1) == 0)
5211 ir.ot = ir.dflag + OT_WORD;
5213 switch ((opcode >> 1) & 3)
5215 case 0: /* OP Ev, Gv */
5216 if (i386_record_modrm (&ir))
5220 if (i386_record_lea_modrm (&ir))
5226 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5228 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5231 case 1: /* OP Gv, Ev */
5232 if (i386_record_modrm (&ir))
5235 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5239 case 2: /* OP A, Iv */
5240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5247 case 0x80: /* GRP1 */
5251 if (i386_record_modrm (&ir))
5254 if (ir.reg != OP_CMPL)
5256 if ((opcode & 1) == 0)
5259 ir.ot = ir.dflag + OT_WORD;
5266 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5267 if (i386_record_lea_modrm (&ir))
5271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5276 case 0x40: /* inc */
5285 case 0x48: /* dec */
5294 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5295 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5298 case 0xf6: /* GRP3 */
5300 if ((opcode & 1) == 0)
5303 ir.ot = ir.dflag + OT_WORD;
5304 if (i386_record_modrm (&ir))
5307 if (ir.mod != 3 && ir.reg == 0)
5308 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5319 if (i386_record_lea_modrm (&ir))
5325 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5329 if (ir.reg == 3) /* neg */
5330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5337 if (ir.ot != OT_BYTE)
5338 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5343 opcode = opcode << 8 | ir.modrm;
5349 case 0xfe: /* GRP4 */
5350 case 0xff: /* GRP5 */
5351 if (i386_record_modrm (&ir))
5353 if (ir.reg >= 2 && opcode == 0xfe)
5356 opcode = opcode << 8 | ir.modrm;
5363 if ((opcode & 1) == 0)
5366 ir.ot = ir.dflag + OT_WORD;
5369 if (i386_record_lea_modrm (&ir))
5375 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5382 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5384 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5390 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5399 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5401 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5406 opcode = opcode << 8 | ir.modrm;
5412 case 0x84: /* test */
5416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5419 case 0x98: /* CWDE/CBW */
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5423 case 0x99: /* CDQ/CWD */
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5428 case 0x0faf: /* imul */
5431 ir.ot = ir.dflag + OT_WORD;
5432 if (i386_record_modrm (&ir))
5435 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5436 else if (opcode == 0x6b)
5439 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5442 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5445 case 0x0fc0: /* xadd */
5447 if ((opcode & 1) == 0)
5450 ir.ot = ir.dflag + OT_WORD;
5451 if (i386_record_modrm (&ir))
5456 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5459 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5465 if (i386_record_lea_modrm (&ir))
5467 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5474 case 0x0fb0: /* cmpxchg */
5476 if ((opcode & 1) == 0)
5479 ir.ot = ir.dflag + OT_WORD;
5480 if (i386_record_modrm (&ir))
5485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5486 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5493 if (i386_record_lea_modrm (&ir))
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5499 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5500 if (i386_record_modrm (&ir))
5504 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5505 an extended opcode. rdrand has bits 110 (/6) and rdseed
5506 has bits 111 (/7). */
5507 if (ir.reg == 6 || ir.reg == 7)
5509 /* The storage register is described by the 3 R/M bits, but the
5510 REX.B prefix may be used to give access to registers
5511 R8~R15. In this case ir.rex_b + R/M will give us the register
5512 in the range R8~R15.
5514 REX.W may also be used to access 64-bit registers, but we
5515 already record entire registers and not just partial bits
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5518 /* These instructions also set conditional bits. */
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5524 /* We don't handle this particular instruction yet. */
5526 opcode = opcode << 8 | ir.modrm;
5530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5532 if (i386_record_lea_modrm (&ir))
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5537 case 0x50: /* push */
5547 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5549 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5553 case 0x06: /* push es */
5554 case 0x0e: /* push cs */
5555 case 0x16: /* push ss */
5556 case 0x1e: /* push ds */
5557 if (ir.regmap[X86_RECORD_R8_REGNUM])
5562 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5566 case 0x0fa0: /* push fs */
5567 case 0x0fa8: /* push gs */
5568 if (ir.regmap[X86_RECORD_R8_REGNUM])
5573 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5577 case 0x60: /* pusha */
5578 if (ir.regmap[X86_RECORD_R8_REGNUM])
5583 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5587 case 0x58: /* pop */
5595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5596 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5599 case 0x61: /* popa */
5600 if (ir.regmap[X86_RECORD_R8_REGNUM])
5605 for (regnum = X86_RECORD_REAX_REGNUM;
5606 regnum <= X86_RECORD_REDI_REGNUM;
5608 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5611 case 0x8f: /* pop */
5612 if (ir.regmap[X86_RECORD_R8_REGNUM])
5613 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5615 ir.ot = ir.dflag + OT_WORD;
5616 if (i386_record_modrm (&ir))
5619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5622 ir.popl_esp_hack = 1 << ir.ot;
5623 if (i386_record_lea_modrm (&ir))
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5629 case 0xc8: /* enter */
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5631 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5633 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5637 case 0xc9: /* leave */
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5642 case 0x07: /* pop es */
5643 if (ir.regmap[X86_RECORD_R8_REGNUM])
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5653 case 0x17: /* pop ss */
5654 if (ir.regmap[X86_RECORD_R8_REGNUM])
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5664 case 0x1f: /* pop ds */
5665 if (ir.regmap[X86_RECORD_R8_REGNUM])
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5675 case 0x0fa1: /* pop fs */
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5681 case 0x0fa9: /* pop gs */
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5687 case 0x88: /* mov */
5691 if ((opcode & 1) == 0)
5694 ir.ot = ir.dflag + OT_WORD;
5696 if (i386_record_modrm (&ir))
5701 if (opcode == 0xc6 || opcode == 0xc7)
5702 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5703 if (i386_record_lea_modrm (&ir))
5708 if (opcode == 0xc6 || opcode == 0xc7)
5710 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5716 case 0x8a: /* mov */
5718 if ((opcode & 1) == 0)
5721 ir.ot = ir.dflag + OT_WORD;
5722 if (i386_record_modrm (&ir))
5725 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5730 case 0x8c: /* mov seg */
5731 if (i386_record_modrm (&ir))
5736 opcode = opcode << 8 | ir.modrm;
5741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5745 if (i386_record_lea_modrm (&ir))
5750 case 0x8e: /* mov seg */
5751 if (i386_record_modrm (&ir))
5756 regnum = X86_RECORD_ES_REGNUM;
5759 regnum = X86_RECORD_SS_REGNUM;
5762 regnum = X86_RECORD_DS_REGNUM;
5765 regnum = X86_RECORD_FS_REGNUM;
5768 regnum = X86_RECORD_GS_REGNUM;
5772 opcode = opcode << 8 | ir.modrm;
5776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5780 case 0x0fb6: /* movzbS */
5781 case 0x0fb7: /* movzwS */
5782 case 0x0fbe: /* movsbS */
5783 case 0x0fbf: /* movswS */
5784 if (i386_record_modrm (&ir))
5786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5789 case 0x8d: /* lea */
5790 if (i386_record_modrm (&ir))
5795 opcode = opcode << 8 | ir.modrm;
5800 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5802 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5805 case 0xa0: /* mov EAX */
5808 case 0xd7: /* xlat */
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5812 case 0xa2: /* mov EAX */
5814 if (ir.override >= 0)
5816 if (record_full_memory_query)
5819 Process record ignores the memory change of instruction at address %s\n\
5820 because it can't get the value of the segment register.\n\
5821 Do you want to stop the program?"),
5822 paddress (gdbarch, ir.orig_addr)))
5828 if ((opcode & 1) == 0)
5831 ir.ot = ir.dflag + OT_WORD;
5834 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5837 addr = extract_unsigned_integer (buf, 8, byte_order);
5841 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5844 addr = extract_unsigned_integer (buf, 4, byte_order);
5848 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5851 addr = extract_unsigned_integer (buf, 2, byte_order);
5853 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5858 case 0xb0: /* mov R, Ib */
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5867 ? ((opcode & 0x7) | ir.rex_b)
5868 : ((opcode & 0x7) & 0x3));
5871 case 0xb8: /* mov R, Iv */
5879 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5882 case 0x91: /* xchg R, EAX */
5889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5890 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5893 case 0x86: /* xchg Ev, Gv */
5895 if ((opcode & 1) == 0)
5898 ir.ot = ir.dflag + OT_WORD;
5899 if (i386_record_modrm (&ir))
5904 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5906 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5910 if (i386_record_lea_modrm (&ir))
5914 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5916 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5919 case 0xc4: /* les Gv */
5920 case 0xc5: /* lds Gv */
5921 if (ir.regmap[X86_RECORD_R8_REGNUM])
5927 case 0x0fb2: /* lss Gv */
5928 case 0x0fb4: /* lfs Gv */
5929 case 0x0fb5: /* lgs Gv */
5930 if (i386_record_modrm (&ir))
5938 opcode = opcode << 8 | ir.modrm;
5943 case 0xc4: /* les Gv */
5944 regnum = X86_RECORD_ES_REGNUM;
5946 case 0xc5: /* lds Gv */
5947 regnum = X86_RECORD_DS_REGNUM;
5949 case 0x0fb2: /* lss Gv */
5950 regnum = X86_RECORD_SS_REGNUM;
5952 case 0x0fb4: /* lfs Gv */
5953 regnum = X86_RECORD_FS_REGNUM;
5955 case 0x0fb5: /* lgs Gv */
5956 regnum = X86_RECORD_GS_REGNUM;
5959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5960 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5964 case 0xc0: /* shifts */
5970 if ((opcode & 1) == 0)
5973 ir.ot = ir.dflag + OT_WORD;
5974 if (i386_record_modrm (&ir))
5976 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5978 if (i386_record_lea_modrm (&ir))
5984 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5988 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5995 if (i386_record_modrm (&ir))
5999 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6004 if (i386_record_lea_modrm (&ir))
6009 case 0xd8: /* Floats. */
6017 if (i386_record_modrm (&ir))
6019 ir.reg |= ((opcode & 7) << 3);
6025 if (i386_record_lea_modrm_addr (&ir, &addr64))
6033 /* For fcom, ficom nothing to do. */
6039 /* For fcomp, ficomp pop FPU stack, store all. */
6040 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6067 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6068 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6069 of code, always affects st(0) register. */
6070 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6094 /* Handling fld, fild. */
6095 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6099 switch (ir.reg >> 4)
6102 if (record_full_arch_list_add_mem (addr64, 4))
6106 if (record_full_arch_list_add_mem (addr64, 8))
6112 if (record_full_arch_list_add_mem (addr64, 2))
6118 switch (ir.reg >> 4)
6121 if (record_full_arch_list_add_mem (addr64, 4))
6123 if (3 == (ir.reg & 7))
6125 /* For fstp m32fp. */
6126 if (i386_record_floats (gdbarch, &ir,
6127 I386_SAVE_FPU_REGS))
6132 if (record_full_arch_list_add_mem (addr64, 4))
6134 if ((3 == (ir.reg & 7))
6135 || (5 == (ir.reg & 7))
6136 || (7 == (ir.reg & 7)))
6138 /* For fstp insn. */
6139 if (i386_record_floats (gdbarch, &ir,
6140 I386_SAVE_FPU_REGS))
6145 if (record_full_arch_list_add_mem (addr64, 8))
6147 if (3 == (ir.reg & 7))
6149 /* For fstp m64fp. */
6150 if (i386_record_floats (gdbarch, &ir,
6151 I386_SAVE_FPU_REGS))
6156 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6158 /* For fistp, fbld, fild, fbstp. */
6159 if (i386_record_floats (gdbarch, &ir,
6160 I386_SAVE_FPU_REGS))
6165 if (record_full_arch_list_add_mem (addr64, 2))
6174 if (i386_record_floats (gdbarch, &ir,
6175 I386_SAVE_FPU_ENV_REG_STACK))
6180 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6185 if (i386_record_floats (gdbarch, &ir,
6186 I386_SAVE_FPU_ENV_REG_STACK))
6192 if (record_full_arch_list_add_mem (addr64, 28))
6197 if (record_full_arch_list_add_mem (addr64, 14))
6203 if (record_full_arch_list_add_mem (addr64, 2))
6205 /* Insn fstp, fbstp. */
6206 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6211 if (record_full_arch_list_add_mem (addr64, 10))
6217 if (record_full_arch_list_add_mem (addr64, 28))
6223 if (record_full_arch_list_add_mem (addr64, 14))
6227 if (record_full_arch_list_add_mem (addr64, 80))
6230 if (i386_record_floats (gdbarch, &ir,
6231 I386_SAVE_FPU_ENV_REG_STACK))
6235 if (record_full_arch_list_add_mem (addr64, 8))
6238 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6243 opcode = opcode << 8 | ir.modrm;
6248 /* Opcode is an extension of modR/M byte. */
6254 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6258 if (0x0c == (ir.modrm >> 4))
6260 if ((ir.modrm & 0x0f) <= 7)
6262 if (i386_record_floats (gdbarch, &ir,
6263 I386_SAVE_FPU_REGS))
6268 if (i386_record_floats (gdbarch, &ir,
6269 I387_ST0_REGNUM (tdep)))
6271 /* If only st(0) is changing, then we have already
6273 if ((ir.modrm & 0x0f) - 0x08)
6275 if (i386_record_floats (gdbarch, &ir,
6276 I387_ST0_REGNUM (tdep) +
6277 ((ir.modrm & 0x0f) - 0x08)))
6295 if (i386_record_floats (gdbarch, &ir,
6296 I387_ST0_REGNUM (tdep)))
6314 if (i386_record_floats (gdbarch, &ir,
6315 I386_SAVE_FPU_REGS))
6319 if (i386_record_floats (gdbarch, &ir,
6320 I387_ST0_REGNUM (tdep)))
6322 if (i386_record_floats (gdbarch, &ir,
6323 I387_ST0_REGNUM (tdep) + 1))
6330 if (0xe9 == ir.modrm)
6332 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6335 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6337 if (i386_record_floats (gdbarch, &ir,
6338 I387_ST0_REGNUM (tdep)))
6340 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6342 if (i386_record_floats (gdbarch, &ir,
6343 I387_ST0_REGNUM (tdep) +
6347 else if ((ir.modrm & 0x0f) - 0x08)
6349 if (i386_record_floats (gdbarch, &ir,
6350 I387_ST0_REGNUM (tdep) +
6351 ((ir.modrm & 0x0f) - 0x08)))
6357 if (0xe3 == ir.modrm)
6359 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6362 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6364 if (i386_record_floats (gdbarch, &ir,
6365 I387_ST0_REGNUM (tdep)))
6367 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6369 if (i386_record_floats (gdbarch, &ir,
6370 I387_ST0_REGNUM (tdep) +
6374 else if ((ir.modrm & 0x0f) - 0x08)
6376 if (i386_record_floats (gdbarch, &ir,
6377 I387_ST0_REGNUM (tdep) +
6378 ((ir.modrm & 0x0f) - 0x08)))
6384 if ((0x0c == ir.modrm >> 4)
6385 || (0x0d == ir.modrm >> 4)
6386 || (0x0f == ir.modrm >> 4))
6388 if ((ir.modrm & 0x0f) <= 7)
6390 if (i386_record_floats (gdbarch, &ir,
6391 I387_ST0_REGNUM (tdep) +
6397 if (i386_record_floats (gdbarch, &ir,
6398 I387_ST0_REGNUM (tdep) +
6399 ((ir.modrm & 0x0f) - 0x08)))
6405 if (0x0c == ir.modrm >> 4)
6407 if (i386_record_floats (gdbarch, &ir,
6408 I387_FTAG_REGNUM (tdep)))
6411 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6413 if ((ir.modrm & 0x0f) <= 7)
6415 if (i386_record_floats (gdbarch, &ir,
6416 I387_ST0_REGNUM (tdep) +
6422 if (i386_record_floats (gdbarch, &ir,
6423 I386_SAVE_FPU_REGS))
6429 if ((0x0c == ir.modrm >> 4)
6430 || (0x0e == ir.modrm >> 4)
6431 || (0x0f == ir.modrm >> 4)
6432 || (0xd9 == ir.modrm))
6434 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6439 if (0xe0 == ir.modrm)
6441 if (record_full_arch_list_add_reg (ir.regcache,
6445 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6447 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6455 case 0xa4: /* movsS */
6457 case 0xaa: /* stosS */
6459 case 0x6c: /* insS */
6461 regcache_raw_read_unsigned (ir.regcache,
6462 ir.regmap[X86_RECORD_RECX_REGNUM],
6468 if ((opcode & 1) == 0)
6471 ir.ot = ir.dflag + OT_WORD;
6472 regcache_raw_read_unsigned (ir.regcache,
6473 ir.regmap[X86_RECORD_REDI_REGNUM],
6476 regcache_raw_read_unsigned (ir.regcache,
6477 ir.regmap[X86_RECORD_ES_REGNUM],
6479 regcache_raw_read_unsigned (ir.regcache,
6480 ir.regmap[X86_RECORD_DS_REGNUM],
6482 if (ir.aflag && (es != ds))
6484 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6485 if (record_full_memory_query)
6488 Process record ignores the memory change of instruction at address %s\n\
6489 because it can't get the value of the segment register.\n\
6490 Do you want to stop the program?"),
6491 paddress (gdbarch, ir.orig_addr)))
6497 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6501 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6503 if (opcode == 0xa4 || opcode == 0xa5)
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6510 case 0xa6: /* cmpsS */
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6514 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6519 case 0xac: /* lodsS */
6521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6523 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6528 case 0xae: /* scasS */
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6531 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6536 case 0x6e: /* outsS */
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6539 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6544 case 0xe4: /* port I/O */
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6559 case 0xc2: /* ret im */
6560 case 0xc3: /* ret */
6561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6565 case 0xca: /* lret im */
6566 case 0xcb: /* lret */
6567 case 0xcf: /* iret */
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6573 case 0xe8: /* call im */
6574 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6576 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6580 case 0x9a: /* lcall im */
6581 if (ir.regmap[X86_RECORD_R8_REGNUM])
6586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6587 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6591 case 0xe9: /* jmp im */
6592 case 0xea: /* ljmp im */
6593 case 0xeb: /* jmp Jb */
6594 case 0x70: /* jcc Jb */
6610 case 0x0f80: /* jcc Jv */
6628 case 0x0f90: /* setcc Gv */
6644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6646 if (i386_record_modrm (&ir))
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6653 if (i386_record_lea_modrm (&ir))
6658 case 0x0f40: /* cmov Gv, Ev */
6674 if (i386_record_modrm (&ir))
6677 if (ir.dflag == OT_BYTE)
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6683 case 0x9c: /* pushf */
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6685 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6687 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6691 case 0x9d: /* popf */
6692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6696 case 0x9e: /* sahf */
6697 if (ir.regmap[X86_RECORD_R8_REGNUM])
6703 case 0xf5: /* cmc */
6704 case 0xf8: /* clc */
6705 case 0xf9: /* stc */
6706 case 0xfc: /* cld */
6707 case 0xfd: /* std */
6708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6711 case 0x9f: /* lahf */
6712 if (ir.regmap[X86_RECORD_R8_REGNUM])
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6721 /* bit operations */
6722 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6723 ir.ot = ir.dflag + OT_WORD;
6724 if (i386_record_modrm (&ir))
6729 opcode = opcode << 8 | ir.modrm;
6735 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6738 if (i386_record_lea_modrm (&ir))
6742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6745 case 0x0fa3: /* bt Gv, Ev */
6746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6749 case 0x0fab: /* bts */
6750 case 0x0fb3: /* btr */
6751 case 0x0fbb: /* btc */
6752 ir.ot = ir.dflag + OT_WORD;
6753 if (i386_record_modrm (&ir))
6756 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6760 if (i386_record_lea_modrm_addr (&ir, &addr64))
6762 regcache_raw_read_unsigned (ir.regcache,
6763 ir.regmap[ir.reg | rex_r],
6768 addr64 += ((int16_t) addr >> 4) << 4;
6771 addr64 += ((int32_t) addr >> 5) << 5;
6774 addr64 += ((int64_t) addr >> 6) << 6;
6777 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6779 if (i386_record_lea_modrm (&ir))
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6785 case 0x0fbc: /* bsf */
6786 case 0x0fbd: /* bsr */
6787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6792 case 0x27: /* daa */
6793 case 0x2f: /* das */
6794 case 0x37: /* aaa */
6795 case 0x3f: /* aas */
6796 case 0xd4: /* aam */
6797 case 0xd5: /* aad */
6798 if (ir.regmap[X86_RECORD_R8_REGNUM])
6803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6808 case 0x90: /* nop */
6809 if (prefixes & PREFIX_LOCK)
6816 case 0x9b: /* fwait */
6817 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6819 opcode = (uint32_t) opcode8;
6825 case 0xcc: /* int3 */
6826 printf_unfiltered (_("Process record does not support instruction "
6833 case 0xcd: /* int */
6837 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6840 if (interrupt != 0x80
6841 || tdep->i386_intx80_record == NULL)
6843 printf_unfiltered (_("Process record does not support "
6844 "instruction int 0x%02x.\n"),
6849 ret = tdep->i386_intx80_record (ir.regcache);
6856 case 0xce: /* into */
6857 printf_unfiltered (_("Process record does not support "
6858 "instruction into.\n"));
6863 case 0xfa: /* cli */
6864 case 0xfb: /* sti */
6867 case 0x62: /* bound */
6868 printf_unfiltered (_("Process record does not support "
6869 "instruction bound.\n"));
6874 case 0x0fc8: /* bswap reg */
6882 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6885 case 0xd6: /* salc */
6886 if (ir.regmap[X86_RECORD_R8_REGNUM])
6891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6895 case 0xe0: /* loopnz */
6896 case 0xe1: /* loopz */
6897 case 0xe2: /* loop */
6898 case 0xe3: /* jecxz */
6899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6900 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6903 case 0x0f30: /* wrmsr */
6904 printf_unfiltered (_("Process record does not support "
6905 "instruction wrmsr.\n"));
6910 case 0x0f32: /* rdmsr */
6911 printf_unfiltered (_("Process record does not support "
6912 "instruction rdmsr.\n"));
6917 case 0x0f31: /* rdtsc */
6918 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6922 case 0x0f34: /* sysenter */
6925 if (ir.regmap[X86_RECORD_R8_REGNUM])
6930 if (tdep->i386_sysenter_record == NULL)
6932 printf_unfiltered (_("Process record does not support "
6933 "instruction sysenter.\n"));
6937 ret = tdep->i386_sysenter_record (ir.regcache);
6943 case 0x0f35: /* sysexit */
6944 printf_unfiltered (_("Process record does not support "
6945 "instruction sysexit.\n"));
6950 case 0x0f05: /* syscall */
6953 if (tdep->i386_syscall_record == NULL)
6955 printf_unfiltered (_("Process record does not support "
6956 "instruction syscall.\n"));
6960 ret = tdep->i386_syscall_record (ir.regcache);
6966 case 0x0f07: /* sysret */
6967 printf_unfiltered (_("Process record does not support "
6968 "instruction sysret.\n"));
6973 case 0x0fa2: /* cpuid */
6974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6980 case 0xf4: /* hlt */
6981 printf_unfiltered (_("Process record does not support "
6982 "instruction hlt.\n"));
6988 if (i386_record_modrm (&ir))
6995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6999 if (i386_record_lea_modrm (&ir))
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7012 opcode = opcode << 8 | ir.modrm;
7019 if (i386_record_modrm (&ir))
7030 opcode = opcode << 8 | ir.modrm;
7033 if (ir.override >= 0)
7035 if (record_full_memory_query)
7038 Process record ignores the memory change of instruction at address %s\n\
7039 because it can't get the value of the segment register.\n\
7040 Do you want to stop the program?"),
7041 paddress (gdbarch, ir.orig_addr)))
7047 if (i386_record_lea_modrm_addr (&ir, &addr64))
7049 if (record_full_arch_list_add_mem (addr64, 2))
7052 if (ir.regmap[X86_RECORD_R8_REGNUM])
7054 if (record_full_arch_list_add_mem (addr64, 8))
7059 if (record_full_arch_list_add_mem (addr64, 4))
7070 case 0: /* monitor */
7073 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7077 opcode = opcode << 8 | ir.modrm;
7085 if (ir.override >= 0)
7087 if (record_full_memory_query)
7090 Process record ignores the memory change of instruction at address %s\n\
7091 because it can't get the value of the segment register.\n\
7092 Do you want to stop the program?"),
7093 paddress (gdbarch, ir.orig_addr)))
7101 if (i386_record_lea_modrm_addr (&ir, &addr64))
7103 if (record_full_arch_list_add_mem (addr64, 2))
7106 if (ir.regmap[X86_RECORD_R8_REGNUM])
7108 if (record_full_arch_list_add_mem (addr64, 8))
7113 if (record_full_arch_list_add_mem (addr64, 4))
7125 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7126 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7130 else if (ir.rm == 1)
7137 opcode = opcode << 8 | ir.modrm;
7144 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7150 if (i386_record_lea_modrm (&ir))
7153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7158 case 7: /* invlpg */
7161 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7162 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7166 opcode = opcode << 8 | ir.modrm;
7171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7175 opcode = opcode << 8 | ir.modrm;
7181 case 0x0f08: /* invd */
7182 case 0x0f09: /* wbinvd */
7185 case 0x63: /* arpl */
7186 if (i386_record_modrm (&ir))
7188 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7191 ? (ir.reg | rex_r) : ir.rm);
7195 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7196 if (i386_record_lea_modrm (&ir))
7199 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7200 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7203 case 0x0f02: /* lar */
7204 case 0x0f03: /* lsl */
7205 if (i386_record_modrm (&ir))
7207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7208 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7212 if (i386_record_modrm (&ir))
7214 if (ir.mod == 3 && ir.reg == 3)
7217 opcode = opcode << 8 | ir.modrm;
7229 /* nop (multi byte) */
7232 case 0x0f20: /* mov reg, crN */
7233 case 0x0f22: /* mov crN, reg */
7234 if (i386_record_modrm (&ir))
7236 if ((ir.modrm & 0xc0) != 0xc0)
7239 opcode = opcode << 8 | ir.modrm;
7250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7256 opcode = opcode << 8 | ir.modrm;
7262 case 0x0f21: /* mov reg, drN */
7263 case 0x0f23: /* mov drN, reg */
7264 if (i386_record_modrm (&ir))
7266 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7267 || ir.reg == 5 || ir.reg >= 8)
7270 opcode = opcode << 8 | ir.modrm;
7274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7279 case 0x0f06: /* clts */
7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7283 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7285 case 0x0f0d: /* 3DNow! prefetch */
7288 case 0x0f0e: /* 3DNow! femms */
7289 case 0x0f77: /* emms */
7290 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7292 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7295 case 0x0f0f: /* 3DNow! data */
7296 if (i386_record_modrm (&ir))
7298 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7303 case 0x0c: /* 3DNow! pi2fw */
7304 case 0x0d: /* 3DNow! pi2fd */
7305 case 0x1c: /* 3DNow! pf2iw */
7306 case 0x1d: /* 3DNow! pf2id */
7307 case 0x8a: /* 3DNow! pfnacc */
7308 case 0x8e: /* 3DNow! pfpnacc */
7309 case 0x90: /* 3DNow! pfcmpge */
7310 case 0x94: /* 3DNow! pfmin */
7311 case 0x96: /* 3DNow! pfrcp */
7312 case 0x97: /* 3DNow! pfrsqrt */
7313 case 0x9a: /* 3DNow! pfsub */
7314 case 0x9e: /* 3DNow! pfadd */
7315 case 0xa0: /* 3DNow! pfcmpgt */
7316 case 0xa4: /* 3DNow! pfmax */
7317 case 0xa6: /* 3DNow! pfrcpit1 */
7318 case 0xa7: /* 3DNow! pfrsqit1 */
7319 case 0xaa: /* 3DNow! pfsubr */
7320 case 0xae: /* 3DNow! pfacc */
7321 case 0xb0: /* 3DNow! pfcmpeq */
7322 case 0xb4: /* 3DNow! pfmul */
7323 case 0xb6: /* 3DNow! pfrcpit2 */
7324 case 0xb7: /* 3DNow! pmulhrw */
7325 case 0xbb: /* 3DNow! pswapd */
7326 case 0xbf: /* 3DNow! pavgusb */
7327 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7328 goto no_support_3dnow_data;
7329 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7333 no_support_3dnow_data:
7334 opcode = (opcode << 8) | opcode8;
7340 case 0x0faa: /* rsm */
7341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7353 if (i386_record_modrm (&ir))
7357 case 0: /* fxsave */
7361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7362 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7364 if (record_full_arch_list_add_mem (tmpu64, 512))
7369 case 1: /* fxrstor */
7373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7375 for (i = I387_MM0_REGNUM (tdep);
7376 i386_mmx_regnum_p (gdbarch, i); i++)
7377 record_full_arch_list_add_reg (ir.regcache, i);
7379 for (i = I387_XMM0_REGNUM (tdep);
7380 i386_xmm_regnum_p (gdbarch, i); i++)
7381 record_full_arch_list_add_reg (ir.regcache, i);
7383 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7384 record_full_arch_list_add_reg (ir.regcache,
7385 I387_MXCSR_REGNUM(tdep));
7387 for (i = I387_ST0_REGNUM (tdep);
7388 i386_fp_regnum_p (gdbarch, i); i++)
7389 record_full_arch_list_add_reg (ir.regcache, i);
7391 for (i = I387_FCTRL_REGNUM (tdep);
7392 i386_fpc_regnum_p (gdbarch, i); i++)
7393 record_full_arch_list_add_reg (ir.regcache, i);
7397 case 2: /* ldmxcsr */
7398 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7400 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7403 case 3: /* stmxcsr */
7405 if (i386_record_lea_modrm (&ir))
7409 case 5: /* lfence */
7410 case 6: /* mfence */
7411 case 7: /* sfence clflush */
7415 opcode = (opcode << 8) | ir.modrm;
7421 case 0x0fc3: /* movnti */
7422 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7423 if (i386_record_modrm (&ir))
7428 if (i386_record_lea_modrm (&ir))
7432 /* Add prefix to opcode. */
7547 /* Mask out PREFIX_ADDR. */
7548 switch ((prefixes & ~PREFIX_ADDR))
7560 reswitch_prefix_add:
7568 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7571 opcode = (uint32_t) opcode8 | opcode << 8;
7572 goto reswitch_prefix_add;
7575 case 0x0f10: /* movups */
7576 case 0x660f10: /* movupd */
7577 case 0xf30f10: /* movss */
7578 case 0xf20f10: /* movsd */
7579 case 0x0f12: /* movlps */
7580 case 0x660f12: /* movlpd */
7581 case 0xf30f12: /* movsldup */
7582 case 0xf20f12: /* movddup */
7583 case 0x0f14: /* unpcklps */
7584 case 0x660f14: /* unpcklpd */
7585 case 0x0f15: /* unpckhps */
7586 case 0x660f15: /* unpckhpd */
7587 case 0x0f16: /* movhps */
7588 case 0x660f16: /* movhpd */
7589 case 0xf30f16: /* movshdup */
7590 case 0x0f28: /* movaps */
7591 case 0x660f28: /* movapd */
7592 case 0x0f2a: /* cvtpi2ps */
7593 case 0x660f2a: /* cvtpi2pd */
7594 case 0xf30f2a: /* cvtsi2ss */
7595 case 0xf20f2a: /* cvtsi2sd */
7596 case 0x0f2c: /* cvttps2pi */
7597 case 0x660f2c: /* cvttpd2pi */
7598 case 0x0f2d: /* cvtps2pi */
7599 case 0x660f2d: /* cvtpd2pi */
7600 case 0x660f3800: /* pshufb */
7601 case 0x660f3801: /* phaddw */
7602 case 0x660f3802: /* phaddd */
7603 case 0x660f3803: /* phaddsw */
7604 case 0x660f3804: /* pmaddubsw */
7605 case 0x660f3805: /* phsubw */
7606 case 0x660f3806: /* phsubd */
7607 case 0x660f3807: /* phsubsw */
7608 case 0x660f3808: /* psignb */
7609 case 0x660f3809: /* psignw */
7610 case 0x660f380a: /* psignd */
7611 case 0x660f380b: /* pmulhrsw */
7612 case 0x660f3810: /* pblendvb */
7613 case 0x660f3814: /* blendvps */
7614 case 0x660f3815: /* blendvpd */
7615 case 0x660f381c: /* pabsb */
7616 case 0x660f381d: /* pabsw */
7617 case 0x660f381e: /* pabsd */
7618 case 0x660f3820: /* pmovsxbw */
7619 case 0x660f3821: /* pmovsxbd */
7620 case 0x660f3822: /* pmovsxbq */
7621 case 0x660f3823: /* pmovsxwd */
7622 case 0x660f3824: /* pmovsxwq */
7623 case 0x660f3825: /* pmovsxdq */
7624 case 0x660f3828: /* pmuldq */
7625 case 0x660f3829: /* pcmpeqq */
7626 case 0x660f382a: /* movntdqa */
7627 case 0x660f3a08: /* roundps */
7628 case 0x660f3a09: /* roundpd */
7629 case 0x660f3a0a: /* roundss */
7630 case 0x660f3a0b: /* roundsd */
7631 case 0x660f3a0c: /* blendps */
7632 case 0x660f3a0d: /* blendpd */
7633 case 0x660f3a0e: /* pblendw */
7634 case 0x660f3a0f: /* palignr */
7635 case 0x660f3a20: /* pinsrb */
7636 case 0x660f3a21: /* insertps */
7637 case 0x660f3a22: /* pinsrd pinsrq */
7638 case 0x660f3a40: /* dpps */
7639 case 0x660f3a41: /* dppd */
7640 case 0x660f3a42: /* mpsadbw */
7641 case 0x660f3a60: /* pcmpestrm */
7642 case 0x660f3a61: /* pcmpestri */
7643 case 0x660f3a62: /* pcmpistrm */
7644 case 0x660f3a63: /* pcmpistri */
7645 case 0x0f51: /* sqrtps */
7646 case 0x660f51: /* sqrtpd */
7647 case 0xf20f51: /* sqrtsd */
7648 case 0xf30f51: /* sqrtss */
7649 case 0x0f52: /* rsqrtps */
7650 case 0xf30f52: /* rsqrtss */
7651 case 0x0f53: /* rcpps */
7652 case 0xf30f53: /* rcpss */
7653 case 0x0f54: /* andps */
7654 case 0x660f54: /* andpd */
7655 case 0x0f55: /* andnps */
7656 case 0x660f55: /* andnpd */
7657 case 0x0f56: /* orps */
7658 case 0x660f56: /* orpd */
7659 case 0x0f57: /* xorps */
7660 case 0x660f57: /* xorpd */
7661 case 0x0f58: /* addps */
7662 case 0x660f58: /* addpd */
7663 case 0xf20f58: /* addsd */
7664 case 0xf30f58: /* addss */
7665 case 0x0f59: /* mulps */
7666 case 0x660f59: /* mulpd */
7667 case 0xf20f59: /* mulsd */
7668 case 0xf30f59: /* mulss */
7669 case 0x0f5a: /* cvtps2pd */
7670 case 0x660f5a: /* cvtpd2ps */
7671 case 0xf20f5a: /* cvtsd2ss */
7672 case 0xf30f5a: /* cvtss2sd */
7673 case 0x0f5b: /* cvtdq2ps */
7674 case 0x660f5b: /* cvtps2dq */
7675 case 0xf30f5b: /* cvttps2dq */
7676 case 0x0f5c: /* subps */
7677 case 0x660f5c: /* subpd */
7678 case 0xf20f5c: /* subsd */
7679 case 0xf30f5c: /* subss */
7680 case 0x0f5d: /* minps */
7681 case 0x660f5d: /* minpd */
7682 case 0xf20f5d: /* minsd */
7683 case 0xf30f5d: /* minss */
7684 case 0x0f5e: /* divps */
7685 case 0x660f5e: /* divpd */
7686 case 0xf20f5e: /* divsd */
7687 case 0xf30f5e: /* divss */
7688 case 0x0f5f: /* maxps */
7689 case 0x660f5f: /* maxpd */
7690 case 0xf20f5f: /* maxsd */
7691 case 0xf30f5f: /* maxss */
7692 case 0x660f60: /* punpcklbw */
7693 case 0x660f61: /* punpcklwd */
7694 case 0x660f62: /* punpckldq */
7695 case 0x660f63: /* packsswb */
7696 case 0x660f64: /* pcmpgtb */
7697 case 0x660f65: /* pcmpgtw */
7698 case 0x660f66: /* pcmpgtd */
7699 case 0x660f67: /* packuswb */
7700 case 0x660f68: /* punpckhbw */
7701 case 0x660f69: /* punpckhwd */
7702 case 0x660f6a: /* punpckhdq */
7703 case 0x660f6b: /* packssdw */
7704 case 0x660f6c: /* punpcklqdq */
7705 case 0x660f6d: /* punpckhqdq */
7706 case 0x660f6e: /* movd */
7707 case 0x660f6f: /* movdqa */
7708 case 0xf30f6f: /* movdqu */
7709 case 0x660f70: /* pshufd */
7710 case 0xf20f70: /* pshuflw */
7711 case 0xf30f70: /* pshufhw */
7712 case 0x660f74: /* pcmpeqb */
7713 case 0x660f75: /* pcmpeqw */
7714 case 0x660f76: /* pcmpeqd */
7715 case 0x660f7c: /* haddpd */
7716 case 0xf20f7c: /* haddps */
7717 case 0x660f7d: /* hsubpd */
7718 case 0xf20f7d: /* hsubps */
7719 case 0xf30f7e: /* movq */
7720 case 0x0fc2: /* cmpps */
7721 case 0x660fc2: /* cmppd */
7722 case 0xf20fc2: /* cmpsd */
7723 case 0xf30fc2: /* cmpss */
7724 case 0x660fc4: /* pinsrw */
7725 case 0x0fc6: /* shufps */
7726 case 0x660fc6: /* shufpd */
7727 case 0x660fd0: /* addsubpd */
7728 case 0xf20fd0: /* addsubps */
7729 case 0x660fd1: /* psrlw */
7730 case 0x660fd2: /* psrld */
7731 case 0x660fd3: /* psrlq */
7732 case 0x660fd4: /* paddq */
7733 case 0x660fd5: /* pmullw */
7734 case 0xf30fd6: /* movq2dq */
7735 case 0x660fd8: /* psubusb */
7736 case 0x660fd9: /* psubusw */
7737 case 0x660fda: /* pminub */
7738 case 0x660fdb: /* pand */
7739 case 0x660fdc: /* paddusb */
7740 case 0x660fdd: /* paddusw */
7741 case 0x660fde: /* pmaxub */
7742 case 0x660fdf: /* pandn */
7743 case 0x660fe0: /* pavgb */
7744 case 0x660fe1: /* psraw */
7745 case 0x660fe2: /* psrad */
7746 case 0x660fe3: /* pavgw */
7747 case 0x660fe4: /* pmulhuw */
7748 case 0x660fe5: /* pmulhw */
7749 case 0x660fe6: /* cvttpd2dq */
7750 case 0xf20fe6: /* cvtpd2dq */
7751 case 0xf30fe6: /* cvtdq2pd */
7752 case 0x660fe8: /* psubsb */
7753 case 0x660fe9: /* psubsw */
7754 case 0x660fea: /* pminsw */
7755 case 0x660feb: /* por */
7756 case 0x660fec: /* paddsb */
7757 case 0x660fed: /* paddsw */
7758 case 0x660fee: /* pmaxsw */
7759 case 0x660fef: /* pxor */
7760 case 0xf20ff0: /* lddqu */
7761 case 0x660ff1: /* psllw */
7762 case 0x660ff2: /* pslld */
7763 case 0x660ff3: /* psllq */
7764 case 0x660ff4: /* pmuludq */
7765 case 0x660ff5: /* pmaddwd */
7766 case 0x660ff6: /* psadbw */
7767 case 0x660ff8: /* psubb */
7768 case 0x660ff9: /* psubw */
7769 case 0x660ffa: /* psubd */
7770 case 0x660ffb: /* psubq */
7771 case 0x660ffc: /* paddb */
7772 case 0x660ffd: /* paddw */
7773 case 0x660ffe: /* paddd */
7774 if (i386_record_modrm (&ir))
7777 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7779 record_full_arch_list_add_reg (ir.regcache,
7780 I387_XMM0_REGNUM (tdep) + ir.reg);
7781 if ((opcode & 0xfffffffc) == 0x660f3a60)
7782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7785 case 0x0f11: /* movups */
7786 case 0x660f11: /* movupd */
7787 case 0xf30f11: /* movss */
7788 case 0xf20f11: /* movsd */
7789 case 0x0f13: /* movlps */
7790 case 0x660f13: /* movlpd */
7791 case 0x0f17: /* movhps */
7792 case 0x660f17: /* movhpd */
7793 case 0x0f29: /* movaps */
7794 case 0x660f29: /* movapd */
7795 case 0x660f3a14: /* pextrb */
7796 case 0x660f3a15: /* pextrw */
7797 case 0x660f3a16: /* pextrd pextrq */
7798 case 0x660f3a17: /* extractps */
7799 case 0x660f7f: /* movdqa */
7800 case 0xf30f7f: /* movdqu */
7801 if (i386_record_modrm (&ir))
7805 if (opcode == 0x0f13 || opcode == 0x660f13
7806 || opcode == 0x0f17 || opcode == 0x660f17)
7809 if (!i386_xmm_regnum_p (gdbarch,
7810 I387_XMM0_REGNUM (tdep) + ir.rm))
7812 record_full_arch_list_add_reg (ir.regcache,
7813 I387_XMM0_REGNUM (tdep) + ir.rm);
7835 if (i386_record_lea_modrm (&ir))
7840 case 0x0f2b: /* movntps */
7841 case 0x660f2b: /* movntpd */
7842 case 0x0fe7: /* movntq */
7843 case 0x660fe7: /* movntdq */
7846 if (opcode == 0x0fe7)
7850 if (i386_record_lea_modrm (&ir))
7854 case 0xf30f2c: /* cvttss2si */
7855 case 0xf20f2c: /* cvttsd2si */
7856 case 0xf30f2d: /* cvtss2si */
7857 case 0xf20f2d: /* cvtsd2si */
7858 case 0xf20f38f0: /* crc32 */
7859 case 0xf20f38f1: /* crc32 */
7860 case 0x0f50: /* movmskps */
7861 case 0x660f50: /* movmskpd */
7862 case 0x0fc5: /* pextrw */
7863 case 0x660fc5: /* pextrw */
7864 case 0x0fd7: /* pmovmskb */
7865 case 0x660fd7: /* pmovmskb */
7866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7869 case 0x0f3800: /* pshufb */
7870 case 0x0f3801: /* phaddw */
7871 case 0x0f3802: /* phaddd */
7872 case 0x0f3803: /* phaddsw */
7873 case 0x0f3804: /* pmaddubsw */
7874 case 0x0f3805: /* phsubw */
7875 case 0x0f3806: /* phsubd */
7876 case 0x0f3807: /* phsubsw */
7877 case 0x0f3808: /* psignb */
7878 case 0x0f3809: /* psignw */
7879 case 0x0f380a: /* psignd */
7880 case 0x0f380b: /* pmulhrsw */
7881 case 0x0f381c: /* pabsb */
7882 case 0x0f381d: /* pabsw */
7883 case 0x0f381e: /* pabsd */
7884 case 0x0f382b: /* packusdw */
7885 case 0x0f3830: /* pmovzxbw */
7886 case 0x0f3831: /* pmovzxbd */
7887 case 0x0f3832: /* pmovzxbq */
7888 case 0x0f3833: /* pmovzxwd */
7889 case 0x0f3834: /* pmovzxwq */
7890 case 0x0f3835: /* pmovzxdq */
7891 case 0x0f3837: /* pcmpgtq */
7892 case 0x0f3838: /* pminsb */
7893 case 0x0f3839: /* pminsd */
7894 case 0x0f383a: /* pminuw */
7895 case 0x0f383b: /* pminud */
7896 case 0x0f383c: /* pmaxsb */
7897 case 0x0f383d: /* pmaxsd */
7898 case 0x0f383e: /* pmaxuw */
7899 case 0x0f383f: /* pmaxud */
7900 case 0x0f3840: /* pmulld */
7901 case 0x0f3841: /* phminposuw */
7902 case 0x0f3a0f: /* palignr */
7903 case 0x0f60: /* punpcklbw */
7904 case 0x0f61: /* punpcklwd */
7905 case 0x0f62: /* punpckldq */
7906 case 0x0f63: /* packsswb */
7907 case 0x0f64: /* pcmpgtb */
7908 case 0x0f65: /* pcmpgtw */
7909 case 0x0f66: /* pcmpgtd */
7910 case 0x0f67: /* packuswb */
7911 case 0x0f68: /* punpckhbw */
7912 case 0x0f69: /* punpckhwd */
7913 case 0x0f6a: /* punpckhdq */
7914 case 0x0f6b: /* packssdw */
7915 case 0x0f6e: /* movd */
7916 case 0x0f6f: /* movq */
7917 case 0x0f70: /* pshufw */
7918 case 0x0f74: /* pcmpeqb */
7919 case 0x0f75: /* pcmpeqw */
7920 case 0x0f76: /* pcmpeqd */
7921 case 0x0fc4: /* pinsrw */
7922 case 0x0fd1: /* psrlw */
7923 case 0x0fd2: /* psrld */
7924 case 0x0fd3: /* psrlq */
7925 case 0x0fd4: /* paddq */
7926 case 0x0fd5: /* pmullw */
7927 case 0xf20fd6: /* movdq2q */
7928 case 0x0fd8: /* psubusb */
7929 case 0x0fd9: /* psubusw */
7930 case 0x0fda: /* pminub */
7931 case 0x0fdb: /* pand */
7932 case 0x0fdc: /* paddusb */
7933 case 0x0fdd: /* paddusw */
7934 case 0x0fde: /* pmaxub */
7935 case 0x0fdf: /* pandn */
7936 case 0x0fe0: /* pavgb */
7937 case 0x0fe1: /* psraw */
7938 case 0x0fe2: /* psrad */
7939 case 0x0fe3: /* pavgw */
7940 case 0x0fe4: /* pmulhuw */
7941 case 0x0fe5: /* pmulhw */
7942 case 0x0fe8: /* psubsb */
7943 case 0x0fe9: /* psubsw */
7944 case 0x0fea: /* pminsw */
7945 case 0x0feb: /* por */
7946 case 0x0fec: /* paddsb */
7947 case 0x0fed: /* paddsw */
7948 case 0x0fee: /* pmaxsw */
7949 case 0x0fef: /* pxor */
7950 case 0x0ff1: /* psllw */
7951 case 0x0ff2: /* pslld */
7952 case 0x0ff3: /* psllq */
7953 case 0x0ff4: /* pmuludq */
7954 case 0x0ff5: /* pmaddwd */
7955 case 0x0ff6: /* psadbw */
7956 case 0x0ff8: /* psubb */
7957 case 0x0ff9: /* psubw */
7958 case 0x0ffa: /* psubd */
7959 case 0x0ffb: /* psubq */
7960 case 0x0ffc: /* paddb */
7961 case 0x0ffd: /* paddw */
7962 case 0x0ffe: /* paddd */
7963 if (i386_record_modrm (&ir))
7965 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7967 record_full_arch_list_add_reg (ir.regcache,
7968 I387_MM0_REGNUM (tdep) + ir.reg);
7971 case 0x0f71: /* psllw */
7972 case 0x0f72: /* pslld */
7973 case 0x0f73: /* psllq */
7974 if (i386_record_modrm (&ir))
7976 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7978 record_full_arch_list_add_reg (ir.regcache,
7979 I387_MM0_REGNUM (tdep) + ir.rm);
7982 case 0x660f71: /* psllw */
7983 case 0x660f72: /* pslld */
7984 case 0x660f73: /* psllq */
7985 if (i386_record_modrm (&ir))
7988 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7990 record_full_arch_list_add_reg (ir.regcache,
7991 I387_XMM0_REGNUM (tdep) + ir.rm);
7994 case 0x0f7e: /* movd */
7995 case 0x660f7e: /* movd */
7996 if (i386_record_modrm (&ir))
7999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8006 if (i386_record_lea_modrm (&ir))
8011 case 0x0f7f: /* movq */
8012 if (i386_record_modrm (&ir))
8016 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8018 record_full_arch_list_add_reg (ir.regcache,
8019 I387_MM0_REGNUM (tdep) + ir.rm);
8024 if (i386_record_lea_modrm (&ir))
8029 case 0xf30fb8: /* popcnt */
8030 if (i386_record_modrm (&ir))
8032 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8036 case 0x660fd6: /* movq */
8037 if (i386_record_modrm (&ir))
8042 if (!i386_xmm_regnum_p (gdbarch,
8043 I387_XMM0_REGNUM (tdep) + ir.rm))
8045 record_full_arch_list_add_reg (ir.regcache,
8046 I387_XMM0_REGNUM (tdep) + ir.rm);
8051 if (i386_record_lea_modrm (&ir))
8056 case 0x660f3817: /* ptest */
8057 case 0x0f2e: /* ucomiss */
8058 case 0x660f2e: /* ucomisd */
8059 case 0x0f2f: /* comiss */
8060 case 0x660f2f: /* comisd */
8061 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8064 case 0x0ff7: /* maskmovq */
8065 regcache_raw_read_unsigned (ir.regcache,
8066 ir.regmap[X86_RECORD_REDI_REGNUM],
8068 if (record_full_arch_list_add_mem (addr, 64))
8072 case 0x660ff7: /* maskmovdqu */
8073 regcache_raw_read_unsigned (ir.regcache,
8074 ir.regmap[X86_RECORD_REDI_REGNUM],
8076 if (record_full_arch_list_add_mem (addr, 128))
8091 /* In the future, maybe still need to deal with need_dasm. */
8092 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8093 if (record_full_arch_list_add_end ())
8099 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8100 "at address %s.\n"),
8101 (unsigned int) (opcode),
8102 paddress (gdbarch, ir.orig_addr));
8106 static const int i386_record_regmap[] =
8108 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8109 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8110 0, 0, 0, 0, 0, 0, 0, 0,
8111 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8112 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8115 /* Check that the given address appears suitable for a fast
8116 tracepoint, which on x86-64 means that we need an instruction of at
8117 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8118 jump and not have to worry about program jumps to an address in the
8119 middle of the tracepoint jump. On x86, it may be possible to use
8120 4-byte jumps with a 2-byte offset to a trampoline located in the
8121 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8122 of instruction to replace, and 0 if not, plus an explanatory
8126 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8131 /* Ask the target for the minimum instruction length supported. */
8132 jumplen = target_get_min_fast_tracepoint_insn_len ();
8136 /* If the target does not support the get_min_fast_tracepoint_insn_len
8137 operation, assume that fast tracepoints will always be implemented
8138 using 4-byte relative jumps on both x86 and x86-64. */
8141 else if (jumplen == 0)
8143 /* If the target does support get_min_fast_tracepoint_insn_len but
8144 returns zero, then the IPA has not loaded yet. In this case,
8145 we optimistically assume that truncated 2-byte relative jumps
8146 will be available on x86, and compensate later if this assumption
8147 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8148 jumps will always be used. */
8149 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8152 /* Check for fit. */
8153 len = gdb_insn_length (gdbarch, addr);
8157 /* Return a bit of target-specific detail to add to the caller's
8158 generic failure message. */
8160 *msg = string_printf (_("; instruction is only %d bytes long, "
8161 "need at least %d bytes for the jump"),
8173 /* Return a floating-point format for a floating-point variable of
8174 length LEN in bits. If non-NULL, NAME is the name of its type.
8175 If no suitable type is found, return NULL. */
8177 const struct floatformat **
8178 i386_floatformat_for_type (struct gdbarch *gdbarch,
8179 const char *name, int len)
8181 if (len == 128 && name)
8182 if (strcmp (name, "__float128") == 0
8183 || strcmp (name, "_Float128") == 0
8184 || strcmp (name, "complex _Float128") == 0)
8185 return floatformats_ia64_quad;
8187 return default_floatformat_for_type (gdbarch, name, len);
8191 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8192 struct tdesc_arch_data *tdesc_data)
8194 const struct target_desc *tdesc = tdep->tdesc;
8195 const struct tdesc_feature *feature_core;
8197 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8198 *feature_avx512, *feature_pkeys;
8199 int i, num_regs, valid_p;
8201 if (! tdesc_has_registers (tdesc))
8204 /* Get core registers. */
8205 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8206 if (feature_core == NULL)
8209 /* Get SSE registers. */
8210 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8212 /* Try AVX registers. */
8213 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8215 /* Try MPX registers. */
8216 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8218 /* Try AVX512 registers. */
8219 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8222 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8226 /* The XCR0 bits. */
8229 /* AVX512 register description requires AVX register description. */
8233 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8235 /* It may have been set by OSABI initialization function. */
8236 if (tdep->k0_regnum < 0)
8238 tdep->k_register_names = i386_k_names;
8239 tdep->k0_regnum = I386_K0_REGNUM;
8242 for (i = 0; i < I387_NUM_K_REGS; i++)
8243 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8244 tdep->k0_regnum + i,
8247 if (tdep->num_zmm_regs == 0)
8249 tdep->zmmh_register_names = i386_zmmh_names;
8250 tdep->num_zmm_regs = 8;
8251 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8254 for (i = 0; i < tdep->num_zmm_regs; i++)
8255 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8256 tdep->zmm0h_regnum + i,
8257 tdep->zmmh_register_names[i]);
8259 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8260 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8261 tdep->xmm16_regnum + i,
8262 tdep->xmm_avx512_register_names[i]);
8264 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8265 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8266 tdep->ymm16h_regnum + i,
8267 tdep->ymm16h_register_names[i]);
8271 /* AVX register description requires SSE register description. */
8275 if (!feature_avx512)
8276 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8278 /* It may have been set by OSABI initialization function. */
8279 if (tdep->num_ymm_regs == 0)
8281 tdep->ymmh_register_names = i386_ymmh_names;
8282 tdep->num_ymm_regs = 8;
8283 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8286 for (i = 0; i < tdep->num_ymm_regs; i++)
8287 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8288 tdep->ymm0h_regnum + i,
8289 tdep->ymmh_register_names[i]);
8291 else if (feature_sse)
8292 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8295 tdep->xcr0 = X86_XSTATE_X87_MASK;
8296 tdep->num_xmm_regs = 0;
8299 num_regs = tdep->num_core_regs;
8300 for (i = 0; i < num_regs; i++)
8301 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8302 tdep->register_names[i]);
8306 /* Need to include %mxcsr, so add one. */
8307 num_regs += tdep->num_xmm_regs + 1;
8308 for (; i < num_regs; i++)
8309 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8310 tdep->register_names[i]);
8315 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8317 if (tdep->bnd0r_regnum < 0)
8319 tdep->mpx_register_names = i386_mpx_names;
8320 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8321 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8324 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8325 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8326 I387_BND0R_REGNUM (tdep) + i,
8327 tdep->mpx_register_names[i]);
8332 tdep->xcr0 |= X86_XSTATE_PKRU;
8333 if (tdep->pkru_regnum < 0)
8335 tdep->pkeys_register_names = i386_pkeys_names;
8336 tdep->pkru_regnum = I386_PKRU_REGNUM;
8337 tdep->num_pkeys_regs = 1;
8340 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8341 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8342 I387_PKRU_REGNUM (tdep) + i,
8343 tdep->pkeys_register_names[i]);
8351 /* Implement the type_align gdbarch function. */
8354 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8356 type = check_typedef (type);
8358 if (gdbarch_ptr_bit (gdbarch) == 32)
8360 if ((TYPE_CODE (type) == TYPE_CODE_INT
8361 || TYPE_CODE (type) == TYPE_CODE_FLT)
8362 && TYPE_LENGTH (type) > 4)
8365 /* Handle x86's funny long double. */
8366 if (TYPE_CODE (type) == TYPE_CODE_FLT
8367 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8371 return TYPE_LENGTH (type);
8375 /* Note: This is called for both i386 and amd64. */
8377 static struct gdbarch *
8378 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8380 struct gdbarch_tdep *tdep;
8381 struct gdbarch *gdbarch;
8382 struct tdesc_arch_data *tdesc_data;
8383 const struct target_desc *tdesc;
8389 /* If there is already a candidate, use it. */
8390 arches = gdbarch_list_lookup_by_info (arches, &info);
8392 return arches->gdbarch;
8394 /* Allocate space for the new architecture. Assume i386 for now. */
8395 tdep = XCNEW (struct gdbarch_tdep);
8396 gdbarch = gdbarch_alloc (&info, tdep);
8398 /* General-purpose registers. */
8399 tdep->gregset_reg_offset = NULL;
8400 tdep->gregset_num_regs = I386_NUM_GREGS;
8401 tdep->sizeof_gregset = 0;
8403 /* Floating-point registers. */
8404 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8405 tdep->fpregset = &i386_fpregset;
8407 /* The default settings include the FPU registers, the MMX registers
8408 and the SSE registers. This can be overridden for a specific ABI
8409 by adjusting the members `st0_regnum', `mm0_regnum' and
8410 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8411 will show up in the output of "info all-registers". */
8413 tdep->st0_regnum = I386_ST0_REGNUM;
8415 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8416 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8418 tdep->jb_pc_offset = -1;
8419 tdep->struct_return = pcc_struct_return;
8420 tdep->sigtramp_start = 0;
8421 tdep->sigtramp_end = 0;
8422 tdep->sigtramp_p = i386_sigtramp_p;
8423 tdep->sigcontext_addr = NULL;
8424 tdep->sc_reg_offset = NULL;
8425 tdep->sc_pc_offset = -1;
8426 tdep->sc_sp_offset = -1;
8428 tdep->xsave_xcr0_offset = -1;
8430 tdep->record_regmap = i386_record_regmap;
8432 set_gdbarch_type_align (gdbarch, i386_type_align);
8434 /* The format used for `long double' on almost all i386 targets is
8435 the i387 extended floating-point format. In fact, of all targets
8436 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8437 on having a `long double' that's not `long' at all. */
8438 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8440 /* Although the i387 extended floating-point has only 80 significant
8441 bits, a `long double' actually takes up 96, probably to enforce
8443 set_gdbarch_long_double_bit (gdbarch, 96);
8445 /* Support for floating-point data type variants. */
8446 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8448 /* Register numbers of various important registers. */
8449 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8450 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8451 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8452 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8454 /* NOTE: kettenis/20040418: GCC does have two possible register
8455 numbering schemes on the i386: dbx and SVR4. These schemes
8456 differ in how they number %ebp, %esp, %eflags, and the
8457 floating-point registers, and are implemented by the arrays
8458 dbx_register_map[] and svr4_dbx_register_map in
8459 gcc/config/i386.c. GCC also defines a third numbering scheme in
8460 gcc/config/i386.c, which it designates as the "default" register
8461 map used in 64bit mode. This last register numbering scheme is
8462 implemented in dbx64_register_map, and is used for AMD64; see
8465 Currently, each GCC i386 target always uses the same register
8466 numbering scheme across all its supported debugging formats
8467 i.e. SDB (COFF), stabs and DWARF 2. This is because
8468 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8469 DBX_REGISTER_NUMBER macro which is defined by each target's
8470 respective config header in a manner independent of the requested
8471 output debugging format.
8473 This does not match the arrangement below, which presumes that
8474 the SDB and stabs numbering schemes differ from the DWARF and
8475 DWARF 2 ones. The reason for this arrangement is that it is
8476 likely to get the numbering scheme for the target's
8477 default/native debug format right. For targets where GCC is the
8478 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8479 targets where the native toolchain uses a different numbering
8480 scheme for a particular debug format (stabs-in-ELF on Solaris)
8481 the defaults below will have to be overridden, like
8482 i386_elf_init_abi() does. */
8484 /* Use the dbx register numbering scheme for stabs and COFF. */
8485 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8486 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8488 /* Use the SVR4 register numbering scheme for DWARF 2. */
8489 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8491 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8492 be in use on any of the supported i386 targets. */
8494 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8496 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8498 /* Call dummy code. */
8499 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8500 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8501 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8502 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8504 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8505 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8506 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8508 set_gdbarch_return_value (gdbarch, i386_return_value);
8510 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8512 /* Stack grows downward. */
8513 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8515 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8516 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8518 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8519 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8521 set_gdbarch_frame_args_skip (gdbarch, 8);
8523 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8525 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8527 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8529 /* Add the i386 register groups. */
8530 i386_add_reggroups (gdbarch);
8531 tdep->register_reggroup_p = i386_register_reggroup_p;
8533 /* Helper for function argument information. */
8534 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8536 /* Hook the function epilogue frame unwinder. This unwinder is
8537 appended to the list first, so that it supercedes the DWARF
8538 unwinder in function epilogues (where the DWARF unwinder
8539 currently fails). */
8540 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8542 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8543 to the list before the prologue-based unwinders, so that DWARF
8544 CFI info will be used if it is available. */
8545 dwarf2_append_unwinders (gdbarch);
8547 frame_base_set_default (gdbarch, &i386_frame_base);
8549 /* Pseudo registers may be changed by amd64_init_abi. */
8550 set_gdbarch_pseudo_register_read_value (gdbarch,
8551 i386_pseudo_register_read_value);
8552 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8553 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8554 i386_ax_pseudo_register_collect);
8556 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8557 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8559 /* Override the normal target description method to make the AVX
8560 upper halves anonymous. */
8561 set_gdbarch_register_name (gdbarch, i386_register_name);
8563 /* Even though the default ABI only includes general-purpose registers,
8564 floating-point registers and the SSE registers, we have to leave a
8565 gap for the upper AVX, MPX and AVX512 registers. */
8566 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8568 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8570 /* Get the x86 target description from INFO. */
8571 tdesc = info.target_desc;
8572 if (! tdesc_has_registers (tdesc))
8573 tdesc = i386_target_description (X86_XSTATE_SSE_MASK);
8574 tdep->tdesc = tdesc;
8576 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8577 tdep->register_names = i386_register_names;
8579 /* No upper YMM registers. */
8580 tdep->ymmh_register_names = NULL;
8581 tdep->ymm0h_regnum = -1;
8583 /* No upper ZMM registers. */
8584 tdep->zmmh_register_names = NULL;
8585 tdep->zmm0h_regnum = -1;
8587 /* No high XMM registers. */
8588 tdep->xmm_avx512_register_names = NULL;
8589 tdep->xmm16_regnum = -1;
8591 /* No upper YMM16-31 registers. */
8592 tdep->ymm16h_register_names = NULL;
8593 tdep->ymm16h_regnum = -1;
8595 tdep->num_byte_regs = 8;
8596 tdep->num_word_regs = 8;
8597 tdep->num_dword_regs = 0;
8598 tdep->num_mmx_regs = 8;
8599 tdep->num_ymm_regs = 0;
8601 /* No MPX registers. */
8602 tdep->bnd0r_regnum = -1;
8603 tdep->bndcfgu_regnum = -1;
8605 /* No AVX512 registers. */
8606 tdep->k0_regnum = -1;
8607 tdep->num_zmm_regs = 0;
8608 tdep->num_ymm_avx512_regs = 0;
8609 tdep->num_xmm_avx512_regs = 0;
8611 /* No PKEYS registers */
8612 tdep->pkru_regnum = -1;
8613 tdep->num_pkeys_regs = 0;
8615 tdesc_data = tdesc_data_alloc ();
8617 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8619 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8621 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8622 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8623 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8625 /* Hook in ABI-specific overrides, if they have been registered.
8626 Note: If INFO specifies a 64 bit arch, this is where we turn
8627 a 32-bit i386 into a 64-bit amd64. */
8628 info.tdesc_data = tdesc_data;
8629 gdbarch_init_osabi (info, gdbarch);
8631 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8633 tdesc_data_cleanup (tdesc_data);
8635 gdbarch_free (gdbarch);
8639 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8641 /* Wire in pseudo registers. Number of pseudo registers may be
8643 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8644 + tdep->num_word_regs
8645 + tdep->num_dword_regs
8646 + tdep->num_mmx_regs
8647 + tdep->num_ymm_regs
8649 + tdep->num_ymm_avx512_regs
8650 + tdep->num_zmm_regs));
8652 /* Target description may be changed. */
8653 tdesc = tdep->tdesc;
8655 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8657 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8658 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8660 /* Make %al the first pseudo-register. */
8661 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8662 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8664 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8665 if (tdep->num_dword_regs)
8667 /* Support dword pseudo-register if it hasn't been disabled. */
8668 tdep->eax_regnum = ymm0_regnum;
8669 ymm0_regnum += tdep->num_dword_regs;
8672 tdep->eax_regnum = -1;
8674 mm0_regnum = ymm0_regnum;
8675 if (tdep->num_ymm_regs)
8677 /* Support YMM pseudo-register if it is available. */
8678 tdep->ymm0_regnum = ymm0_regnum;
8679 mm0_regnum += tdep->num_ymm_regs;
8682 tdep->ymm0_regnum = -1;
8684 if (tdep->num_ymm_avx512_regs)
8686 /* Support YMM16-31 pseudo registers if available. */
8687 tdep->ymm16_regnum = mm0_regnum;
8688 mm0_regnum += tdep->num_ymm_avx512_regs;
8691 tdep->ymm16_regnum = -1;
8693 if (tdep->num_zmm_regs)
8695 /* Support ZMM pseudo-register if it is available. */
8696 tdep->zmm0_regnum = mm0_regnum;
8697 mm0_regnum += tdep->num_zmm_regs;
8700 tdep->zmm0_regnum = -1;
8702 bnd0_regnum = mm0_regnum;
8703 if (tdep->num_mmx_regs != 0)
8705 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8706 tdep->mm0_regnum = mm0_regnum;
8707 bnd0_regnum += tdep->num_mmx_regs;
8710 tdep->mm0_regnum = -1;
8712 if (tdep->bnd0r_regnum > 0)
8713 tdep->bnd0_regnum = bnd0_regnum;
8715 tdep-> bnd0_regnum = -1;
8717 /* Hook in the legacy prologue-based unwinders last (fallback). */
8718 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8719 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8720 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8722 /* If we have a register mapping, enable the generic core file
8723 support, unless it has already been enabled. */
8724 if (tdep->gregset_reg_offset
8725 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8726 set_gdbarch_iterate_over_regset_sections
8727 (gdbarch, i386_iterate_over_regset_sections);
8729 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8730 i386_fast_tracepoint_valid_at);
8737 /* Return the target description for a specified XSAVE feature mask. */
8739 const struct target_desc *
8740 i386_target_description (uint64_t xcr0)
8742 static target_desc *i386_tdescs \
8743 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
8744 target_desc **tdesc;
8746 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8747 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8748 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8749 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8750 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
8753 *tdesc = i386_create_target_description (xcr0, false);
8758 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8760 /* Find the bound directory base address. */
8762 static unsigned long
8763 i386_mpx_bd_base (void)
8765 struct regcache *rcache;
8766 struct gdbarch_tdep *tdep;
8768 enum register_status regstatus;
8770 rcache = get_current_regcache ();
8771 tdep = gdbarch_tdep (rcache->arch ());
8773 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8775 if (regstatus != REG_VALID)
8776 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8778 return ret & MPX_BASE_MASK;
8782 i386_mpx_enabled (void)
8784 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8785 const struct target_desc *tdesc = tdep->tdesc;
8787 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8790 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8791 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8792 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8793 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8795 /* Find the bound table entry given the pointer location and the base
8796 address of the table. */
8799 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8803 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8804 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8805 CORE_ADDR bd_entry_addr;
8808 struct gdbarch *gdbarch = get_current_arch ();
8809 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8812 if (gdbarch_ptr_bit (gdbarch) == 64)
8814 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8815 bd_ptr_r_shift = 20;
8817 bt_select_r_shift = 3;
8818 bt_select_l_shift = 5;
8819 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8821 if ( sizeof (CORE_ADDR) == 4)
8822 error (_("bound table examination not supported\
8823 for 64-bit process with 32-bit GDB"));
8827 mpx_bd_mask = MPX_BD_MASK_32;
8828 bd_ptr_r_shift = 12;
8830 bt_select_r_shift = 2;
8831 bt_select_l_shift = 4;
8832 bt_mask = MPX_BT_MASK_32;
8835 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8836 bd_entry_addr = bd_base + offset1;
8837 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8839 if ((bd_entry & 0x1) == 0)
8840 error (_("Invalid bounds directory entry at %s."),
8841 paddress (get_current_arch (), bd_entry_addr));
8843 /* Clearing status bit. */
8845 bt_addr = bd_entry & ~bt_select_r_shift;
8846 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8848 return bt_addr + offset2;
8851 /* Print routine for the mpx bounds. */
8854 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8856 struct ui_out *uiout = current_uiout;
8858 struct gdbarch *gdbarch = get_current_arch ();
8859 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8860 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8862 if (bounds_in_map == 1)
8864 uiout->text ("Null bounds on map:");
8865 uiout->text (" pointer value = ");
8866 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8872 uiout->text ("{lbound = ");
8873 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8874 uiout->text (", ubound = ");
8876 /* The upper bound is stored in 1's complement. */
8877 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8878 uiout->text ("}: pointer value = ");
8879 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8881 if (gdbarch_ptr_bit (gdbarch) == 64)
8882 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8884 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8886 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8887 -1 represents in this sense full memory access, and there is no need
8890 size = (size > -1 ? size + 1 : size);
8891 uiout->text (", size = ");
8892 uiout->field_fmt ("size", "%s", plongest (size));
8894 uiout->text (", metadata = ");
8895 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8900 /* Implement the command "show mpx bound". */
8903 i386_mpx_info_bounds (const char *args, int from_tty)
8905 CORE_ADDR bd_base = 0;
8907 CORE_ADDR bt_entry_addr = 0;
8908 CORE_ADDR bt_entry[4];
8910 struct gdbarch *gdbarch = get_current_arch ();
8911 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8913 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8914 || !i386_mpx_enabled ())
8916 printf_unfiltered (_("Intel Memory Protection Extensions not "
8917 "supported on this target.\n"));
8923 printf_unfiltered (_("Address of pointer variable expected.\n"));
8927 addr = parse_and_eval_address (args);
8929 bd_base = i386_mpx_bd_base ();
8930 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8932 memset (bt_entry, 0, sizeof (bt_entry));
8934 for (i = 0; i < 4; i++)
8935 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8936 + i * TYPE_LENGTH (data_ptr_type),
8939 i386_mpx_print_bounds (bt_entry);
8942 /* Implement the command "set mpx bound". */
8945 i386_mpx_set_bounds (const char *args, int from_tty)
8947 CORE_ADDR bd_base = 0;
8948 CORE_ADDR addr, lower, upper;
8949 CORE_ADDR bt_entry_addr = 0;
8950 CORE_ADDR bt_entry[2];
8951 const char *input = args;
8953 struct gdbarch *gdbarch = get_current_arch ();
8954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8955 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8957 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8958 || !i386_mpx_enabled ())
8959 error (_("Intel Memory Protection Extensions not supported\
8963 error (_("Pointer value expected."));
8965 addr = value_as_address (parse_to_comma_and_eval (&input));
8967 if (input[0] == ',')
8969 if (input[0] == '\0')
8970 error (_("wrong number of arguments: missing lower and upper bound."));
8971 lower = value_as_address (parse_to_comma_and_eval (&input));
8973 if (input[0] == ',')
8975 if (input[0] == '\0')
8976 error (_("Wrong number of arguments; Missing upper bound."));
8977 upper = value_as_address (parse_to_comma_and_eval (&input));
8979 bd_base = i386_mpx_bd_base ();
8980 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8981 for (i = 0; i < 2; i++)
8982 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8983 + i * TYPE_LENGTH (data_ptr_type),
8985 bt_entry[0] = (uint64_t) lower;
8986 bt_entry[1] = ~(uint64_t) upper;
8988 for (i = 0; i < 2; i++)
8989 write_memory_unsigned_integer (bt_entry_addr
8990 + i * TYPE_LENGTH (data_ptr_type),
8991 TYPE_LENGTH (data_ptr_type), byte_order,
8995 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8997 /* Helper function for the CLI commands. */
9000 set_mpx_cmd (const char *args, int from_tty)
9002 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9005 /* Helper function for the CLI commands. */
9008 show_mpx_cmd (const char *args, int from_tty)
9010 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9014 _initialize_i386_tdep (void)
9016 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9018 /* Add the variable that controls the disassembly flavor. */
9019 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9020 &disassembly_flavor, _("\
9021 Set the disassembly flavor."), _("\
9022 Show the disassembly flavor."), _("\
9023 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9025 NULL, /* FIXME: i18n: */
9026 &setlist, &showlist);
9028 /* Add the variable that controls the convention for returning
9030 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9031 &struct_convention, _("\
9032 Set the convention for returning small structs."), _("\
9033 Show the convention for returning small structs."), _("\
9034 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9037 NULL, /* FIXME: i18n: */
9038 &setlist, &showlist);
9040 /* Add "mpx" prefix for the set commands. */
9042 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9043 Set Intel Memory Protection Extensions specific variables."),
9044 &mpx_set_cmdlist, "set mpx ",
9045 0 /* allow-unknown */, &setlist);
9047 /* Add "mpx" prefix for the show commands. */
9049 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9050 Show Intel Memory Protection Extensions specific variables."),
9051 &mpx_show_cmdlist, "show mpx ",
9052 0 /* allow-unknown */, &showlist);
9054 /* Add "bound" command for the show mpx commands list. */
9056 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9057 "Show the memory bounds for a given array/pointer storage\
9058 in the bound table.",
9061 /* Add "bound" command for the set mpx commands list. */
9063 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9064 "Set the memory bounds for a given array/pointer storage\
9065 in the bound table.",
9068 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9069 i386_svr4_init_abi);
9071 /* Initialize the i386-specific register groups. */
9072 i386_init_reggroups ();
9074 /* Tell remote stub that we support XML target description. */
9075 register_remote_support_xml ("i386");
9083 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9084 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9085 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9086 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9087 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9088 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9089 { "i386/i386-avx-mpx-avx512-pku.xml",
9090 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9093 for (auto &a : xml_masks)
9095 auto tdesc = i386_target_description (a.mask);
9097 selftests::record_xml_tdesc (a.xml, tdesc);
9099 #endif /* GDB_SELF_TEST */