1 /* Intel 386 target-dependent stuff.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 #include "gdb_string.h"
30 #include "floatformat.h"
35 #include "arch-utils.h"
39 #include "gdb_assert.h"
41 #include "i386-tdep.h"
42 #include "i387-tdep.h"
44 /* Names of the registers. The first 10 registers match the register
45 numbering scheme used by GCC for stabs and DWARF. */
46 static char *i386_register_names[] =
48 "eax", "ecx", "edx", "ebx",
49 "esp", "ebp", "esi", "edi",
50 "eip", "eflags", "cs", "ss",
51 "ds", "es", "fs", "gs",
52 "st0", "st1", "st2", "st3",
53 "st4", "st5", "st6", "st7",
54 "fctrl", "fstat", "ftag", "fiseg",
55 "fioff", "foseg", "fooff", "fop",
56 "xmm0", "xmm1", "xmm2", "xmm3",
57 "xmm4", "xmm5", "xmm6", "xmm7",
63 static char *i386_mmx_names[] =
65 "mm0", "mm1", "mm2", "mm3",
66 "mm4", "mm5", "mm6", "mm7"
68 static const int mmx_num_regs = (sizeof (i386_mmx_names)
69 / sizeof (i386_mmx_names[0]));
70 #define MM0_REGNUM (NUM_REGS)
73 mmx_regnum_p (int reg)
75 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
78 /* Return the name of register REG. */
81 i386_register_name (int reg)
85 if (mmx_regnum_p (reg))
86 return i386_mmx_names[reg - MM0_REGNUM];
87 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
90 return i386_register_names[reg];
93 /* Convert stabs register number REG to the appropriate register
94 number used by GDB. */
97 i386_stab_reg_to_regnum (int reg)
99 /* This implements what GCC calls the "default" register map. */
100 if (reg >= 0 && reg <= 7)
102 /* General registers. */
105 else if (reg >= 12 && reg <= 19)
107 /* Floating-point registers. */
108 return reg - 12 + FP0_REGNUM;
110 else if (reg >= 21 && reg <= 28)
113 return reg - 21 + XMM0_REGNUM;
115 else if (reg >= 29 && reg <= 36)
118 return reg - 29 + MM0_REGNUM;
121 /* This will hopefully provoke a warning. */
122 return NUM_REGS + NUM_PSEUDO_REGS;
125 /* Convert DWARF register number REG to the appropriate register
126 number used by GDB. */
129 i386_dwarf_reg_to_regnum (int reg)
131 /* The DWARF register numbering includes %eip and %eflags, and
132 numbers the floating point registers differently. */
133 if (reg >= 0 && reg <= 9)
135 /* General registers. */
138 else if (reg >= 11 && reg <= 18)
140 /* Floating-point registers. */
141 return reg - 11 + FP0_REGNUM;
145 /* The SSE and MMX registers have identical numbers as in stabs. */
146 return i386_stab_reg_to_regnum (reg);
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
154 /* This is the variable that is set with "set disassembly-flavor", and
155 its legitimate values. */
156 static const char att_flavor[] = "att";
157 static const char intel_flavor[] = "intel";
158 static const char *valid_flavors[] =
164 static const char *disassembly_flavor = att_flavor;
166 /* Stdio style buffering was used to minimize calls to ptrace, but
167 this buffering did not take into account that the code section
168 being accessed may not be an even number of buffers long (even if
169 the buffer is only sizeof(int) long). In cases where the code
170 section size happened to be a non-integral number of buffers long,
171 attempting to read the last buffer would fail. Simply using
172 target_read_memory and ignoring errors, rather than read_memory, is
173 not the correct solution, since legitimate access errors would then
174 be totally ignored. To properly handle this situation and continue
175 to use buffering would require that this code be able to determine
176 the minimum code section size granularity (not the alignment of the
177 section itself, since the actual failing case that pointed out this
178 problem had a section alignment of 4 but was not a multiple of 4
179 bytes long), on a target by target basis, and then adjust it's
180 buffer size accordingly. This is messy, but potentially feasible.
181 It probably needs the bfd library's help and support. For now, the
182 buffer size is set to 1. (FIXME -fnf) */
184 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
185 static CORE_ADDR codestream_next_addr;
186 static CORE_ADDR codestream_addr;
187 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
188 static int codestream_off;
189 static int codestream_cnt;
191 #define codestream_tell() (codestream_addr + codestream_off)
192 #define codestream_peek() \
193 (codestream_cnt == 0 ? \
194 codestream_fill(1) : codestream_buf[codestream_off])
195 #define codestream_get() \
196 (codestream_cnt-- == 0 ? \
197 codestream_fill(0) : codestream_buf[codestream_off++])
200 codestream_fill (int peek_flag)
202 codestream_addr = codestream_next_addr;
203 codestream_next_addr += CODESTREAM_BUFSIZ;
205 codestream_cnt = CODESTREAM_BUFSIZ;
206 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
209 return (codestream_peek ());
211 return (codestream_get ());
215 codestream_seek (CORE_ADDR place)
217 codestream_next_addr = place / CODESTREAM_BUFSIZ;
218 codestream_next_addr *= CODESTREAM_BUFSIZ;
221 while (codestream_tell () != place)
226 codestream_read (unsigned char *buf, int count)
231 for (i = 0; i < count; i++)
232 *p++ = codestream_get ();
236 /* If the next instruction is a jump, move to its target. */
239 i386_follow_jump (void)
241 unsigned char buf[4];
247 pos = codestream_tell ();
250 if (codestream_peek () == 0x66)
256 switch (codestream_get ())
259 /* Relative jump: if data16 == 0, disp32, else disp16. */
262 codestream_read (buf, 2);
263 delta = extract_signed_integer (buf, 2);
265 /* Include the size of the jmp instruction (including the
271 codestream_read (buf, 4);
272 delta = extract_signed_integer (buf, 4);
278 /* Relative jump, disp8 (ignore data16). */
279 codestream_read (buf, 1);
280 /* Sign-extend it. */
281 delta = extract_signed_integer (buf, 1);
286 codestream_seek (pos);
289 /* Find & return the amount a local space allocated, and advance the
290 codestream to the first register push (if any).
292 If the entry sequence doesn't make sense, return -1, and leave
293 codestream pointer at a random spot. */
296 i386_get_frame_setup (CORE_ADDR pc)
300 codestream_seek (pc);
304 op = codestream_get ();
306 if (op == 0x58) /* popl %eax */
308 /* This function must start with
311 xchgl %eax, (%esp) 0x87 0x04 0x24
312 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
314 (the System V compiler puts out the second `xchg'
315 instruction, and the assembler doesn't try to optimize it, so
316 the 'sib' form gets generated). This sequence is used to get
317 the address of the return buffer for a function that returns
320 unsigned char buf[4];
321 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
322 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
324 pos = codestream_tell ();
325 codestream_read (buf, 4);
326 if (memcmp (buf, proto1, 3) == 0)
328 else if (memcmp (buf, proto2, 4) == 0)
331 codestream_seek (pos);
332 op = codestream_get (); /* Update next opcode. */
335 if (op == 0x68 || op == 0x6a)
337 /* This function may start with
349 unsigned char buf[8];
351 /* Skip past the `pushl' instruction; it has either a one-byte
352 or a four-byte operand, depending on the opcode. */
353 pos = codestream_tell ();
358 codestream_seek (pos);
360 /* Read the following 8 bytes, which should be "call _probe" (6
361 bytes) followed by "addl $4,%esp" (2 bytes). */
362 codestream_read (buf, sizeof (buf));
363 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
365 codestream_seek (pos);
366 op = codestream_get (); /* Update next opcode. */
369 if (op == 0x55) /* pushl %ebp */
371 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
372 switch (codestream_get ())
375 if (codestream_get () != 0xec)
379 if (codestream_get () != 0xe5)
385 /* Check for stack adjustment
389 NOTE: You can't subtract a 16 bit immediate from a 32 bit
390 reg, so we don't have to worry about a data16 prefix. */
391 op = codestream_peek ();
394 /* `subl' with 8 bit immediate. */
396 if (codestream_get () != 0xec)
397 /* Some instruction starting with 0x83 other than `subl'. */
399 codestream_seek (codestream_tell () - 2);
402 /* `subl' with signed byte immediate (though it wouldn't
403 make sense to be negative). */
404 return (codestream_get ());
409 /* Maybe it is `subl' with a 32 bit immedediate. */
411 if (codestream_get () != 0xec)
412 /* Some instruction starting with 0x81 other than `subl'. */
414 codestream_seek (codestream_tell () - 2);
417 /* It is `subl' with a 32 bit immediate. */
418 codestream_read ((unsigned char *) buf, 4);
419 return extract_signed_integer (buf, 4);
429 /* `enter' with 16 bit unsigned immediate. */
430 codestream_read ((unsigned char *) buf, 2);
431 codestream_get (); /* Flush final byte of enter instruction. */
432 return extract_unsigned_integer (buf, 2);
437 /* Signal trampolines don't have a meaningful frame. The frame
438 pointer value we use is actually the frame pointer of the calling
439 frame -- that is, the frame which was in progress when the signal
440 trampoline was entered. GDB mostly treats this frame pointer value
441 as a magic cookie. We detect the case of a signal trampoline by
442 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
445 When a signal trampoline is invoked from a frameless function, we
446 essentially have two frameless functions in a row. In this case,
447 we use the same magic cookie for three frames in a row. We detect
448 this case by seeing whether the next frame has
449 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
450 current frame is actually frameless. In this case, we need to get
451 the PC by looking at the SP register value stored in the signal
454 This should work in most cases except in horrible situations where
455 a signal occurs just as we enter a function but before the frame
456 has been set up. Incidentally, that's just what happens when we
457 call a function from GDB with a signal pending (there's a test in
458 the testsuite that makes this happen). Therefore we pretend that
459 we have a frameless function if we're stopped at the start of a
462 /* Return non-zero if we're dealing with a frameless signal, that is,
463 a signal trampoline invoked from a frameless function. */
466 i386_frameless_signal_p (struct frame_info *frame)
468 return (frame->next && frame->next->signal_handler_caller
469 && (frameless_look_for_prologue (frame)
470 || frame->pc == get_pc_function_start (frame->pc)));
473 /* Return the chain-pointer for FRAME. In the case of the i386, the
474 frame's nominal address is the address of a 4-byte word containing
475 the calling frame's address. */
478 i386_frame_chain (struct frame_info *frame)
480 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
483 if (frame->signal_handler_caller
484 || i386_frameless_signal_p (frame))
487 if (! inside_entry_file (frame->pc))
488 return read_memory_unsigned_integer (frame->frame, 4);
493 /* Determine whether the function invocation represented by FRAME does
494 not have a from on the stack associated with it. If it does not,
495 return non-zero, otherwise return zero. */
498 i386_frameless_function_invocation (struct frame_info *frame)
500 if (frame->signal_handler_caller)
503 return frameless_look_for_prologue (frame);
506 /* Assuming FRAME is for a sigtramp routine, return the saved program
510 i386_sigtramp_saved_pc (struct frame_info *frame)
512 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
515 addr = tdep->sigcontext_addr (frame);
516 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
519 /* Assuming FRAME is for a sigtramp routine, return the saved stack
523 i386_sigtramp_saved_sp (struct frame_info *frame)
525 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
528 addr = tdep->sigcontext_addr (frame);
529 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
532 /* Return the saved program counter for FRAME. */
535 i386_frame_saved_pc (struct frame_info *frame)
537 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
541 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
545 if (frame->signal_handler_caller)
546 return i386_sigtramp_saved_pc (frame);
548 if (i386_frameless_signal_p (frame))
550 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
551 return read_memory_unsigned_integer (sp, 4);
554 return read_memory_unsigned_integer (frame->frame + 4, 4);
557 /* Immediately after a function call, return the saved pc. */
560 i386_saved_pc_after_call (struct frame_info *frame)
562 if (frame->signal_handler_caller)
563 return i386_sigtramp_saved_pc (frame);
565 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
568 /* Return number of args passed to a frame.
569 Can return -1, meaning no way to tell. */
572 i386_frame_num_args (struct frame_info *fi)
577 /* This loses because not only might the compiler not be popping the
578 args right after the function call, it might be popping args from
579 both this call and a previous one, and we would say there are
580 more args than there really are. */
584 struct frame_info *pfi;
586 /* On the i386, the instruction following the call could be:
588 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
589 anything else - zero args. */
593 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
595 /* In the absence of a frame pointer, GDB doesn't get correct
596 values for nameless arguments. Return -1, so it doesn't print
597 any nameless arguments. */
600 pfi = get_prev_frame (fi);
603 /* NOTE: This can happen if we are looking at the frame for
604 main, because FRAME_CHAIN_VALID won't let us go into start.
605 If we have debugging symbols, that's not really a big deal;
606 it just means it will only show as many arguments to main as
613 op = read_memory_integer (retpc, 1);
614 if (op == 0x59) /* pop %ecx */
618 op = read_memory_integer (retpc + 1, 1);
620 /* addl $<signed imm 8 bits>, %esp */
621 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
625 else if (op == 0x81) /* `add' with 32 bit immediate. */
627 op = read_memory_integer (retpc + 1, 1);
629 /* addl $<imm 32>, %esp */
630 return read_memory_integer (retpc + 2, 4) / 4;
642 /* Parse the first few instructions the function to see what registers
645 We handle these cases:
647 The startup sequence can be at the start of the function, or the
648 function can start with a branch to startup code at the end.
650 %ebp can be set up with either the 'enter' instruction, or "pushl
651 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
652 once used in the System V compiler).
654 Local space is allocated just below the saved %ebp by either the
655 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
656 bit unsigned argument for space to allocate, and the 'addl'
657 instruction could have either a signed byte, or 32 bit immediate.
659 Next, the registers used by this function are pushed. With the
660 System V compiler they will always be in the order: %edi, %esi,
661 %ebx (and sometimes a harmless bug causes it to also save but not
662 restore %eax); however, the code below is willing to see the pushes
663 in any order, and will handle up to 8 of them.
665 If the setup sequence is at the end of the function, then the next
666 instruction will be a branch back to the start. */
669 i386_frame_init_saved_regs (struct frame_info *fip)
680 frame_saved_regs_zalloc (fip);
682 pc = get_pc_function_start (fip->pc);
684 locals = i386_get_frame_setup (pc);
688 addr = fip->frame - 4 - locals;
689 for (i = 0; i < 8; i++)
691 op = codestream_get ();
692 if (op < 0x50 || op > 0x57)
694 #ifdef I386_REGNO_TO_SYMMETRY
695 /* Dynix uses different internal numbering. Ick. */
696 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
698 fip->saved_regs[op - 0x50] = addr;
704 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
705 fip->saved_regs[FP_REGNUM] = fip->frame;
708 /* Return PC of first real instruction. */
711 i386_skip_prologue (CORE_ADDR pc)
715 static unsigned char pic_pat[6] =
716 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
717 0x5b, /* popl %ebx */
721 if (i386_get_frame_setup (pc) < 0)
724 /* Found valid frame setup -- codestream now points to start of push
725 instructions for saving registers. */
727 /* Skip over register saves. */
728 for (i = 0; i < 8; i++)
730 op = codestream_peek ();
731 /* Break if not `pushl' instrunction. */
732 if (op < 0x50 || op > 0x57)
737 /* The native cc on SVR4 in -K PIC mode inserts the following code
738 to get the address of the global offset table (GOT) into register
743 movl %ebx,x(%ebp) (optional)
746 This code is with the rest of the prologue (at the end of the
747 function), so we have to skip it to get to the first real
748 instruction at the start of the function. */
750 pos = codestream_tell ();
751 for (i = 0; i < 6; i++)
753 op = codestream_get ();
754 if (pic_pat[i] != op)
759 unsigned char buf[4];
762 op = codestream_get ();
763 if (op == 0x89) /* movl %ebx, x(%ebp) */
765 op = codestream_get ();
766 if (op == 0x5d) /* One byte offset from %ebp. */
769 codestream_read (buf, 1);
771 else if (op == 0x9d) /* Four byte offset from %ebp. */
774 codestream_read (buf, 4);
776 else /* Unexpected instruction. */
778 op = codestream_get ();
781 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
786 codestream_seek (pos);
790 return (codestream_tell ());
793 /* Use the program counter to determine the contents and size of a
794 breakpoint instruction. Return a pointer to a string of bytes that
795 encode a breakpoint instruction, store the length of the string in
796 *LEN and optionally adjust *PC to point to the correct memory
797 location for inserting the breakpoint.
799 On the i386 we have a single breakpoint that fits in a single byte
800 and can be inserted anywhere. */
802 static const unsigned char *
803 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
805 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
807 *len = sizeof (break_insn);
811 /* Push the return address (pointing to the call dummy) onto the stack
812 and return the new value for the stack pointer. */
815 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
819 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
820 write_memory (sp - 4, buf, 4);
825 i386_do_pop_frame (struct frame_info *frame)
829 char regbuf[I386_MAX_REGISTER_SIZE];
831 fp = FRAME_FP (frame);
832 i386_frame_init_saved_regs (frame);
834 for (regnum = 0; regnum < NUM_REGS; regnum++)
837 addr = frame->saved_regs[regnum];
840 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
841 write_register_gen (regnum, regbuf);
844 write_register (FP_REGNUM, read_memory_integer (fp, 4));
845 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
846 write_register (SP_REGNUM, fp + 8);
847 flush_cached_frames ();
851 i386_pop_frame (void)
853 generic_pop_current_frame (i386_do_pop_frame);
857 /* Figure out where the longjmp will land. Slurp the args out of the
858 stack. We expect the first arg to be a pointer to the jmp_buf
859 structure from which we extract the address that we will land at.
860 This address is copied into PC. This routine returns true on
864 i386_get_longjmp_target (CORE_ADDR *pc)
867 CORE_ADDR sp, jb_addr;
868 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
870 /* If JB_PC_OFFSET is -1, we have no way to find out where the
871 longjmp will land. */
872 if (jb_pc_offset == -1)
875 sp = read_register (SP_REGNUM);
876 if (target_read_memory (sp + 4, buf, 4))
879 jb_addr = extract_address (buf, 4);
880 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
883 *pc = extract_address (buf, 4);
889 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
890 int struct_return, CORE_ADDR struct_addr)
892 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
899 store_address (buf, 4, struct_addr);
900 write_memory (sp, buf, 4);
907 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
909 /* Do nothing. Everything was already done by i386_push_arguments. */
912 /* These registers are used for returning integers (and on some
913 targets also for returning `struct' and `union' values when their
914 size and alignment match an integer type). */
915 #define LOW_RETURN_REGNUM 0 /* %eax */
916 #define HIGH_RETURN_REGNUM 2 /* %edx */
918 /* Extract from an array REGBUF containing the (raw) register state, a
919 function return value of TYPE, and copy that, in virtual format,
923 i386_extract_return_value (struct type *type, struct regcache *regcache,
926 bfd_byte *valbuf = dst;
927 int len = TYPE_LENGTH (type);
928 char buf[I386_MAX_REGISTER_SIZE];
930 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
931 && TYPE_NFIELDS (type) == 1)
933 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
937 if (TYPE_CODE (type) == TYPE_CODE_FLT)
941 warning ("Cannot find floating-point return value.");
942 memset (valbuf, 0, len);
946 /* Floating-point return values can be found in %st(0). Convert
947 its contents to the desired type. This is probably not
948 exactly how it would happen on the target itself, but it is
949 the best we can do. */
950 regcache_raw_read (regcache, FP0_REGNUM, buf);
951 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
955 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
956 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
960 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
961 memcpy (valbuf, buf, len);
963 else if (len <= (low_size + high_size))
965 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
966 memcpy (valbuf, buf, low_size);
967 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
968 memcpy (valbuf + low_size, buf, len - low_size);
971 internal_error (__FILE__, __LINE__,
972 "Cannot extract return value of %d bytes long.", len);
976 /* Write into the appropriate registers a function return value stored
977 in VALBUF of type TYPE, given in virtual format. */
980 i386_store_return_value (struct type *type, struct regcache *regcache,
983 int len = TYPE_LENGTH (type);
985 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
986 && TYPE_NFIELDS (type) == 1)
988 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
992 if (TYPE_CODE (type) == TYPE_CODE_FLT)
995 char buf[FPU_REG_RAW_SIZE];
999 warning ("Cannot set floating-point return value.");
1003 /* Returning floating-point values is a bit tricky. Apart from
1004 storing the return value in %st(0), we have to simulate the
1005 state of the FPU at function return point. */
1007 /* Convert the value found in VALBUF to the extended
1008 floating-point format used by the FPU. This is probably
1009 not exactly how it would happen on the target itself, but
1010 it is the best we can do. */
1011 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1012 regcache_raw_write (regcache, FP0_REGNUM, buf);
1014 /* Set the top of the floating-point register stack to 7. The
1015 actual value doesn't really matter, but 7 is what a normal
1016 function return would end up with if the program started out
1017 with a freshly initialized FPU. */
1018 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1020 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1022 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1023 the floating-point register stack to 7, the appropriate value
1024 for the tag word is 0x3fff. */
1025 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1029 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1030 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1032 if (len <= low_size)
1033 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1034 else if (len <= (low_size + high_size))
1036 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1037 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1038 len - low_size, (char *) valbuf + low_size);
1041 internal_error (__FILE__, __LINE__,
1042 "Cannot store return value of %d bytes long.", len);
1046 /* Extract from REGCACHE, which contains the (raw) register state, the
1047 address in which a function should return its structure value, as a
1051 i386_extract_struct_value_address (struct regcache *regcache)
1055 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1060 /* This is the variable that is set with "set struct-convention", and
1061 its legitimate values. */
1062 static const char default_struct_convention[] = "default";
1063 static const char pcc_struct_convention[] = "pcc";
1064 static const char reg_struct_convention[] = "reg";
1065 static const char *valid_conventions[] =
1067 default_struct_convention,
1068 pcc_struct_convention,
1069 reg_struct_convention,
1072 static const char *struct_convention = default_struct_convention;
1075 i386_use_struct_convention (int gcc_p, struct type *type)
1077 enum struct_return struct_return;
1079 if (struct_convention == default_struct_convention)
1080 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1081 else if (struct_convention == pcc_struct_convention)
1082 struct_return = pcc_struct_return;
1084 struct_return = reg_struct_return;
1086 return generic_use_struct_convention (struct_return == reg_struct_return,
1091 /* Return the GDB type object for the "standard" data type of data in
1092 register REGNUM. Perhaps %esi and %edi should go here, but
1093 potentially they could be used for things other than address. */
1095 static struct type *
1096 i386_register_virtual_type (int regnum)
1098 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1099 return lookup_pointer_type (builtin_type_void);
1101 if (FP_REGNUM_P (regnum))
1102 return builtin_type_i387_ext;
1104 if (SSE_REGNUM_P (regnum))
1105 return builtin_type_vec128i;
1107 if (mmx_regnum_p (regnum))
1108 return builtin_type_vec64i;
1110 return builtin_type_int;
1113 /* Map a cooked register onto a raw register or memory. For the i386,
1114 the MMX registers need to be mapped onto floating point registers. */
1117 mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1123 mmxi = regnum - MM0_REGNUM;
1124 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1125 tos = (fstat >> 11) & 0x7;
1126 fpi = (mmxi + tos) % 8;
1127 return (FP0_REGNUM + fpi);
1131 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1132 int regnum, void *buf)
1134 if (mmx_regnum_p (regnum))
1136 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1137 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1138 regcache_raw_read (regcache, fpnum, mmx_buf);
1139 /* Extract (always little endian). */
1140 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1143 regcache_raw_read (regcache, regnum, buf);
1147 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1148 int regnum, const void *buf)
1150 if (mmx_regnum_p (regnum))
1152 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1153 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1155 regcache_raw_read (regcache, fpnum, mmx_buf);
1156 /* ... Modify ... (always little endian). */
1157 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1159 regcache_raw_write (regcache, fpnum, mmx_buf);
1162 regcache_raw_write (regcache, regnum, buf);
1165 /* Return true iff register REGNUM's virtual format is different from
1166 its raw format. Note that this definition assumes that the host
1167 supports IEEE 32-bit floats, since it doesn't say that SSE
1168 registers need conversion. Even if we can't find a counterexample,
1169 this is still sloppy. */
1172 i386_register_convertible (int regnum)
1174 return FP_REGNUM_P (regnum);
1177 /* Convert data from raw format for register REGNUM in buffer FROM to
1178 virtual format with type TYPE in buffer TO. */
1181 i386_register_convert_to_virtual (int regnum, struct type *type,
1182 char *from, char *to)
1184 gdb_assert (FP_REGNUM_P (regnum));
1186 /* We only support floating-point values. */
1187 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1189 warning ("Cannot convert floating-point register value "
1190 "to non-floating-point type.");
1191 memset (to, 0, TYPE_LENGTH (type));
1195 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1196 the extended floating-point format used by the FPU. */
1197 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1200 /* Convert data from virtual format with type TYPE in buffer FROM to
1201 raw format for register REGNUM in buffer TO. */
1204 i386_register_convert_to_raw (struct type *type, int regnum,
1205 char *from, char *to)
1207 gdb_assert (FP_REGNUM_P (regnum));
1209 /* We only support floating-point values. */
1210 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1212 warning ("Cannot convert non-floating-point type "
1213 "to floating-point register value.");
1214 memset (to, 0, TYPE_LENGTH (type));
1218 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1219 to the extended floating-point format used by the FPU. */
1220 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1224 #ifdef STATIC_TRANSFORM_NAME
1225 /* SunPRO encodes the static variables. This is not related to C++
1226 mangling, it is done for C too. */
1229 sunpro_static_transform_name (char *name)
1232 if (IS_STATIC_TRANSFORM_NAME (name))
1234 /* For file-local statics there will be a period, a bunch of
1235 junk (the contents of which match a string given in the
1236 N_OPT), a period and the name. For function-local statics
1237 there will be a bunch of junk (which seems to change the
1238 second character from 'A' to 'B'), a period, the name of the
1239 function, and the name. So just skip everything before the
1241 p = strrchr (name, '.');
1247 #endif /* STATIC_TRANSFORM_NAME */
1250 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1253 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1255 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1257 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1258 struct minimal_symbol *indsym =
1259 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1260 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1264 if (strncmp (symname, "__imp_", 6) == 0
1265 || strncmp (symname, "_imp_", 5) == 0)
1266 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1269 return 0; /* Not a trampoline. */
1273 /* Return non-zero if PC and NAME show that we are in a signal
1277 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1279 return (name && strcmp ("_sigtramp", name) == 0);
1283 /* We have two flavours of disassembly. The machinery on this page
1284 deals with switching between those. */
1287 i386_print_insn (bfd_vma pc, disassemble_info *info)
1289 gdb_assert (disassembly_flavor == att_flavor
1290 || disassembly_flavor == intel_flavor);
1292 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1293 constified, cast to prevent a compiler warning. */
1294 info->disassembler_options = (char *) disassembly_flavor;
1295 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1297 return print_insn_i386 (pc, info);
1301 /* There are a few i386 architecture variants that differ only
1302 slightly from the generic i386 target. For now, we don't give them
1303 their own source file, but include them here. As a consequence,
1304 they'll always be included. */
1306 /* System V Release 4 (SVR4). */
1309 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1311 return (name && (strcmp ("_sigreturn", name) == 0
1312 || strcmp ("_sigacthandler", name) == 0
1313 || strcmp ("sigvechandler", name) == 0));
1316 /* Get address of the pushed ucontext (sigcontext) on the stack for
1317 all three variants of SVR4 sigtramps. */
1320 i386_svr4_sigcontext_addr (struct frame_info *frame)
1322 int sigcontext_offset = -1;
1325 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1328 if (strcmp (name, "_sigreturn") == 0)
1329 sigcontext_offset = 132;
1330 else if (strcmp (name, "_sigacthandler") == 0)
1331 sigcontext_offset = 80;
1332 else if (strcmp (name, "sigvechandler") == 0)
1333 sigcontext_offset = 120;
1336 gdb_assert (sigcontext_offset != -1);
1339 return frame->next->frame + sigcontext_offset;
1340 return read_register (SP_REGNUM) + sigcontext_offset;
1347 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1349 /* DJGPP doesn't have any special frames for signal handlers. */
1357 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1359 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1360 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1363 /* System V Release 4 (SVR4). */
1366 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1370 /* System V Release 4 uses ELF. */
1371 i386_elf_init_abi (info, gdbarch);
1373 /* System V Release 4 has shared libraries. */
1374 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1375 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1377 /* FIXME: kettenis/20020511: Why do we override this function here? */
1378 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1380 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1381 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1382 tdep->sc_pc_offset = 14 * 4;
1383 tdep->sc_sp_offset = 7 * 4;
1385 tdep->jb_pc_offset = 20;
1391 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1393 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1395 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1397 tdep->jb_pc_offset = 36;
1403 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1407 /* FIXME: kettenis/20020511: Why do we override this function here? */
1408 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1410 tdep->jb_pc_offset = 24;
1414 static struct gdbarch *
1415 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1417 struct gdbarch_tdep *tdep;
1418 struct gdbarch *gdbarch;
1419 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1421 /* Try to determine the OS ABI of the object we're loading. */
1422 if (info.abfd != NULL)
1423 osabi = gdbarch_lookup_osabi (info.abfd);
1425 /* Find a candidate among extant architectures. */
1426 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1428 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1430 /* Make sure the OS ABI selection matches. */
1431 tdep = gdbarch_tdep (arches->gdbarch);
1432 if (tdep && tdep->osabi == osabi)
1433 return arches->gdbarch;
1436 /* Allocate space for the new architecture. */
1437 tdep = XMALLOC (struct gdbarch_tdep);
1438 gdbarch = gdbarch_alloc (&info, tdep);
1440 tdep->osabi = osabi;
1442 /* The i386 default settings don't include the SSE registers.
1443 FIXME: kettenis/20020614: They do include the FPU registers for
1444 now, which probably is not quite right. */
1445 tdep->num_xmm_regs = 0;
1447 tdep->jb_pc_offset = -1;
1448 tdep->struct_return = pcc_struct_return;
1449 tdep->sigtramp_start = 0;
1450 tdep->sigtramp_end = 0;
1451 tdep->sigcontext_addr = NULL;
1452 tdep->sc_pc_offset = -1;
1453 tdep->sc_sp_offset = -1;
1455 /* The format used for `long double' on almost all i386 targets is
1456 the i387 extended floating-point format. In fact, of all targets
1457 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1458 on having a `long double' that's not `long' at all. */
1459 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1461 /* Although the i387 extended floating-point has only 80 significant
1462 bits, a `long double' actually takes up 96, probably to enforce
1464 set_gdbarch_long_double_bit (gdbarch, 96);
1466 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1467 tm-symmetry.h currently override this. Sigh. */
1468 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1470 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1471 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1472 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1473 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1474 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
1476 /* Use the "default" register numbering scheme for stabs and COFF. */
1477 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1478 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1480 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1481 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1482 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1484 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1485 be in use on any of the supported i386 targets. */
1487 set_gdbarch_register_name (gdbarch, i386_register_name);
1488 set_gdbarch_register_size (gdbarch, 4);
1489 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1490 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1491 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
1492 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1494 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1496 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1498 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1500 /* Call dummy code. */
1501 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1502 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1503 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1504 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1505 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1506 set_gdbarch_call_dummy_length (gdbarch, 0);
1507 set_gdbarch_call_dummy_p (gdbarch, 1);
1508 set_gdbarch_call_dummy_words (gdbarch, NULL);
1509 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1510 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1511 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1513 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1514 set_gdbarch_register_convert_to_virtual (gdbarch,
1515 i386_register_convert_to_virtual);
1516 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1518 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
1520 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1522 /* "An argument's size is increased, if necessary, to make it a
1523 multiple of [32-bit] words. This may require tail padding,
1524 depending on the size of the argument" -- from the x86 ABI. */
1525 set_gdbarch_parm_boundary (gdbarch, 32);
1527 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1528 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1529 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1530 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
1531 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1532 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1533 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1534 set_gdbarch_extract_struct_value_address (gdbarch,
1535 i386_extract_struct_value_address);
1536 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1538 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1539 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1541 /* Stack grows downward. */
1542 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1544 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1545 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1546 set_gdbarch_function_start_offset (gdbarch, 0);
1548 /* The following redefines make backtracing through sigtramp work.
1549 They manufacture a fake sigtramp frame and obtain the saved pc in
1550 sigtramp from the sigcontext structure which is pushed by the
1551 kernel on the user stack, along with a pointer to it. */
1553 set_gdbarch_frame_args_skip (gdbarch, 8);
1554 set_gdbarch_frameless_function_invocation (gdbarch,
1555 i386_frameless_function_invocation);
1556 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1557 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1558 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1559 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1560 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1561 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1562 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1563 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1565 /* Wire in the MMX registers. */
1566 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1567 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1568 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1570 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1572 /* Hook in ABI-specific overrides, if they have been registered. */
1573 gdbarch_init_osabi (info, gdbarch, osabi);
1578 static enum gdb_osabi
1579 i386_coff_osabi_sniffer (bfd *abfd)
1581 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1582 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1583 return GDB_OSABI_GO32;
1585 return GDB_OSABI_UNKNOWN;
1588 static enum gdb_osabi
1589 i386_nlm_osabi_sniffer (bfd *abfd)
1591 return GDB_OSABI_NETWARE;
1595 /* Provide a prototype to silence -Wmissing-prototypes. */
1596 void _initialize_i386_tdep (void);
1599 _initialize_i386_tdep (void)
1601 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1603 /* Add the variable that controls the disassembly flavor. */
1605 struct cmd_list_element *new_cmd;
1607 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1609 &disassembly_flavor,
1611 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1612 and the default value is \"att\".",
1614 add_show_from_set (new_cmd, &showlist);
1617 /* Add the variable that controls the convention for returning
1620 struct cmd_list_element *new_cmd;
1622 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1624 &struct_convention, "\
1625 Set the convention for returning small structs, valid values \
1626 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1628 add_show_from_set (new_cmd, &showlist);
1631 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1632 i386_coff_osabi_sniffer);
1633 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1634 i386_nlm_osabi_sniffer);
1636 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1637 i386_svr4_init_abi);
1638 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1639 i386_go32_init_abi);
1640 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,