1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
25 #include "dummy-frame.h"
26 #include "dwarf2-frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
38 #include "reggroups.h"
46 #include "gdb_assert.h"
47 #include "gdb_string.h"
49 #include "i386-tdep.h"
50 #include "i387-tdep.h"
54 static char *i386_register_names[] =
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
69 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
71 /* Register names for MMX pseudo-registers. */
73 static char *i386_mmx_names[] =
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
79 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
95 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
99 if (I387_NUM_XMM_REGS (tdep) == 0)
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
107 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
111 if (I387_NUM_XMM_REGS (tdep) == 0)
114 return (regnum == I387_MXCSR_REGNUM (tdep));
120 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
124 if (I387_ST0_REGNUM (tdep) < 0)
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
132 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
136 if (I387_ST0_REGNUM (tdep) < 0)
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
143 /* Return the name of register REGNUM. */
146 i386_register_name (struct gdbarch *gdbarch, int regnum)
148 if (i386_mmx_regnum_p (gdbarch, regnum))
149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
157 /* Convert a dbx register number REG to the appropriate register
158 number used by GDB. */
161 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
168 if (reg >= 0 && reg <= 7)
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
178 else if (reg >= 12 && reg <= 19)
180 /* Floating-point registers. */
181 return reg - 12 + I387_ST0_REGNUM (tdep);
183 else if (reg >= 21 && reg <= 28)
186 return reg - 21 + I387_XMM0_REGNUM (tdep);
188 else if (reg >= 29 && reg <= 36)
191 return reg - 29 + I387_MM0_REGNUM (tdep);
194 /* This will hopefully provoke a warning. */
195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
198 /* Convert SVR4 register number REG to the appropriate register number
202 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
209 /* The SVR4 register numbering includes %eip and %eflags, and
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
213 /* General-purpose registers. */
216 else if (reg >= 11 && reg <= 18)
218 /* Floating-point registers. */
219 return reg - 11 + I387_ST0_REGNUM (tdep);
221 else if (reg >= 21 && reg <= 36)
223 /* The SSE and MMX registers have the same numbers as with dbx. */
224 return i386_dbx_reg_to_regnum (gdbarch, reg);
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
240 /* This will hopefully provoke a warning. */
241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
246 /* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
248 static const char att_flavor[] = "att";
249 static const char intel_flavor[] = "intel";
250 static const char *valid_flavors[] =
256 static const char *disassembly_flavor = att_flavor;
259 /* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
268 This function is 64-bit safe. */
270 static const gdb_byte *
271 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
275 *len = sizeof (break_insn);
279 /* Displaced instruction handling. */
283 i386_absolute_jmp_p (gdb_byte *insn)
285 /* jmp far (absolute address in operand) */
291 /* jump near, absolute indirect (/4) */
292 if ((insn[1] & 0x38) == 0x20)
295 /* jump far, absolute indirect (/5) */
296 if ((insn[1] & 0x38) == 0x28)
304 i386_absolute_call_p (gdb_byte *insn)
306 /* call far, absolute */
312 /* Call near, absolute indirect (/2) */
313 if ((insn[1] & 0x38) == 0x10)
316 /* Call far, absolute indirect (/3) */
317 if ((insn[1] & 0x38) == 0x18)
325 i386_ret_p (gdb_byte *insn)
329 case 0xc2: /* ret near, pop N bytes */
330 case 0xc3: /* ret near */
331 case 0xca: /* ret far, pop N bytes */
332 case 0xcb: /* ret far */
333 case 0xcf: /* iret */
342 i386_call_p (gdb_byte *insn)
344 if (i386_absolute_call_p (insn))
347 /* call near, relative */
355 i386_breakpoint_p (gdb_byte *insn)
357 return insn[0] == 0xcc; /* int 3 */
360 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
361 length in bytes. Otherwise, return zero. */
363 i386_syscall_p (gdb_byte *insn, ULONGEST *lengthp)
374 /* Fix up the state of registers and memory after having single-stepped
375 a displaced instruction. */
377 i386_displaced_step_fixup (struct gdbarch *gdbarch,
378 struct displaced_step_closure *closure,
379 CORE_ADDR from, CORE_ADDR to,
380 struct regcache *regs)
382 /* The offset we applied to the instruction's address.
383 This could well be negative (when viewed as a signed 32-bit
384 value), but ULONGEST won't reflect that, so take care when
386 ULONGEST insn_offset = to - from;
388 /* Since we use simple_displaced_step_copy_insn, our closure is a
389 copy of the instruction. */
390 gdb_byte *insn = (gdb_byte *) closure;
393 fprintf_unfiltered (gdb_stdlog,
394 "displaced: fixup (0x%s, 0x%s), "
395 "insn = 0x%02x 0x%02x ...\n",
396 paddr_nz (from), paddr_nz (to), insn[0], insn[1]);
398 /* The list of issues to contend with here is taken from
399 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
400 Yay for Free Software! */
402 /* Relocate the %eip, if necessary. */
404 /* Except in the case of absolute or indirect jump or call
405 instructions, or a return instruction, the new eip is relative to
406 the displaced instruction; make it relative. Well, signal
407 handler returns don't need relocation either, but we use the
408 value of %eip to recognize those; see below. */
409 if (! i386_absolute_jmp_p (insn)
410 && ! i386_absolute_call_p (insn)
411 && ! i386_ret_p (insn))
416 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
418 /* A signal trampoline system call changes the %eip, resuming
419 execution of the main program after the signal handler has
420 returned. That makes them like 'return' instructions; we
421 shouldn't relocate %eip.
423 But most system calls don't, and we do need to relocate %eip.
425 Our heuristic for distinguishing these cases: if stepping
426 over the system call instruction left control directly after
427 the instruction, the we relocate --- control almost certainly
428 doesn't belong in the displaced copy. Otherwise, we assume
429 the instruction has put control where it belongs, and leave
430 it unrelocated. Goodness help us if there are PC-relative
432 if (i386_syscall_p (insn, &insn_len)
433 && orig_eip != to + insn_len)
436 fprintf_unfiltered (gdb_stdlog,
437 "displaced: syscall changed %%eip; "
442 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
444 /* If we have stepped over a breakpoint, set the %eip to
445 point at the breakpoint instruction itself.
447 (gdbarch_decr_pc_after_break was never something the core
448 of GDB should have been concerned with; arch-specific
449 code should be making PC values consistent before
450 presenting them to GDB.) */
451 if (i386_breakpoint_p (insn))
454 fprintf_unfiltered (gdb_stdlog,
455 "displaced: stepped breakpoint\n");
459 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
462 fprintf_unfiltered (gdb_stdlog,
464 "relocated %%eip from 0x%s to 0x%s\n",
465 paddr_nz (orig_eip), paddr_nz (eip));
469 /* If the instruction was PUSHFL, then the TF bit will be set in the
470 pushed value, and should be cleared. We'll leave this for later,
471 since GDB already messes up the TF flag when stepping over a
474 /* If the instruction was a call, the return address now atop the
475 stack is the address following the copied instruction. We need
476 to make it the address following the original instruction. */
477 if (i386_call_p (insn))
481 const ULONGEST retaddr_len = 4;
483 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
484 retaddr = read_memory_unsigned_integer (esp, retaddr_len);
485 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
486 write_memory_unsigned_integer (esp, retaddr_len, retaddr);
489 fprintf_unfiltered (gdb_stdlog,
490 "displaced: relocated return addr at 0x%s "
499 #ifdef I386_REGNO_TO_SYMMETRY
500 #error "The Sequent Symmetry is no longer supported."
503 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
504 and %esp "belong" to the calling function. Therefore these
505 registers should be saved if they're going to be modified. */
507 /* The maximum number of saved registers. This should include all
508 registers mentioned above, and %eip. */
509 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
511 struct i386_frame_cache
518 /* Saved registers. */
519 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
524 /* Stack space reserved for local variables. */
528 /* Allocate and initialize a frame cache. */
530 static struct i386_frame_cache *
531 i386_alloc_frame_cache (void)
533 struct i386_frame_cache *cache;
536 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
540 cache->sp_offset = -4;
543 /* Saved registers. We initialize these to -1 since zero is a valid
544 offset (that's where %ebp is supposed to be stored). */
545 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
546 cache->saved_regs[i] = -1;
548 cache->stack_align = 0;
549 cache->pc_in_eax = 0;
551 /* Frameless until proven otherwise. */
557 /* If the instruction at PC is a jump, return the address of its
558 target. Otherwise, return PC. */
561 i386_follow_jump (CORE_ADDR pc)
567 target_read_memory (pc, &op, 1);
571 op = read_memory_unsigned_integer (pc + 1, 1);
577 /* Relative jump: if data16 == 0, disp32, else disp16. */
580 delta = read_memory_integer (pc + 2, 2);
582 /* Include the size of the jmp instruction (including the
588 delta = read_memory_integer (pc + 1, 4);
590 /* Include the size of the jmp instruction. */
595 /* Relative jump, disp8 (ignore data16). */
596 delta = read_memory_integer (pc + data16 + 1, 1);
605 /* Check whether PC points at a prologue for a function returning a
606 structure or union. If so, it updates CACHE and returns the
607 address of the first instruction after the code sequence that
608 removes the "hidden" argument from the stack or CURRENT_PC,
609 whichever is smaller. Otherwise, return PC. */
612 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
613 struct i386_frame_cache *cache)
615 /* Functions that return a structure or union start with:
618 xchgl %eax, (%esp) 0x87 0x04 0x24
619 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
621 (the System V compiler puts out the second `xchg' instruction,
622 and the assembler doesn't try to optimize it, so the 'sib' form
623 gets generated). This sequence is used to get the address of the
624 return buffer for a function that returns a structure. */
625 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
626 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
630 if (current_pc <= pc)
633 target_read_memory (pc, &op, 1);
635 if (op != 0x58) /* popl %eax */
638 target_read_memory (pc + 1, buf, 4);
639 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
642 if (current_pc == pc)
644 cache->sp_offset += 4;
648 if (current_pc == pc + 1)
650 cache->pc_in_eax = 1;
654 if (buf[1] == proto1[1])
661 i386_skip_probe (CORE_ADDR pc)
663 /* A function may start with
677 target_read_memory (pc, &op, 1);
679 if (op == 0x68 || op == 0x6a)
683 /* Skip past the `pushl' instruction; it has either a one-byte or a
684 four-byte operand, depending on the opcode. */
690 /* Read the following 8 bytes, which should be `call _probe' (6
691 bytes) followed by `addl $4,%esp' (2 bytes). */
692 read_memory (pc + delta, buf, sizeof (buf));
693 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
694 pc += delta + sizeof (buf);
700 /* GCC 4.1 and later, can put code in the prologue to realign the
701 stack pointer. Check whether PC points to such code, and update
702 CACHE accordingly. Return the first instruction after the code
703 sequence or CURRENT_PC, whichever is smaller. If we don't
704 recognize the code, return PC. */
707 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
708 struct i386_frame_cache *cache)
710 /* The register used by the compiler to perform the stack re-alignment
711 is, in order of preference, either %ecx, %edx, or %eax. GCC should
712 never use %ebx as it always treats it as callee-saved, whereas
713 the compiler can only use caller-saved registers. */
714 static const gdb_byte insns_ecx[10] = {
715 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
716 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
717 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
719 static const gdb_byte insns_edx[10] = {
720 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
721 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
722 0xff, 0x72, 0xfc /* pushl -4(%edx) */
724 static const gdb_byte insns_eax[10] = {
725 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
726 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
727 0xff, 0x70, 0xfc /* pushl -4(%eax) */
731 if (target_read_memory (pc, buf, sizeof buf)
732 || (memcmp (buf, insns_ecx, sizeof buf) != 0
733 && memcmp (buf, insns_edx, sizeof buf) != 0
734 && memcmp (buf, insns_eax, sizeof buf) != 0))
737 if (current_pc > pc + 4)
738 cache->stack_align = 1;
740 return min (pc + 10, current_pc);
743 /* Maximum instruction length we need to handle. */
744 #define I386_MAX_MATCHED_INSN_LEN 6
746 /* Instruction description. */
750 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
751 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
754 /* Search for the instruction at PC in the list SKIP_INSNS. Return
755 the first instruction description that matches. Otherwise, return
758 static struct i386_insn *
759 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
761 struct i386_insn *insn;
764 target_read_memory (pc, &op, 1);
766 for (insn = skip_insns; insn->len > 0; insn++)
768 if ((op & insn->mask[0]) == insn->insn[0])
770 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
771 int insn_matched = 1;
774 gdb_assert (insn->len > 1);
775 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
777 target_read_memory (pc + 1, buf, insn->len - 1);
778 for (i = 1; i < insn->len; i++)
780 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
792 /* Some special instructions that might be migrated by GCC into the
793 part of the prologue that sets up the new stack frame. Because the
794 stack frame hasn't been setup yet, no registers have been saved
795 yet, and only the scratch registers %eax, %ecx and %edx can be
798 struct i386_insn i386_frame_setup_skip_insns[] =
800 /* Check for `movb imm8, r' and `movl imm32, r'.
802 ??? Should we handle 16-bit operand-sizes here? */
804 /* `movb imm8, %al' and `movb imm8, %ah' */
805 /* `movb imm8, %cl' and `movb imm8, %ch' */
806 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
807 /* `movb imm8, %dl' and `movb imm8, %dh' */
808 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
809 /* `movl imm32, %eax' and `movl imm32, %ecx' */
810 { 5, { 0xb8 }, { 0xfe } },
811 /* `movl imm32, %edx' */
812 { 5, { 0xba }, { 0xff } },
814 /* Check for `mov imm32, r32'. Note that there is an alternative
815 encoding for `mov m32, %eax'.
817 ??? Should we handle SIB adressing here?
818 ??? Should we handle 16-bit operand-sizes here? */
820 /* `movl m32, %eax' */
821 { 5, { 0xa1 }, { 0xff } },
822 /* `movl m32, %eax' and `mov; m32, %ecx' */
823 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
824 /* `movl m32, %edx' */
825 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
827 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
828 Because of the symmetry, there are actually two ways to encode
829 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
830 opcode bytes 0x31 and 0x33 for `xorl'. */
832 /* `subl %eax, %eax' */
833 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
834 /* `subl %ecx, %ecx' */
835 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
836 /* `subl %edx, %edx' */
837 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
838 /* `xorl %eax, %eax' */
839 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
840 /* `xorl %ecx, %ecx' */
841 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
842 /* `xorl %edx, %edx' */
843 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
848 /* Check whether PC points to a no-op instruction. */
850 i386_skip_noop (CORE_ADDR pc)
855 target_read_memory (pc, &op, 1);
860 /* Ignore `nop' instruction. */
864 target_read_memory (pc, &op, 1);
867 /* Ignore no-op instruction `mov %edi, %edi'.
868 Microsoft system dlls often start with
869 a `mov %edi,%edi' instruction.
870 The 5 bytes before the function start are
871 filled with `nop' instructions.
872 This pattern can be used for hot-patching:
873 The `mov %edi, %edi' instruction can be replaced by a
874 near jump to the location of the 5 `nop' instructions
875 which can be replaced by a 32-bit jump to anywhere
876 in the 32-bit address space. */
880 target_read_memory (pc + 1, &op, 1);
884 target_read_memory (pc, &op, 1);
892 /* Check whether PC points at a code that sets up a new stack frame.
893 If so, it updates CACHE and returns the address of the first
894 instruction after the sequence that sets up the frame or LIMIT,
895 whichever is smaller. If we don't recognize the code, return PC. */
898 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
899 struct i386_frame_cache *cache)
901 struct i386_insn *insn;
908 target_read_memory (pc, &op, 1);
910 if (op == 0x55) /* pushl %ebp */
912 /* Take into account that we've executed the `pushl %ebp' that
913 starts this instruction sequence. */
914 cache->saved_regs[I386_EBP_REGNUM] = 0;
915 cache->sp_offset += 4;
918 /* If that's all, return now. */
922 /* Check for some special instructions that might be migrated by
923 GCC into the prologue and skip them. At this point in the
924 prologue, code should only touch the scratch registers %eax,
925 %ecx and %edx, so while the number of posibilities is sheer,
928 Make sure we only skip these instructions if we later see the
929 `movl %esp, %ebp' that actually sets up the frame. */
930 while (pc + skip < limit)
932 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
939 /* If that's all, return now. */
940 if (limit <= pc + skip)
943 target_read_memory (pc + skip, &op, 1);
945 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
949 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
953 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
960 /* OK, we actually have a frame. We just don't know how large
961 it is yet. Set its size to zero. We'll adjust it if
962 necessary. We also now commit to skipping the special
963 instructions mentioned before. */
967 /* If that's all, return now. */
971 /* Check for stack adjustment
975 NOTE: You can't subtract a 16-bit immediate from a 32-bit
976 reg, so we don't have to worry about a data16 prefix. */
977 target_read_memory (pc, &op, 1);
980 /* `subl' with 8-bit immediate. */
981 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
982 /* Some instruction starting with 0x83 other than `subl'. */
985 /* `subl' with signed 8-bit immediate (though it wouldn't
986 make sense to be negative). */
987 cache->locals = read_memory_integer (pc + 2, 1);
992 /* Maybe it is `subl' with a 32-bit immediate. */
993 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
994 /* Some instruction starting with 0x81 other than `subl'. */
997 /* It is `subl' with a 32-bit immediate. */
998 cache->locals = read_memory_integer (pc + 2, 4);
1003 /* Some instruction other than `subl'. */
1007 else if (op == 0xc8) /* enter */
1009 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
1016 /* Check whether PC points at code that saves registers on the stack.
1017 If so, it updates CACHE and returns the address of the first
1018 instruction after the register saves or CURRENT_PC, whichever is
1019 smaller. Otherwise, return PC. */
1022 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1023 struct i386_frame_cache *cache)
1025 CORE_ADDR offset = 0;
1029 if (cache->locals > 0)
1030 offset -= cache->locals;
1031 for (i = 0; i < 8 && pc < current_pc; i++)
1033 target_read_memory (pc, &op, 1);
1034 if (op < 0x50 || op > 0x57)
1038 cache->saved_regs[op - 0x50] = offset;
1039 cache->sp_offset += 4;
1046 /* Do a full analysis of the prologue at PC and update CACHE
1047 accordingly. Bail out early if CURRENT_PC is reached. Return the
1048 address where the analysis stopped.
1050 We handle these cases:
1052 The startup sequence can be at the start of the function, or the
1053 function can start with a branch to startup code at the end.
1055 %ebp can be set up with either the 'enter' instruction, or "pushl
1056 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1057 once used in the System V compiler).
1059 Local space is allocated just below the saved %ebp by either the
1060 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1061 16-bit unsigned argument for space to allocate, and the 'addl'
1062 instruction could have either a signed byte, or 32-bit immediate.
1064 Next, the registers used by this function are pushed. With the
1065 System V compiler they will always be in the order: %edi, %esi,
1066 %ebx (and sometimes a harmless bug causes it to also save but not
1067 restore %eax); however, the code below is willing to see the pushes
1068 in any order, and will handle up to 8 of them.
1070 If the setup sequence is at the end of the function, then the next
1071 instruction will be a branch back to the start. */
1074 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
1075 struct i386_frame_cache *cache)
1077 pc = i386_skip_noop (pc);
1078 pc = i386_follow_jump (pc);
1079 pc = i386_analyze_struct_return (pc, current_pc, cache);
1080 pc = i386_skip_probe (pc);
1081 pc = i386_analyze_stack_align (pc, current_pc, cache);
1082 pc = i386_analyze_frame_setup (pc, current_pc, cache);
1083 return i386_analyze_register_saves (pc, current_pc, cache);
1086 /* Return PC of first real instruction. */
1089 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1091 static gdb_byte pic_pat[6] =
1093 0xe8, 0, 0, 0, 0, /* call 0x0 */
1094 0x5b, /* popl %ebx */
1096 struct i386_frame_cache cache;
1102 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
1103 if (cache.locals < 0)
1106 /* Found valid frame setup. */
1108 /* The native cc on SVR4 in -K PIC mode inserts the following code
1109 to get the address of the global offset table (GOT) into register
1114 movl %ebx,x(%ebp) (optional)
1117 This code is with the rest of the prologue (at the end of the
1118 function), so we have to skip it to get to the first real
1119 instruction at the start of the function. */
1121 for (i = 0; i < 6; i++)
1123 target_read_memory (pc + i, &op, 1);
1124 if (pic_pat[i] != op)
1131 target_read_memory (pc + delta, &op, 1);
1133 if (op == 0x89) /* movl %ebx, x(%ebp) */
1135 op = read_memory_unsigned_integer (pc + delta + 1, 1);
1137 if (op == 0x5d) /* One byte offset from %ebp. */
1139 else if (op == 0x9d) /* Four byte offset from %ebp. */
1141 else /* Unexpected instruction. */
1144 target_read_memory (pc + delta, &op, 1);
1148 if (delta > 0 && op == 0x81
1149 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
1155 /* If the function starts with a branch (to startup code at the end)
1156 the last instruction should bring us back to the first
1157 instruction of the real code. */
1158 if (i386_follow_jump (start_pc) != start_pc)
1159 pc = i386_follow_jump (pc);
1164 /* Check that the code pointed to by PC corresponds to a call to
1165 __main, skip it if so. Return PC otherwise. */
1168 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1172 target_read_memory (pc, &op, 1);
1177 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1179 /* Make sure address is computed correctly as a 32bit
1180 integer even if CORE_ADDR is 64 bit wide. */
1181 struct minimal_symbol *s;
1182 CORE_ADDR call_dest = pc + 5 + extract_signed_integer (buf, 4);
1184 call_dest = call_dest & 0xffffffffU;
1185 s = lookup_minimal_symbol_by_pc (call_dest);
1187 && SYMBOL_LINKAGE_NAME (s) != NULL
1188 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1196 /* This function is 64-bit safe. */
1199 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1203 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1204 return extract_typed_address (buf, builtin_type_void_func_ptr);
1208 /* Normal frames. */
1210 static struct i386_frame_cache *
1211 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1213 struct i386_frame_cache *cache;
1220 cache = i386_alloc_frame_cache ();
1221 *this_cache = cache;
1223 /* In principle, for normal frames, %ebp holds the frame pointer,
1224 which holds the base address for the current stack frame.
1225 However, for functions that don't need it, the frame pointer is
1226 optional. For these "frameless" functions the frame pointer is
1227 actually the frame pointer of the calling frame. Signal
1228 trampolines are just a special case of a "frameless" function.
1229 They (usually) share their frame pointer with the frame that was
1230 in progress when the signal occurred. */
1232 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1233 cache->base = extract_unsigned_integer (buf, 4);
1234 if (cache->base == 0)
1237 /* For normal frames, %eip is stored at 4(%ebp). */
1238 cache->saved_regs[I386_EIP_REGNUM] = 4;
1240 cache->pc = get_frame_func (this_frame);
1242 i386_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
1244 if (cache->stack_align)
1246 /* Saved stack pointer has been saved in %ecx. */
1247 get_frame_register (this_frame, I386_ECX_REGNUM, buf);
1248 cache->saved_sp = extract_unsigned_integer(buf, 4);
1251 if (cache->locals < 0)
1253 /* We didn't find a valid frame, which means that CACHE->base
1254 currently holds the frame pointer for our calling frame. If
1255 we're at the start of a function, or somewhere half-way its
1256 prologue, the function's frame probably hasn't been fully
1257 setup yet. Try to reconstruct the base address for the stack
1258 frame by looking at the stack pointer. For truly "frameless"
1259 functions this might work too. */
1261 if (cache->stack_align)
1263 /* We're halfway aligning the stack. */
1264 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1265 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1267 /* This will be added back below. */
1268 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1272 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1273 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1277 /* Now that we have the base address for the stack frame we can
1278 calculate the value of %esp in the calling frame. */
1279 if (cache->saved_sp == 0)
1280 cache->saved_sp = cache->base + 8;
1282 /* Adjust all the saved registers such that they contain addresses
1283 instead of offsets. */
1284 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1285 if (cache->saved_regs[i] != -1)
1286 cache->saved_regs[i] += cache->base;
1292 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1293 struct frame_id *this_id)
1295 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1297 /* This marks the outermost frame. */
1298 if (cache->base == 0)
1301 /* See the end of i386_push_dummy_call. */
1302 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1305 static struct value *
1306 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1309 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1311 gdb_assert (regnum >= 0);
1313 /* The System V ABI says that:
1315 "The flags register contains the system flags, such as the
1316 direction flag and the carry flag. The direction flag must be
1317 set to the forward (that is, zero) direction before entry and
1318 upon exit from a function. Other user flags have no specified
1319 role in the standard calling sequence and are not preserved."
1321 To guarantee the "upon exit" part of that statement we fake a
1322 saved flags register that has its direction flag cleared.
1324 Note that GCC doesn't seem to rely on the fact that the direction
1325 flag is cleared after a function return; it always explicitly
1326 clears the flag before operations where it matters.
1328 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1329 right thing to do. The way we fake the flags register here makes
1330 it impossible to change it. */
1332 if (regnum == I386_EFLAGS_REGNUM)
1336 val = get_frame_register_unsigned (this_frame, regnum);
1338 return frame_unwind_got_constant (this_frame, regnum, val);
1341 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1342 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1344 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1345 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1347 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1348 return frame_unwind_got_memory (this_frame, regnum,
1349 cache->saved_regs[regnum]);
1351 return frame_unwind_got_register (this_frame, regnum, regnum);
1354 static const struct frame_unwind i386_frame_unwind =
1358 i386_frame_prev_register,
1360 default_frame_sniffer
1364 /* Signal trampolines. */
1366 static struct i386_frame_cache *
1367 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1369 struct i386_frame_cache *cache;
1370 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1377 cache = i386_alloc_frame_cache ();
1379 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1380 cache->base = extract_unsigned_integer (buf, 4) - 4;
1382 addr = tdep->sigcontext_addr (this_frame);
1383 if (tdep->sc_reg_offset)
1387 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1389 for (i = 0; i < tdep->sc_num_regs; i++)
1390 if (tdep->sc_reg_offset[i] != -1)
1391 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1395 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1396 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1399 *this_cache = cache;
1404 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1405 struct frame_id *this_id)
1407 struct i386_frame_cache *cache =
1408 i386_sigtramp_frame_cache (this_frame, this_cache);
1410 /* See the end of i386_push_dummy_call. */
1411 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1414 static struct value *
1415 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1416 void **this_cache, int regnum)
1418 /* Make sure we've initialized the cache. */
1419 i386_sigtramp_frame_cache (this_frame, this_cache);
1421 return i386_frame_prev_register (this_frame, this_cache, regnum);
1425 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1426 struct frame_info *this_frame,
1427 void **this_prologue_cache)
1429 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1431 /* We shouldn't even bother if we don't have a sigcontext_addr
1433 if (tdep->sigcontext_addr == NULL)
1436 if (tdep->sigtramp_p != NULL)
1438 if (tdep->sigtramp_p (this_frame))
1442 if (tdep->sigtramp_start != 0)
1444 CORE_ADDR pc = get_frame_pc (this_frame);
1446 gdb_assert (tdep->sigtramp_end != 0);
1447 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1454 static const struct frame_unwind i386_sigtramp_frame_unwind =
1457 i386_sigtramp_frame_this_id,
1458 i386_sigtramp_frame_prev_register,
1460 i386_sigtramp_frame_sniffer
1465 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1467 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1472 static const struct frame_base i386_frame_base =
1475 i386_frame_base_address,
1476 i386_frame_base_address,
1477 i386_frame_base_address
1480 static struct frame_id
1481 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1485 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1487 /* See the end of i386_push_dummy_call. */
1488 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1492 /* Figure out where the longjmp will land. Slurp the args out of the
1493 stack. We expect the first arg to be a pointer to the jmp_buf
1494 structure from which we extract the address that we will land at.
1495 This address is copied into PC. This routine returns non-zero on
1499 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1502 CORE_ADDR sp, jb_addr;
1503 struct gdbarch *gdbarch = get_frame_arch (frame);
1504 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1506 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1507 longjmp will land. */
1508 if (jb_pc_offset == -1)
1511 get_frame_register (frame, I386_ESP_REGNUM, buf);
1512 sp = extract_unsigned_integer (buf, 4);
1513 if (target_read_memory (sp + 4, buf, 4))
1516 jb_addr = extract_unsigned_integer (buf, 4);
1517 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1520 *pc = extract_unsigned_integer (buf, 4);
1525 /* Check whether TYPE must be 16-byte-aligned when passed as a
1526 function argument. 16-byte vectors, _Decimal128 and structures or
1527 unions containing such types must be 16-byte-aligned; other
1528 arguments are 4-byte-aligned. */
1531 i386_16_byte_align_p (struct type *type)
1533 type = check_typedef (type);
1534 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1535 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1536 && TYPE_LENGTH (type) == 16)
1538 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1539 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
1540 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1541 || TYPE_CODE (type) == TYPE_CODE_UNION)
1544 for (i = 0; i < TYPE_NFIELDS (type); i++)
1546 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
1554 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1555 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1556 struct value **args, CORE_ADDR sp, int struct_return,
1557 CORE_ADDR struct_addr)
1564 /* Determine the total space required for arguments and struct
1565 return address in a first pass (allowing for 16-byte-aligned
1566 arguments), then push arguments in a second pass. */
1568 for (write_pass = 0; write_pass < 2; write_pass++)
1570 int args_space_used = 0;
1571 int have_16_byte_aligned_arg = 0;
1577 /* Push value address. */
1578 store_unsigned_integer (buf, 4, struct_addr);
1579 write_memory (sp, buf, 4);
1580 args_space_used += 4;
1586 for (i = 0; i < nargs; i++)
1588 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1592 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1593 args_space_used = align_up (args_space_used, 16);
1595 write_memory (sp + args_space_used,
1596 value_contents_all (args[i]), len);
1597 /* The System V ABI says that:
1599 "An argument's size is increased, if necessary, to make it a
1600 multiple of [32-bit] words. This may require tail padding,
1601 depending on the size of the argument."
1603 This makes sure the stack stays word-aligned. */
1604 args_space_used += align_up (len, 4);
1608 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1610 args_space = align_up (args_space, 16);
1611 have_16_byte_aligned_arg = 1;
1613 args_space += align_up (len, 4);
1619 if (have_16_byte_aligned_arg)
1620 args_space = align_up (args_space, 16);
1625 /* Store return address. */
1627 store_unsigned_integer (buf, 4, bp_addr);
1628 write_memory (sp, buf, 4);
1630 /* Finally, update the stack pointer... */
1631 store_unsigned_integer (buf, 4, sp);
1632 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1634 /* ...and fake a frame pointer. */
1635 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1637 /* MarkK wrote: This "+ 8" is all over the place:
1638 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1639 i386_dummy_id). It's there, since all frame unwinders for
1640 a given target have to agree (within a certain margin) on the
1641 definition of the stack address of a frame. Otherwise
1642 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1643 stack address *before* the function call as a frame's CFA. On
1644 the i386, when %ebp is used as a frame pointer, the offset
1645 between the contents %ebp and the CFA as defined by GCC. */
1649 /* These registers are used for returning integers (and on some
1650 targets also for returning `struct' and `union' values when their
1651 size and alignment match an integer type). */
1652 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1653 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1655 /* Read, for architecture GDBARCH, a function return value of TYPE
1656 from REGCACHE, and copy that into VALBUF. */
1659 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1660 struct regcache *regcache, gdb_byte *valbuf)
1662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1663 int len = TYPE_LENGTH (type);
1664 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1666 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1668 if (tdep->st0_regnum < 0)
1670 warning (_("Cannot find floating-point return value."));
1671 memset (valbuf, 0, len);
1675 /* Floating-point return values can be found in %st(0). Convert
1676 its contents to the desired type. This is probably not
1677 exactly how it would happen on the target itself, but it is
1678 the best we can do. */
1679 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1680 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1684 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1685 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1687 if (len <= low_size)
1689 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1690 memcpy (valbuf, buf, len);
1692 else if (len <= (low_size + high_size))
1694 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1695 memcpy (valbuf, buf, low_size);
1696 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1697 memcpy (valbuf + low_size, buf, len - low_size);
1700 internal_error (__FILE__, __LINE__,
1701 _("Cannot extract return value of %d bytes long."), len);
1705 /* Write, for architecture GDBARCH, a function return value of TYPE
1706 from VALBUF into REGCACHE. */
1709 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1710 struct regcache *regcache, const gdb_byte *valbuf)
1712 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1713 int len = TYPE_LENGTH (type);
1715 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1718 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1720 if (tdep->st0_regnum < 0)
1722 warning (_("Cannot set floating-point return value."));
1726 /* Returning floating-point values is a bit tricky. Apart from
1727 storing the return value in %st(0), we have to simulate the
1728 state of the FPU at function return point. */
1730 /* Convert the value found in VALBUF to the extended
1731 floating-point format used by the FPU. This is probably
1732 not exactly how it would happen on the target itself, but
1733 it is the best we can do. */
1734 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1735 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1737 /* Set the top of the floating-point register stack to 7. The
1738 actual value doesn't really matter, but 7 is what a normal
1739 function return would end up with if the program started out
1740 with a freshly initialized FPU. */
1741 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
1743 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
1745 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1746 the floating-point register stack to 7, the appropriate value
1747 for the tag word is 0x3fff. */
1748 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
1752 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1753 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1755 if (len <= low_size)
1756 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1757 else if (len <= (low_size + high_size))
1759 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1760 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1761 len - low_size, valbuf + low_size);
1764 internal_error (__FILE__, __LINE__,
1765 _("Cannot store return value of %d bytes long."), len);
1770 /* This is the variable that is set with "set struct-convention", and
1771 its legitimate values. */
1772 static const char default_struct_convention[] = "default";
1773 static const char pcc_struct_convention[] = "pcc";
1774 static const char reg_struct_convention[] = "reg";
1775 static const char *valid_conventions[] =
1777 default_struct_convention,
1778 pcc_struct_convention,
1779 reg_struct_convention,
1782 static const char *struct_convention = default_struct_convention;
1784 /* Return non-zero if TYPE, which is assumed to be a structure,
1785 a union type, or an array type, should be returned in registers
1786 for architecture GDBARCH. */
1789 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1791 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1792 enum type_code code = TYPE_CODE (type);
1793 int len = TYPE_LENGTH (type);
1795 gdb_assert (code == TYPE_CODE_STRUCT
1796 || code == TYPE_CODE_UNION
1797 || code == TYPE_CODE_ARRAY);
1799 if (struct_convention == pcc_struct_convention
1800 || (struct_convention == default_struct_convention
1801 && tdep->struct_return == pcc_struct_return))
1804 /* Structures consisting of a single `float', `double' or 'long
1805 double' member are returned in %st(0). */
1806 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1808 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1809 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1810 return (len == 4 || len == 8 || len == 12);
1813 return (len == 1 || len == 2 || len == 4 || len == 8);
1816 /* Determine, for architecture GDBARCH, how a return value of TYPE
1817 should be returned. If it is supposed to be returned in registers,
1818 and READBUF is non-zero, read the appropriate value from REGCACHE,
1819 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1820 from WRITEBUF into REGCACHE. */
1822 static enum return_value_convention
1823 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1824 struct type *type, struct regcache *regcache,
1825 gdb_byte *readbuf, const gdb_byte *writebuf)
1827 enum type_code code = TYPE_CODE (type);
1829 if (((code == TYPE_CODE_STRUCT
1830 || code == TYPE_CODE_UNION
1831 || code == TYPE_CODE_ARRAY)
1832 && !i386_reg_struct_return_p (gdbarch, type))
1833 /* 128-bit decimal float uses the struct return convention. */
1834 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
1836 /* The System V ABI says that:
1838 "A function that returns a structure or union also sets %eax
1839 to the value of the original address of the caller's area
1840 before it returns. Thus when the caller receives control
1841 again, the address of the returned object resides in register
1842 %eax and can be used to access the object."
1844 So the ABI guarantees that we can always find the return
1845 value just after the function has returned. */
1847 /* Note that the ABI doesn't mention functions returning arrays,
1848 which is something possible in certain languages such as Ada.
1849 In this case, the value is returned as if it was wrapped in
1850 a record, so the convention applied to records also applies
1857 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1858 read_memory (addr, readbuf, TYPE_LENGTH (type));
1861 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1864 /* This special case is for structures consisting of a single
1865 `float', `double' or 'long double' member. These structures are
1866 returned in %st(0). For these structures, we call ourselves
1867 recursively, changing TYPE into the type of the first member of
1868 the structure. Since that should work for all structures that
1869 have only one member, we don't bother to check the member's type
1871 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1873 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1874 return i386_return_value (gdbarch, func_type, type, regcache,
1879 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1881 i386_store_return_value (gdbarch, type, regcache, writebuf);
1883 return RETURN_VALUE_REGISTER_CONVENTION;
1887 /* Type for %eflags. */
1888 struct type *i386_eflags_type;
1890 /* Type for %mxcsr. */
1891 struct type *i386_mxcsr_type;
1893 /* Construct types for ISA-specific registers. */
1895 i386_init_types (void)
1899 type = init_flags_type ("builtin_type_i386_eflags", 4);
1900 append_flags_type_flag (type, 0, "CF");
1901 append_flags_type_flag (type, 1, NULL);
1902 append_flags_type_flag (type, 2, "PF");
1903 append_flags_type_flag (type, 4, "AF");
1904 append_flags_type_flag (type, 6, "ZF");
1905 append_flags_type_flag (type, 7, "SF");
1906 append_flags_type_flag (type, 8, "TF");
1907 append_flags_type_flag (type, 9, "IF");
1908 append_flags_type_flag (type, 10, "DF");
1909 append_flags_type_flag (type, 11, "OF");
1910 append_flags_type_flag (type, 14, "NT");
1911 append_flags_type_flag (type, 16, "RF");
1912 append_flags_type_flag (type, 17, "VM");
1913 append_flags_type_flag (type, 18, "AC");
1914 append_flags_type_flag (type, 19, "VIF");
1915 append_flags_type_flag (type, 20, "VIP");
1916 append_flags_type_flag (type, 21, "ID");
1917 i386_eflags_type = type;
1919 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1920 append_flags_type_flag (type, 0, "IE");
1921 append_flags_type_flag (type, 1, "DE");
1922 append_flags_type_flag (type, 2, "ZE");
1923 append_flags_type_flag (type, 3, "OE");
1924 append_flags_type_flag (type, 4, "UE");
1925 append_flags_type_flag (type, 5, "PE");
1926 append_flags_type_flag (type, 6, "DAZ");
1927 append_flags_type_flag (type, 7, "IM");
1928 append_flags_type_flag (type, 8, "DM");
1929 append_flags_type_flag (type, 9, "ZM");
1930 append_flags_type_flag (type, 10, "OM");
1931 append_flags_type_flag (type, 11, "UM");
1932 append_flags_type_flag (type, 12, "PM");
1933 append_flags_type_flag (type, 15, "FZ");
1934 i386_mxcsr_type = type;
1937 /* Construct vector type for MMX registers. */
1939 i386_mmx_type (struct gdbarch *gdbarch)
1941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1943 if (!tdep->i386_mmx_type)
1945 /* The type we're building is this: */
1947 union __gdb_builtin_type_vec64i
1950 int32_t v2_int32[2];
1951 int16_t v4_int16[4];
1958 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1959 append_composite_type_field (t, "uint64", builtin_type_int64);
1960 append_composite_type_field (t, "v2_int32",
1961 init_vector_type (builtin_type_int32, 2));
1962 append_composite_type_field (t, "v4_int16",
1963 init_vector_type (builtin_type_int16, 4));
1964 append_composite_type_field (t, "v8_int8",
1965 init_vector_type (builtin_type_int8, 8));
1967 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1968 TYPE_NAME (t) = "builtin_type_vec64i";
1969 tdep->i386_mmx_type = t;
1972 return tdep->i386_mmx_type;
1976 i386_sse_type (struct gdbarch *gdbarch)
1978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1980 if (!tdep->i386_sse_type)
1982 /* The type we're building is this: */
1984 union __gdb_builtin_type_vec128i
1987 int64_t v2_int64[2];
1988 int32_t v4_int32[4];
1989 int16_t v8_int16[8];
1990 int8_t v16_int8[16];
1991 double v2_double[2];
1998 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1999 append_composite_type_field (t, "v4_float",
2000 init_vector_type (builtin_type_float, 4));
2001 append_composite_type_field (t, "v2_double",
2002 init_vector_type (builtin_type_double, 2));
2003 append_composite_type_field (t, "v16_int8",
2004 init_vector_type (builtin_type_int8, 16));
2005 append_composite_type_field (t, "v8_int16",
2006 init_vector_type (builtin_type_int16, 8));
2007 append_composite_type_field (t, "v4_int32",
2008 init_vector_type (builtin_type_int32, 4));
2009 append_composite_type_field (t, "v2_int64",
2010 init_vector_type (builtin_type_int64, 2));
2011 append_composite_type_field (t, "uint128", builtin_type_int128);
2013 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2014 TYPE_NAME (t) = "builtin_type_vec128i";
2015 tdep->i386_sse_type = t;
2018 return tdep->i386_sse_type;
2021 /* Return the GDB type object for the "standard" data type of data in
2022 register REGNUM. Perhaps %esi and %edi should go here, but
2023 potentially they could be used for things other than address. */
2025 static struct type *
2026 i386_register_type (struct gdbarch *gdbarch, int regnum)
2028 if (regnum == I386_EIP_REGNUM)
2029 return builtin_type_void_func_ptr;
2031 if (regnum == I386_EFLAGS_REGNUM)
2032 return i386_eflags_type;
2034 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
2035 return builtin_type_void_data_ptr;
2037 if (i386_fp_regnum_p (gdbarch, regnum))
2038 return builtin_type_i387_ext;
2040 if (i386_mmx_regnum_p (gdbarch, regnum))
2041 return i386_mmx_type (gdbarch);
2043 if (i386_sse_regnum_p (gdbarch, regnum))
2044 return i386_sse_type (gdbarch);
2046 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
2047 return i386_mxcsr_type;
2049 return builtin_type_int;
2052 /* Map a cooked register onto a raw register or memory. For the i386,
2053 the MMX registers need to be mapped onto floating point registers. */
2056 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2058 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2063 mmxreg = regnum - tdep->mm0_regnum;
2064 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2065 tos = (fstat >> 11) & 0x7;
2066 fpreg = (mmxreg + tos) % 8;
2068 return (I387_ST0_REGNUM (tdep) + fpreg);
2072 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2073 int regnum, gdb_byte *buf)
2075 if (i386_mmx_regnum_p (gdbarch, regnum))
2077 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
2078 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2080 /* Extract (always little endian). */
2081 regcache_raw_read (regcache, fpnum, mmx_buf);
2082 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
2085 regcache_raw_read (regcache, regnum, buf);
2089 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2090 int regnum, const gdb_byte *buf)
2092 if (i386_mmx_regnum_p (gdbarch, regnum))
2094 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
2095 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2098 regcache_raw_read (regcache, fpnum, mmx_buf);
2099 /* ... Modify ... (always little endian). */
2100 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
2102 regcache_raw_write (regcache, fpnum, mmx_buf);
2105 regcache_raw_write (regcache, regnum, buf);
2109 /* Return the register number of the register allocated by GCC after
2110 REGNUM, or -1 if there is no such register. */
2113 i386_next_regnum (int regnum)
2115 /* GCC allocates the registers in the order:
2117 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2119 Since storing a variable in %esp doesn't make any sense we return
2120 -1 for %ebp and for %esp itself. */
2121 static int next_regnum[] =
2123 I386_EDX_REGNUM, /* Slot for %eax. */
2124 I386_EBX_REGNUM, /* Slot for %ecx. */
2125 I386_ECX_REGNUM, /* Slot for %edx. */
2126 I386_ESI_REGNUM, /* Slot for %ebx. */
2127 -1, -1, /* Slots for %esp and %ebp. */
2128 I386_EDI_REGNUM, /* Slot for %esi. */
2129 I386_EBP_REGNUM /* Slot for %edi. */
2132 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2133 return next_regnum[regnum];
2138 /* Return nonzero if a value of type TYPE stored in register REGNUM
2139 needs any special handling. */
2142 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
2144 int len = TYPE_LENGTH (type);
2146 /* Values may be spread across multiple registers. Most debugging
2147 formats aren't expressive enough to specify the locations, so
2148 some heuristics is involved. Right now we only handle types that
2149 have a length that is a multiple of the word size, since GCC
2150 doesn't seem to put any other types into registers. */
2151 if (len > 4 && len % 4 == 0)
2153 int last_regnum = regnum;
2157 last_regnum = i386_next_regnum (last_regnum);
2161 if (last_regnum != -1)
2165 return i387_convert_register_p (gdbarch, regnum, type);
2168 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2169 return its contents in TO. */
2172 i386_register_to_value (struct frame_info *frame, int regnum,
2173 struct type *type, gdb_byte *to)
2175 struct gdbarch *gdbarch = get_frame_arch (frame);
2176 int len = TYPE_LENGTH (type);
2178 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2179 available in FRAME (i.e. if it wasn't saved)? */
2181 if (i386_fp_regnum_p (gdbarch, regnum))
2183 i387_register_to_value (frame, regnum, type, to);
2187 /* Read a value spread across multiple registers. */
2189 gdb_assert (len > 4 && len % 4 == 0);
2193 gdb_assert (regnum != -1);
2194 gdb_assert (register_size (gdbarch, regnum) == 4);
2196 get_frame_register (frame, regnum, to);
2197 regnum = i386_next_regnum (regnum);
2203 /* Write the contents FROM of a value of type TYPE into register
2204 REGNUM in frame FRAME. */
2207 i386_value_to_register (struct frame_info *frame, int regnum,
2208 struct type *type, const gdb_byte *from)
2210 int len = TYPE_LENGTH (type);
2212 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2214 i387_value_to_register (frame, regnum, type, from);
2218 /* Write a value spread across multiple registers. */
2220 gdb_assert (len > 4 && len % 4 == 0);
2224 gdb_assert (regnum != -1);
2225 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2227 put_frame_register (frame, regnum, from);
2228 regnum = i386_next_regnum (regnum);
2234 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2235 in the general-purpose register set REGSET to register cache
2236 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2239 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2240 int regnum, const void *gregs, size_t len)
2242 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2243 const gdb_byte *regs = gregs;
2246 gdb_assert (len == tdep->sizeof_gregset);
2248 for (i = 0; i < tdep->gregset_num_regs; i++)
2250 if ((regnum == i || regnum == -1)
2251 && tdep->gregset_reg_offset[i] != -1)
2252 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2256 /* Collect register REGNUM from the register cache REGCACHE and store
2257 it in the buffer specified by GREGS and LEN as described by the
2258 general-purpose register set REGSET. If REGNUM is -1, do this for
2259 all registers in REGSET. */
2262 i386_collect_gregset (const struct regset *regset,
2263 const struct regcache *regcache,
2264 int regnum, void *gregs, size_t len)
2266 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2267 gdb_byte *regs = gregs;
2270 gdb_assert (len == tdep->sizeof_gregset);
2272 for (i = 0; i < tdep->gregset_num_regs; i++)
2274 if ((regnum == i || regnum == -1)
2275 && tdep->gregset_reg_offset[i] != -1)
2276 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2280 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2281 in the floating-point register set REGSET to register cache
2282 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2285 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2286 int regnum, const void *fpregs, size_t len)
2288 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2290 if (len == I387_SIZEOF_FXSAVE)
2292 i387_supply_fxsave (regcache, regnum, fpregs);
2296 gdb_assert (len == tdep->sizeof_fpregset);
2297 i387_supply_fsave (regcache, regnum, fpregs);
2300 /* Collect register REGNUM from the register cache REGCACHE and store
2301 it in the buffer specified by FPREGS and LEN as described by the
2302 floating-point register set REGSET. If REGNUM is -1, do this for
2303 all registers in REGSET. */
2306 i386_collect_fpregset (const struct regset *regset,
2307 const struct regcache *regcache,
2308 int regnum, void *fpregs, size_t len)
2310 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2312 if (len == I387_SIZEOF_FXSAVE)
2314 i387_collect_fxsave (regcache, regnum, fpregs);
2318 gdb_assert (len == tdep->sizeof_fpregset);
2319 i387_collect_fsave (regcache, regnum, fpregs);
2322 /* Return the appropriate register set for the core section identified
2323 by SECT_NAME and SECT_SIZE. */
2325 const struct regset *
2326 i386_regset_from_core_section (struct gdbarch *gdbarch,
2327 const char *sect_name, size_t sect_size)
2329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2331 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2333 if (tdep->gregset == NULL)
2334 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2335 i386_collect_gregset);
2336 return tdep->gregset;
2339 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2340 || (strcmp (sect_name, ".reg-xfp") == 0
2341 && sect_size == I387_SIZEOF_FXSAVE))
2343 if (tdep->fpregset == NULL)
2344 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2345 i386_collect_fpregset);
2346 return tdep->fpregset;
2353 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2356 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2358 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2360 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2361 struct minimal_symbol *indsym =
2362 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2363 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2367 if (strncmp (symname, "__imp_", 6) == 0
2368 || strncmp (symname, "_imp_", 5) == 0)
2369 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2372 return 0; /* Not a trampoline. */
2376 /* Return whether the THIS_FRAME corresponds to a sigtramp
2380 i386_sigtramp_p (struct frame_info *this_frame)
2382 CORE_ADDR pc = get_frame_pc (this_frame);
2385 find_pc_partial_function (pc, &name, NULL, NULL);
2386 return (name && strcmp ("_sigtramp", name) == 0);
2390 /* We have two flavours of disassembly. The machinery on this page
2391 deals with switching between those. */
2394 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2396 gdb_assert (disassembly_flavor == att_flavor
2397 || disassembly_flavor == intel_flavor);
2399 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2400 constified, cast to prevent a compiler warning. */
2401 info->disassembler_options = (char *) disassembly_flavor;
2403 return print_insn_i386 (pc, info);
2407 /* There are a few i386 architecture variants that differ only
2408 slightly from the generic i386 target. For now, we don't give them
2409 their own source file, but include them here. As a consequence,
2410 they'll always be included. */
2412 /* System V Release 4 (SVR4). */
2414 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2418 i386_svr4_sigtramp_p (struct frame_info *this_frame)
2420 CORE_ADDR pc = get_frame_pc (this_frame);
2423 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2424 currently unknown. */
2425 find_pc_partial_function (pc, &name, NULL, NULL);
2426 return (name && (strcmp ("_sigreturn", name) == 0
2427 || strcmp ("_sigacthandler", name) == 0
2428 || strcmp ("sigvechandler", name) == 0));
2431 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2432 address of the associated sigcontext (ucontext) structure. */
2435 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
2440 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2441 sp = extract_unsigned_integer (buf, 4);
2443 return read_memory_unsigned_integer (sp + 8, 4);
2450 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2452 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2453 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2456 /* System V Release 4 (SVR4). */
2459 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2463 /* System V Release 4 uses ELF. */
2464 i386_elf_init_abi (info, gdbarch);
2466 /* System V Release 4 has shared libraries. */
2467 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2469 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2470 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2471 tdep->sc_pc_offset = 36 + 14 * 4;
2472 tdep->sc_sp_offset = 36 + 17 * 4;
2474 tdep->jb_pc_offset = 20;
2480 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2482 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2484 /* DJGPP doesn't have any special frames for signal handlers. */
2485 tdep->sigtramp_p = NULL;
2487 tdep->jb_pc_offset = 36;
2491 /* i386 register groups. In addition to the normal groups, add "mmx"
2494 static struct reggroup *i386_sse_reggroup;
2495 static struct reggroup *i386_mmx_reggroup;
2498 i386_init_reggroups (void)
2500 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2501 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2505 i386_add_reggroups (struct gdbarch *gdbarch)
2507 reggroup_add (gdbarch, i386_sse_reggroup);
2508 reggroup_add (gdbarch, i386_mmx_reggroup);
2509 reggroup_add (gdbarch, general_reggroup);
2510 reggroup_add (gdbarch, float_reggroup);
2511 reggroup_add (gdbarch, all_reggroup);
2512 reggroup_add (gdbarch, save_reggroup);
2513 reggroup_add (gdbarch, restore_reggroup);
2514 reggroup_add (gdbarch, vector_reggroup);
2515 reggroup_add (gdbarch, system_reggroup);
2519 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2520 struct reggroup *group)
2522 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2523 || i386_mxcsr_regnum_p (gdbarch, regnum));
2524 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2525 || i386_fpc_regnum_p (gdbarch, regnum));
2526 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2528 if (group == i386_mmx_reggroup)
2529 return mmx_regnum_p;
2530 if (group == i386_sse_reggroup)
2531 return sse_regnum_p;
2532 if (group == vector_reggroup)
2533 return (mmx_regnum_p || sse_regnum_p);
2534 if (group == float_reggroup)
2536 if (group == general_reggroup)
2537 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2539 return default_register_reggroup_p (gdbarch, regnum, group);
2543 /* Get the ARGIth function argument for the current function. */
2546 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2549 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2550 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2554 static struct gdbarch *
2555 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2557 struct gdbarch_tdep *tdep;
2558 struct gdbarch *gdbarch;
2560 /* If there is already a candidate, use it. */
2561 arches = gdbarch_list_lookup_by_info (arches, &info);
2563 return arches->gdbarch;
2565 /* Allocate space for the new architecture. */
2566 tdep = XCALLOC (1, struct gdbarch_tdep);
2567 gdbarch = gdbarch_alloc (&info, tdep);
2569 /* General-purpose registers. */
2570 tdep->gregset = NULL;
2571 tdep->gregset_reg_offset = NULL;
2572 tdep->gregset_num_regs = I386_NUM_GREGS;
2573 tdep->sizeof_gregset = 0;
2575 /* Floating-point registers. */
2576 tdep->fpregset = NULL;
2577 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2579 /* The default settings include the FPU registers, the MMX registers
2580 and the SSE registers. This can be overridden for a specific ABI
2581 by adjusting the members `st0_regnum', `mm0_regnum' and
2582 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2583 will show up in the output of "info all-registers". Ideally we
2584 should try to autodetect whether they are available, such that we
2585 can prevent "info all-registers" from displaying registers that
2588 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2589 [the SSE registers] always (even when they don't exist) or never
2590 showing them to the user (even when they do exist), I prefer the
2591 former over the latter. */
2593 tdep->st0_regnum = I386_ST0_REGNUM;
2595 /* The MMX registers are implemented as pseudo-registers. Put off
2596 calculating the register number for %mm0 until we know the number
2597 of raw registers. */
2598 tdep->mm0_regnum = 0;
2600 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2601 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2603 tdep->jb_pc_offset = -1;
2604 tdep->struct_return = pcc_struct_return;
2605 tdep->sigtramp_start = 0;
2606 tdep->sigtramp_end = 0;
2607 tdep->sigtramp_p = i386_sigtramp_p;
2608 tdep->sigcontext_addr = NULL;
2609 tdep->sc_reg_offset = NULL;
2610 tdep->sc_pc_offset = -1;
2611 tdep->sc_sp_offset = -1;
2613 /* The format used for `long double' on almost all i386 targets is
2614 the i387 extended floating-point format. In fact, of all targets
2615 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2616 on having a `long double' that's not `long' at all. */
2617 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
2619 /* Although the i387 extended floating-point has only 80 significant
2620 bits, a `long double' actually takes up 96, probably to enforce
2622 set_gdbarch_long_double_bit (gdbarch, 96);
2624 /* The default ABI includes general-purpose registers,
2625 floating-point registers, and the SSE registers. */
2626 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2627 set_gdbarch_register_name (gdbarch, i386_register_name);
2628 set_gdbarch_register_type (gdbarch, i386_register_type);
2630 /* Register numbers of various important registers. */
2631 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2632 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2633 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2634 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2636 /* NOTE: kettenis/20040418: GCC does have two possible register
2637 numbering schemes on the i386: dbx and SVR4. These schemes
2638 differ in how they number %ebp, %esp, %eflags, and the
2639 floating-point registers, and are implemented by the arrays
2640 dbx_register_map[] and svr4_dbx_register_map in
2641 gcc/config/i386.c. GCC also defines a third numbering scheme in
2642 gcc/config/i386.c, which it designates as the "default" register
2643 map used in 64bit mode. This last register numbering scheme is
2644 implemented in dbx64_register_map, and is used for AMD64; see
2647 Currently, each GCC i386 target always uses the same register
2648 numbering scheme across all its supported debugging formats
2649 i.e. SDB (COFF), stabs and DWARF 2. This is because
2650 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2651 DBX_REGISTER_NUMBER macro which is defined by each target's
2652 respective config header in a manner independent of the requested
2653 output debugging format.
2655 This does not match the arrangement below, which presumes that
2656 the SDB and stabs numbering schemes differ from the DWARF and
2657 DWARF 2 ones. The reason for this arrangement is that it is
2658 likely to get the numbering scheme for the target's
2659 default/native debug format right. For targets where GCC is the
2660 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2661 targets where the native toolchain uses a different numbering
2662 scheme for a particular debug format (stabs-in-ELF on Solaris)
2663 the defaults below will have to be overridden, like
2664 i386_elf_init_abi() does. */
2666 /* Use the dbx register numbering scheme for stabs and COFF. */
2667 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2668 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2670 /* Use the SVR4 register numbering scheme for DWARF 2. */
2671 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2673 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
2674 be in use on any of the supported i386 targets. */
2676 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2678 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2680 /* Call dummy code. */
2681 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2683 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2684 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2685 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2687 set_gdbarch_return_value (gdbarch, i386_return_value);
2689 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2691 /* Stack grows downward. */
2692 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2694 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2695 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2696 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
2698 set_gdbarch_frame_args_skip (gdbarch, 8);
2700 /* Wire in the MMX registers. */
2701 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2702 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2703 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2705 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2707 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
2709 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2711 /* Add the i386 register groups. */
2712 i386_add_reggroups (gdbarch);
2713 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2715 /* Helper for function argument information. */
2716 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2718 /* Hook in the DWARF CFI frame unwinder. */
2719 dwarf2_append_unwinders (gdbarch);
2721 frame_base_set_default (gdbarch, &i386_frame_base);
2723 /* Hook in ABI-specific overrides, if they have been registered. */
2724 gdbarch_init_osabi (info, gdbarch);
2726 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
2727 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
2729 /* If we have a register mapping, enable the generic core file
2730 support, unless it has already been enabled. */
2731 if (tdep->gregset_reg_offset
2732 && !gdbarch_regset_from_core_section_p (gdbarch))
2733 set_gdbarch_regset_from_core_section (gdbarch,
2734 i386_regset_from_core_section);
2736 /* Unless support for MMX has been disabled, make %mm0 the first
2738 if (tdep->mm0_regnum == 0)
2739 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2744 static enum gdb_osabi
2745 i386_coff_osabi_sniffer (bfd *abfd)
2747 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2748 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2749 return GDB_OSABI_GO32;
2751 return GDB_OSABI_UNKNOWN;
2755 /* Provide a prototype to silence -Wmissing-prototypes. */
2756 void _initialize_i386_tdep (void);
2759 _initialize_i386_tdep (void)
2761 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2763 /* Add the variable that controls the disassembly flavor. */
2764 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2765 &disassembly_flavor, _("\
2766 Set the disassembly flavor."), _("\
2767 Show the disassembly flavor."), _("\
2768 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2770 NULL, /* FIXME: i18n: */
2771 &setlist, &showlist);
2773 /* Add the variable that controls the convention for returning
2775 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2776 &struct_convention, _("\
2777 Set the convention for returning small structs."), _("\
2778 Show the convention for returning small structs."), _("\
2779 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2782 NULL, /* FIXME: i18n: */
2783 &setlist, &showlist);
2785 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2786 i386_coff_osabi_sniffer);
2788 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2789 i386_svr4_init_abi);
2790 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2791 i386_go32_init_abi);
2793 /* Initialize the i386-specific register groups & types. */
2794 i386_init_reggroups ();