1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
38 #include "reggroups.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx-avx512.c"
58 #include "features/i386/i386-avx-mpx-avx512-pku.c"
59 #include "features/i386/i386-mmx.c"
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
74 static const char *i386_register_names[] =
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
89 static const char *i386_zmm_names[] =
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
95 static const char *i386_zmmh_names[] =
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
101 static const char *i386_k_names[] =
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
107 static const char *i386_ymm_names[] =
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
113 static const char *i386_ymmh_names[] =
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
119 static const char *i386_mpx_names[] =
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
124 static const char* i386_pkeys_names[] =
129 /* Register names for MPX pseudo-registers. */
131 static const char *i386_bnd_names[] =
133 "bnd0", "bnd1", "bnd2", "bnd3"
136 /* Register names for MMX pseudo-registers. */
138 static const char *i386_mmx_names[] =
140 "mm0", "mm1", "mm2", "mm3",
141 "mm4", "mm5", "mm6", "mm7"
144 /* Register names for byte pseudo-registers. */
146 static const char *i386_byte_names[] =
148 "al", "cl", "dl", "bl",
149 "ah", "ch", "dh", "bh"
152 /* Register names for word pseudo-registers. */
154 static const char *i386_word_names[] =
156 "ax", "cx", "dx", "bx",
160 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
161 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
162 we have 16 upper ZMM regs that have to be handled differently. */
164 const int num_lower_zmm_regs = 16;
169 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int mm0_regnum = tdep->mm0_regnum;
177 regnum -= mm0_regnum;
178 return regnum >= 0 && regnum < tdep->num_mmx_regs;
184 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
188 regnum -= tdep->al_regnum;
189 return regnum >= 0 && regnum < tdep->num_byte_regs;
195 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
199 regnum -= tdep->ax_regnum;
200 return regnum >= 0 && regnum < tdep->num_word_regs;
203 /* Dword register? */
206 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int eax_regnum = tdep->eax_regnum;
214 regnum -= eax_regnum;
215 return regnum >= 0 && regnum < tdep->num_dword_regs;
218 /* AVX512 register? */
221 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int zmm0h_regnum = tdep->zmm0h_regnum;
226 if (zmm0h_regnum < 0)
229 regnum -= zmm0h_regnum;
230 return regnum >= 0 && regnum < tdep->num_zmm_regs;
234 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 int zmm0_regnum = tdep->zmm0_regnum;
242 regnum -= zmm0_regnum;
243 return regnum >= 0 && regnum < tdep->num_zmm_regs;
247 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int k0_regnum = tdep->k0_regnum;
256 return regnum >= 0 && regnum < I387_NUM_K_REGS;
260 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 int ymm0h_regnum = tdep->ymm0h_regnum;
265 if (ymm0h_regnum < 0)
268 regnum -= ymm0h_regnum;
269 return regnum >= 0 && regnum < tdep->num_ymm_regs;
275 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
278 int ymm0_regnum = tdep->ymm0_regnum;
283 regnum -= ymm0_regnum;
284 return regnum >= 0 && regnum < tdep->num_ymm_regs;
288 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 int ymm16h_regnum = tdep->ymm16h_regnum;
293 if (ymm16h_regnum < 0)
296 regnum -= ymm16h_regnum;
297 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
301 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304 int ymm16_regnum = tdep->ymm16_regnum;
306 if (ymm16_regnum < 0)
309 regnum -= ymm16_regnum;
310 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
316 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 int bnd0_regnum = tdep->bnd0_regnum;
324 regnum -= bnd0_regnum;
325 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
331 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
336 if (num_xmm_regs == 0)
339 regnum -= I387_XMM0_REGNUM (tdep);
340 return regnum >= 0 && regnum < num_xmm_regs;
343 /* XMM_512 register? */
346 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
351 if (num_xmm_avx512_regs == 0)
354 regnum -= I387_XMM16_REGNUM (tdep);
355 return regnum >= 0 && regnum < num_xmm_avx512_regs;
359 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
363 if (I387_NUM_XMM_REGS (tdep) == 0)
366 return (regnum == I387_MXCSR_REGNUM (tdep));
372 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
376 if (I387_ST0_REGNUM (tdep) < 0)
379 return (I387_ST0_REGNUM (tdep) <= regnum
380 && regnum < I387_FCTRL_REGNUM (tdep));
384 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388 if (I387_ST0_REGNUM (tdep) < 0)
391 return (I387_FCTRL_REGNUM (tdep) <= regnum
392 && regnum < I387_XMM0_REGNUM (tdep));
395 /* BNDr (raw) register? */
398 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
402 if (I387_BND0R_REGNUM (tdep) < 0)
405 regnum -= tdep->bnd0r_regnum;
406 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
409 /* BND control register? */
412 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 if (I387_BNDCFGU_REGNUM (tdep) < 0)
419 regnum -= I387_BNDCFGU_REGNUM (tdep);
420 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
426 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
429 int pkru_regnum = tdep->pkru_regnum;
434 regnum -= pkru_regnum;
435 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
438 /* Return the name of register REGNUM, or the empty string if it is
439 an anonymous register. */
442 i386_register_name (struct gdbarch *gdbarch, int regnum)
444 /* Hide the upper YMM registers. */
445 if (i386_ymmh_regnum_p (gdbarch, regnum))
448 /* Hide the upper YMM16-31 registers. */
449 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
452 /* Hide the upper ZMM registers. */
453 if (i386_zmmh_regnum_p (gdbarch, regnum))
456 return tdesc_register_name (gdbarch, regnum);
459 /* Return the name of register REGNUM. */
462 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465 if (i386_bnd_regnum_p (gdbarch, regnum))
466 return i386_bnd_names[regnum - tdep->bnd0_regnum];
467 if (i386_mmx_regnum_p (gdbarch, regnum))
468 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
469 else if (i386_ymm_regnum_p (gdbarch, regnum))
470 return i386_ymm_names[regnum - tdep->ymm0_regnum];
471 else if (i386_zmm_regnum_p (gdbarch, regnum))
472 return i386_zmm_names[regnum - tdep->zmm0_regnum];
473 else if (i386_byte_regnum_p (gdbarch, regnum))
474 return i386_byte_names[regnum - tdep->al_regnum];
475 else if (i386_word_regnum_p (gdbarch, regnum))
476 return i386_word_names[regnum - tdep->ax_regnum];
478 internal_error (__FILE__, __LINE__, _("invalid regnum"));
481 /* Convert a dbx register number REG to the appropriate register
482 number used by GDB. */
485 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
489 /* This implements what GCC calls the "default" register map
490 (dbx_register_map[]). */
492 if (reg >= 0 && reg <= 7)
494 /* General-purpose registers. The debug info calls %ebp
495 register 4, and %esp register 5. */
502 else if (reg >= 12 && reg <= 19)
504 /* Floating-point registers. */
505 return reg - 12 + I387_ST0_REGNUM (tdep);
507 else if (reg >= 21 && reg <= 28)
510 int ymm0_regnum = tdep->ymm0_regnum;
513 && i386_xmm_regnum_p (gdbarch, reg))
514 return reg - 21 + ymm0_regnum;
516 return reg - 21 + I387_XMM0_REGNUM (tdep);
518 else if (reg >= 29 && reg <= 36)
521 return reg - 29 + I387_MM0_REGNUM (tdep);
524 /* This will hopefully provoke a warning. */
525 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
528 /* Convert SVR4 DWARF register number REG to the appropriate register number
532 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
536 /* This implements the GCC register map that tries to be compatible
537 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
539 /* The SVR4 register numbering includes %eip and %eflags, and
540 numbers the floating point registers differently. */
541 if (reg >= 0 && reg <= 9)
543 /* General-purpose registers. */
546 else if (reg >= 11 && reg <= 18)
548 /* Floating-point registers. */
549 return reg - 11 + I387_ST0_REGNUM (tdep);
551 else if (reg >= 21 && reg <= 36)
553 /* The SSE and MMX registers have the same numbers as with dbx. */
554 return i386_dbx_reg_to_regnum (gdbarch, reg);
559 case 37: return I387_FCTRL_REGNUM (tdep);
560 case 38: return I387_FSTAT_REGNUM (tdep);
561 case 39: return I387_MXCSR_REGNUM (tdep);
562 case 40: return I386_ES_REGNUM;
563 case 41: return I386_CS_REGNUM;
564 case 42: return I386_SS_REGNUM;
565 case 43: return I386_DS_REGNUM;
566 case 44: return I386_FS_REGNUM;
567 case 45: return I386_GS_REGNUM;
573 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
574 num_regs + num_pseudo_regs for other debug formats. */
577 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
579 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
582 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
588 /* This is the variable that is set with "set disassembly-flavor", and
589 its legitimate values. */
590 static const char att_flavor[] = "att";
591 static const char intel_flavor[] = "intel";
592 static const char *const valid_flavors[] =
598 static const char *disassembly_flavor = att_flavor;
601 /* Use the program counter to determine the contents and size of a
602 breakpoint instruction. Return a pointer to a string of bytes that
603 encode a breakpoint instruction, store the length of the string in
604 *LEN and optionally adjust *PC to point to the correct memory
605 location for inserting the breakpoint.
607 On the i386 we have a single breakpoint that fits in a single byte
608 and can be inserted anywhere.
610 This function is 64-bit safe. */
612 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
614 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
617 /* Displaced instruction handling. */
619 /* Skip the legacy instruction prefixes in INSN.
620 Not all prefixes are valid for any particular insn
621 but we needn't care, the insn will fault if it's invalid.
622 The result is a pointer to the first opcode byte,
623 or NULL if we run off the end of the buffer. */
626 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
628 gdb_byte *end = insn + max_len;
634 case DATA_PREFIX_OPCODE:
635 case ADDR_PREFIX_OPCODE:
636 case CS_PREFIX_OPCODE:
637 case DS_PREFIX_OPCODE:
638 case ES_PREFIX_OPCODE:
639 case FS_PREFIX_OPCODE:
640 case GS_PREFIX_OPCODE:
641 case SS_PREFIX_OPCODE:
642 case LOCK_PREFIX_OPCODE:
643 case REPE_PREFIX_OPCODE:
644 case REPNE_PREFIX_OPCODE:
656 i386_absolute_jmp_p (const gdb_byte *insn)
658 /* jmp far (absolute address in operand). */
664 /* jump near, absolute indirect (/4). */
665 if ((insn[1] & 0x38) == 0x20)
668 /* jump far, absolute indirect (/5). */
669 if ((insn[1] & 0x38) == 0x28)
676 /* Return non-zero if INSN is a jump, zero otherwise. */
679 i386_jmp_p (const gdb_byte *insn)
681 /* jump short, relative. */
685 /* jump near, relative. */
689 return i386_absolute_jmp_p (insn);
693 i386_absolute_call_p (const gdb_byte *insn)
695 /* call far, absolute. */
701 /* Call near, absolute indirect (/2). */
702 if ((insn[1] & 0x38) == 0x10)
705 /* Call far, absolute indirect (/3). */
706 if ((insn[1] & 0x38) == 0x18)
714 i386_ret_p (const gdb_byte *insn)
718 case 0xc2: /* ret near, pop N bytes. */
719 case 0xc3: /* ret near */
720 case 0xca: /* ret far, pop N bytes. */
721 case 0xcb: /* ret far */
722 case 0xcf: /* iret */
731 i386_call_p (const gdb_byte *insn)
733 if (i386_absolute_call_p (insn))
736 /* call near, relative. */
743 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
744 length in bytes. Otherwise, return zero. */
747 i386_syscall_p (const gdb_byte *insn, int *lengthp)
749 /* Is it 'int $0x80'? */
750 if ((insn[0] == 0xcd && insn[1] == 0x80)
751 /* Or is it 'sysenter'? */
752 || (insn[0] == 0x0f && insn[1] == 0x34)
753 /* Or is it 'syscall'? */
754 || (insn[0] == 0x0f && insn[1] == 0x05))
763 /* The gdbarch insn_is_call method. */
766 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
773 return i386_call_p (insn);
776 /* The gdbarch insn_is_ret method. */
779 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
781 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
783 read_code (addr, buf, I386_MAX_INSN_LEN);
784 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
786 return i386_ret_p (insn);
789 /* The gdbarch insn_is_jump method. */
792 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
794 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
796 read_code (addr, buf, I386_MAX_INSN_LEN);
797 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
799 return i386_jmp_p (insn);
802 /* Some kernels may run one past a syscall insn, so we have to cope.
803 Otherwise this is just simple_displaced_step_copy_insn. */
805 struct displaced_step_closure *
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 gdb_byte *buf = (gdb_byte *) xmalloc (len);
813 read_memory (from, buf, len);
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
827 write_memory (to, buf, len);
831 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
832 paddress (gdbarch, from), paddress (gdbarch, to));
833 displaced_step_dump_bytes (gdb_stdlog, buf, len);
836 return (struct displaced_step_closure *) buf;
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
854 ULONGEST insn_offset = to - from;
856 /* Since we use simple_displaced_step_copy_insn, our closure is a
857 copy of the instruction. */
858 gdb_byte *insn = (gdb_byte *) closure;
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
863 fprintf_unfiltered (gdb_stdlog,
864 "displaced: fixup (%s, %s), "
865 "insn = 0x%02x 0x%02x ...\n",
866 paddress (gdbarch, from), paddress (gdbarch, to),
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
873 /* Relocate the %eip, if necessary. */
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
906 But most system calls don't, and we do need to relocate %eip.
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
915 if (i386_syscall_p (insn, &insn_len)
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
939 fprintf_unfiltered (gdb_stdlog,
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
959 const ULONGEST retaddr_len = 4;
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
967 fprintf_unfiltered (gdb_stdlog,
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
975 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
977 target_write_memory (*to, buf, len);
982 i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
989 gdb_byte *insn = buf;
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1009 push_buf[0] = 0x68; /* pushq $... */
1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1014 /* Convert the relative call to a relative jump. */
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1036 if (insn[0] == 0xe9)
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1055 /* Write the adjusted instructions into their displaced
1057 append_insns (to, insn_length, buf);
1061 #ifdef I386_REGNO_TO_SYMMETRY
1062 #error "The Sequent Symmetry is no longer supported."
1065 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
1069 /* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
1071 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1073 struct i386_frame_cache
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1087 /* Stack space reserved for local variables. */
1091 /* Allocate and initialize a frame cache. */
1093 static struct i386_frame_cache *
1094 i386_alloc_frame_cache (void)
1096 struct i386_frame_cache *cache;
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1104 cache->sp_offset = -4;
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
1111 cache->saved_sp = 0;
1112 cache->saved_sp_reg = -1;
1113 cache->pc_in_eax = 0;
1115 /* Frameless until proven otherwise. */
1121 /* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
1125 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1132 if (target_read_code (pc, &op, 1))
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
1148 delta = read_memory_integer (pc + 2, 2, byte_order);
1150 /* Include the size of the jmp instruction (including the
1156 delta = read_memory_integer (pc + 1, 4, byte_order);
1158 /* Include the size of the jmp instruction. */
1163 /* Relative jump, disp8 (ignore data16). */
1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1166 delta += data16 + 2;
1173 /* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
1180 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
1183 /* Functions that return a structure or union start with:
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1198 if (current_pc <= pc)
1201 if (target_read_code (pc, &op, 1))
1204 if (op != 0x58) /* popl %eax */
1207 if (target_read_code (pc + 1, buf, 4))
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1213 if (current_pc == pc)
1215 cache->sp_offset += 4;
1219 if (current_pc == pc + 1)
1221 cache->pc_in_eax = 1;
1225 if (buf[1] == proto1[1])
1232 i386_skip_probe (CORE_ADDR pc)
1234 /* A function may start with
1248 if (target_read_code (pc, &op, 1))
1251 if (op == 0x68 || op == 0x6a)
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1266 pc += delta + sizeof (buf);
1272 /* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1279 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1282 /* There are 2 code sequences to re-align stack before the frame
1285 1. Use a caller-saved saved register:
1291 2. Use a callee-saved saved register:
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
1318 if (target_read_code (pc, buf, sizeof buf))
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1351 /* REG has register number. Registers in pushl and leal have to
1353 if (reg != ((buf[2] >> 3) & 7))
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1378 /* R/M has register. Registers in leal and pushl have to be the
1380 if (reg != (buf[offset + 1] & 7))
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
1386 return std::min (pc + offset + 3, current_pc);
1389 /* Maximum instruction length we need to handle. */
1390 #define I386_MAX_MATCHED_INSN_LEN 6
1392 /* Instruction description. */
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1400 /* Return whether instruction at PC matches PATTERN. */
1403 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1407 if (target_read_code (pc, &op, 1))
1410 if ((op & pattern.mask[0]) == pattern.insn[0])
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
1422 for (i = 1; i < pattern.len; i++)
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1427 return insn_matched;
1432 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1436 static struct i386_insn *
1437 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1439 struct i386_insn *pattern;
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1443 if (i386_match_pattern (pc, *pattern))
1450 /* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1454 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1456 CORE_ADDR current_pc;
1458 struct i386_insn *insn;
1460 insn = i386_match_insn (pc, insn_patterns);
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1468 current_pc -= insn_patterns[i].len;
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1477 if (!i386_match_pattern (current_pc, *insn))
1480 current_pc += insn->len;
1486 /* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1492 struct i386_insn i386_frame_setup_skip_insns[] =
1494 /* Check for `movb imm8, r' and `movl imm32, r'.
1496 ??? Should we handle 16-bit operand-sizes here? */
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1511 ??? Should we handle SIB adressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1542 /* Check whether PC points to a no-op instruction. */
1544 i386_skip_noop (CORE_ADDR pc)
1549 if (target_read_code (pc, &op, 1))
1555 /* Ignore `nop' instruction. */
1559 if (target_read_code (pc, &op, 1))
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1574 else if (op == 0x8b)
1576 if (target_read_code (pc + 1, &op, 1))
1582 if (target_read_code (pc, &op, 1))
1592 /* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
1598 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
1600 struct i386_frame_cache *cache)
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 struct i386_insn *insn;
1610 if (target_read_code (pc, &op, 1))
1613 if (op == 0x55) /* pushl %ebp */
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
1618 cache->sp_offset += 4;
1621 /* If that's all, return now. */
1625 /* Check for some special instructions that might be migrated by
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of posibilities is sheer,
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
1633 while (pc + skip < limit)
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1646 if (target_read_code (pc + skip, &op, 1))
1649 /* The i386 prologue looks like
1655 and a different prologue can be generated for atom.
1659 lea -0x10(%esp),%esp
1661 We handle both of them here. */
1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
1694 /* If that's all, return now. */
1698 /* Check for stack adjustment
1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1705 reg, so we don't have to worry about a data16 prefix. */
1706 if (target_read_code (pc, &op, 1))
1710 /* `subl' with 8-bit immediate. */
1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1712 /* Some instruction starting with 0x83 other than `subl'. */
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1720 else if (op == 0x81)
1722 /* Maybe it is `subl' with a 32-bit immediate. */
1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1724 /* Some instruction starting with 0x81 other than `subl'. */
1727 /* It is `subl' with a 32-bit immediate. */
1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1731 else if (op == 0x8d)
1733 /* The ModR/M byte is 0x64. */
1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1736 /* 'lea' with 8-bit displacement. */
1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1742 /* Some instruction other than `subl' nor 'lea'. */
1746 else if (op == 0xc8) /* enter */
1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1755 /* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
1761 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
1764 CORE_ADDR offset = 0;
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1772 if (target_read_code (pc, &op, 1))
1774 if (op < 0x50 || op > 0x57)
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1786 /* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
1790 We handle these cases:
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1799 Local space is allocated just below the saved %ebp by either the
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
1814 i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
1816 struct i386_frame_cache *cache)
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1827 /* Return PC of first real instruction. */
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1834 static gdb_byte pic_pat[6] =
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1839 struct i386_frame_cache cache;
1843 CORE_ADDR func_addr;
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1851 /* Clang always emits a line note before the prologue and another
1852 one after. We trust clang to emit usable line notes. */
1853 if (post_prologue_pc
1855 && COMPUNIT_PRODUCER (cust) != NULL
1856 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1857 return std::max (start_pc, post_prologue_pc);
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1865 /* Found valid frame setup. */
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1873 movl %ebx,x(%ebp) (optional)
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1880 for (i = 0; i < 6; i++)
1882 if (target_read_code (pc + i, &op, 1))
1885 if (pic_pat[i] != op)
1892 if (target_read_code (pc + delta, &op, 1))
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1903 else /* Unexpected instruction. */
1906 if (target_read_code (pc + delta, &op, 1))
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937 if (target_read_code (pc, &op, 1))
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1955 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1963 /* This function is 64-bit safe. */
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1975 /* Normal frames. */
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1986 cache->pc = get_frame_func (this_frame);
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2012 if (cache->locals < 0)
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2022 if (cache->saved_sp_reg != -1)
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2055 if (cache->saved_sp_reg != -1)
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2081 struct i386_frame_cache *cache;
2084 return (struct i386_frame_cache *) *this_cache;
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2091 i386_frame_cache_1 (this_frame, cache);
2093 CATCH (ex, RETURN_MASK_ERROR)
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw_exception (ex);
2104 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2105 struct frame_id *this_id)
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2113 /* This marks the outermost frame. */
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2122 static enum unwind_stop_reason
2123 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2129 return UNWIND_UNAVAILABLE;
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2135 return UNWIND_NO_REASON;
2138 static struct value *
2139 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2144 gdb_assert (regnum >= 0);
2146 /* The System V ABI says that:
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2165 if (regnum == I386_EFLAGS_REGNUM)
2169 val = get_frame_register_unsigned (this_frame, regnum);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
2183 if (cache->saved_sp == 0)
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2187 return frame_unwind_got_constant (this_frame, regnum,
2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
2195 return frame_unwind_got_register (this_frame, regnum, regnum);
2198 static const struct frame_unwind i386_frame_unwind =
2201 i386_frame_unwind_stop_reason,
2203 i386_frame_prev_register,
2205 default_frame_sniffer
2208 /* Normal frames, but in a function epilogue. */
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2220 struct compunit_symtab *cust;
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2229 if (insn != 0xc3) /* 'ret' instruction. */
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2250 struct i386_frame_cache *cache;
2254 return (struct i386_frame_cache *) *this_cache;
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2261 cache->pc = get_frame_func (this_frame);
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2273 CATCH (ex, RETURN_MASK_ERROR)
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw_exception (ex);
2283 static enum unwind_stop_reason
2284 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2287 struct i386_frame_cache *cache =
2288 i386_epilogue_frame_cache (this_frame, this_cache);
2291 return UNWIND_UNAVAILABLE;
2293 return UNWIND_NO_REASON;
2297 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2299 struct frame_id *this_id)
2301 struct i386_frame_cache *cache =
2302 i386_epilogue_frame_cache (this_frame, this_cache);
2305 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2307 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2310 static struct value *
2311 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2312 void **this_cache, int regnum)
2314 /* Make sure we've initialized the cache. */
2315 i386_epilogue_frame_cache (this_frame, this_cache);
2317 return i386_frame_prev_register (this_frame, this_cache, regnum);
2320 static const struct frame_unwind i386_epilogue_frame_unwind =
2323 i386_epilogue_frame_unwind_stop_reason,
2324 i386_epilogue_frame_this_id,
2325 i386_epilogue_frame_prev_register,
2327 i386_epilogue_frame_sniffer
2331 /* Stack-based trampolines. */
2333 /* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2338 /* Static chain passed in register. */
2340 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2346 { 5, { 0xe9 }, { 0xff } },
2351 /* Static chain passed on stack (when regparm=3). */
2353 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2356 { 5, { 0x68 }, { 0xff } },
2359 { 5, { 0xe9 }, { 0xff } },
2364 /* Return whether PC points inside a stack trampoline. */
2367 i386_in_stack_tramp_p (CORE_ADDR pc)
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2380 if (target_read_memory (pc, &insn, 1))
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2391 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2392 struct frame_info *this_frame,
2395 if (frame_relative_level (this_frame) == 0)
2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2401 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2404 i386_epilogue_frame_unwind_stop_reason,
2405 i386_epilogue_frame_this_id,
2406 i386_epilogue_frame_prev_register,
2408 i386_stack_tramp_frame_sniffer
2411 /* Generate a bytecode expression to get the value of the saved PC. */
2414 i386_gen_return_address (struct gdbarch *gdbarch,
2415 struct agent_expr *ax, struct axs_value *value,
2418 /* The following sequence assumes the traditional use of the base
2420 ax_reg (ax, I386_EBP_REGNUM);
2422 ax_simple (ax, aop_add);
2423 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2424 value->kind = axs_lvalue_memory;
2428 /* Signal trampolines. */
2430 static struct i386_frame_cache *
2431 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2436 struct i386_frame_cache *cache;
2441 return (struct i386_frame_cache *) *this_cache;
2443 cache = i386_alloc_frame_cache ();
2447 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2448 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2450 addr = tdep->sigcontext_addr (this_frame);
2451 if (tdep->sc_reg_offset)
2455 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2457 for (i = 0; i < tdep->sc_num_regs; i++)
2458 if (tdep->sc_reg_offset[i] != -1)
2459 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2463 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2464 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2469 CATCH (ex, RETURN_MASK_ERROR)
2471 if (ex.error != NOT_AVAILABLE_ERROR)
2472 throw_exception (ex);
2476 *this_cache = cache;
2480 static enum unwind_stop_reason
2481 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2488 return UNWIND_UNAVAILABLE;
2490 return UNWIND_NO_REASON;
2494 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2495 struct frame_id *this_id)
2497 struct i386_frame_cache *cache =
2498 i386_sigtramp_frame_cache (this_frame, this_cache);
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2509 static struct value *
2510 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
2513 /* Make sure we've initialized the cache. */
2514 i386_sigtramp_frame_cache (this_frame, this_cache);
2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
2520 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2528 if (tdep->sigcontext_addr == NULL)
2531 if (tdep->sigtramp_p != NULL)
2533 if (tdep->sigtramp_p (this_frame))
2537 if (tdep->sigtramp_start != 0)
2539 CORE_ADDR pc = get_frame_pc (this_frame);
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2549 static const struct frame_unwind i386_sigtramp_frame_unwind =
2552 i386_sigtramp_frame_unwind_stop_reason,
2553 i386_sigtramp_frame_this_id,
2554 i386_sigtramp_frame_prev_register,
2556 i386_sigtramp_frame_sniffer
2561 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2563 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2568 static const struct frame_base i386_frame_base =
2571 i386_frame_base_address,
2572 i386_frame_base_address,
2573 i386_frame_base_address
2576 static struct frame_id
2577 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2581 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2583 /* See the end of i386_push_dummy_call. */
2584 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2587 /* _Decimal128 function return values need 16-byte alignment on the
2591 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2593 return sp & -(CORE_ADDR)16;
2597 /* Figure out where the longjmp will land. Slurp the args out of the
2598 stack. We expect the first arg to be a pointer to the jmp_buf
2599 structure from which we extract the address that we will land at.
2600 This address is copied into PC. This routine returns non-zero on
2604 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2607 CORE_ADDR sp, jb_addr;
2608 struct gdbarch *gdbarch = get_frame_arch (frame);
2609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2610 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2612 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2613 longjmp will land. */
2614 if (jb_pc_offset == -1)
2617 get_frame_register (frame, I386_ESP_REGNUM, buf);
2618 sp = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (sp + 4, buf, 4))
2622 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2623 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2626 *pc = extract_unsigned_integer (buf, 4, byte_order);
2631 /* Check whether TYPE must be 16-byte-aligned when passed as a
2632 function argument. 16-byte vectors, _Decimal128 and structures or
2633 unions containing such types must be 16-byte-aligned; other
2634 arguments are 4-byte-aligned. */
2637 i386_16_byte_align_p (struct type *type)
2639 type = check_typedef (type);
2640 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2641 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2642 && TYPE_LENGTH (type) == 16)
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2647 || TYPE_CODE (type) == TYPE_CODE_UNION)
2650 for (i = 0; i < TYPE_NFIELDS (type); i++)
2652 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2659 /* Implementation for set_gdbarch_push_dummy_code. */
2662 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2663 struct value **args, int nargs, struct type *value_type,
2664 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2665 struct regcache *regcache)
2667 /* Use 0xcc breakpoint - 1 byte. */
2671 /* Keep the stack aligned. */
2676 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2678 struct value **args, CORE_ADDR sp, int struct_return,
2679 CORE_ADDR struct_addr)
2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2687 /* BND registers can be in arbitrary values at the moment of the
2688 inferior call. This can cause boundary violations that are not
2689 due to a real bug or even desired by the user. The best to be done
2690 is set the BND registers to allow access to the whole memory, INIT
2691 state, before pushing the inferior call. */
2692 i387_reset_bnd_regs (gdbarch, regcache);
2694 /* Determine the total space required for arguments and struct
2695 return address in a first pass (allowing for 16-byte-aligned
2696 arguments), then push arguments in a second pass. */
2698 for (write_pass = 0; write_pass < 2; write_pass++)
2700 int args_space_used = 0;
2706 /* Push value address. */
2707 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2708 write_memory (sp, buf, 4);
2709 args_space_used += 4;
2715 for (i = 0; i < nargs; i++)
2717 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2721 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2722 args_space_used = align_up (args_space_used, 16);
2724 write_memory (sp + args_space_used,
2725 value_contents_all (args[i]), len);
2726 /* The System V ABI says that:
2728 "An argument's size is increased, if necessary, to make it a
2729 multiple of [32-bit] words. This may require tail padding,
2730 depending on the size of the argument."
2732 This makes sure the stack stays word-aligned. */
2733 args_space_used += align_up (len, 4);
2737 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2738 args_space = align_up (args_space, 16);
2739 args_space += align_up (len, 4);
2747 /* The original System V ABI only requires word alignment,
2748 but modern incarnations need 16-byte alignment in order
2749 to support SSE. Since wasting a few bytes here isn't
2750 harmful we unconditionally enforce 16-byte alignment. */
2755 /* Store return address. */
2757 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2758 write_memory (sp, buf, 4);
2760 /* Finally, update the stack pointer... */
2761 store_unsigned_integer (buf, 4, byte_order, sp);
2762 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2764 /* ...and fake a frame pointer. */
2765 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2767 /* MarkK wrote: This "+ 8" is all over the place:
2768 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2769 i386_dummy_id). It's there, since all frame unwinders for
2770 a given target have to agree (within a certain margin) on the
2771 definition of the stack address of a frame. Otherwise frame id
2772 comparison might not work correctly. Since DWARF2/GCC uses the
2773 stack address *before* the function call as a frame's CFA. On
2774 the i386, when %ebp is used as a frame pointer, the offset
2775 between the contents %ebp and the CFA as defined by GCC. */
2779 /* These registers are used for returning integers (and on some
2780 targets also for returning `struct' and `union' values when their
2781 size and alignment match an integer type). */
2782 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2783 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2785 /* Read, for architecture GDBARCH, a function return value of TYPE
2786 from REGCACHE, and copy that into VALBUF. */
2789 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2790 struct regcache *regcache, gdb_byte *valbuf)
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2793 int len = TYPE_LENGTH (type);
2794 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2796 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2798 if (tdep->st0_regnum < 0)
2800 warning (_("Cannot find floating-point return value."));
2801 memset (valbuf, 0, len);
2805 /* Floating-point return values can be found in %st(0). Convert
2806 its contents to the desired type. This is probably not
2807 exactly how it would happen on the target itself, but it is
2808 the best we can do. */
2809 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2810 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2814 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2815 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2817 if (len <= low_size)
2819 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2820 memcpy (valbuf, buf, len);
2822 else if (len <= (low_size + high_size))
2824 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2825 memcpy (valbuf, buf, low_size);
2826 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2827 memcpy (valbuf + low_size, buf, len - low_size);
2830 internal_error (__FILE__, __LINE__,
2831 _("Cannot extract return value of %d bytes long."),
2836 /* Write, for architecture GDBARCH, a function return value of TYPE
2837 from VALBUF into REGCACHE. */
2840 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2841 struct regcache *regcache, const gdb_byte *valbuf)
2843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2844 int len = TYPE_LENGTH (type);
2846 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2849 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2851 if (tdep->st0_regnum < 0)
2853 warning (_("Cannot set floating-point return value."));
2857 /* Returning floating-point values is a bit tricky. Apart from
2858 storing the return value in %st(0), we have to simulate the
2859 state of the FPU at function return point. */
2861 /* Convert the value found in VALBUF to the extended
2862 floating-point format used by the FPU. This is probably
2863 not exactly how it would happen on the target itself, but
2864 it is the best we can do. */
2865 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2866 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2868 /* Set the top of the floating-point register stack to 7. The
2869 actual value doesn't really matter, but 7 is what a normal
2870 function return would end up with if the program started out
2871 with a freshly initialized FPU. */
2872 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2874 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2876 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2877 the floating-point register stack to 7, the appropriate value
2878 for the tag word is 0x3fff. */
2879 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2883 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2884 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2886 if (len <= low_size)
2887 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2888 else if (len <= (low_size + high_size))
2890 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2891 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2892 len - low_size, valbuf + low_size);
2895 internal_error (__FILE__, __LINE__,
2896 _("Cannot store return value of %d bytes long."), len);
2901 /* This is the variable that is set with "set struct-convention", and
2902 its legitimate values. */
2903 static const char default_struct_convention[] = "default";
2904 static const char pcc_struct_convention[] = "pcc";
2905 static const char reg_struct_convention[] = "reg";
2906 static const char *const valid_conventions[] =
2908 default_struct_convention,
2909 pcc_struct_convention,
2910 reg_struct_convention,
2913 static const char *struct_convention = default_struct_convention;
2915 /* Return non-zero if TYPE, which is assumed to be a structure,
2916 a union type, or an array type, should be returned in registers
2917 for architecture GDBARCH. */
2920 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2923 enum type_code code = TYPE_CODE (type);
2924 int len = TYPE_LENGTH (type);
2926 gdb_assert (code == TYPE_CODE_STRUCT
2927 || code == TYPE_CODE_UNION
2928 || code == TYPE_CODE_ARRAY);
2930 if (struct_convention == pcc_struct_convention
2931 || (struct_convention == default_struct_convention
2932 && tdep->struct_return == pcc_struct_return))
2935 /* Structures consisting of a single `float', `double' or 'long
2936 double' member are returned in %st(0). */
2937 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2939 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2940 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2941 return (len == 4 || len == 8 || len == 12);
2944 return (len == 1 || len == 2 || len == 4 || len == 8);
2947 /* Determine, for architecture GDBARCH, how a return value of TYPE
2948 should be returned. If it is supposed to be returned in registers,
2949 and READBUF is non-zero, read the appropriate value from REGCACHE,
2950 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2951 from WRITEBUF into REGCACHE. */
2953 static enum return_value_convention
2954 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2955 struct type *type, struct regcache *regcache,
2956 gdb_byte *readbuf, const gdb_byte *writebuf)
2958 enum type_code code = TYPE_CODE (type);
2960 if (((code == TYPE_CODE_STRUCT
2961 || code == TYPE_CODE_UNION
2962 || code == TYPE_CODE_ARRAY)
2963 && !i386_reg_struct_return_p (gdbarch, type))
2964 /* Complex double and long double uses the struct return covention. */
2965 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2966 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2967 /* 128-bit decimal float uses the struct return convention. */
2968 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2970 /* The System V ABI says that:
2972 "A function that returns a structure or union also sets %eax
2973 to the value of the original address of the caller's area
2974 before it returns. Thus when the caller receives control
2975 again, the address of the returned object resides in register
2976 %eax and can be used to access the object."
2978 So the ABI guarantees that we can always find the return
2979 value just after the function has returned. */
2981 /* Note that the ABI doesn't mention functions returning arrays,
2982 which is something possible in certain languages such as Ada.
2983 In this case, the value is returned as if it was wrapped in
2984 a record, so the convention applied to records also applies
2991 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2992 read_memory (addr, readbuf, TYPE_LENGTH (type));
2995 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2998 /* This special case is for structures consisting of a single
2999 `float', `double' or 'long double' member. These structures are
3000 returned in %st(0). For these structures, we call ourselves
3001 recursively, changing TYPE into the type of the first member of
3002 the structure. Since that should work for all structures that
3003 have only one member, we don't bother to check the member's type
3005 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3007 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3008 return i386_return_value (gdbarch, function, type, regcache,
3013 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3015 i386_store_return_value (gdbarch, type, regcache, writebuf);
3017 return RETURN_VALUE_REGISTER_CONVENTION;
3022 i387_ext_type (struct gdbarch *gdbarch)
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3026 if (!tdep->i387_ext_type)
3028 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3029 gdb_assert (tdep->i387_ext_type != NULL);
3032 return tdep->i387_ext_type;
3035 /* Construct type for pseudo BND registers. We can't use
3036 tdesc_find_type since a complement of one value has to be used
3037 to describe the upper bound. */
3039 static struct type *
3040 i386_bnd_type (struct gdbarch *gdbarch)
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3045 if (!tdep->i386_bnd_type)
3048 const struct builtin_type *bt = builtin_type (gdbarch);
3050 /* The type we're building is described bellow: */
3055 void *ubound; /* One complement of raw ubound field. */
3059 t = arch_composite_type (gdbarch,
3060 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3062 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3063 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3065 TYPE_NAME (t) = "builtin_type_bound128";
3066 tdep->i386_bnd_type = t;
3069 return tdep->i386_bnd_type;
3072 /* Construct vector type for pseudo ZMM registers. We can't use
3073 tdesc_find_type since ZMM isn't described in target description. */
3075 static struct type *
3076 i386_zmm_type (struct gdbarch *gdbarch)
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3080 if (!tdep->i386_zmm_type)
3082 const struct builtin_type *bt = builtin_type (gdbarch);
3084 /* The type we're building is this: */
3086 union __gdb_builtin_type_vec512i
3088 int128_t uint128[4];
3089 int64_t v4_int64[8];
3090 int32_t v8_int32[16];
3091 int16_t v16_int16[32];
3092 int8_t v32_int8[64];
3093 double v4_double[8];
3100 t = arch_composite_type (gdbarch,
3101 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3102 append_composite_type_field (t, "v16_float",
3103 init_vector_type (bt->builtin_float, 16));
3104 append_composite_type_field (t, "v8_double",
3105 init_vector_type (bt->builtin_double, 8));
3106 append_composite_type_field (t, "v64_int8",
3107 init_vector_type (bt->builtin_int8, 64));
3108 append_composite_type_field (t, "v32_int16",
3109 init_vector_type (bt->builtin_int16, 32));
3110 append_composite_type_field (t, "v16_int32",
3111 init_vector_type (bt->builtin_int32, 16));
3112 append_composite_type_field (t, "v8_int64",
3113 init_vector_type (bt->builtin_int64, 8));
3114 append_composite_type_field (t, "v4_int128",
3115 init_vector_type (bt->builtin_int128, 4));
3117 TYPE_VECTOR (t) = 1;
3118 TYPE_NAME (t) = "builtin_type_vec512i";
3119 tdep->i386_zmm_type = t;
3122 return tdep->i386_zmm_type;
3125 /* Construct vector type for pseudo YMM registers. We can't use
3126 tdesc_find_type since YMM isn't described in target description. */
3128 static struct type *
3129 i386_ymm_type (struct gdbarch *gdbarch)
3131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3133 if (!tdep->i386_ymm_type)
3135 const struct builtin_type *bt = builtin_type (gdbarch);
3137 /* The type we're building is this: */
3139 union __gdb_builtin_type_vec256i
3141 int128_t uint128[2];
3142 int64_t v2_int64[4];
3143 int32_t v4_int32[8];
3144 int16_t v8_int16[16];
3145 int8_t v16_int8[32];
3146 double v2_double[4];
3153 t = arch_composite_type (gdbarch,
3154 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3155 append_composite_type_field (t, "v8_float",
3156 init_vector_type (bt->builtin_float, 8));
3157 append_composite_type_field (t, "v4_double",
3158 init_vector_type (bt->builtin_double, 4));
3159 append_composite_type_field (t, "v32_int8",
3160 init_vector_type (bt->builtin_int8, 32));
3161 append_composite_type_field (t, "v16_int16",
3162 init_vector_type (bt->builtin_int16, 16));
3163 append_composite_type_field (t, "v8_int32",
3164 init_vector_type (bt->builtin_int32, 8));
3165 append_composite_type_field (t, "v4_int64",
3166 init_vector_type (bt->builtin_int64, 4));
3167 append_composite_type_field (t, "v2_int128",
3168 init_vector_type (bt->builtin_int128, 2));
3170 TYPE_VECTOR (t) = 1;
3171 TYPE_NAME (t) = "builtin_type_vec256i";
3172 tdep->i386_ymm_type = t;
3175 return tdep->i386_ymm_type;
3178 /* Construct vector type for MMX registers. */
3179 static struct type *
3180 i386_mmx_type (struct gdbarch *gdbarch)
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3184 if (!tdep->i386_mmx_type)
3186 const struct builtin_type *bt = builtin_type (gdbarch);
3188 /* The type we're building is this: */
3190 union __gdb_builtin_type_vec64i
3193 int32_t v2_int32[2];
3194 int16_t v4_int16[4];
3201 t = arch_composite_type (gdbarch,
3202 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3204 append_composite_type_field (t, "uint64", bt->builtin_int64);
3205 append_composite_type_field (t, "v2_int32",
3206 init_vector_type (bt->builtin_int32, 2));
3207 append_composite_type_field (t, "v4_int16",
3208 init_vector_type (bt->builtin_int16, 4));
3209 append_composite_type_field (t, "v8_int8",
3210 init_vector_type (bt->builtin_int8, 8));
3212 TYPE_VECTOR (t) = 1;
3213 TYPE_NAME (t) = "builtin_type_vec64i";
3214 tdep->i386_mmx_type = t;
3217 return tdep->i386_mmx_type;
3220 /* Return the GDB type object for the "standard" data type of data in
3224 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3226 if (i386_bnd_regnum_p (gdbarch, regnum))
3227 return i386_bnd_type (gdbarch);
3228 if (i386_mmx_regnum_p (gdbarch, regnum))
3229 return i386_mmx_type (gdbarch);
3230 else if (i386_ymm_regnum_p (gdbarch, regnum))
3231 return i386_ymm_type (gdbarch);
3232 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3233 return i386_ymm_type (gdbarch);
3234 else if (i386_zmm_regnum_p (gdbarch, regnum))
3235 return i386_zmm_type (gdbarch);
3238 const struct builtin_type *bt = builtin_type (gdbarch);
3239 if (i386_byte_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int8;
3241 else if (i386_word_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int16;
3243 else if (i386_dword_regnum_p (gdbarch, regnum))
3244 return bt->builtin_int32;
3245 else if (i386_k_regnum_p (gdbarch, regnum))
3246 return bt->builtin_int64;
3249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3252 /* Map a cooked register onto a raw register or memory. For the i386,
3253 the MMX registers need to be mapped onto floating point registers. */
3256 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3263 mmxreg = regnum - tdep->mm0_regnum;
3264 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3265 tos = (fstat >> 11) & 0x7;
3266 fpreg = (mmxreg + tos) % 8;
3268 return (I387_ST0_REGNUM (tdep) + fpreg);
3271 /* A helper function for us by i386_pseudo_register_read_value and
3272 amd64_pseudo_register_read_value. It does all the work but reads
3273 the data into an already-allocated value. */
3276 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3277 struct regcache *regcache,
3279 struct value *result_value)
3281 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3282 enum register_status status;
3283 gdb_byte *buf = value_contents_raw (result_value);
3285 if (i386_mmx_regnum_p (gdbarch, regnum))
3287 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3289 /* Extract (always little endian). */
3290 status = regcache_raw_read (regcache, fpnum, raw_buf);
3291 if (status != REG_VALID)
3292 mark_value_bytes_unavailable (result_value, 0,
3293 TYPE_LENGTH (value_type (result_value)));
3295 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3300 if (i386_bnd_regnum_p (gdbarch, regnum))
3302 regnum -= tdep->bnd0_regnum;
3304 /* Extract (always little endian). Read lower 128bits. */
3305 status = regcache_raw_read (regcache,
3306 I387_BND0R_REGNUM (tdep) + regnum,
3308 if (status != REG_VALID)
3309 mark_value_bytes_unavailable (result_value, 0, 16);
3312 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3313 LONGEST upper, lower;
3314 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3316 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3317 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3320 memcpy (buf, &lower, size);
3321 memcpy (buf + size, &upper, size);
3324 else if (i386_k_regnum_p (gdbarch, regnum))
3326 regnum -= tdep->k0_regnum;
3328 /* Extract (always little endian). */
3329 status = regcache_raw_read (regcache,
3330 tdep->k0_regnum + regnum,
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 8);
3335 memcpy (buf, raw_buf, 8);
3337 else if (i386_zmm_regnum_p (gdbarch, regnum))
3339 regnum -= tdep->zmm0_regnum;
3341 if (regnum < num_lower_zmm_regs)
3343 /* Extract (always little endian). Read lower 128bits. */
3344 status = regcache_raw_read (regcache,
3345 I387_XMM0_REGNUM (tdep) + regnum,
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 0, 16);
3350 memcpy (buf, raw_buf, 16);
3352 /* Extract (always little endian). Read upper 128bits. */
3353 status = regcache_raw_read (regcache,
3354 tdep->ymm0h_regnum + regnum,
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 16, 16);
3359 memcpy (buf + 16, raw_buf, 16);
3363 /* Extract (always little endian). Read lower 128bits. */
3364 status = regcache_raw_read (regcache,
3365 I387_XMM16_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3371 memcpy (buf, raw_buf, 16);
3373 /* Extract (always little endian). Read upper 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_YMM16H_REGNUM (tdep) + regnum
3376 - num_lower_zmm_regs,
3378 if (status != REG_VALID)
3379 mark_value_bytes_unavailable (result_value, 16, 16);
3381 memcpy (buf + 16, raw_buf, 16);
3384 /* Read upper 256bits. */
3385 status = regcache_raw_read (regcache,
3386 tdep->zmm0h_regnum + regnum,
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 32, 32);
3391 memcpy (buf + 32, raw_buf, 32);
3393 else if (i386_ymm_regnum_p (gdbarch, regnum))
3395 regnum -= tdep->ymm0_regnum;
3397 /* Extract (always little endian). Read lower 128bits. */
3398 status = regcache_raw_read (regcache,
3399 I387_XMM0_REGNUM (tdep) + regnum,
3401 if (status != REG_VALID)
3402 mark_value_bytes_unavailable (result_value, 0, 16);
3404 memcpy (buf, raw_buf, 16);
3405 /* Read upper 128bits. */
3406 status = regcache_raw_read (regcache,
3407 tdep->ymm0h_regnum + regnum,
3409 if (status != REG_VALID)
3410 mark_value_bytes_unavailable (result_value, 16, 32);
3412 memcpy (buf + 16, raw_buf, 16);
3414 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3416 regnum -= tdep->ymm16_regnum;
3417 /* Extract (always little endian). Read lower 128bits. */
3418 status = regcache_raw_read (regcache,
3419 I387_XMM16_REGNUM (tdep) + regnum,
3421 if (status != REG_VALID)
3422 mark_value_bytes_unavailable (result_value, 0, 16);
3424 memcpy (buf, raw_buf, 16);
3425 /* Read upper 128bits. */
3426 status = regcache_raw_read (regcache,
3427 tdep->ymm16h_regnum + regnum,
3429 if (status != REG_VALID)
3430 mark_value_bytes_unavailable (result_value, 16, 16);
3432 memcpy (buf + 16, raw_buf, 16);
3434 else if (i386_word_regnum_p (gdbarch, regnum))
3436 int gpnum = regnum - tdep->ax_regnum;
3438 /* Extract (always little endian). */
3439 status = regcache_raw_read (regcache, gpnum, raw_buf);
3440 if (status != REG_VALID)
3441 mark_value_bytes_unavailable (result_value, 0,
3442 TYPE_LENGTH (value_type (result_value)));
3444 memcpy (buf, raw_buf, 2);
3446 else if (i386_byte_regnum_p (gdbarch, regnum))
3448 int gpnum = regnum - tdep->al_regnum;
3450 /* Extract (always little endian). We read both lower and
3452 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3453 if (status != REG_VALID)
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else if (gpnum >= 4)
3457 memcpy (buf, raw_buf + 1, 1);
3459 memcpy (buf, raw_buf, 1);
3462 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3466 static struct value *
3467 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3468 struct regcache *regcache,
3471 struct value *result;
3473 result = allocate_value (register_type (gdbarch, regnum));
3474 VALUE_LVAL (result) = lval_register;
3475 VALUE_REGNUM (result) = regnum;
3477 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3483 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3484 int regnum, const gdb_byte *buf)
3486 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3488 if (i386_mmx_regnum_p (gdbarch, regnum))
3490 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3493 regcache_raw_read (regcache, fpnum, raw_buf);
3494 /* ... Modify ... (always little endian). */
3495 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3497 regcache_raw_write (regcache, fpnum, raw_buf);
3501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3503 if (i386_bnd_regnum_p (gdbarch, regnum))
3505 ULONGEST upper, lower;
3506 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3507 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3509 /* New values from input value. */
3510 regnum -= tdep->bnd0_regnum;
3511 lower = extract_unsigned_integer (buf, size, byte_order);
3512 upper = extract_unsigned_integer (buf + size, size, byte_order);
3514 /* Fetching register buffer. */
3515 regcache_raw_read (regcache,
3516 I387_BND0R_REGNUM (tdep) + regnum,
3521 /* Set register bits. */
3522 memcpy (raw_buf, &lower, 8);
3523 memcpy (raw_buf + 8, &upper, 8);
3526 regcache_raw_write (regcache,
3527 I387_BND0R_REGNUM (tdep) + regnum,
3530 else if (i386_k_regnum_p (gdbarch, regnum))
3532 regnum -= tdep->k0_regnum;
3534 regcache_raw_write (regcache,
3535 tdep->k0_regnum + regnum,
3538 else if (i386_zmm_regnum_p (gdbarch, regnum))
3540 regnum -= tdep->zmm0_regnum;
3542 if (regnum < num_lower_zmm_regs)
3544 /* Write lower 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_XMM0_REGNUM (tdep) + regnum,
3548 /* Write upper 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_YMM0_REGNUM (tdep) + regnum,
3555 /* Write lower 128bits. */
3556 regcache_raw_write (regcache,
3557 I387_XMM16_REGNUM (tdep) + regnum
3558 - num_lower_zmm_regs,
3560 /* Write upper 128bits. */
3561 regcache_raw_write (regcache,
3562 I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs,
3566 /* Write upper 256bits. */
3567 regcache_raw_write (regcache,
3568 tdep->zmm0h_regnum + regnum,
3571 else if (i386_ymm_regnum_p (gdbarch, regnum))
3573 regnum -= tdep->ymm0_regnum;
3575 /* ... Write lower 128bits. */
3576 regcache_raw_write (regcache,
3577 I387_XMM0_REGNUM (tdep) + regnum,
3579 /* ... Write upper 128bits. */
3580 regcache_raw_write (regcache,
3581 tdep->ymm0h_regnum + regnum,
3584 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3586 regnum -= tdep->ymm16_regnum;
3588 /* ... Write lower 128bits. */
3589 regcache_raw_write (regcache,
3590 I387_XMM16_REGNUM (tdep) + regnum,
3592 /* ... Write upper 128bits. */
3593 regcache_raw_write (regcache,
3594 tdep->ymm16h_regnum + regnum,
3597 else if (i386_word_regnum_p (gdbarch, regnum))
3599 int gpnum = regnum - tdep->ax_regnum;
3602 regcache_raw_read (regcache, gpnum, raw_buf);
3603 /* ... Modify ... (always little endian). */
3604 memcpy (raw_buf, buf, 2);
3606 regcache_raw_write (regcache, gpnum, raw_buf);
3608 else if (i386_byte_regnum_p (gdbarch, regnum))
3610 int gpnum = regnum - tdep->al_regnum;
3612 /* Read ... We read both lower and upper registers. */
3613 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3614 /* ... Modify ... (always little endian). */
3616 memcpy (raw_buf + 1, buf, 1);
3618 memcpy (raw_buf, buf, 1);
3620 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3623 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3627 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3630 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3631 struct agent_expr *ax, int regnum)
3633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3635 if (i386_mmx_regnum_p (gdbarch, regnum))
3637 /* MMX to FPU register mapping depends on current TOS. Let's just
3638 not care and collect everything... */
3641 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3642 for (i = 0; i < 8; i++)
3643 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3646 else if (i386_bnd_regnum_p (gdbarch, regnum))
3648 regnum -= tdep->bnd0_regnum;
3649 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3652 else if (i386_k_regnum_p (gdbarch, regnum))
3654 regnum -= tdep->k0_regnum;
3655 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3658 else if (i386_zmm_regnum_p (gdbarch, regnum))
3660 regnum -= tdep->zmm0_regnum;
3661 if (regnum < num_lower_zmm_regs)
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3668 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3669 - num_lower_zmm_regs);
3670 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3671 - num_lower_zmm_regs);
3673 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3676 else if (i386_ymm_regnum_p (gdbarch, regnum))
3678 regnum -= tdep->ymm0_regnum;
3679 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3683 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3685 regnum -= tdep->ymm16_regnum;
3686 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3687 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3690 else if (i386_word_regnum_p (gdbarch, regnum))
3692 int gpnum = regnum - tdep->ax_regnum;
3694 ax_reg_mask (ax, gpnum);
3697 else if (i386_byte_regnum_p (gdbarch, regnum))
3699 int gpnum = regnum - tdep->al_regnum;
3701 ax_reg_mask (ax, gpnum % 4);
3705 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3710 /* Return the register number of the register allocated by GCC after
3711 REGNUM, or -1 if there is no such register. */
3714 i386_next_regnum (int regnum)
3716 /* GCC allocates the registers in the order:
3718 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3720 Since storing a variable in %esp doesn't make any sense we return
3721 -1 for %ebp and for %esp itself. */
3722 static int next_regnum[] =
3724 I386_EDX_REGNUM, /* Slot for %eax. */
3725 I386_EBX_REGNUM, /* Slot for %ecx. */
3726 I386_ECX_REGNUM, /* Slot for %edx. */
3727 I386_ESI_REGNUM, /* Slot for %ebx. */
3728 -1, -1, /* Slots for %esp and %ebp. */
3729 I386_EDI_REGNUM, /* Slot for %esi. */
3730 I386_EBP_REGNUM /* Slot for %edi. */
3733 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3734 return next_regnum[regnum];
3739 /* Return nonzero if a value of type TYPE stored in register REGNUM
3740 needs any special handling. */
3743 i386_convert_register_p (struct gdbarch *gdbarch,
3744 int regnum, struct type *type)
3746 int len = TYPE_LENGTH (type);
3748 /* Values may be spread across multiple registers. Most debugging
3749 formats aren't expressive enough to specify the locations, so
3750 some heuristics is involved. Right now we only handle types that
3751 have a length that is a multiple of the word size, since GCC
3752 doesn't seem to put any other types into registers. */
3753 if (len > 4 && len % 4 == 0)
3755 int last_regnum = regnum;
3759 last_regnum = i386_next_regnum (last_regnum);
3763 if (last_regnum != -1)
3767 return i387_convert_register_p (gdbarch, regnum, type);
3770 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3771 return its contents in TO. */
3774 i386_register_to_value (struct frame_info *frame, int regnum,
3775 struct type *type, gdb_byte *to,
3776 int *optimizedp, int *unavailablep)
3778 struct gdbarch *gdbarch = get_frame_arch (frame);
3779 int len = TYPE_LENGTH (type);
3781 if (i386_fp_regnum_p (gdbarch, regnum))
3782 return i387_register_to_value (frame, regnum, type, to,
3783 optimizedp, unavailablep);
3785 /* Read a value spread across multiple registers. */
3787 gdb_assert (len > 4 && len % 4 == 0);
3791 gdb_assert (regnum != -1);
3792 gdb_assert (register_size (gdbarch, regnum) == 4);
3794 if (!get_frame_register_bytes (frame, regnum, 0,
3795 register_size (gdbarch, regnum),
3796 to, optimizedp, unavailablep))
3799 regnum = i386_next_regnum (regnum);
3804 *optimizedp = *unavailablep = 0;
3808 /* Write the contents FROM of a value of type TYPE into register
3809 REGNUM in frame FRAME. */
3812 i386_value_to_register (struct frame_info *frame, int regnum,
3813 struct type *type, const gdb_byte *from)
3815 int len = TYPE_LENGTH (type);
3817 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3819 i387_value_to_register (frame, regnum, type, from);
3823 /* Write a value spread across multiple registers. */
3825 gdb_assert (len > 4 && len % 4 == 0);
3829 gdb_assert (regnum != -1);
3830 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3832 put_frame_register (frame, regnum, from);
3833 regnum = i386_next_regnum (regnum);
3839 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3840 in the general-purpose register set REGSET to register cache
3841 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3844 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3845 int regnum, const void *gregs, size_t len)
3847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3848 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3849 const gdb_byte *regs = (const gdb_byte *) gregs;
3852 gdb_assert (len >= tdep->sizeof_gregset);
3854 for (i = 0; i < tdep->gregset_num_regs; i++)
3856 if ((regnum == i || regnum == -1)
3857 && tdep->gregset_reg_offset[i] != -1)
3858 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3862 /* Collect register REGNUM from the register cache REGCACHE and store
3863 it in the buffer specified by GREGS and LEN as described by the
3864 general-purpose register set REGSET. If REGNUM is -1, do this for
3865 all registers in REGSET. */
3868 i386_collect_gregset (const struct regset *regset,
3869 const struct regcache *regcache,
3870 int regnum, void *gregs, size_t len)
3872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3873 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3874 gdb_byte *regs = (gdb_byte *) gregs;
3877 gdb_assert (len >= tdep->sizeof_gregset);
3879 for (i = 0; i < tdep->gregset_num_regs; i++)
3881 if ((regnum == i || regnum == -1)
3882 && tdep->gregset_reg_offset[i] != -1)
3883 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3887 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3888 in the floating-point register set REGSET to register cache
3889 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3892 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3893 int regnum, const void *fpregs, size_t len)
3895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3896 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3898 if (len == I387_SIZEOF_FXSAVE)
3900 i387_supply_fxsave (regcache, regnum, fpregs);
3904 gdb_assert (len >= tdep->sizeof_fpregset);
3905 i387_supply_fsave (regcache, regnum, fpregs);
3908 /* Collect register REGNUM from the register cache REGCACHE and store
3909 it in the buffer specified by FPREGS and LEN as described by the
3910 floating-point register set REGSET. If REGNUM is -1, do this for
3911 all registers in REGSET. */
3914 i386_collect_fpregset (const struct regset *regset,
3915 const struct regcache *regcache,
3916 int regnum, void *fpregs, size_t len)
3918 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3919 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3921 if (len == I387_SIZEOF_FXSAVE)
3923 i387_collect_fxsave (regcache, regnum, fpregs);
3927 gdb_assert (len >= tdep->sizeof_fpregset);
3928 i387_collect_fsave (regcache, regnum, fpregs);
3931 /* Register set definitions. */
3933 const struct regset i386_gregset =
3935 NULL, i386_supply_gregset, i386_collect_gregset
3938 const struct regset i386_fpregset =
3940 NULL, i386_supply_fpregset, i386_collect_fpregset
3943 /* Default iterator over core file register note sections. */
3946 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3947 iterate_over_regset_sections_cb *cb,
3949 const struct regcache *regcache)
3951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3953 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3954 if (tdep->sizeof_fpregset)
3955 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3959 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3962 i386_pe_skip_trampoline_code (struct frame_info *frame,
3963 CORE_ADDR pc, char *name)
3965 struct gdbarch *gdbarch = get_frame_arch (frame);
3966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3969 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3971 unsigned long indirect =
3972 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3973 struct minimal_symbol *indsym =
3974 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3975 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3979 if (startswith (symname, "__imp_")
3980 || startswith (symname, "_imp_"))
3982 read_memory_unsigned_integer (indirect, 4, byte_order);
3985 return 0; /* Not a trampoline. */
3989 /* Return whether the THIS_FRAME corresponds to a sigtramp
3993 i386_sigtramp_p (struct frame_info *this_frame)
3995 CORE_ADDR pc = get_frame_pc (this_frame);
3998 find_pc_partial_function (pc, &name, NULL, NULL);
3999 return (name && strcmp ("_sigtramp", name) == 0);
4003 /* We have two flavours of disassembly. The machinery on this page
4004 deals with switching between those. */
4007 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4009 gdb_assert (disassembly_flavor == att_flavor
4010 || disassembly_flavor == intel_flavor);
4012 /* FIXME: kettenis/20020915: Until disassembler_options is properly
4013 constified, cast to prevent a compiler warning. */
4014 info->disassembler_options = (char *) disassembly_flavor;
4016 return print_insn_i386 (pc, info);
4020 /* There are a few i386 architecture variants that differ only
4021 slightly from the generic i386 target. For now, we don't give them
4022 their own source file, but include them here. As a consequence,
4023 they'll always be included. */
4025 /* System V Release 4 (SVR4). */
4027 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4031 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4033 CORE_ADDR pc = get_frame_pc (this_frame);
4036 /* The origin of these symbols is currently unknown. */
4037 find_pc_partial_function (pc, &name, NULL, NULL);
4038 return (name && (strcmp ("_sigreturn", name) == 0
4039 || strcmp ("sigvechandler", name) == 0));
4042 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4043 address of the associated sigcontext (ucontext) structure. */
4046 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4048 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4049 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4053 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4054 sp = extract_unsigned_integer (buf, 4, byte_order);
4056 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4061 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4065 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4067 return (*s == '$' /* Literal number. */
4068 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4069 || (*s == '(' && s[1] == '%') /* Register indirection. */
4070 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4073 /* Helper function for i386_stap_parse_special_token.
4075 This function parses operands of the form `-8+3+1(%rbp)', which
4076 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4078 Return 1 if the operand was parsed successfully, zero
4082 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4083 struct stap_parse_info *p)
4085 const char *s = p->arg;
4087 if (isdigit (*s) || *s == '-' || *s == '+')
4091 long displacements[3];
4107 if (!isdigit ((unsigned char) *s))
4110 displacements[0] = strtol (s, &endp, 10);
4113 if (*s != '+' && *s != '-')
4115 /* We are not dealing with a triplet. */
4128 if (!isdigit ((unsigned char) *s))
4131 displacements[1] = strtol (s, &endp, 10);
4134 if (*s != '+' && *s != '-')
4136 /* We are not dealing with a triplet. */
4149 if (!isdigit ((unsigned char) *s))
4152 displacements[2] = strtol (s, &endp, 10);
4155 if (*s != '(' || s[1] != '%')
4161 while (isalnum (*s))
4167 len = s - start - 1;
4168 regname = (char *) alloca (len + 1);
4170 strncpy (regname, start, len);
4171 regname[len] = '\0';
4173 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4174 error (_("Invalid register name `%s' on expression `%s'."),
4175 regname, p->saved_arg);
4177 for (i = 0; i < 3; i++)
4179 write_exp_elt_opcode (&p->pstate, OP_LONG);
4181 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4182 write_exp_elt_longcst (&p->pstate, displacements[i]);
4183 write_exp_elt_opcode (&p->pstate, OP_LONG);
4185 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4188 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4191 write_exp_string (&p->pstate, str);
4192 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4194 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4195 write_exp_elt_type (&p->pstate,
4196 builtin_type (gdbarch)->builtin_data_ptr);
4197 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4199 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4200 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4201 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4203 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4204 write_exp_elt_type (&p->pstate,
4205 lookup_pointer_type (p->arg_type));
4206 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4208 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4218 /* Helper function for i386_stap_parse_special_token.
4220 This function parses operands of the form `register base +
4221 (register index * size) + offset', as represented in
4222 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4224 Return 1 if the operand was parsed successfully, zero
4228 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4229 struct stap_parse_info *p)
4231 const char *s = p->arg;
4233 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4235 int offset_minus = 0;
4244 struct stoken base_token, index_token;
4254 if (offset_minus && !isdigit (*s))
4261 offset = strtol (s, &endp, 10);
4265 if (*s != '(' || s[1] != '%')
4271 while (isalnum (*s))
4274 if (*s != ',' || s[1] != '%')
4277 len_base = s - start;
4278 base = (char *) alloca (len_base + 1);
4279 strncpy (base, start, len_base);
4280 base[len_base] = '\0';
4282 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4283 error (_("Invalid register name `%s' on expression `%s'."),
4284 base, p->saved_arg);
4289 while (isalnum (*s))
4292 len_index = s - start;
4293 index = (char *) alloca (len_index + 1);
4294 strncpy (index, start, len_index);
4295 index[len_index] = '\0';
4297 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4298 error (_("Invalid register name `%s' on expression `%s'."),
4299 index, p->saved_arg);
4301 if (*s != ',' && *s != ')')
4317 size = strtol (s, &endp, 10);
4328 write_exp_elt_opcode (&p->pstate, OP_LONG);
4329 write_exp_elt_type (&p->pstate,
4330 builtin_type (gdbarch)->builtin_long);
4331 write_exp_elt_longcst (&p->pstate, offset);
4332 write_exp_elt_opcode (&p->pstate, OP_LONG);
4334 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4337 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4338 base_token.ptr = base;
4339 base_token.length = len_base;
4340 write_exp_string (&p->pstate, base_token);
4341 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4344 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4346 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4347 index_token.ptr = index;
4348 index_token.length = len_index;
4349 write_exp_string (&p->pstate, index_token);
4350 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4354 write_exp_elt_opcode (&p->pstate, OP_LONG);
4355 write_exp_elt_type (&p->pstate,
4356 builtin_type (gdbarch)->builtin_long);
4357 write_exp_elt_longcst (&p->pstate, size);
4358 write_exp_elt_opcode (&p->pstate, OP_LONG);
4360 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4361 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4364 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4366 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4367 write_exp_elt_type (&p->pstate,
4368 lookup_pointer_type (p->arg_type));
4369 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4371 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4381 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4385 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4386 struct stap_parse_info *p)
4388 /* In order to parse special tokens, we use a state-machine that go
4389 through every known token and try to get a match. */
4393 THREE_ARG_DISPLACEMENT,
4398 current_state = TRIPLET;
4400 /* The special tokens to be parsed here are:
4402 - `register base + (register index * size) + offset', as represented
4403 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4405 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4406 `*(-8 + 3 - 1 + (void *) $eax)'. */
4408 while (current_state != DONE)
4410 switch (current_state)
4413 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4417 case THREE_ARG_DISPLACEMENT:
4418 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4423 /* Advancing to the next state. */
4432 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4433 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4436 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4438 return "(x86_64|i.86)";
4446 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4448 static const char *const stap_integer_prefixes[] = { "$", NULL };
4449 static const char *const stap_register_prefixes[] = { "%", NULL };
4450 static const char *const stap_register_indirection_prefixes[] = { "(",
4452 static const char *const stap_register_indirection_suffixes[] = { ")",
4455 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4456 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4458 /* Registering SystemTap handlers. */
4459 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4460 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4461 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4462 stap_register_indirection_prefixes);
4463 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4464 stap_register_indirection_suffixes);
4465 set_gdbarch_stap_is_single_operand (gdbarch,
4466 i386_stap_is_single_operand);
4467 set_gdbarch_stap_parse_special_token (gdbarch,
4468 i386_stap_parse_special_token);
4470 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4473 /* System V Release 4 (SVR4). */
4476 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4478 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4480 /* System V Release 4 uses ELF. */
4481 i386_elf_init_abi (info, gdbarch);
4483 /* System V Release 4 has shared libraries. */
4484 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4486 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4487 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4488 tdep->sc_pc_offset = 36 + 14 * 4;
4489 tdep->sc_sp_offset = 36 + 17 * 4;
4491 tdep->jb_pc_offset = 20;
4497 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4501 /* DJGPP doesn't have any special frames for signal handlers. */
4502 tdep->sigtramp_p = NULL;
4504 tdep->jb_pc_offset = 36;
4506 /* DJGPP does not support the SSE registers. */
4507 if (! tdesc_has_registers (info.target_desc))
4508 tdep->tdesc = tdesc_i386_mmx;
4510 /* Native compiler is GCC, which uses the SVR4 register numbering
4511 even in COFF and STABS. See the comment in i386_gdbarch_init,
4512 before the calls to set_gdbarch_stab_reg_to_regnum and
4513 set_gdbarch_sdb_reg_to_regnum. */
4514 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4515 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4517 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4519 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4523 /* i386 register groups. In addition to the normal groups, add "mmx"
4526 static struct reggroup *i386_sse_reggroup;
4527 static struct reggroup *i386_mmx_reggroup;
4530 i386_init_reggroups (void)
4532 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4533 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4537 i386_add_reggroups (struct gdbarch *gdbarch)
4539 reggroup_add (gdbarch, i386_sse_reggroup);
4540 reggroup_add (gdbarch, i386_mmx_reggroup);
4541 reggroup_add (gdbarch, general_reggroup);
4542 reggroup_add (gdbarch, float_reggroup);
4543 reggroup_add (gdbarch, all_reggroup);
4544 reggroup_add (gdbarch, save_reggroup);
4545 reggroup_add (gdbarch, restore_reggroup);
4546 reggroup_add (gdbarch, vector_reggroup);
4547 reggroup_add (gdbarch, system_reggroup);
4551 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4552 struct reggroup *group)
4554 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4555 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4556 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4557 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4558 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4559 avx512_p, avx_p, sse_p, pkru_regnum_p;
4561 /* Don't include pseudo registers, except for MMX, in any register
4563 if (i386_byte_regnum_p (gdbarch, regnum))
4566 if (i386_word_regnum_p (gdbarch, regnum))
4569 if (i386_dword_regnum_p (gdbarch, regnum))
4572 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4573 if (group == i386_mmx_reggroup)
4574 return mmx_regnum_p;
4576 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4577 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4578 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4579 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4580 if (group == i386_sse_reggroup)
4581 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4583 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4584 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4585 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4587 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4588 == X86_XSTATE_AVX_AVX512_MASK);
4589 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4590 == X86_XSTATE_AVX_MASK) && !avx512_p;
4591 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4592 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4594 if (group == vector_reggroup)
4595 return (mmx_regnum_p
4596 || (zmm_regnum_p && avx512_p)
4597 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4598 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4601 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4602 || i386_fpc_regnum_p (gdbarch, regnum));
4603 if (group == float_reggroup)
4606 /* For "info reg all", don't include upper YMM registers nor XMM
4607 registers when AVX is supported. */
4608 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4609 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4610 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4611 if (group == all_reggroup
4612 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4613 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4615 || ymmh_avx512_regnum_p
4619 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4620 if (group == all_reggroup
4621 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4622 return bnd_regnum_p;
4624 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4625 if (group == all_reggroup
4626 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4629 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4630 if (group == all_reggroup
4631 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4632 return mpx_ctrl_regnum_p;
4634 if (group == general_reggroup)
4635 return (!fp_regnum_p
4639 && !xmm_avx512_regnum_p
4642 && !ymm_avx512_regnum_p
4643 && !ymmh_avx512_regnum_p
4646 && !mpx_ctrl_regnum_p
4651 return default_register_reggroup_p (gdbarch, regnum, group);
4655 /* Get the ARGIth function argument for the current function. */
4658 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4661 struct gdbarch *gdbarch = get_frame_arch (frame);
4662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4663 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4664 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4667 #define PREFIX_REPZ 0x01
4668 #define PREFIX_REPNZ 0x02
4669 #define PREFIX_LOCK 0x04
4670 #define PREFIX_DATA 0x08
4671 #define PREFIX_ADDR 0x10
4683 /* i386 arith/logic operations */
4696 struct i386_record_s
4698 struct gdbarch *gdbarch;
4699 struct regcache *regcache;
4700 CORE_ADDR orig_addr;
4706 uint8_t mod, reg, rm;
4715 /* Parse the "modrm" part of the memory address irp->addr points at.
4716 Returns -1 if something goes wrong, 0 otherwise. */
4719 i386_record_modrm (struct i386_record_s *irp)
4721 struct gdbarch *gdbarch = irp->gdbarch;
4723 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4727 irp->mod = (irp->modrm >> 6) & 3;
4728 irp->reg = (irp->modrm >> 3) & 7;
4729 irp->rm = irp->modrm & 7;
4734 /* Extract the memory address that the current instruction writes to,
4735 and return it in *ADDR. Return -1 if something goes wrong. */
4738 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4740 struct gdbarch *gdbarch = irp->gdbarch;
4741 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4746 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4753 uint8_t base = irp->rm;
4758 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4761 scale = (byte >> 6) & 3;
4762 index = ((byte >> 3) & 7) | irp->rex_x;
4770 if ((base & 7) == 5)
4773 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4776 *addr = extract_signed_integer (buf, 4, byte_order);
4777 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4778 *addr += irp->addr + irp->rip_offset;
4782 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4785 *addr = (int8_t) buf[0];
4788 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4790 *addr = extract_signed_integer (buf, 4, byte_order);
4798 if (base == 4 && irp->popl_esp_hack)
4799 *addr += irp->popl_esp_hack;
4800 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4803 if (irp->aflag == 2)
4808 *addr = (uint32_t) (offset64 + *addr);
4810 if (havesib && (index != 4 || scale != 0))
4812 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4814 if (irp->aflag == 2)
4815 *addr += offset64 << scale;
4817 *addr = (uint32_t) (*addr + (offset64 << scale));
4822 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4823 address from 32-bit to 64-bit. */
4824 *addr = (uint32_t) *addr;
4835 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4838 *addr = extract_signed_integer (buf, 2, byte_order);
4844 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4847 *addr = (int8_t) buf[0];
4850 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4853 *addr = extract_signed_integer (buf, 2, byte_order);
4860 regcache_raw_read_unsigned (irp->regcache,
4861 irp->regmap[X86_RECORD_REBX_REGNUM],
4863 *addr = (uint32_t) (*addr + offset64);
4864 regcache_raw_read_unsigned (irp->regcache,
4865 irp->regmap[X86_RECORD_RESI_REGNUM],
4867 *addr = (uint32_t) (*addr + offset64);
4870 regcache_raw_read_unsigned (irp->regcache,
4871 irp->regmap[X86_RECORD_REBX_REGNUM],
4873 *addr = (uint32_t) (*addr + offset64);
4874 regcache_raw_read_unsigned (irp->regcache,
4875 irp->regmap[X86_RECORD_REDI_REGNUM],
4877 *addr = (uint32_t) (*addr + offset64);
4880 regcache_raw_read_unsigned (irp->regcache,
4881 irp->regmap[X86_RECORD_REBP_REGNUM],
4883 *addr = (uint32_t) (*addr + offset64);
4884 regcache_raw_read_unsigned (irp->regcache,
4885 irp->regmap[X86_RECORD_RESI_REGNUM],
4887 *addr = (uint32_t) (*addr + offset64);
4890 regcache_raw_read_unsigned (irp->regcache,
4891 irp->regmap[X86_RECORD_REBP_REGNUM],
4893 *addr = (uint32_t) (*addr + offset64);
4894 regcache_raw_read_unsigned (irp->regcache,
4895 irp->regmap[X86_RECORD_REDI_REGNUM],
4897 *addr = (uint32_t) (*addr + offset64);
4900 regcache_raw_read_unsigned (irp->regcache,
4901 irp->regmap[X86_RECORD_RESI_REGNUM],
4903 *addr = (uint32_t) (*addr + offset64);
4906 regcache_raw_read_unsigned (irp->regcache,
4907 irp->regmap[X86_RECORD_REDI_REGNUM],
4909 *addr = (uint32_t) (*addr + offset64);
4912 regcache_raw_read_unsigned (irp->regcache,
4913 irp->regmap[X86_RECORD_REBP_REGNUM],
4915 *addr = (uint32_t) (*addr + offset64);
4918 regcache_raw_read_unsigned (irp->regcache,
4919 irp->regmap[X86_RECORD_REBX_REGNUM],
4921 *addr = (uint32_t) (*addr + offset64);
4931 /* Record the address and contents of the memory that will be changed
4932 by the current instruction. Return -1 if something goes wrong, 0
4936 i386_record_lea_modrm (struct i386_record_s *irp)
4938 struct gdbarch *gdbarch = irp->gdbarch;
4941 if (irp->override >= 0)
4943 if (record_full_memory_query)
4946 Process record ignores the memory change of instruction at address %s\n\
4947 because it can't get the value of the segment register.\n\
4948 Do you want to stop the program?"),
4949 paddress (gdbarch, irp->orig_addr)))
4956 if (i386_record_lea_modrm_addr (irp, &addr))
4959 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4965 /* Record the effects of a push operation. Return -1 if something
4966 goes wrong, 0 otherwise. */
4969 i386_record_push (struct i386_record_s *irp, int size)
4973 if (record_full_arch_list_add_reg (irp->regcache,
4974 irp->regmap[X86_RECORD_RESP_REGNUM]))
4976 regcache_raw_read_unsigned (irp->regcache,
4977 irp->regmap[X86_RECORD_RESP_REGNUM],
4979 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4986 /* Defines contents to record. */
4987 #define I386_SAVE_FPU_REGS 0xfffd
4988 #define I386_SAVE_FPU_ENV 0xfffe
4989 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4991 /* Record the values of the floating point registers which will be
4992 changed by the current instruction. Returns -1 if something is
4993 wrong, 0 otherwise. */
4995 static int i386_record_floats (struct gdbarch *gdbarch,
4996 struct i386_record_s *ir,
4999 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5002 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5003 happen. Currently we store st0-st7 registers, but we need not store all
5004 registers all the time, in future we use ftag register and record only
5005 those who are not marked as an empty. */
5007 if (I386_SAVE_FPU_REGS == iregnum)
5009 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5011 if (record_full_arch_list_add_reg (ir->regcache, i))
5015 else if (I386_SAVE_FPU_ENV == iregnum)
5017 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5019 if (record_full_arch_list_add_reg (ir->regcache, i))
5023 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5025 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5027 if (record_full_arch_list_add_reg (ir->regcache, i))
5031 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5032 (iregnum <= I387_FOP_REGNUM (tdep)))
5034 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5039 /* Parameter error. */
5042 if(I386_SAVE_FPU_ENV != iregnum)
5044 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5046 if (record_full_arch_list_add_reg (ir->regcache, i))
5053 /* Parse the current instruction, and record the values of the
5054 registers and memory that will be changed by the current
5055 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5057 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5058 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5061 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5062 CORE_ADDR input_addr)
5064 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5070 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5071 struct i386_record_s ir;
5072 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5076 memset (&ir, 0, sizeof (struct i386_record_s));
5077 ir.regcache = regcache;
5078 ir.addr = input_addr;
5079 ir.orig_addr = input_addr;
5083 ir.popl_esp_hack = 0;
5084 ir.regmap = tdep->record_regmap;
5085 ir.gdbarch = gdbarch;
5087 if (record_debug > 1)
5088 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5090 paddress (gdbarch, ir.addr));
5095 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5098 switch (opcode8) /* Instruction prefixes */
5100 case REPE_PREFIX_OPCODE:
5101 prefixes |= PREFIX_REPZ;
5103 case REPNE_PREFIX_OPCODE:
5104 prefixes |= PREFIX_REPNZ;
5106 case LOCK_PREFIX_OPCODE:
5107 prefixes |= PREFIX_LOCK;
5109 case CS_PREFIX_OPCODE:
5110 ir.override = X86_RECORD_CS_REGNUM;
5112 case SS_PREFIX_OPCODE:
5113 ir.override = X86_RECORD_SS_REGNUM;
5115 case DS_PREFIX_OPCODE:
5116 ir.override = X86_RECORD_DS_REGNUM;
5118 case ES_PREFIX_OPCODE:
5119 ir.override = X86_RECORD_ES_REGNUM;
5121 case FS_PREFIX_OPCODE:
5122 ir.override = X86_RECORD_FS_REGNUM;
5124 case GS_PREFIX_OPCODE:
5125 ir.override = X86_RECORD_GS_REGNUM;
5127 case DATA_PREFIX_OPCODE:
5128 prefixes |= PREFIX_DATA;
5130 case ADDR_PREFIX_OPCODE:
5131 prefixes |= PREFIX_ADDR;
5133 case 0x40: /* i386 inc %eax */
5134 case 0x41: /* i386 inc %ecx */
5135 case 0x42: /* i386 inc %edx */
5136 case 0x43: /* i386 inc %ebx */
5137 case 0x44: /* i386 inc %esp */
5138 case 0x45: /* i386 inc %ebp */
5139 case 0x46: /* i386 inc %esi */
5140 case 0x47: /* i386 inc %edi */
5141 case 0x48: /* i386 dec %eax */
5142 case 0x49: /* i386 dec %ecx */
5143 case 0x4a: /* i386 dec %edx */
5144 case 0x4b: /* i386 dec %ebx */
5145 case 0x4c: /* i386 dec %esp */
5146 case 0x4d: /* i386 dec %ebp */
5147 case 0x4e: /* i386 dec %esi */
5148 case 0x4f: /* i386 dec %edi */
5149 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5152 rex_w = (opcode8 >> 3) & 1;
5153 rex_r = (opcode8 & 0x4) << 1;
5154 ir.rex_x = (opcode8 & 0x2) << 2;
5155 ir.rex_b = (opcode8 & 0x1) << 3;
5157 else /* 32 bit target */
5166 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5172 if (prefixes & PREFIX_DATA)
5175 if (prefixes & PREFIX_ADDR)
5177 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5180 /* Now check op code. */
5181 opcode = (uint32_t) opcode8;
5186 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5189 opcode = (uint32_t) opcode8 | 0x0f00;
5193 case 0x00: /* arith & logic */
5241 if (((opcode >> 3) & 7) != OP_CMPL)
5243 if ((opcode & 1) == 0)
5246 ir.ot = ir.dflag + OT_WORD;
5248 switch ((opcode >> 1) & 3)
5250 case 0: /* OP Ev, Gv */
5251 if (i386_record_modrm (&ir))
5255 if (i386_record_lea_modrm (&ir))
5261 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5266 case 1: /* OP Gv, Ev */
5267 if (i386_record_modrm (&ir))
5270 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5274 case 2: /* OP A, Iv */
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5282 case 0x80: /* GRP1 */
5286 if (i386_record_modrm (&ir))
5289 if (ir.reg != OP_CMPL)
5291 if ((opcode & 1) == 0)
5294 ir.ot = ir.dflag + OT_WORD;
5301 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5302 if (i386_record_lea_modrm (&ir))
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5311 case 0x40: /* inc */
5320 case 0x48: /* dec */
5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5333 case 0xf6: /* GRP3 */
5335 if ((opcode & 1) == 0)
5338 ir.ot = ir.dflag + OT_WORD;
5339 if (i386_record_modrm (&ir))
5342 if (ir.mod != 3 && ir.reg == 0)
5343 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5354 if (i386_record_lea_modrm (&ir))
5360 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5364 if (ir.reg == 3) /* neg */
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5372 if (ir.ot != OT_BYTE)
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5378 opcode = opcode << 8 | ir.modrm;
5384 case 0xfe: /* GRP4 */
5385 case 0xff: /* GRP5 */
5386 if (i386_record_modrm (&ir))
5388 if (ir.reg >= 2 && opcode == 0xfe)
5391 opcode = opcode << 8 | ir.modrm;
5398 if ((opcode & 1) == 0)
5401 ir.ot = ir.dflag + OT_WORD;
5404 if (i386_record_lea_modrm (&ir))
5410 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5417 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5419 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5425 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5434 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5436 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5441 opcode = opcode << 8 | ir.modrm;
5447 case 0x84: /* test */
5451 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5454 case 0x98: /* CWDE/CBW */
5455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5458 case 0x99: /* CDQ/CWD */
5459 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5463 case 0x0faf: /* imul */
5466 ir.ot = ir.dflag + OT_WORD;
5467 if (i386_record_modrm (&ir))
5470 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5471 else if (opcode == 0x6b)
5474 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5480 case 0x0fc0: /* xadd */
5482 if ((opcode & 1) == 0)
5485 ir.ot = ir.dflag + OT_WORD;
5486 if (i386_record_modrm (&ir))
5491 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5494 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5500 if (i386_record_lea_modrm (&ir))
5502 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5509 case 0x0fb0: /* cmpxchg */
5511 if ((opcode & 1) == 0)
5514 ir.ot = ir.dflag + OT_WORD;
5515 if (i386_record_modrm (&ir))
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5521 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5528 if (i386_record_lea_modrm (&ir))
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5534 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5535 if (i386_record_modrm (&ir))
5539 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5540 an extended opcode. rdrand has bits 110 (/6) and rdseed
5541 has bits 111 (/7). */
5542 if (ir.reg == 6 || ir.reg == 7)
5544 /* The storage register is described by the 3 R/M bits, but the
5545 REX.B prefix may be used to give access to registers
5546 R8~R15. In this case ir.rex_b + R/M will give us the register
5547 in the range R8~R15.
5549 REX.W may also be used to access 64-bit registers, but we
5550 already record entire registers and not just partial bits
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5553 /* These instructions also set conditional bits. */
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5559 /* We don't handle this particular instruction yet. */
5561 opcode = opcode << 8 | ir.modrm;
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5567 if (i386_record_lea_modrm (&ir))
5569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5572 case 0x50: /* push */
5582 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5584 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5588 case 0x06: /* push es */
5589 case 0x0e: /* push cs */
5590 case 0x16: /* push ss */
5591 case 0x1e: /* push ds */
5592 if (ir.regmap[X86_RECORD_R8_REGNUM])
5597 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5601 case 0x0fa0: /* push fs */
5602 case 0x0fa8: /* push gs */
5603 if (ir.regmap[X86_RECORD_R8_REGNUM])
5608 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5612 case 0x60: /* pusha */
5613 if (ir.regmap[X86_RECORD_R8_REGNUM])
5618 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5622 case 0x58: /* pop */
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5634 case 0x61: /* popa */
5635 if (ir.regmap[X86_RECORD_R8_REGNUM])
5640 for (regnum = X86_RECORD_REAX_REGNUM;
5641 regnum <= X86_RECORD_REDI_REGNUM;
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5646 case 0x8f: /* pop */
5647 if (ir.regmap[X86_RECORD_R8_REGNUM])
5648 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5650 ir.ot = ir.dflag + OT_WORD;
5651 if (i386_record_modrm (&ir))
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5657 ir.popl_esp_hack = 1 << ir.ot;
5658 if (i386_record_lea_modrm (&ir))
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 case 0xc8: /* enter */
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5666 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5668 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5672 case 0xc9: /* leave */
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5677 case 0x07: /* pop es */
5678 if (ir.regmap[X86_RECORD_R8_REGNUM])
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5688 case 0x17: /* pop ss */
5689 if (ir.regmap[X86_RECORD_R8_REGNUM])
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5699 case 0x1f: /* pop ds */
5700 if (ir.regmap[X86_RECORD_R8_REGNUM])
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5710 case 0x0fa1: /* pop fs */
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5716 case 0x0fa9: /* pop gs */
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5722 case 0x88: /* mov */
5726 if ((opcode & 1) == 0)
5729 ir.ot = ir.dflag + OT_WORD;
5731 if (i386_record_modrm (&ir))
5736 if (opcode == 0xc6 || opcode == 0xc7)
5737 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5738 if (i386_record_lea_modrm (&ir))
5743 if (opcode == 0xc6 || opcode == 0xc7)
5745 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5751 case 0x8a: /* mov */
5753 if ((opcode & 1) == 0)
5756 ir.ot = ir.dflag + OT_WORD;
5757 if (i386_record_modrm (&ir))
5760 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5765 case 0x8c: /* mov seg */
5766 if (i386_record_modrm (&ir))
5771 opcode = opcode << 8 | ir.modrm;
5776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5780 if (i386_record_lea_modrm (&ir))
5785 case 0x8e: /* mov seg */
5786 if (i386_record_modrm (&ir))
5791 regnum = X86_RECORD_ES_REGNUM;
5794 regnum = X86_RECORD_SS_REGNUM;
5797 regnum = X86_RECORD_DS_REGNUM;
5800 regnum = X86_RECORD_FS_REGNUM;
5803 regnum = X86_RECORD_GS_REGNUM;
5807 opcode = opcode << 8 | ir.modrm;
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5815 case 0x0fb6: /* movzbS */
5816 case 0x0fb7: /* movzwS */
5817 case 0x0fbe: /* movsbS */
5818 case 0x0fbf: /* movswS */
5819 if (i386_record_modrm (&ir))
5821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5824 case 0x8d: /* lea */
5825 if (i386_record_modrm (&ir))
5830 opcode = opcode << 8 | ir.modrm;
5835 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5840 case 0xa0: /* mov EAX */
5843 case 0xd7: /* xlat */
5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5847 case 0xa2: /* mov EAX */
5849 if (ir.override >= 0)
5851 if (record_full_memory_query)
5854 Process record ignores the memory change of instruction at address %s\n\
5855 because it can't get the value of the segment register.\n\
5856 Do you want to stop the program?"),
5857 paddress (gdbarch, ir.orig_addr)))
5863 if ((opcode & 1) == 0)
5866 ir.ot = ir.dflag + OT_WORD;
5869 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5872 addr = extract_unsigned_integer (buf, 8, byte_order);
5876 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5879 addr = extract_unsigned_integer (buf, 4, byte_order);
5883 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5886 addr = extract_unsigned_integer (buf, 2, byte_order);
5888 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5893 case 0xb0: /* mov R, Ib */
5901 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5902 ? ((opcode & 0x7) | ir.rex_b)
5903 : ((opcode & 0x7) & 0x3));
5906 case 0xb8: /* mov R, Iv */
5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5917 case 0x91: /* xchg R, EAX */
5924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5928 case 0x86: /* xchg Ev, Gv */
5930 if ((opcode & 1) == 0)
5933 ir.ot = ir.dflag + OT_WORD;
5934 if (i386_record_modrm (&ir))
5939 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5945 if (i386_record_lea_modrm (&ir))
5949 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5954 case 0xc4: /* les Gv */
5955 case 0xc5: /* lds Gv */
5956 if (ir.regmap[X86_RECORD_R8_REGNUM])
5962 case 0x0fb2: /* lss Gv */
5963 case 0x0fb4: /* lfs Gv */
5964 case 0x0fb5: /* lgs Gv */
5965 if (i386_record_modrm (&ir))
5973 opcode = opcode << 8 | ir.modrm;
5978 case 0xc4: /* les Gv */
5979 regnum = X86_RECORD_ES_REGNUM;
5981 case 0xc5: /* lds Gv */
5982 regnum = X86_RECORD_DS_REGNUM;
5984 case 0x0fb2: /* lss Gv */
5985 regnum = X86_RECORD_SS_REGNUM;
5987 case 0x0fb4: /* lfs Gv */
5988 regnum = X86_RECORD_FS_REGNUM;
5990 case 0x0fb5: /* lgs Gv */
5991 regnum = X86_RECORD_GS_REGNUM;
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5996 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5999 case 0xc0: /* shifts */
6005 if ((opcode & 1) == 0)
6008 ir.ot = ir.dflag + OT_WORD;
6009 if (i386_record_modrm (&ir))
6011 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6013 if (i386_record_lea_modrm (&ir))
6019 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6030 if (i386_record_modrm (&ir))
6034 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6039 if (i386_record_lea_modrm (&ir))
6044 case 0xd8: /* Floats. */
6052 if (i386_record_modrm (&ir))
6054 ir.reg |= ((opcode & 7) << 3);
6060 if (i386_record_lea_modrm_addr (&ir, &addr64))
6068 /* For fcom, ficom nothing to do. */
6074 /* For fcomp, ficomp pop FPU stack, store all. */
6075 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6102 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6103 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6104 of code, always affects st(0) register. */
6105 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6129 /* Handling fld, fild. */
6130 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6134 switch (ir.reg >> 4)
6137 if (record_full_arch_list_add_mem (addr64, 4))
6141 if (record_full_arch_list_add_mem (addr64, 8))
6147 if (record_full_arch_list_add_mem (addr64, 2))
6153 switch (ir.reg >> 4)
6156 if (record_full_arch_list_add_mem (addr64, 4))
6158 if (3 == (ir.reg & 7))
6160 /* For fstp m32fp. */
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_REGS))
6167 if (record_full_arch_list_add_mem (addr64, 4))
6169 if ((3 == (ir.reg & 7))
6170 || (5 == (ir.reg & 7))
6171 || (7 == (ir.reg & 7)))
6173 /* For fstp insn. */
6174 if (i386_record_floats (gdbarch, &ir,
6175 I386_SAVE_FPU_REGS))
6180 if (record_full_arch_list_add_mem (addr64, 8))
6182 if (3 == (ir.reg & 7))
6184 /* For fstp m64fp. */
6185 if (i386_record_floats (gdbarch, &ir,
6186 I386_SAVE_FPU_REGS))
6191 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6193 /* For fistp, fbld, fild, fbstp. */
6194 if (i386_record_floats (gdbarch, &ir,
6195 I386_SAVE_FPU_REGS))
6200 if (record_full_arch_list_add_mem (addr64, 2))
6209 if (i386_record_floats (gdbarch, &ir,
6210 I386_SAVE_FPU_ENV_REG_STACK))
6215 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6220 if (i386_record_floats (gdbarch, &ir,
6221 I386_SAVE_FPU_ENV_REG_STACK))
6227 if (record_full_arch_list_add_mem (addr64, 28))
6232 if (record_full_arch_list_add_mem (addr64, 14))
6238 if (record_full_arch_list_add_mem (addr64, 2))
6240 /* Insn fstp, fbstp. */
6241 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6246 if (record_full_arch_list_add_mem (addr64, 10))
6252 if (record_full_arch_list_add_mem (addr64, 28))
6258 if (record_full_arch_list_add_mem (addr64, 14))
6262 if (record_full_arch_list_add_mem (addr64, 80))
6265 if (i386_record_floats (gdbarch, &ir,
6266 I386_SAVE_FPU_ENV_REG_STACK))
6270 if (record_full_arch_list_add_mem (addr64, 8))
6273 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6278 opcode = opcode << 8 | ir.modrm;
6283 /* Opcode is an extension of modR/M byte. */
6289 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6293 if (0x0c == (ir.modrm >> 4))
6295 if ((ir.modrm & 0x0f) <= 7)
6297 if (i386_record_floats (gdbarch, &ir,
6298 I386_SAVE_FPU_REGS))
6303 if (i386_record_floats (gdbarch, &ir,
6304 I387_ST0_REGNUM (tdep)))
6306 /* If only st(0) is changing, then we have already
6308 if ((ir.modrm & 0x0f) - 0x08)
6310 if (i386_record_floats (gdbarch, &ir,
6311 I387_ST0_REGNUM (tdep) +
6312 ((ir.modrm & 0x0f) - 0x08)))
6330 if (i386_record_floats (gdbarch, &ir,
6331 I387_ST0_REGNUM (tdep)))
6349 if (i386_record_floats (gdbarch, &ir,
6350 I386_SAVE_FPU_REGS))
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep)))
6357 if (i386_record_floats (gdbarch, &ir,
6358 I387_ST0_REGNUM (tdep) + 1))
6365 if (0xe9 == ir.modrm)
6367 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6370 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6372 if (i386_record_floats (gdbarch, &ir,
6373 I387_ST0_REGNUM (tdep)))
6375 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6377 if (i386_record_floats (gdbarch, &ir,
6378 I387_ST0_REGNUM (tdep) +
6382 else if ((ir.modrm & 0x0f) - 0x08)
6384 if (i386_record_floats (gdbarch, &ir,
6385 I387_ST0_REGNUM (tdep) +
6386 ((ir.modrm & 0x0f) - 0x08)))
6392 if (0xe3 == ir.modrm)
6394 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6397 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6399 if (i386_record_floats (gdbarch, &ir,
6400 I387_ST0_REGNUM (tdep)))
6402 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6404 if (i386_record_floats (gdbarch, &ir,
6405 I387_ST0_REGNUM (tdep) +
6409 else if ((ir.modrm & 0x0f) - 0x08)
6411 if (i386_record_floats (gdbarch, &ir,
6412 I387_ST0_REGNUM (tdep) +
6413 ((ir.modrm & 0x0f) - 0x08)))
6419 if ((0x0c == ir.modrm >> 4)
6420 || (0x0d == ir.modrm >> 4)
6421 || (0x0f == ir.modrm >> 4))
6423 if ((ir.modrm & 0x0f) <= 7)
6425 if (i386_record_floats (gdbarch, &ir,
6426 I387_ST0_REGNUM (tdep) +
6432 if (i386_record_floats (gdbarch, &ir,
6433 I387_ST0_REGNUM (tdep) +
6434 ((ir.modrm & 0x0f) - 0x08)))
6440 if (0x0c == ir.modrm >> 4)
6442 if (i386_record_floats (gdbarch, &ir,
6443 I387_FTAG_REGNUM (tdep)))
6446 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6448 if ((ir.modrm & 0x0f) <= 7)
6450 if (i386_record_floats (gdbarch, &ir,
6451 I387_ST0_REGNUM (tdep) +
6457 if (i386_record_floats (gdbarch, &ir,
6458 I386_SAVE_FPU_REGS))
6464 if ((0x0c == ir.modrm >> 4)
6465 || (0x0e == ir.modrm >> 4)
6466 || (0x0f == ir.modrm >> 4)
6467 || (0xd9 == ir.modrm))
6469 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6474 if (0xe0 == ir.modrm)
6476 if (record_full_arch_list_add_reg (ir.regcache,
6480 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6482 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6490 case 0xa4: /* movsS */
6492 case 0xaa: /* stosS */
6494 case 0x6c: /* insS */
6496 regcache_raw_read_unsigned (ir.regcache,
6497 ir.regmap[X86_RECORD_RECX_REGNUM],
6503 if ((opcode & 1) == 0)
6506 ir.ot = ir.dflag + OT_WORD;
6507 regcache_raw_read_unsigned (ir.regcache,
6508 ir.regmap[X86_RECORD_REDI_REGNUM],
6511 regcache_raw_read_unsigned (ir.regcache,
6512 ir.regmap[X86_RECORD_ES_REGNUM],
6514 regcache_raw_read_unsigned (ir.regcache,
6515 ir.regmap[X86_RECORD_DS_REGNUM],
6517 if (ir.aflag && (es != ds))
6519 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6520 if (record_full_memory_query)
6523 Process record ignores the memory change of instruction at address %s\n\
6524 because it can't get the value of the segment register.\n\
6525 Do you want to stop the program?"),
6526 paddress (gdbarch, ir.orig_addr)))
6532 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6536 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6538 if (opcode == 0xa4 || opcode == 0xa5)
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6545 case 0xa6: /* cmpsS */
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6549 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6554 case 0xac: /* lodsS */
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6558 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6563 case 0xae: /* scasS */
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6566 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6571 case 0x6e: /* outsS */
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6574 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6579 case 0xe4: /* port I/O */
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6594 case 0xc2: /* ret im */
6595 case 0xc3: /* ret */
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6600 case 0xca: /* lret im */
6601 case 0xcb: /* lret */
6602 case 0xcf: /* iret */
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6608 case 0xe8: /* call im */
6609 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6611 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6615 case 0x9a: /* lcall im */
6616 if (ir.regmap[X86_RECORD_R8_REGNUM])
6621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6622 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6626 case 0xe9: /* jmp im */
6627 case 0xea: /* ljmp im */
6628 case 0xeb: /* jmp Jb */
6629 case 0x70: /* jcc Jb */
6645 case 0x0f80: /* jcc Jv */
6663 case 0x0f90: /* setcc Gv */
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6681 if (i386_record_modrm (&ir))
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6688 if (i386_record_lea_modrm (&ir))
6693 case 0x0f40: /* cmov Gv, Ev */
6709 if (i386_record_modrm (&ir))
6712 if (ir.dflag == OT_BYTE)
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6718 case 0x9c: /* pushf */
6719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6720 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6722 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6726 case 0x9d: /* popf */
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6731 case 0x9e: /* sahf */
6732 if (ir.regmap[X86_RECORD_R8_REGNUM])
6738 case 0xf5: /* cmc */
6739 case 0xf8: /* clc */
6740 case 0xf9: /* stc */
6741 case 0xfc: /* cld */
6742 case 0xfd: /* std */
6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6746 case 0x9f: /* lahf */
6747 if (ir.regmap[X86_RECORD_R8_REGNUM])
6752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6756 /* bit operations */
6757 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6758 ir.ot = ir.dflag + OT_WORD;
6759 if (i386_record_modrm (&ir))
6764 opcode = opcode << 8 | ir.modrm;
6770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6773 if (i386_record_lea_modrm (&ir))
6777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6780 case 0x0fa3: /* bt Gv, Ev */
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6784 case 0x0fab: /* bts */
6785 case 0x0fb3: /* btr */
6786 case 0x0fbb: /* btc */
6787 ir.ot = ir.dflag + OT_WORD;
6788 if (i386_record_modrm (&ir))
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6795 if (i386_record_lea_modrm_addr (&ir, &addr64))
6797 regcache_raw_read_unsigned (ir.regcache,
6798 ir.regmap[ir.reg | rex_r],
6803 addr64 += ((int16_t) addr >> 4) << 4;
6806 addr64 += ((int32_t) addr >> 5) << 5;
6809 addr64 += ((int64_t) addr >> 6) << 6;
6812 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6814 if (i386_record_lea_modrm (&ir))
6817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6820 case 0x0fbc: /* bsf */
6821 case 0x0fbd: /* bsr */
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6827 case 0x27: /* daa */
6828 case 0x2f: /* das */
6829 case 0x37: /* aaa */
6830 case 0x3f: /* aas */
6831 case 0xd4: /* aam */
6832 case 0xd5: /* aad */
6833 if (ir.regmap[X86_RECORD_R8_REGNUM])
6838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6839 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6843 case 0x90: /* nop */
6844 if (prefixes & PREFIX_LOCK)
6851 case 0x9b: /* fwait */
6852 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6854 opcode = (uint32_t) opcode8;
6860 case 0xcc: /* int3 */
6861 printf_unfiltered (_("Process record does not support instruction "
6868 case 0xcd: /* int */
6872 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6875 if (interrupt != 0x80
6876 || tdep->i386_intx80_record == NULL)
6878 printf_unfiltered (_("Process record does not support "
6879 "instruction int 0x%02x.\n"),
6884 ret = tdep->i386_intx80_record (ir.regcache);
6891 case 0xce: /* into */
6892 printf_unfiltered (_("Process record does not support "
6893 "instruction into.\n"));
6898 case 0xfa: /* cli */
6899 case 0xfb: /* sti */
6902 case 0x62: /* bound */
6903 printf_unfiltered (_("Process record does not support "
6904 "instruction bound.\n"));
6909 case 0x0fc8: /* bswap reg */
6917 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6920 case 0xd6: /* salc */
6921 if (ir.regmap[X86_RECORD_R8_REGNUM])
6926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6927 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6930 case 0xe0: /* loopnz */
6931 case 0xe1: /* loopz */
6932 case 0xe2: /* loop */
6933 case 0xe3: /* jecxz */
6934 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6935 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6938 case 0x0f30: /* wrmsr */
6939 printf_unfiltered (_("Process record does not support "
6940 "instruction wrmsr.\n"));
6945 case 0x0f32: /* rdmsr */
6946 printf_unfiltered (_("Process record does not support "
6947 "instruction rdmsr.\n"));
6952 case 0x0f31: /* rdtsc */
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6957 case 0x0f34: /* sysenter */
6960 if (ir.regmap[X86_RECORD_R8_REGNUM])
6965 if (tdep->i386_sysenter_record == NULL)
6967 printf_unfiltered (_("Process record does not support "
6968 "instruction sysenter.\n"));
6972 ret = tdep->i386_sysenter_record (ir.regcache);
6978 case 0x0f35: /* sysexit */
6979 printf_unfiltered (_("Process record does not support "
6980 "instruction sysexit.\n"));
6985 case 0x0f05: /* syscall */
6988 if (tdep->i386_syscall_record == NULL)
6990 printf_unfiltered (_("Process record does not support "
6991 "instruction syscall.\n"));
6995 ret = tdep->i386_syscall_record (ir.regcache);
7001 case 0x0f07: /* sysret */
7002 printf_unfiltered (_("Process record does not support "
7003 "instruction sysret.\n"));
7008 case 0x0fa2: /* cpuid */
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7015 case 0xf4: /* hlt */
7016 printf_unfiltered (_("Process record does not support "
7017 "instruction hlt.\n"));
7023 if (i386_record_modrm (&ir))
7030 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7034 if (i386_record_lea_modrm (&ir))
7043 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7047 opcode = opcode << 8 | ir.modrm;
7054 if (i386_record_modrm (&ir))
7065 opcode = opcode << 8 | ir.modrm;
7068 if (ir.override >= 0)
7070 if (record_full_memory_query)
7073 Process record ignores the memory change of instruction at address %s\n\
7074 because it can't get the value of the segment register.\n\
7075 Do you want to stop the program?"),
7076 paddress (gdbarch, ir.orig_addr)))
7082 if (i386_record_lea_modrm_addr (&ir, &addr64))
7084 if (record_full_arch_list_add_mem (addr64, 2))
7087 if (ir.regmap[X86_RECORD_R8_REGNUM])
7089 if (record_full_arch_list_add_mem (addr64, 8))
7094 if (record_full_arch_list_add_mem (addr64, 4))
7105 case 0: /* monitor */
7108 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7112 opcode = opcode << 8 | ir.modrm;
7120 if (ir.override >= 0)
7122 if (record_full_memory_query)
7125 Process record ignores the memory change of instruction at address %s\n\
7126 because it can't get the value of the segment register.\n\
7127 Do you want to stop the program?"),
7128 paddress (gdbarch, ir.orig_addr)))
7136 if (i386_record_lea_modrm_addr (&ir, &addr64))
7138 if (record_full_arch_list_add_mem (addr64, 2))
7141 if (ir.regmap[X86_RECORD_R8_REGNUM])
7143 if (record_full_arch_list_add_mem (addr64, 8))
7148 if (record_full_arch_list_add_mem (addr64, 4))
7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7165 else if (ir.rm == 1)
7172 opcode = opcode << 8 | ir.modrm;
7179 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7185 if (i386_record_lea_modrm (&ir))
7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7191 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7193 case 7: /* invlpg */
7196 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7201 opcode = opcode << 8 | ir.modrm;
7206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7210 opcode = opcode << 8 | ir.modrm;
7216 case 0x0f08: /* invd */
7217 case 0x0f09: /* wbinvd */
7220 case 0x63: /* arpl */
7221 if (i386_record_modrm (&ir))
7223 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7226 ? (ir.reg | rex_r) : ir.rm);
7230 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7231 if (i386_record_lea_modrm (&ir))
7234 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7238 case 0x0f02: /* lar */
7239 case 0x0f03: /* lsl */
7240 if (i386_record_modrm (&ir))
7242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7247 if (i386_record_modrm (&ir))
7249 if (ir.mod == 3 && ir.reg == 3)
7252 opcode = opcode << 8 | ir.modrm;
7264 /* nop (multi byte) */
7267 case 0x0f20: /* mov reg, crN */
7268 case 0x0f22: /* mov crN, reg */
7269 if (i386_record_modrm (&ir))
7271 if ((ir.modrm & 0xc0) != 0xc0)
7274 opcode = opcode << 8 | ir.modrm;
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7291 opcode = opcode << 8 | ir.modrm;
7297 case 0x0f21: /* mov reg, drN */
7298 case 0x0f23: /* mov drN, reg */
7299 if (i386_record_modrm (&ir))
7301 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7302 || ir.reg == 5 || ir.reg >= 8)
7305 opcode = opcode << 8 | ir.modrm;
7309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7311 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7314 case 0x0f06: /* clts */
7315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7318 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7320 case 0x0f0d: /* 3DNow! prefetch */
7323 case 0x0f0e: /* 3DNow! femms */
7324 case 0x0f77: /* emms */
7325 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7327 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7330 case 0x0f0f: /* 3DNow! data */
7331 if (i386_record_modrm (&ir))
7333 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7338 case 0x0c: /* 3DNow! pi2fw */
7339 case 0x0d: /* 3DNow! pi2fd */
7340 case 0x1c: /* 3DNow! pf2iw */
7341 case 0x1d: /* 3DNow! pf2id */
7342 case 0x8a: /* 3DNow! pfnacc */
7343 case 0x8e: /* 3DNow! pfpnacc */
7344 case 0x90: /* 3DNow! pfcmpge */
7345 case 0x94: /* 3DNow! pfmin */
7346 case 0x96: /* 3DNow! pfrcp */
7347 case 0x97: /* 3DNow! pfrsqrt */
7348 case 0x9a: /* 3DNow! pfsub */
7349 case 0x9e: /* 3DNow! pfadd */
7350 case 0xa0: /* 3DNow! pfcmpgt */
7351 case 0xa4: /* 3DNow! pfmax */
7352 case 0xa6: /* 3DNow! pfrcpit1 */
7353 case 0xa7: /* 3DNow! pfrsqit1 */
7354 case 0xaa: /* 3DNow! pfsubr */
7355 case 0xae: /* 3DNow! pfacc */
7356 case 0xb0: /* 3DNow! pfcmpeq */
7357 case 0xb4: /* 3DNow! pfmul */
7358 case 0xb6: /* 3DNow! pfrcpit2 */
7359 case 0xb7: /* 3DNow! pmulhrw */
7360 case 0xbb: /* 3DNow! pswapd */
7361 case 0xbf: /* 3DNow! pavgusb */
7362 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7363 goto no_support_3dnow_data;
7364 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7368 no_support_3dnow_data:
7369 opcode = (opcode << 8) | opcode8;
7375 case 0x0faa: /* rsm */
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7388 if (i386_record_modrm (&ir))
7392 case 0: /* fxsave */
7396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7397 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7399 if (record_full_arch_list_add_mem (tmpu64, 512))
7404 case 1: /* fxrstor */
7408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7410 for (i = I387_MM0_REGNUM (tdep);
7411 i386_mmx_regnum_p (gdbarch, i); i++)
7412 record_full_arch_list_add_reg (ir.regcache, i);
7414 for (i = I387_XMM0_REGNUM (tdep);
7415 i386_xmm_regnum_p (gdbarch, i); i++)
7416 record_full_arch_list_add_reg (ir.regcache, i);
7418 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7419 record_full_arch_list_add_reg (ir.regcache,
7420 I387_MXCSR_REGNUM(tdep));
7422 for (i = I387_ST0_REGNUM (tdep);
7423 i386_fp_regnum_p (gdbarch, i); i++)
7424 record_full_arch_list_add_reg (ir.regcache, i);
7426 for (i = I387_FCTRL_REGNUM (tdep);
7427 i386_fpc_regnum_p (gdbarch, i); i++)
7428 record_full_arch_list_add_reg (ir.regcache, i);
7432 case 2: /* ldmxcsr */
7433 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7435 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7438 case 3: /* stmxcsr */
7440 if (i386_record_lea_modrm (&ir))
7444 case 5: /* lfence */
7445 case 6: /* mfence */
7446 case 7: /* sfence clflush */
7450 opcode = (opcode << 8) | ir.modrm;
7456 case 0x0fc3: /* movnti */
7457 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7458 if (i386_record_modrm (&ir))
7463 if (i386_record_lea_modrm (&ir))
7467 /* Add prefix to opcode. */
7582 /* Mask out PREFIX_ADDR. */
7583 switch ((prefixes & ~PREFIX_ADDR))
7595 reswitch_prefix_add:
7603 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7606 opcode = (uint32_t) opcode8 | opcode << 8;
7607 goto reswitch_prefix_add;
7610 case 0x0f10: /* movups */
7611 case 0x660f10: /* movupd */
7612 case 0xf30f10: /* movss */
7613 case 0xf20f10: /* movsd */
7614 case 0x0f12: /* movlps */
7615 case 0x660f12: /* movlpd */
7616 case 0xf30f12: /* movsldup */
7617 case 0xf20f12: /* movddup */
7618 case 0x0f14: /* unpcklps */
7619 case 0x660f14: /* unpcklpd */
7620 case 0x0f15: /* unpckhps */
7621 case 0x660f15: /* unpckhpd */
7622 case 0x0f16: /* movhps */
7623 case 0x660f16: /* movhpd */
7624 case 0xf30f16: /* movshdup */
7625 case 0x0f28: /* movaps */
7626 case 0x660f28: /* movapd */
7627 case 0x0f2a: /* cvtpi2ps */
7628 case 0x660f2a: /* cvtpi2pd */
7629 case 0xf30f2a: /* cvtsi2ss */
7630 case 0xf20f2a: /* cvtsi2sd */
7631 case 0x0f2c: /* cvttps2pi */
7632 case 0x660f2c: /* cvttpd2pi */
7633 case 0x0f2d: /* cvtps2pi */
7634 case 0x660f2d: /* cvtpd2pi */
7635 case 0x660f3800: /* pshufb */
7636 case 0x660f3801: /* phaddw */
7637 case 0x660f3802: /* phaddd */
7638 case 0x660f3803: /* phaddsw */
7639 case 0x660f3804: /* pmaddubsw */
7640 case 0x660f3805: /* phsubw */
7641 case 0x660f3806: /* phsubd */
7642 case 0x660f3807: /* phsubsw */
7643 case 0x660f3808: /* psignb */
7644 case 0x660f3809: /* psignw */
7645 case 0x660f380a: /* psignd */
7646 case 0x660f380b: /* pmulhrsw */
7647 case 0x660f3810: /* pblendvb */
7648 case 0x660f3814: /* blendvps */
7649 case 0x660f3815: /* blendvpd */
7650 case 0x660f381c: /* pabsb */
7651 case 0x660f381d: /* pabsw */
7652 case 0x660f381e: /* pabsd */
7653 case 0x660f3820: /* pmovsxbw */
7654 case 0x660f3821: /* pmovsxbd */
7655 case 0x660f3822: /* pmovsxbq */
7656 case 0x660f3823: /* pmovsxwd */
7657 case 0x660f3824: /* pmovsxwq */
7658 case 0x660f3825: /* pmovsxdq */
7659 case 0x660f3828: /* pmuldq */
7660 case 0x660f3829: /* pcmpeqq */
7661 case 0x660f382a: /* movntdqa */
7662 case 0x660f3a08: /* roundps */
7663 case 0x660f3a09: /* roundpd */
7664 case 0x660f3a0a: /* roundss */
7665 case 0x660f3a0b: /* roundsd */
7666 case 0x660f3a0c: /* blendps */
7667 case 0x660f3a0d: /* blendpd */
7668 case 0x660f3a0e: /* pblendw */
7669 case 0x660f3a0f: /* palignr */
7670 case 0x660f3a20: /* pinsrb */
7671 case 0x660f3a21: /* insertps */
7672 case 0x660f3a22: /* pinsrd pinsrq */
7673 case 0x660f3a40: /* dpps */
7674 case 0x660f3a41: /* dppd */
7675 case 0x660f3a42: /* mpsadbw */
7676 case 0x660f3a60: /* pcmpestrm */
7677 case 0x660f3a61: /* pcmpestri */
7678 case 0x660f3a62: /* pcmpistrm */
7679 case 0x660f3a63: /* pcmpistri */
7680 case 0x0f51: /* sqrtps */
7681 case 0x660f51: /* sqrtpd */
7682 case 0xf20f51: /* sqrtsd */
7683 case 0xf30f51: /* sqrtss */
7684 case 0x0f52: /* rsqrtps */
7685 case 0xf30f52: /* rsqrtss */
7686 case 0x0f53: /* rcpps */
7687 case 0xf30f53: /* rcpss */
7688 case 0x0f54: /* andps */
7689 case 0x660f54: /* andpd */
7690 case 0x0f55: /* andnps */
7691 case 0x660f55: /* andnpd */
7692 case 0x0f56: /* orps */
7693 case 0x660f56: /* orpd */
7694 case 0x0f57: /* xorps */
7695 case 0x660f57: /* xorpd */
7696 case 0x0f58: /* addps */
7697 case 0x660f58: /* addpd */
7698 case 0xf20f58: /* addsd */
7699 case 0xf30f58: /* addss */
7700 case 0x0f59: /* mulps */
7701 case 0x660f59: /* mulpd */
7702 case 0xf20f59: /* mulsd */
7703 case 0xf30f59: /* mulss */
7704 case 0x0f5a: /* cvtps2pd */
7705 case 0x660f5a: /* cvtpd2ps */
7706 case 0xf20f5a: /* cvtsd2ss */
7707 case 0xf30f5a: /* cvtss2sd */
7708 case 0x0f5b: /* cvtdq2ps */
7709 case 0x660f5b: /* cvtps2dq */
7710 case 0xf30f5b: /* cvttps2dq */
7711 case 0x0f5c: /* subps */
7712 case 0x660f5c: /* subpd */
7713 case 0xf20f5c: /* subsd */
7714 case 0xf30f5c: /* subss */
7715 case 0x0f5d: /* minps */
7716 case 0x660f5d: /* minpd */
7717 case 0xf20f5d: /* minsd */
7718 case 0xf30f5d: /* minss */
7719 case 0x0f5e: /* divps */
7720 case 0x660f5e: /* divpd */
7721 case 0xf20f5e: /* divsd */
7722 case 0xf30f5e: /* divss */
7723 case 0x0f5f: /* maxps */
7724 case 0x660f5f: /* maxpd */
7725 case 0xf20f5f: /* maxsd */
7726 case 0xf30f5f: /* maxss */
7727 case 0x660f60: /* punpcklbw */
7728 case 0x660f61: /* punpcklwd */
7729 case 0x660f62: /* punpckldq */
7730 case 0x660f63: /* packsswb */
7731 case 0x660f64: /* pcmpgtb */
7732 case 0x660f65: /* pcmpgtw */
7733 case 0x660f66: /* pcmpgtd */
7734 case 0x660f67: /* packuswb */
7735 case 0x660f68: /* punpckhbw */
7736 case 0x660f69: /* punpckhwd */
7737 case 0x660f6a: /* punpckhdq */
7738 case 0x660f6b: /* packssdw */
7739 case 0x660f6c: /* punpcklqdq */
7740 case 0x660f6d: /* punpckhqdq */
7741 case 0x660f6e: /* movd */
7742 case 0x660f6f: /* movdqa */
7743 case 0xf30f6f: /* movdqu */
7744 case 0x660f70: /* pshufd */
7745 case 0xf20f70: /* pshuflw */
7746 case 0xf30f70: /* pshufhw */
7747 case 0x660f74: /* pcmpeqb */
7748 case 0x660f75: /* pcmpeqw */
7749 case 0x660f76: /* pcmpeqd */
7750 case 0x660f7c: /* haddpd */
7751 case 0xf20f7c: /* haddps */
7752 case 0x660f7d: /* hsubpd */
7753 case 0xf20f7d: /* hsubps */
7754 case 0xf30f7e: /* movq */
7755 case 0x0fc2: /* cmpps */
7756 case 0x660fc2: /* cmppd */
7757 case 0xf20fc2: /* cmpsd */
7758 case 0xf30fc2: /* cmpss */
7759 case 0x660fc4: /* pinsrw */
7760 case 0x0fc6: /* shufps */
7761 case 0x660fc6: /* shufpd */
7762 case 0x660fd0: /* addsubpd */
7763 case 0xf20fd0: /* addsubps */
7764 case 0x660fd1: /* psrlw */
7765 case 0x660fd2: /* psrld */
7766 case 0x660fd3: /* psrlq */
7767 case 0x660fd4: /* paddq */
7768 case 0x660fd5: /* pmullw */
7769 case 0xf30fd6: /* movq2dq */
7770 case 0x660fd8: /* psubusb */
7771 case 0x660fd9: /* psubusw */
7772 case 0x660fda: /* pminub */
7773 case 0x660fdb: /* pand */
7774 case 0x660fdc: /* paddusb */
7775 case 0x660fdd: /* paddusw */
7776 case 0x660fde: /* pmaxub */
7777 case 0x660fdf: /* pandn */
7778 case 0x660fe0: /* pavgb */
7779 case 0x660fe1: /* psraw */
7780 case 0x660fe2: /* psrad */
7781 case 0x660fe3: /* pavgw */
7782 case 0x660fe4: /* pmulhuw */
7783 case 0x660fe5: /* pmulhw */
7784 case 0x660fe6: /* cvttpd2dq */
7785 case 0xf20fe6: /* cvtpd2dq */
7786 case 0xf30fe6: /* cvtdq2pd */
7787 case 0x660fe8: /* psubsb */
7788 case 0x660fe9: /* psubsw */
7789 case 0x660fea: /* pminsw */
7790 case 0x660feb: /* por */
7791 case 0x660fec: /* paddsb */
7792 case 0x660fed: /* paddsw */
7793 case 0x660fee: /* pmaxsw */
7794 case 0x660fef: /* pxor */
7795 case 0xf20ff0: /* lddqu */
7796 case 0x660ff1: /* psllw */
7797 case 0x660ff2: /* pslld */
7798 case 0x660ff3: /* psllq */
7799 case 0x660ff4: /* pmuludq */
7800 case 0x660ff5: /* pmaddwd */
7801 case 0x660ff6: /* psadbw */
7802 case 0x660ff8: /* psubb */
7803 case 0x660ff9: /* psubw */
7804 case 0x660ffa: /* psubd */
7805 case 0x660ffb: /* psubq */
7806 case 0x660ffc: /* paddb */
7807 case 0x660ffd: /* paddw */
7808 case 0x660ffe: /* paddd */
7809 if (i386_record_modrm (&ir))
7812 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7814 record_full_arch_list_add_reg (ir.regcache,
7815 I387_XMM0_REGNUM (tdep) + ir.reg);
7816 if ((opcode & 0xfffffffc) == 0x660f3a60)
7817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7820 case 0x0f11: /* movups */
7821 case 0x660f11: /* movupd */
7822 case 0xf30f11: /* movss */
7823 case 0xf20f11: /* movsd */
7824 case 0x0f13: /* movlps */
7825 case 0x660f13: /* movlpd */
7826 case 0x0f17: /* movhps */
7827 case 0x660f17: /* movhpd */
7828 case 0x0f29: /* movaps */
7829 case 0x660f29: /* movapd */
7830 case 0x660f3a14: /* pextrb */
7831 case 0x660f3a15: /* pextrw */
7832 case 0x660f3a16: /* pextrd pextrq */
7833 case 0x660f3a17: /* extractps */
7834 case 0x660f7f: /* movdqa */
7835 case 0xf30f7f: /* movdqu */
7836 if (i386_record_modrm (&ir))
7840 if (opcode == 0x0f13 || opcode == 0x660f13
7841 || opcode == 0x0f17 || opcode == 0x660f17)
7844 if (!i386_xmm_regnum_p (gdbarch,
7845 I387_XMM0_REGNUM (tdep) + ir.rm))
7847 record_full_arch_list_add_reg (ir.regcache,
7848 I387_XMM0_REGNUM (tdep) + ir.rm);
7870 if (i386_record_lea_modrm (&ir))
7875 case 0x0f2b: /* movntps */
7876 case 0x660f2b: /* movntpd */
7877 case 0x0fe7: /* movntq */
7878 case 0x660fe7: /* movntdq */
7881 if (opcode == 0x0fe7)
7885 if (i386_record_lea_modrm (&ir))
7889 case 0xf30f2c: /* cvttss2si */
7890 case 0xf20f2c: /* cvttsd2si */
7891 case 0xf30f2d: /* cvtss2si */
7892 case 0xf20f2d: /* cvtsd2si */
7893 case 0xf20f38f0: /* crc32 */
7894 case 0xf20f38f1: /* crc32 */
7895 case 0x0f50: /* movmskps */
7896 case 0x660f50: /* movmskpd */
7897 case 0x0fc5: /* pextrw */
7898 case 0x660fc5: /* pextrw */
7899 case 0x0fd7: /* pmovmskb */
7900 case 0x660fd7: /* pmovmskb */
7901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7904 case 0x0f3800: /* pshufb */
7905 case 0x0f3801: /* phaddw */
7906 case 0x0f3802: /* phaddd */
7907 case 0x0f3803: /* phaddsw */
7908 case 0x0f3804: /* pmaddubsw */
7909 case 0x0f3805: /* phsubw */
7910 case 0x0f3806: /* phsubd */
7911 case 0x0f3807: /* phsubsw */
7912 case 0x0f3808: /* psignb */
7913 case 0x0f3809: /* psignw */
7914 case 0x0f380a: /* psignd */
7915 case 0x0f380b: /* pmulhrsw */
7916 case 0x0f381c: /* pabsb */
7917 case 0x0f381d: /* pabsw */
7918 case 0x0f381e: /* pabsd */
7919 case 0x0f382b: /* packusdw */
7920 case 0x0f3830: /* pmovzxbw */
7921 case 0x0f3831: /* pmovzxbd */
7922 case 0x0f3832: /* pmovzxbq */
7923 case 0x0f3833: /* pmovzxwd */
7924 case 0x0f3834: /* pmovzxwq */
7925 case 0x0f3835: /* pmovzxdq */
7926 case 0x0f3837: /* pcmpgtq */
7927 case 0x0f3838: /* pminsb */
7928 case 0x0f3839: /* pminsd */
7929 case 0x0f383a: /* pminuw */
7930 case 0x0f383b: /* pminud */
7931 case 0x0f383c: /* pmaxsb */
7932 case 0x0f383d: /* pmaxsd */
7933 case 0x0f383e: /* pmaxuw */
7934 case 0x0f383f: /* pmaxud */
7935 case 0x0f3840: /* pmulld */
7936 case 0x0f3841: /* phminposuw */
7937 case 0x0f3a0f: /* palignr */
7938 case 0x0f60: /* punpcklbw */
7939 case 0x0f61: /* punpcklwd */
7940 case 0x0f62: /* punpckldq */
7941 case 0x0f63: /* packsswb */
7942 case 0x0f64: /* pcmpgtb */
7943 case 0x0f65: /* pcmpgtw */
7944 case 0x0f66: /* pcmpgtd */
7945 case 0x0f67: /* packuswb */
7946 case 0x0f68: /* punpckhbw */
7947 case 0x0f69: /* punpckhwd */
7948 case 0x0f6a: /* punpckhdq */
7949 case 0x0f6b: /* packssdw */
7950 case 0x0f6e: /* movd */
7951 case 0x0f6f: /* movq */
7952 case 0x0f70: /* pshufw */
7953 case 0x0f74: /* pcmpeqb */
7954 case 0x0f75: /* pcmpeqw */
7955 case 0x0f76: /* pcmpeqd */
7956 case 0x0fc4: /* pinsrw */
7957 case 0x0fd1: /* psrlw */
7958 case 0x0fd2: /* psrld */
7959 case 0x0fd3: /* psrlq */
7960 case 0x0fd4: /* paddq */
7961 case 0x0fd5: /* pmullw */
7962 case 0xf20fd6: /* movdq2q */
7963 case 0x0fd8: /* psubusb */
7964 case 0x0fd9: /* psubusw */
7965 case 0x0fda: /* pminub */
7966 case 0x0fdb: /* pand */
7967 case 0x0fdc: /* paddusb */
7968 case 0x0fdd: /* paddusw */
7969 case 0x0fde: /* pmaxub */
7970 case 0x0fdf: /* pandn */
7971 case 0x0fe0: /* pavgb */
7972 case 0x0fe1: /* psraw */
7973 case 0x0fe2: /* psrad */
7974 case 0x0fe3: /* pavgw */
7975 case 0x0fe4: /* pmulhuw */
7976 case 0x0fe5: /* pmulhw */
7977 case 0x0fe8: /* psubsb */
7978 case 0x0fe9: /* psubsw */
7979 case 0x0fea: /* pminsw */
7980 case 0x0feb: /* por */
7981 case 0x0fec: /* paddsb */
7982 case 0x0fed: /* paddsw */
7983 case 0x0fee: /* pmaxsw */
7984 case 0x0fef: /* pxor */
7985 case 0x0ff1: /* psllw */
7986 case 0x0ff2: /* pslld */
7987 case 0x0ff3: /* psllq */
7988 case 0x0ff4: /* pmuludq */
7989 case 0x0ff5: /* pmaddwd */
7990 case 0x0ff6: /* psadbw */
7991 case 0x0ff8: /* psubb */
7992 case 0x0ff9: /* psubw */
7993 case 0x0ffa: /* psubd */
7994 case 0x0ffb: /* psubq */
7995 case 0x0ffc: /* paddb */
7996 case 0x0ffd: /* paddw */
7997 case 0x0ffe: /* paddd */
7998 if (i386_record_modrm (&ir))
8000 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8002 record_full_arch_list_add_reg (ir.regcache,
8003 I387_MM0_REGNUM (tdep) + ir.reg);
8006 case 0x0f71: /* psllw */
8007 case 0x0f72: /* pslld */
8008 case 0x0f73: /* psllq */
8009 if (i386_record_modrm (&ir))
8011 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8013 record_full_arch_list_add_reg (ir.regcache,
8014 I387_MM0_REGNUM (tdep) + ir.rm);
8017 case 0x660f71: /* psllw */
8018 case 0x660f72: /* pslld */
8019 case 0x660f73: /* psllq */
8020 if (i386_record_modrm (&ir))
8023 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8025 record_full_arch_list_add_reg (ir.regcache,
8026 I387_XMM0_REGNUM (tdep) + ir.rm);
8029 case 0x0f7e: /* movd */
8030 case 0x660f7e: /* movd */
8031 if (i386_record_modrm (&ir))
8034 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8041 if (i386_record_lea_modrm (&ir))
8046 case 0x0f7f: /* movq */
8047 if (i386_record_modrm (&ir))
8051 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8053 record_full_arch_list_add_reg (ir.regcache,
8054 I387_MM0_REGNUM (tdep) + ir.rm);
8059 if (i386_record_lea_modrm (&ir))
8064 case 0xf30fb8: /* popcnt */
8065 if (i386_record_modrm (&ir))
8067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8071 case 0x660fd6: /* movq */
8072 if (i386_record_modrm (&ir))
8077 if (!i386_xmm_regnum_p (gdbarch,
8078 I387_XMM0_REGNUM (tdep) + ir.rm))
8080 record_full_arch_list_add_reg (ir.regcache,
8081 I387_XMM0_REGNUM (tdep) + ir.rm);
8086 if (i386_record_lea_modrm (&ir))
8091 case 0x660f3817: /* ptest */
8092 case 0x0f2e: /* ucomiss */
8093 case 0x660f2e: /* ucomisd */
8094 case 0x0f2f: /* comiss */
8095 case 0x660f2f: /* comisd */
8096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8099 case 0x0ff7: /* maskmovq */
8100 regcache_raw_read_unsigned (ir.regcache,
8101 ir.regmap[X86_RECORD_REDI_REGNUM],
8103 if (record_full_arch_list_add_mem (addr, 64))
8107 case 0x660ff7: /* maskmovdqu */
8108 regcache_raw_read_unsigned (ir.regcache,
8109 ir.regmap[X86_RECORD_REDI_REGNUM],
8111 if (record_full_arch_list_add_mem (addr, 128))
8126 /* In the future, maybe still need to deal with need_dasm. */
8127 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8128 if (record_full_arch_list_add_end ())
8134 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8135 "at address %s.\n"),
8136 (unsigned int) (opcode),
8137 paddress (gdbarch, ir.orig_addr));
8141 static const int i386_record_regmap[] =
8143 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8144 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8145 0, 0, 0, 0, 0, 0, 0, 0,
8146 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8147 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8150 /* Check that the given address appears suitable for a fast
8151 tracepoint, which on x86-64 means that we need an instruction of at
8152 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8153 jump and not have to worry about program jumps to an address in the
8154 middle of the tracepoint jump. On x86, it may be possible to use
8155 4-byte jumps with a 2-byte offset to a trampoline located in the
8156 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8157 of instruction to replace, and 0 if not, plus an explanatory
8161 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8166 /* Ask the target for the minimum instruction length supported. */
8167 jumplen = target_get_min_fast_tracepoint_insn_len ();
8171 /* If the target does not support the get_min_fast_tracepoint_insn_len
8172 operation, assume that fast tracepoints will always be implemented
8173 using 4-byte relative jumps on both x86 and x86-64. */
8176 else if (jumplen == 0)
8178 /* If the target does support get_min_fast_tracepoint_insn_len but
8179 returns zero, then the IPA has not loaded yet. In this case,
8180 we optimistically assume that truncated 2-byte relative jumps
8181 will be available on x86, and compensate later if this assumption
8182 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8183 jumps will always be used. */
8184 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8187 /* Check for fit. */
8188 len = gdb_insn_length (gdbarch, addr);
8192 /* Return a bit of target-specific detail to add to the caller's
8193 generic failure message. */
8195 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8196 "need at least %d bytes for the jump"),
8208 /* Return a floating-point format for a floating-point variable of
8209 length LEN in bits. If non-NULL, NAME is the name of its type.
8210 If no suitable type is found, return NULL. */
8212 const struct floatformat **
8213 i386_floatformat_for_type (struct gdbarch *gdbarch,
8214 const char *name, int len)
8216 if (len == 128 && name)
8217 if (strcmp (name, "__float128") == 0
8218 || strcmp (name, "_Float128") == 0
8219 || strcmp (name, "complex _Float128") == 0)
8220 return floatformats_ia64_quad;
8222 return default_floatformat_for_type (gdbarch, name, len);
8226 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8227 struct tdesc_arch_data *tdesc_data)
8229 const struct target_desc *tdesc = tdep->tdesc;
8230 const struct tdesc_feature *feature_core;
8232 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8233 *feature_avx512, *feature_pkeys;
8234 int i, num_regs, valid_p;
8236 if (! tdesc_has_registers (tdesc))
8239 /* Get core registers. */
8240 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8241 if (feature_core == NULL)
8244 /* Get SSE registers. */
8245 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8247 /* Try AVX registers. */
8248 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8250 /* Try MPX registers. */
8251 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8253 /* Try AVX512 registers. */
8254 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8257 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8261 /* The XCR0 bits. */
8264 /* AVX512 register description requires AVX register description. */
8268 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8270 /* It may have been set by OSABI initialization function. */
8271 if (tdep->k0_regnum < 0)
8273 tdep->k_register_names = i386_k_names;
8274 tdep->k0_regnum = I386_K0_REGNUM;
8277 for (i = 0; i < I387_NUM_K_REGS; i++)
8278 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8279 tdep->k0_regnum + i,
8282 if (tdep->num_zmm_regs == 0)
8284 tdep->zmmh_register_names = i386_zmmh_names;
8285 tdep->num_zmm_regs = 8;
8286 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8289 for (i = 0; i < tdep->num_zmm_regs; i++)
8290 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8291 tdep->zmm0h_regnum + i,
8292 tdep->zmmh_register_names[i]);
8294 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8295 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8296 tdep->xmm16_regnum + i,
8297 tdep->xmm_avx512_register_names[i]);
8299 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8300 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8301 tdep->ymm16h_regnum + i,
8302 tdep->ymm16h_register_names[i]);
8306 /* AVX register description requires SSE register description. */
8310 if (!feature_avx512)
8311 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8313 /* It may have been set by OSABI initialization function. */
8314 if (tdep->num_ymm_regs == 0)
8316 tdep->ymmh_register_names = i386_ymmh_names;
8317 tdep->num_ymm_regs = 8;
8318 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8321 for (i = 0; i < tdep->num_ymm_regs; i++)
8322 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8323 tdep->ymm0h_regnum + i,
8324 tdep->ymmh_register_names[i]);
8326 else if (feature_sse)
8327 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8330 tdep->xcr0 = X86_XSTATE_X87_MASK;
8331 tdep->num_xmm_regs = 0;
8334 num_regs = tdep->num_core_regs;
8335 for (i = 0; i < num_regs; i++)
8336 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8337 tdep->register_names[i]);
8341 /* Need to include %mxcsr, so add one. */
8342 num_regs += tdep->num_xmm_regs + 1;
8343 for (; i < num_regs; i++)
8344 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8345 tdep->register_names[i]);
8350 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8352 if (tdep->bnd0r_regnum < 0)
8354 tdep->mpx_register_names = i386_mpx_names;
8355 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8356 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8359 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8360 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8361 I387_BND0R_REGNUM (tdep) + i,
8362 tdep->mpx_register_names[i]);
8367 tdep->xcr0 |= X86_XSTATE_PKRU;
8368 if (tdep->pkru_regnum < 0)
8370 tdep->pkeys_register_names = i386_pkeys_names;
8371 tdep->pkru_regnum = I386_PKRU_REGNUM;
8372 tdep->num_pkeys_regs = 1;
8375 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8376 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8377 I387_PKRU_REGNUM (tdep) + i,
8378 tdep->pkeys_register_names[i]);
8385 /* Note: This is called for both i386 and amd64. */
8387 static struct gdbarch *
8388 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8390 struct gdbarch_tdep *tdep;
8391 struct gdbarch *gdbarch;
8392 struct tdesc_arch_data *tdesc_data;
8393 const struct target_desc *tdesc;
8399 /* If there is already a candidate, use it. */
8400 arches = gdbarch_list_lookup_by_info (arches, &info);
8402 return arches->gdbarch;
8404 /* Allocate space for the new architecture. Assume i386 for now. */
8405 tdep = XCNEW (struct gdbarch_tdep);
8406 gdbarch = gdbarch_alloc (&info, tdep);
8408 /* General-purpose registers. */
8409 tdep->gregset_reg_offset = NULL;
8410 tdep->gregset_num_regs = I386_NUM_GREGS;
8411 tdep->sizeof_gregset = 0;
8413 /* Floating-point registers. */
8414 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8415 tdep->fpregset = &i386_fpregset;
8417 /* The default settings include the FPU registers, the MMX registers
8418 and the SSE registers. This can be overridden for a specific ABI
8419 by adjusting the members `st0_regnum', `mm0_regnum' and
8420 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8421 will show up in the output of "info all-registers". */
8423 tdep->st0_regnum = I386_ST0_REGNUM;
8425 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8426 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8428 tdep->jb_pc_offset = -1;
8429 tdep->struct_return = pcc_struct_return;
8430 tdep->sigtramp_start = 0;
8431 tdep->sigtramp_end = 0;
8432 tdep->sigtramp_p = i386_sigtramp_p;
8433 tdep->sigcontext_addr = NULL;
8434 tdep->sc_reg_offset = NULL;
8435 tdep->sc_pc_offset = -1;
8436 tdep->sc_sp_offset = -1;
8438 tdep->xsave_xcr0_offset = -1;
8440 tdep->record_regmap = i386_record_regmap;
8442 set_gdbarch_long_long_align_bit (gdbarch, 32);
8444 /* The format used for `long double' on almost all i386 targets is
8445 the i387 extended floating-point format. In fact, of all targets
8446 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8447 on having a `long double' that's not `long' at all. */
8448 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8450 /* Although the i387 extended floating-point has only 80 significant
8451 bits, a `long double' actually takes up 96, probably to enforce
8453 set_gdbarch_long_double_bit (gdbarch, 96);
8455 /* Support for floating-point data type variants. */
8456 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8458 /* Register numbers of various important registers. */
8459 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8460 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8461 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8462 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8464 /* NOTE: kettenis/20040418: GCC does have two possible register
8465 numbering schemes on the i386: dbx and SVR4. These schemes
8466 differ in how they number %ebp, %esp, %eflags, and the
8467 floating-point registers, and are implemented by the arrays
8468 dbx_register_map[] and svr4_dbx_register_map in
8469 gcc/config/i386.c. GCC also defines a third numbering scheme in
8470 gcc/config/i386.c, which it designates as the "default" register
8471 map used in 64bit mode. This last register numbering scheme is
8472 implemented in dbx64_register_map, and is used for AMD64; see
8475 Currently, each GCC i386 target always uses the same register
8476 numbering scheme across all its supported debugging formats
8477 i.e. SDB (COFF), stabs and DWARF 2. This is because
8478 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8479 DBX_REGISTER_NUMBER macro which is defined by each target's
8480 respective config header in a manner independent of the requested
8481 output debugging format.
8483 This does not match the arrangement below, which presumes that
8484 the SDB and stabs numbering schemes differ from the DWARF and
8485 DWARF 2 ones. The reason for this arrangement is that it is
8486 likely to get the numbering scheme for the target's
8487 default/native debug format right. For targets where GCC is the
8488 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8489 targets where the native toolchain uses a different numbering
8490 scheme for a particular debug format (stabs-in-ELF on Solaris)
8491 the defaults below will have to be overridden, like
8492 i386_elf_init_abi() does. */
8494 /* Use the dbx register numbering scheme for stabs and COFF. */
8495 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8496 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8498 /* Use the SVR4 register numbering scheme for DWARF 2. */
8499 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8501 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8502 be in use on any of the supported i386 targets. */
8504 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8506 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8508 /* Call dummy code. */
8509 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8510 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8511 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8512 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8514 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8515 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8516 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8518 set_gdbarch_return_value (gdbarch, i386_return_value);
8520 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8522 /* Stack grows downward. */
8523 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8525 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8526 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8528 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8529 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8531 set_gdbarch_frame_args_skip (gdbarch, 8);
8533 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8535 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8537 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8539 /* Add the i386 register groups. */
8540 i386_add_reggroups (gdbarch);
8541 tdep->register_reggroup_p = i386_register_reggroup_p;
8543 /* Helper for function argument information. */
8544 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8546 /* Hook the function epilogue frame unwinder. This unwinder is
8547 appended to the list first, so that it supercedes the DWARF
8548 unwinder in function epilogues (where the DWARF unwinder
8549 currently fails). */
8550 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8552 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8553 to the list before the prologue-based unwinders, so that DWARF
8554 CFI info will be used if it is available. */
8555 dwarf2_append_unwinders (gdbarch);
8557 frame_base_set_default (gdbarch, &i386_frame_base);
8559 /* Pseudo registers may be changed by amd64_init_abi. */
8560 set_gdbarch_pseudo_register_read_value (gdbarch,
8561 i386_pseudo_register_read_value);
8562 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8563 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8564 i386_ax_pseudo_register_collect);
8566 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8567 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8569 /* Override the normal target description method to make the AVX
8570 upper halves anonymous. */
8571 set_gdbarch_register_name (gdbarch, i386_register_name);
8573 /* Even though the default ABI only includes general-purpose registers,
8574 floating-point registers and the SSE registers, we have to leave a
8575 gap for the upper AVX, MPX and AVX512 registers. */
8576 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8578 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8580 /* Get the x86 target description from INFO. */
8581 tdesc = info.target_desc;
8582 if (! tdesc_has_registers (tdesc))
8584 tdep->tdesc = tdesc;
8586 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8587 tdep->register_names = i386_register_names;
8589 /* No upper YMM registers. */
8590 tdep->ymmh_register_names = NULL;
8591 tdep->ymm0h_regnum = -1;
8593 /* No upper ZMM registers. */
8594 tdep->zmmh_register_names = NULL;
8595 tdep->zmm0h_regnum = -1;
8597 /* No high XMM registers. */
8598 tdep->xmm_avx512_register_names = NULL;
8599 tdep->xmm16_regnum = -1;
8601 /* No upper YMM16-31 registers. */
8602 tdep->ymm16h_register_names = NULL;
8603 tdep->ymm16h_regnum = -1;
8605 tdep->num_byte_regs = 8;
8606 tdep->num_word_regs = 8;
8607 tdep->num_dword_regs = 0;
8608 tdep->num_mmx_regs = 8;
8609 tdep->num_ymm_regs = 0;
8611 /* No MPX registers. */
8612 tdep->bnd0r_regnum = -1;
8613 tdep->bndcfgu_regnum = -1;
8615 /* No AVX512 registers. */
8616 tdep->k0_regnum = -1;
8617 tdep->num_zmm_regs = 0;
8618 tdep->num_ymm_avx512_regs = 0;
8619 tdep->num_xmm_avx512_regs = 0;
8621 /* No PKEYS registers */
8622 tdep->pkru_regnum = -1;
8623 tdep->num_pkeys_regs = 0;
8625 tdesc_data = tdesc_data_alloc ();
8627 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8629 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8631 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8632 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8633 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8635 /* Hook in ABI-specific overrides, if they have been registered.
8636 Note: If INFO specifies a 64 bit arch, this is where we turn
8637 a 32-bit i386 into a 64-bit amd64. */
8638 info.tdep_info = tdesc_data;
8639 gdbarch_init_osabi (info, gdbarch);
8641 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8643 tdesc_data_cleanup (tdesc_data);
8645 gdbarch_free (gdbarch);
8649 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8651 /* Wire in pseudo registers. Number of pseudo registers may be
8653 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8654 + tdep->num_word_regs
8655 + tdep->num_dword_regs
8656 + tdep->num_mmx_regs
8657 + tdep->num_ymm_regs
8659 + tdep->num_ymm_avx512_regs
8660 + tdep->num_zmm_regs));
8662 /* Target description may be changed. */
8663 tdesc = tdep->tdesc;
8665 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8667 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8668 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8670 /* Make %al the first pseudo-register. */
8671 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8672 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8674 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8675 if (tdep->num_dword_regs)
8677 /* Support dword pseudo-register if it hasn't been disabled. */
8678 tdep->eax_regnum = ymm0_regnum;
8679 ymm0_regnum += tdep->num_dword_regs;
8682 tdep->eax_regnum = -1;
8684 mm0_regnum = ymm0_regnum;
8685 if (tdep->num_ymm_regs)
8687 /* Support YMM pseudo-register if it is available. */
8688 tdep->ymm0_regnum = ymm0_regnum;
8689 mm0_regnum += tdep->num_ymm_regs;
8692 tdep->ymm0_regnum = -1;
8694 if (tdep->num_ymm_avx512_regs)
8696 /* Support YMM16-31 pseudo registers if available. */
8697 tdep->ymm16_regnum = mm0_regnum;
8698 mm0_regnum += tdep->num_ymm_avx512_regs;
8701 tdep->ymm16_regnum = -1;
8703 if (tdep->num_zmm_regs)
8705 /* Support ZMM pseudo-register if it is available. */
8706 tdep->zmm0_regnum = mm0_regnum;
8707 mm0_regnum += tdep->num_zmm_regs;
8710 tdep->zmm0_regnum = -1;
8712 bnd0_regnum = mm0_regnum;
8713 if (tdep->num_mmx_regs != 0)
8715 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8716 tdep->mm0_regnum = mm0_regnum;
8717 bnd0_regnum += tdep->num_mmx_regs;
8720 tdep->mm0_regnum = -1;
8722 if (tdep->bnd0r_regnum > 0)
8723 tdep->bnd0_regnum = bnd0_regnum;
8725 tdep-> bnd0_regnum = -1;
8727 /* Hook in the legacy prologue-based unwinders last (fallback). */
8728 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8729 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8730 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8732 /* If we have a register mapping, enable the generic core file
8733 support, unless it has already been enabled. */
8734 if (tdep->gregset_reg_offset
8735 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8736 set_gdbarch_iterate_over_regset_sections
8737 (gdbarch, i386_iterate_over_regset_sections);
8739 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8740 i386_fast_tracepoint_valid_at);
8745 static enum gdb_osabi
8746 i386_coff_osabi_sniffer (bfd *abfd)
8748 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8749 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8750 return GDB_OSABI_GO32;
8752 return GDB_OSABI_UNKNOWN;
8756 /* Return the target description for a specified XSAVE feature mask. */
8758 const struct target_desc *
8759 i386_target_description (uint64_t xcr0)
8761 switch (xcr0 & X86_XSTATE_ALL_MASK)
8763 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
8764 return tdesc_i386_avx_mpx_avx512_pku;
8765 case X86_XSTATE_AVX_AVX512_MASK:
8766 return tdesc_i386_avx_avx512;
8767 case X86_XSTATE_AVX_MPX_MASK:
8768 return tdesc_i386_avx_mpx;
8769 case X86_XSTATE_MPX_MASK:
8770 return tdesc_i386_mpx;
8771 case X86_XSTATE_AVX_MASK:
8772 return tdesc_i386_avx;
8778 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8780 /* Find the bound directory base address. */
8782 static unsigned long
8783 i386_mpx_bd_base (void)
8785 struct regcache *rcache;
8786 struct gdbarch_tdep *tdep;
8788 enum register_status regstatus;
8790 rcache = get_current_regcache ();
8791 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8793 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8795 if (regstatus != REG_VALID)
8796 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8798 return ret & MPX_BASE_MASK;
8802 i386_mpx_enabled (void)
8804 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8805 const struct target_desc *tdesc = tdep->tdesc;
8807 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8810 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8811 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8812 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8813 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8815 /* Find the bound table entry given the pointer location and the base
8816 address of the table. */
8819 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8823 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8824 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8825 CORE_ADDR bd_entry_addr;
8828 struct gdbarch *gdbarch = get_current_arch ();
8829 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8832 if (gdbarch_ptr_bit (gdbarch) == 64)
8834 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8835 bd_ptr_r_shift = 20;
8837 bt_select_r_shift = 3;
8838 bt_select_l_shift = 5;
8839 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8841 if ( sizeof (CORE_ADDR) == 4)
8842 error (_("bound table examination not supported\
8843 for 64-bit process with 32-bit GDB"));
8847 mpx_bd_mask = MPX_BD_MASK_32;
8848 bd_ptr_r_shift = 12;
8850 bt_select_r_shift = 2;
8851 bt_select_l_shift = 4;
8852 bt_mask = MPX_BT_MASK_32;
8855 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8856 bd_entry_addr = bd_base + offset1;
8857 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8859 if ((bd_entry & 0x1) == 0)
8860 error (_("Invalid bounds directory entry at %s."),
8861 paddress (get_current_arch (), bd_entry_addr));
8863 /* Clearing status bit. */
8865 bt_addr = bd_entry & ~bt_select_r_shift;
8866 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8868 return bt_addr + offset2;
8871 /* Print routine for the mpx bounds. */
8874 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8876 struct ui_out *uiout = current_uiout;
8878 struct gdbarch *gdbarch = get_current_arch ();
8879 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8880 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8882 if (bounds_in_map == 1)
8884 uiout->text ("Null bounds on map:");
8885 uiout->text (" pointer value = ");
8886 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8892 uiout->text ("{lbound = ");
8893 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8894 uiout->text (", ubound = ");
8896 /* The upper bound is stored in 1's complement. */
8897 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8898 uiout->text ("}: pointer value = ");
8899 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8901 if (gdbarch_ptr_bit (gdbarch) == 64)
8902 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8904 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8906 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8907 -1 represents in this sense full memory access, and there is no need
8910 size = (size > -1 ? size + 1 : size);
8911 uiout->text (", size = ");
8912 uiout->field_fmt ("size", "%s", plongest (size));
8914 uiout->text (", metadata = ");
8915 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8920 /* Implement the command "show mpx bound". */
8923 i386_mpx_info_bounds (char *args, int from_tty)
8925 CORE_ADDR bd_base = 0;
8927 CORE_ADDR bt_entry_addr = 0;
8928 CORE_ADDR bt_entry[4];
8930 struct gdbarch *gdbarch = get_current_arch ();
8931 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8933 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8934 || !i386_mpx_enabled ())
8936 printf_unfiltered (_("Intel Memory Protection Extensions not "
8937 "supported on this target.\n"));
8943 printf_unfiltered (_("Address of pointer variable expected.\n"));
8947 addr = parse_and_eval_address (args);
8949 bd_base = i386_mpx_bd_base ();
8950 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8952 memset (bt_entry, 0, sizeof (bt_entry));
8954 for (i = 0; i < 4; i++)
8955 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8956 + i * TYPE_LENGTH (data_ptr_type),
8959 i386_mpx_print_bounds (bt_entry);
8962 /* Implement the command "set mpx bound". */
8965 i386_mpx_set_bounds (char *args, int from_tty)
8967 CORE_ADDR bd_base = 0;
8968 CORE_ADDR addr, lower, upper;
8969 CORE_ADDR bt_entry_addr = 0;
8970 CORE_ADDR bt_entry[2];
8971 const char *input = args;
8973 struct gdbarch *gdbarch = get_current_arch ();
8974 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8975 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8977 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8978 || !i386_mpx_enabled ())
8979 error (_("Intel Memory Protection Extensions not supported\
8983 error (_("Pointer value expected."));
8985 addr = value_as_address (parse_to_comma_and_eval (&input));
8987 if (input[0] == ',')
8989 if (input[0] == '\0')
8990 error (_("wrong number of arguments: missing lower and upper bound."));
8991 lower = value_as_address (parse_to_comma_and_eval (&input));
8993 if (input[0] == ',')
8995 if (input[0] == '\0')
8996 error (_("Wrong number of arguments; Missing upper bound."));
8997 upper = value_as_address (parse_to_comma_and_eval (&input));
8999 bd_base = i386_mpx_bd_base ();
9000 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9001 for (i = 0; i < 2; i++)
9002 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9003 + i * TYPE_LENGTH (data_ptr_type),
9005 bt_entry[0] = (uint64_t) lower;
9006 bt_entry[1] = ~(uint64_t) upper;
9008 for (i = 0; i < 2; i++)
9009 write_memory_unsigned_integer (bt_entry_addr
9010 + i * TYPE_LENGTH (data_ptr_type),
9011 TYPE_LENGTH (data_ptr_type), byte_order,
9015 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9017 /* Helper function for the CLI commands. */
9020 set_mpx_cmd (char *args, int from_tty)
9022 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9025 /* Helper function for the CLI commands. */
9028 show_mpx_cmd (char *args, int from_tty)
9030 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9033 /* Provide a prototype to silence -Wmissing-prototypes. */
9034 void _initialize_i386_tdep (void);
9037 _initialize_i386_tdep (void)
9039 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9041 /* Add the variable that controls the disassembly flavor. */
9042 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9043 &disassembly_flavor, _("\
9044 Set the disassembly flavor."), _("\
9045 Show the disassembly flavor."), _("\
9046 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9048 NULL, /* FIXME: i18n: */
9049 &setlist, &showlist);
9051 /* Add the variable that controls the convention for returning
9053 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9054 &struct_convention, _("\
9055 Set the convention for returning small structs."), _("\
9056 Show the convention for returning small structs."), _("\
9057 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9060 NULL, /* FIXME: i18n: */
9061 &setlist, &showlist);
9063 /* Add "mpx" prefix for the set commands. */
9065 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9066 Set Intel Memory Protection Extensions specific variables."),
9067 &mpx_set_cmdlist, "set mpx ",
9068 0 /* allow-unknown */, &setlist);
9070 /* Add "mpx" prefix for the show commands. */
9072 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9073 Show Intel Memory Protection Extensions specific variables."),
9074 &mpx_show_cmdlist, "show mpx ",
9075 0 /* allow-unknown */, &showlist);
9077 /* Add "bound" command for the show mpx commands list. */
9079 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9080 "Show the memory bounds for a given array/pointer storage\
9081 in the bound table.",
9084 /* Add "bound" command for the set mpx commands list. */
9086 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9087 "Set the memory bounds for a given array/pointer storage\
9088 in the bound table.",
9091 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9092 i386_coff_osabi_sniffer);
9094 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9095 i386_svr4_init_abi);
9096 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9097 i386_go32_init_abi);
9099 /* Initialize the i386-specific register groups. */
9100 i386_init_reggroups ();
9102 /* Initialize the standard target descriptions. */
9103 initialize_tdesc_i386 ();
9104 initialize_tdesc_i386_mmx ();
9105 initialize_tdesc_i386_avx ();
9106 initialize_tdesc_i386_mpx ();
9107 initialize_tdesc_i386_avx_mpx ();
9108 initialize_tdesc_i386_avx_avx512 ();
9109 initialize_tdesc_i386_avx_mpx_avx512_pku ();
9111 /* Tell remote stub that we support XML target description. */
9112 register_remote_support_xml ("i386");