1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
38 #include "reggroups.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx-avx512.c"
58 #include "features/i386/i386-avx-mpx-avx512-pku.c"
59 #include "features/i386/i386-mmx.c"
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
74 static const char *i386_register_names[] =
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
89 static const char *i386_zmm_names[] =
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
95 static const char *i386_zmmh_names[] =
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
101 static const char *i386_k_names[] =
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
107 static const char *i386_ymm_names[] =
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
113 static const char *i386_ymmh_names[] =
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
119 static const char *i386_mpx_names[] =
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
124 static const char* i386_pkeys_names[] =
129 /* Register names for MPX pseudo-registers. */
131 static const char *i386_bnd_names[] =
133 "bnd0", "bnd1", "bnd2", "bnd3"
136 /* Register names for MMX pseudo-registers. */
138 static const char *i386_mmx_names[] =
140 "mm0", "mm1", "mm2", "mm3",
141 "mm4", "mm5", "mm6", "mm7"
144 /* Register names for byte pseudo-registers. */
146 static const char *i386_byte_names[] =
148 "al", "cl", "dl", "bl",
149 "ah", "ch", "dh", "bh"
152 /* Register names for word pseudo-registers. */
154 static const char *i386_word_names[] =
156 "ax", "cx", "dx", "bx",
160 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
161 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
162 we have 16 upper ZMM regs that have to be handled differently. */
164 const int num_lower_zmm_regs = 16;
169 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int mm0_regnum = tdep->mm0_regnum;
177 regnum -= mm0_regnum;
178 return regnum >= 0 && regnum < tdep->num_mmx_regs;
184 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
188 regnum -= tdep->al_regnum;
189 return regnum >= 0 && regnum < tdep->num_byte_regs;
195 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
199 regnum -= tdep->ax_regnum;
200 return regnum >= 0 && regnum < tdep->num_word_regs;
203 /* Dword register? */
206 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int eax_regnum = tdep->eax_regnum;
214 regnum -= eax_regnum;
215 return regnum >= 0 && regnum < tdep->num_dword_regs;
218 /* AVX512 register? */
221 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int zmm0h_regnum = tdep->zmm0h_regnum;
226 if (zmm0h_regnum < 0)
229 regnum -= zmm0h_regnum;
230 return regnum >= 0 && regnum < tdep->num_zmm_regs;
234 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 int zmm0_regnum = tdep->zmm0_regnum;
242 regnum -= zmm0_regnum;
243 return regnum >= 0 && regnum < tdep->num_zmm_regs;
247 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int k0_regnum = tdep->k0_regnum;
256 return regnum >= 0 && regnum < I387_NUM_K_REGS;
260 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 int ymm0h_regnum = tdep->ymm0h_regnum;
265 if (ymm0h_regnum < 0)
268 regnum -= ymm0h_regnum;
269 return regnum >= 0 && regnum < tdep->num_ymm_regs;
275 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
278 int ymm0_regnum = tdep->ymm0_regnum;
283 regnum -= ymm0_regnum;
284 return regnum >= 0 && regnum < tdep->num_ymm_regs;
288 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 int ymm16h_regnum = tdep->ymm16h_regnum;
293 if (ymm16h_regnum < 0)
296 regnum -= ymm16h_regnum;
297 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
301 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304 int ymm16_regnum = tdep->ymm16_regnum;
306 if (ymm16_regnum < 0)
309 regnum -= ymm16_regnum;
310 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
316 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 int bnd0_regnum = tdep->bnd0_regnum;
324 regnum -= bnd0_regnum;
325 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
331 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
336 if (num_xmm_regs == 0)
339 regnum -= I387_XMM0_REGNUM (tdep);
340 return regnum >= 0 && regnum < num_xmm_regs;
343 /* XMM_512 register? */
346 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
351 if (num_xmm_avx512_regs == 0)
354 regnum -= I387_XMM16_REGNUM (tdep);
355 return regnum >= 0 && regnum < num_xmm_avx512_regs;
359 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
363 if (I387_NUM_XMM_REGS (tdep) == 0)
366 return (regnum == I387_MXCSR_REGNUM (tdep));
372 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
376 if (I387_ST0_REGNUM (tdep) < 0)
379 return (I387_ST0_REGNUM (tdep) <= regnum
380 && regnum < I387_FCTRL_REGNUM (tdep));
384 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388 if (I387_ST0_REGNUM (tdep) < 0)
391 return (I387_FCTRL_REGNUM (tdep) <= regnum
392 && regnum < I387_XMM0_REGNUM (tdep));
395 /* BNDr (raw) register? */
398 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
402 if (I387_BND0R_REGNUM (tdep) < 0)
405 regnum -= tdep->bnd0r_regnum;
406 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
409 /* BND control register? */
412 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 if (I387_BNDCFGU_REGNUM (tdep) < 0)
419 regnum -= I387_BNDCFGU_REGNUM (tdep);
420 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
426 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
429 int pkru_regnum = tdep->pkru_regnum;
434 regnum -= pkru_regnum;
435 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
438 /* Return the name of register REGNUM, or the empty string if it is
439 an anonymous register. */
442 i386_register_name (struct gdbarch *gdbarch, int regnum)
444 /* Hide the upper YMM registers. */
445 if (i386_ymmh_regnum_p (gdbarch, regnum))
448 /* Hide the upper YMM16-31 registers. */
449 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
452 /* Hide the upper ZMM registers. */
453 if (i386_zmmh_regnum_p (gdbarch, regnum))
456 return tdesc_register_name (gdbarch, regnum);
459 /* Return the name of register REGNUM. */
462 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465 if (i386_bnd_regnum_p (gdbarch, regnum))
466 return i386_bnd_names[regnum - tdep->bnd0_regnum];
467 if (i386_mmx_regnum_p (gdbarch, regnum))
468 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
469 else if (i386_ymm_regnum_p (gdbarch, regnum))
470 return i386_ymm_names[regnum - tdep->ymm0_regnum];
471 else if (i386_zmm_regnum_p (gdbarch, regnum))
472 return i386_zmm_names[regnum - tdep->zmm0_regnum];
473 else if (i386_byte_regnum_p (gdbarch, regnum))
474 return i386_byte_names[regnum - tdep->al_regnum];
475 else if (i386_word_regnum_p (gdbarch, regnum))
476 return i386_word_names[regnum - tdep->ax_regnum];
478 internal_error (__FILE__, __LINE__, _("invalid regnum"));
481 /* Convert a dbx register number REG to the appropriate register
482 number used by GDB. */
485 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
489 /* This implements what GCC calls the "default" register map
490 (dbx_register_map[]). */
492 if (reg >= 0 && reg <= 7)
494 /* General-purpose registers. The debug info calls %ebp
495 register 4, and %esp register 5. */
502 else if (reg >= 12 && reg <= 19)
504 /* Floating-point registers. */
505 return reg - 12 + I387_ST0_REGNUM (tdep);
507 else if (reg >= 21 && reg <= 28)
510 int ymm0_regnum = tdep->ymm0_regnum;
513 && i386_xmm_regnum_p (gdbarch, reg))
514 return reg - 21 + ymm0_regnum;
516 return reg - 21 + I387_XMM0_REGNUM (tdep);
518 else if (reg >= 29 && reg <= 36)
521 return reg - 29 + I387_MM0_REGNUM (tdep);
524 /* This will hopefully provoke a warning. */
525 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
528 /* Convert SVR4 DWARF register number REG to the appropriate register number
532 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
536 /* This implements the GCC register map that tries to be compatible
537 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
539 /* The SVR4 register numbering includes %eip and %eflags, and
540 numbers the floating point registers differently. */
541 if (reg >= 0 && reg <= 9)
543 /* General-purpose registers. */
546 else if (reg >= 11 && reg <= 18)
548 /* Floating-point registers. */
549 return reg - 11 + I387_ST0_REGNUM (tdep);
551 else if (reg >= 21 && reg <= 36)
553 /* The SSE and MMX registers have the same numbers as with dbx. */
554 return i386_dbx_reg_to_regnum (gdbarch, reg);
559 case 37: return I387_FCTRL_REGNUM (tdep);
560 case 38: return I387_FSTAT_REGNUM (tdep);
561 case 39: return I387_MXCSR_REGNUM (tdep);
562 case 40: return I386_ES_REGNUM;
563 case 41: return I386_CS_REGNUM;
564 case 42: return I386_SS_REGNUM;
565 case 43: return I386_DS_REGNUM;
566 case 44: return I386_FS_REGNUM;
567 case 45: return I386_GS_REGNUM;
573 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
574 num_regs + num_pseudo_regs for other debug formats. */
577 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
579 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
582 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
588 /* This is the variable that is set with "set disassembly-flavor", and
589 its legitimate values. */
590 static const char att_flavor[] = "att";
591 static const char intel_flavor[] = "intel";
592 static const char *const valid_flavors[] =
598 static const char *disassembly_flavor = att_flavor;
601 /* Use the program counter to determine the contents and size of a
602 breakpoint instruction. Return a pointer to a string of bytes that
603 encode a breakpoint instruction, store the length of the string in
604 *LEN and optionally adjust *PC to point to the correct memory
605 location for inserting the breakpoint.
607 On the i386 we have a single breakpoint that fits in a single byte
608 and can be inserted anywhere.
610 This function is 64-bit safe. */
612 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
614 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
617 /* Displaced instruction handling. */
619 /* Skip the legacy instruction prefixes in INSN.
620 Not all prefixes are valid for any particular insn
621 but we needn't care, the insn will fault if it's invalid.
622 The result is a pointer to the first opcode byte,
623 or NULL if we run off the end of the buffer. */
626 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
628 gdb_byte *end = insn + max_len;
634 case DATA_PREFIX_OPCODE:
635 case ADDR_PREFIX_OPCODE:
636 case CS_PREFIX_OPCODE:
637 case DS_PREFIX_OPCODE:
638 case ES_PREFIX_OPCODE:
639 case FS_PREFIX_OPCODE:
640 case GS_PREFIX_OPCODE:
641 case SS_PREFIX_OPCODE:
642 case LOCK_PREFIX_OPCODE:
643 case REPE_PREFIX_OPCODE:
644 case REPNE_PREFIX_OPCODE:
656 i386_absolute_jmp_p (const gdb_byte *insn)
658 /* jmp far (absolute address in operand). */
664 /* jump near, absolute indirect (/4). */
665 if ((insn[1] & 0x38) == 0x20)
668 /* jump far, absolute indirect (/5). */
669 if ((insn[1] & 0x38) == 0x28)
676 /* Return non-zero if INSN is a jump, zero otherwise. */
679 i386_jmp_p (const gdb_byte *insn)
681 /* jump short, relative. */
685 /* jump near, relative. */
689 return i386_absolute_jmp_p (insn);
693 i386_absolute_call_p (const gdb_byte *insn)
695 /* call far, absolute. */
701 /* Call near, absolute indirect (/2). */
702 if ((insn[1] & 0x38) == 0x10)
705 /* Call far, absolute indirect (/3). */
706 if ((insn[1] & 0x38) == 0x18)
714 i386_ret_p (const gdb_byte *insn)
718 case 0xc2: /* ret near, pop N bytes. */
719 case 0xc3: /* ret near */
720 case 0xca: /* ret far, pop N bytes. */
721 case 0xcb: /* ret far */
722 case 0xcf: /* iret */
731 i386_call_p (const gdb_byte *insn)
733 if (i386_absolute_call_p (insn))
736 /* call near, relative. */
743 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
744 length in bytes. Otherwise, return zero. */
747 i386_syscall_p (const gdb_byte *insn, int *lengthp)
749 /* Is it 'int $0x80'? */
750 if ((insn[0] == 0xcd && insn[1] == 0x80)
751 /* Or is it 'sysenter'? */
752 || (insn[0] == 0x0f && insn[1] == 0x34)
753 /* Or is it 'syscall'? */
754 || (insn[0] == 0x0f && insn[1] == 0x05))
763 /* The gdbarch insn_is_call method. */
766 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
773 return i386_call_p (insn);
776 /* The gdbarch insn_is_ret method. */
779 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
781 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
783 read_code (addr, buf, I386_MAX_INSN_LEN);
784 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
786 return i386_ret_p (insn);
789 /* The gdbarch insn_is_jump method. */
792 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
794 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
796 read_code (addr, buf, I386_MAX_INSN_LEN);
797 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
799 return i386_jmp_p (insn);
802 /* Some kernels may run one past a syscall insn, so we have to cope.
803 Otherwise this is just simple_displaced_step_copy_insn. */
805 struct displaced_step_closure *
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 gdb_byte *buf = (gdb_byte *) xmalloc (len);
813 read_memory (from, buf, len);
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
827 write_memory (to, buf, len);
831 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
832 paddress (gdbarch, from), paddress (gdbarch, to));
833 displaced_step_dump_bytes (gdb_stdlog, buf, len);
836 return (struct displaced_step_closure *) buf;
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
854 ULONGEST insn_offset = to - from;
856 /* Since we use simple_displaced_step_copy_insn, our closure is a
857 copy of the instruction. */
858 gdb_byte *insn = (gdb_byte *) closure;
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
863 fprintf_unfiltered (gdb_stdlog,
864 "displaced: fixup (%s, %s), "
865 "insn = 0x%02x 0x%02x ...\n",
866 paddress (gdbarch, from), paddress (gdbarch, to),
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
873 /* Relocate the %eip, if necessary. */
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
906 But most system calls don't, and we do need to relocate %eip.
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
915 if (i386_syscall_p (insn, &insn_len)
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
939 fprintf_unfiltered (gdb_stdlog,
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
959 const ULONGEST retaddr_len = 4;
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
967 fprintf_unfiltered (gdb_stdlog,
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
975 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
977 target_write_memory (*to, buf, len);
982 i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
989 gdb_byte *insn = buf;
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1009 push_buf[0] = 0x68; /* pushq $... */
1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1014 /* Convert the relative call to a relative jump. */
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1036 if (insn[0] == 0xe9)
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1055 /* Write the adjusted instructions into their displaced
1057 append_insns (to, insn_length, buf);
1061 #ifdef I386_REGNO_TO_SYMMETRY
1062 #error "The Sequent Symmetry is no longer supported."
1065 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
1069 /* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
1071 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1073 struct i386_frame_cache
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1087 /* Stack space reserved for local variables. */
1091 /* Allocate and initialize a frame cache. */
1093 static struct i386_frame_cache *
1094 i386_alloc_frame_cache (void)
1096 struct i386_frame_cache *cache;
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1104 cache->sp_offset = -4;
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
1111 cache->saved_sp = 0;
1112 cache->saved_sp_reg = -1;
1113 cache->pc_in_eax = 0;
1115 /* Frameless until proven otherwise. */
1121 /* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
1125 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1132 if (target_read_code (pc, &op, 1))
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
1148 delta = read_memory_integer (pc + 2, 2, byte_order);
1150 /* Include the size of the jmp instruction (including the
1156 delta = read_memory_integer (pc + 1, 4, byte_order);
1158 /* Include the size of the jmp instruction. */
1163 /* Relative jump, disp8 (ignore data16). */
1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1166 delta += data16 + 2;
1173 /* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
1180 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
1183 /* Functions that return a structure or union start with:
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1198 if (current_pc <= pc)
1201 if (target_read_code (pc, &op, 1))
1204 if (op != 0x58) /* popl %eax */
1207 if (target_read_code (pc + 1, buf, 4))
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1213 if (current_pc == pc)
1215 cache->sp_offset += 4;
1219 if (current_pc == pc + 1)
1221 cache->pc_in_eax = 1;
1225 if (buf[1] == proto1[1])
1232 i386_skip_probe (CORE_ADDR pc)
1234 /* A function may start with
1248 if (target_read_code (pc, &op, 1))
1251 if (op == 0x68 || op == 0x6a)
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1266 pc += delta + sizeof (buf);
1272 /* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1279 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1282 /* There are 2 code sequences to re-align stack before the frame
1285 1. Use a caller-saved saved register:
1291 2. Use a callee-saved saved register:
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
1318 if (target_read_code (pc, buf, sizeof buf))
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1351 /* REG has register number. Registers in pushl and leal have to
1353 if (reg != ((buf[2] >> 3) & 7))
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1378 /* R/M has register. Registers in leal and pushl have to be the
1380 if (reg != (buf[offset + 1] & 7))
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
1386 return std::min (pc + offset + 3, current_pc);
1389 /* Maximum instruction length we need to handle. */
1390 #define I386_MAX_MATCHED_INSN_LEN 6
1392 /* Instruction description. */
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1400 /* Return whether instruction at PC matches PATTERN. */
1403 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1407 if (target_read_code (pc, &op, 1))
1410 if ((op & pattern.mask[0]) == pattern.insn[0])
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
1422 for (i = 1; i < pattern.len; i++)
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1427 return insn_matched;
1432 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1436 static struct i386_insn *
1437 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1439 struct i386_insn *pattern;
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1443 if (i386_match_pattern (pc, *pattern))
1450 /* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1454 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1456 CORE_ADDR current_pc;
1458 struct i386_insn *insn;
1460 insn = i386_match_insn (pc, insn_patterns);
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1468 current_pc -= insn_patterns[i].len;
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1477 if (!i386_match_pattern (current_pc, *insn))
1480 current_pc += insn->len;
1486 /* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1492 struct i386_insn i386_frame_setup_skip_insns[] =
1494 /* Check for `movb imm8, r' and `movl imm32, r'.
1496 ??? Should we handle 16-bit operand-sizes here? */
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1511 ??? Should we handle SIB adressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1542 /* Check whether PC points to a no-op instruction. */
1544 i386_skip_noop (CORE_ADDR pc)
1549 if (target_read_code (pc, &op, 1))
1555 /* Ignore `nop' instruction. */
1559 if (target_read_code (pc, &op, 1))
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1574 else if (op == 0x8b)
1576 if (target_read_code (pc + 1, &op, 1))
1582 if (target_read_code (pc, &op, 1))
1592 /* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
1598 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
1600 struct i386_frame_cache *cache)
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 struct i386_insn *insn;
1610 if (target_read_code (pc, &op, 1))
1613 if (op == 0x55) /* pushl %ebp */
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
1618 cache->sp_offset += 4;
1621 /* If that's all, return now. */
1625 /* Check for some special instructions that might be migrated by
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of posibilities is sheer,
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
1633 while (pc + skip < limit)
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1646 if (target_read_code (pc + skip, &op, 1))
1649 /* The i386 prologue looks like
1655 and a different prologue can be generated for atom.
1659 lea -0x10(%esp),%esp
1661 We handle both of them here. */
1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
1694 /* If that's all, return now. */
1698 /* Check for stack adjustment
1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1705 reg, so we don't have to worry about a data16 prefix. */
1706 if (target_read_code (pc, &op, 1))
1710 /* `subl' with 8-bit immediate. */
1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1712 /* Some instruction starting with 0x83 other than `subl'. */
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1720 else if (op == 0x81)
1722 /* Maybe it is `subl' with a 32-bit immediate. */
1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1724 /* Some instruction starting with 0x81 other than `subl'. */
1727 /* It is `subl' with a 32-bit immediate. */
1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1731 else if (op == 0x8d)
1733 /* The ModR/M byte is 0x64. */
1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1736 /* 'lea' with 8-bit displacement. */
1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1742 /* Some instruction other than `subl' nor 'lea'. */
1746 else if (op == 0xc8) /* enter */
1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1755 /* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
1761 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
1764 CORE_ADDR offset = 0;
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1772 if (target_read_code (pc, &op, 1))
1774 if (op < 0x50 || op > 0x57)
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1786 /* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
1790 We handle these cases:
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1799 Local space is allocated just below the saved %ebp by either the
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
1814 i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
1816 struct i386_frame_cache *cache)
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1827 /* Return PC of first real instruction. */
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1834 static gdb_byte pic_pat[6] =
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1839 struct i386_frame_cache cache;
1843 CORE_ADDR func_addr;
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1851 /* Clang always emits a line note before the prologue and another
1852 one after. We trust clang to emit usable line notes. */
1853 if (post_prologue_pc
1855 && COMPUNIT_PRODUCER (cust) != NULL
1856 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1857 return std::max (start_pc, post_prologue_pc);
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1865 /* Found valid frame setup. */
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1873 movl %ebx,x(%ebp) (optional)
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1880 for (i = 0; i < 6; i++)
1882 if (target_read_code (pc + i, &op, 1))
1885 if (pic_pat[i] != op)
1892 if (target_read_code (pc + delta, &op, 1))
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1903 else /* Unexpected instruction. */
1906 if (target_read_code (pc + delta, &op, 1))
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937 if (target_read_code (pc, &op, 1))
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1955 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1963 /* This function is 64-bit safe. */
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1975 /* Normal frames. */
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1986 cache->pc = get_frame_func (this_frame);
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2012 if (cache->locals < 0)
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2022 if (cache->saved_sp_reg != -1)
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2055 if (cache->saved_sp_reg != -1)
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2081 struct i386_frame_cache *cache;
2084 return (struct i386_frame_cache *) *this_cache;
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2091 i386_frame_cache_1 (this_frame, cache);
2093 CATCH (ex, RETURN_MASK_ERROR)
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw_exception (ex);
2104 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2105 struct frame_id *this_id)
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2113 /* This marks the outermost frame. */
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2122 static enum unwind_stop_reason
2123 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2129 return UNWIND_UNAVAILABLE;
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2135 return UNWIND_NO_REASON;
2138 static struct value *
2139 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2144 gdb_assert (regnum >= 0);
2146 /* The System V ABI says that:
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2165 if (regnum == I386_EFLAGS_REGNUM)
2169 val = get_frame_register_unsigned (this_frame, regnum);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
2183 if (cache->saved_sp == 0)
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2187 return frame_unwind_got_constant (this_frame, regnum,
2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
2195 return frame_unwind_got_register (this_frame, regnum, regnum);
2198 static const struct frame_unwind i386_frame_unwind =
2201 i386_frame_unwind_stop_reason,
2203 i386_frame_prev_register,
2205 default_frame_sniffer
2208 /* Normal frames, but in a function epilogue. */
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2220 struct compunit_symtab *cust;
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2229 if (insn != 0xc3) /* 'ret' instruction. */
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2250 struct i386_frame_cache *cache;
2254 return (struct i386_frame_cache *) *this_cache;
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2261 cache->pc = get_frame_func (this_frame);
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2273 CATCH (ex, RETURN_MASK_ERROR)
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw_exception (ex);
2283 static enum unwind_stop_reason
2284 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2287 struct i386_frame_cache *cache =
2288 i386_epilogue_frame_cache (this_frame, this_cache);
2291 return UNWIND_UNAVAILABLE;
2293 return UNWIND_NO_REASON;
2297 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2299 struct frame_id *this_id)
2301 struct i386_frame_cache *cache =
2302 i386_epilogue_frame_cache (this_frame, this_cache);
2305 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2307 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2310 static struct value *
2311 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2312 void **this_cache, int regnum)
2314 /* Make sure we've initialized the cache. */
2315 i386_epilogue_frame_cache (this_frame, this_cache);
2317 return i386_frame_prev_register (this_frame, this_cache, regnum);
2320 static const struct frame_unwind i386_epilogue_frame_unwind =
2323 i386_epilogue_frame_unwind_stop_reason,
2324 i386_epilogue_frame_this_id,
2325 i386_epilogue_frame_prev_register,
2327 i386_epilogue_frame_sniffer
2331 /* Stack-based trampolines. */
2333 /* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2338 /* Static chain passed in register. */
2340 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2346 { 5, { 0xe9 }, { 0xff } },
2351 /* Static chain passed on stack (when regparm=3). */
2353 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2356 { 5, { 0x68 }, { 0xff } },
2359 { 5, { 0xe9 }, { 0xff } },
2364 /* Return whether PC points inside a stack trampoline. */
2367 i386_in_stack_tramp_p (CORE_ADDR pc)
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2380 if (target_read_memory (pc, &insn, 1))
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2391 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2392 struct frame_info *this_frame,
2395 if (frame_relative_level (this_frame) == 0)
2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2401 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2404 i386_epilogue_frame_unwind_stop_reason,
2405 i386_epilogue_frame_this_id,
2406 i386_epilogue_frame_prev_register,
2408 i386_stack_tramp_frame_sniffer
2411 /* Generate a bytecode expression to get the value of the saved PC. */
2414 i386_gen_return_address (struct gdbarch *gdbarch,
2415 struct agent_expr *ax, struct axs_value *value,
2418 /* The following sequence assumes the traditional use of the base
2420 ax_reg (ax, I386_EBP_REGNUM);
2422 ax_simple (ax, aop_add);
2423 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2424 value->kind = axs_lvalue_memory;
2428 /* Signal trampolines. */
2430 static struct i386_frame_cache *
2431 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2436 struct i386_frame_cache *cache;
2441 return (struct i386_frame_cache *) *this_cache;
2443 cache = i386_alloc_frame_cache ();
2447 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2448 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2450 addr = tdep->sigcontext_addr (this_frame);
2451 if (tdep->sc_reg_offset)
2455 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2457 for (i = 0; i < tdep->sc_num_regs; i++)
2458 if (tdep->sc_reg_offset[i] != -1)
2459 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2463 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2464 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2469 CATCH (ex, RETURN_MASK_ERROR)
2471 if (ex.error != NOT_AVAILABLE_ERROR)
2472 throw_exception (ex);
2476 *this_cache = cache;
2480 static enum unwind_stop_reason
2481 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2488 return UNWIND_UNAVAILABLE;
2490 return UNWIND_NO_REASON;
2494 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2495 struct frame_id *this_id)
2497 struct i386_frame_cache *cache =
2498 i386_sigtramp_frame_cache (this_frame, this_cache);
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2509 static struct value *
2510 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
2513 /* Make sure we've initialized the cache. */
2514 i386_sigtramp_frame_cache (this_frame, this_cache);
2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
2520 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2528 if (tdep->sigcontext_addr == NULL)
2531 if (tdep->sigtramp_p != NULL)
2533 if (tdep->sigtramp_p (this_frame))
2537 if (tdep->sigtramp_start != 0)
2539 CORE_ADDR pc = get_frame_pc (this_frame);
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2549 static const struct frame_unwind i386_sigtramp_frame_unwind =
2552 i386_sigtramp_frame_unwind_stop_reason,
2553 i386_sigtramp_frame_this_id,
2554 i386_sigtramp_frame_prev_register,
2556 i386_sigtramp_frame_sniffer
2561 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2563 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2568 static const struct frame_base i386_frame_base =
2571 i386_frame_base_address,
2572 i386_frame_base_address,
2573 i386_frame_base_address
2576 static struct frame_id
2577 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2581 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2583 /* See the end of i386_push_dummy_call. */
2584 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2587 /* _Decimal128 function return values need 16-byte alignment on the
2591 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2593 return sp & -(CORE_ADDR)16;
2597 /* Figure out where the longjmp will land. Slurp the args out of the
2598 stack. We expect the first arg to be a pointer to the jmp_buf
2599 structure from which we extract the address that we will land at.
2600 This address is copied into PC. This routine returns non-zero on
2604 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2607 CORE_ADDR sp, jb_addr;
2608 struct gdbarch *gdbarch = get_frame_arch (frame);
2609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2610 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2612 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2613 longjmp will land. */
2614 if (jb_pc_offset == -1)
2617 get_frame_register (frame, I386_ESP_REGNUM, buf);
2618 sp = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (sp + 4, buf, 4))
2622 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2623 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2626 *pc = extract_unsigned_integer (buf, 4, byte_order);
2631 /* Check whether TYPE must be 16-byte-aligned when passed as a
2632 function argument. 16-byte vectors, _Decimal128 and structures or
2633 unions containing such types must be 16-byte-aligned; other
2634 arguments are 4-byte-aligned. */
2637 i386_16_byte_align_p (struct type *type)
2639 type = check_typedef (type);
2640 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2641 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2642 && TYPE_LENGTH (type) == 16)
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2647 || TYPE_CODE (type) == TYPE_CODE_UNION)
2650 for (i = 0; i < TYPE_NFIELDS (type); i++)
2652 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2659 /* Implementation for set_gdbarch_push_dummy_code. */
2662 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2663 struct value **args, int nargs, struct type *value_type,
2664 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2665 struct regcache *regcache)
2667 /* Use 0xcc breakpoint - 1 byte. */
2671 /* Keep the stack aligned. */
2676 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2678 struct value **args, CORE_ADDR sp, int struct_return,
2679 CORE_ADDR struct_addr)
2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2687 /* BND registers can be in arbitrary values at the moment of the
2688 inferior call. This can cause boundary violations that are not
2689 due to a real bug or even desired by the user. The best to be done
2690 is set the BND registers to allow access to the whole memory, INIT
2691 state, before pushing the inferior call. */
2692 i387_reset_bnd_regs (gdbarch, regcache);
2694 /* Determine the total space required for arguments and struct
2695 return address in a first pass (allowing for 16-byte-aligned
2696 arguments), then push arguments in a second pass. */
2698 for (write_pass = 0; write_pass < 2; write_pass++)
2700 int args_space_used = 0;
2706 /* Push value address. */
2707 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2708 write_memory (sp, buf, 4);
2709 args_space_used += 4;
2715 for (i = 0; i < nargs; i++)
2717 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2721 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2722 args_space_used = align_up (args_space_used, 16);
2724 write_memory (sp + args_space_used,
2725 value_contents_all (args[i]), len);
2726 /* The System V ABI says that:
2728 "An argument's size is increased, if necessary, to make it a
2729 multiple of [32-bit] words. This may require tail padding,
2730 depending on the size of the argument."
2732 This makes sure the stack stays word-aligned. */
2733 args_space_used += align_up (len, 4);
2737 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2738 args_space = align_up (args_space, 16);
2739 args_space += align_up (len, 4);
2747 /* The original System V ABI only requires word alignment,
2748 but modern incarnations need 16-byte alignment in order
2749 to support SSE. Since wasting a few bytes here isn't
2750 harmful we unconditionally enforce 16-byte alignment. */
2755 /* Store return address. */
2757 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2758 write_memory (sp, buf, 4);
2760 /* Finally, update the stack pointer... */
2761 store_unsigned_integer (buf, 4, byte_order, sp);
2762 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2764 /* ...and fake a frame pointer. */
2765 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2767 /* MarkK wrote: This "+ 8" is all over the place:
2768 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2769 i386_dummy_id). It's there, since all frame unwinders for
2770 a given target have to agree (within a certain margin) on the
2771 definition of the stack address of a frame. Otherwise frame id
2772 comparison might not work correctly. Since DWARF2/GCC uses the
2773 stack address *before* the function call as a frame's CFA. On
2774 the i386, when %ebp is used as a frame pointer, the offset
2775 between the contents %ebp and the CFA as defined by GCC. */
2779 /* These registers are used for returning integers (and on some
2780 targets also for returning `struct' and `union' values when their
2781 size and alignment match an integer type). */
2782 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2783 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2785 /* Read, for architecture GDBARCH, a function return value of TYPE
2786 from REGCACHE, and copy that into VALBUF. */
2789 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2790 struct regcache *regcache, gdb_byte *valbuf)
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2793 int len = TYPE_LENGTH (type);
2794 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2796 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2798 if (tdep->st0_regnum < 0)
2800 warning (_("Cannot find floating-point return value."));
2801 memset (valbuf, 0, len);
2805 /* Floating-point return values can be found in %st(0). Convert
2806 its contents to the desired type. This is probably not
2807 exactly how it would happen on the target itself, but it is
2808 the best we can do. */
2809 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2810 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2814 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2815 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2817 if (len <= low_size)
2819 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2820 memcpy (valbuf, buf, len);
2822 else if (len <= (low_size + high_size))
2824 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2825 memcpy (valbuf, buf, low_size);
2826 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2827 memcpy (valbuf + low_size, buf, len - low_size);
2830 internal_error (__FILE__, __LINE__,
2831 _("Cannot extract return value of %d bytes long."),
2836 /* Write, for architecture GDBARCH, a function return value of TYPE
2837 from VALBUF into REGCACHE. */
2840 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2841 struct regcache *regcache, const gdb_byte *valbuf)
2843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2844 int len = TYPE_LENGTH (type);
2846 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2849 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2851 if (tdep->st0_regnum < 0)
2853 warning (_("Cannot set floating-point return value."));
2857 /* Returning floating-point values is a bit tricky. Apart from
2858 storing the return value in %st(0), we have to simulate the
2859 state of the FPU at function return point. */
2861 /* Convert the value found in VALBUF to the extended
2862 floating-point format used by the FPU. This is probably
2863 not exactly how it would happen on the target itself, but
2864 it is the best we can do. */
2865 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2866 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2868 /* Set the top of the floating-point register stack to 7. The
2869 actual value doesn't really matter, but 7 is what a normal
2870 function return would end up with if the program started out
2871 with a freshly initialized FPU. */
2872 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2874 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2876 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2877 the floating-point register stack to 7, the appropriate value
2878 for the tag word is 0x3fff. */
2879 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2883 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2884 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2886 if (len <= low_size)
2887 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2888 else if (len <= (low_size + high_size))
2890 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2891 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2892 len - low_size, valbuf + low_size);
2895 internal_error (__FILE__, __LINE__,
2896 _("Cannot store return value of %d bytes long."), len);
2901 /* This is the variable that is set with "set struct-convention", and
2902 its legitimate values. */
2903 static const char default_struct_convention[] = "default";
2904 static const char pcc_struct_convention[] = "pcc";
2905 static const char reg_struct_convention[] = "reg";
2906 static const char *const valid_conventions[] =
2908 default_struct_convention,
2909 pcc_struct_convention,
2910 reg_struct_convention,
2913 static const char *struct_convention = default_struct_convention;
2915 /* Return non-zero if TYPE, which is assumed to be a structure,
2916 a union type, or an array type, should be returned in registers
2917 for architecture GDBARCH. */
2920 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2923 enum type_code code = TYPE_CODE (type);
2924 int len = TYPE_LENGTH (type);
2926 gdb_assert (code == TYPE_CODE_STRUCT
2927 || code == TYPE_CODE_UNION
2928 || code == TYPE_CODE_ARRAY);
2930 if (struct_convention == pcc_struct_convention
2931 || (struct_convention == default_struct_convention
2932 && tdep->struct_return == pcc_struct_return))
2935 /* Structures consisting of a single `float', `double' or 'long
2936 double' member are returned in %st(0). */
2937 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2939 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2940 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2941 return (len == 4 || len == 8 || len == 12);
2944 return (len == 1 || len == 2 || len == 4 || len == 8);
2947 /* Determine, for architecture GDBARCH, how a return value of TYPE
2948 should be returned. If it is supposed to be returned in registers,
2949 and READBUF is non-zero, read the appropriate value from REGCACHE,
2950 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2951 from WRITEBUF into REGCACHE. */
2953 static enum return_value_convention
2954 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2955 struct type *type, struct regcache *regcache,
2956 gdb_byte *readbuf, const gdb_byte *writebuf)
2958 enum type_code code = TYPE_CODE (type);
2960 if (((code == TYPE_CODE_STRUCT
2961 || code == TYPE_CODE_UNION
2962 || code == TYPE_CODE_ARRAY)
2963 && !i386_reg_struct_return_p (gdbarch, type))
2964 /* Complex double and long double uses the struct return covention. */
2965 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2966 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2967 /* 128-bit decimal float uses the struct return convention. */
2968 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2970 /* The System V ABI says that:
2972 "A function that returns a structure or union also sets %eax
2973 to the value of the original address of the caller's area
2974 before it returns. Thus when the caller receives control
2975 again, the address of the returned object resides in register
2976 %eax and can be used to access the object."
2978 So the ABI guarantees that we can always find the return
2979 value just after the function has returned. */
2981 /* Note that the ABI doesn't mention functions returning arrays,
2982 which is something possible in certain languages such as Ada.
2983 In this case, the value is returned as if it was wrapped in
2984 a record, so the convention applied to records also applies
2991 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2992 read_memory (addr, readbuf, TYPE_LENGTH (type));
2995 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2998 /* This special case is for structures consisting of a single
2999 `float', `double' or 'long double' member. These structures are
3000 returned in %st(0). For these structures, we call ourselves
3001 recursively, changing TYPE into the type of the first member of
3002 the structure. Since that should work for all structures that
3003 have only one member, we don't bother to check the member's type
3005 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3007 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3008 return i386_return_value (gdbarch, function, type, regcache,
3013 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3015 i386_store_return_value (gdbarch, type, regcache, writebuf);
3017 return RETURN_VALUE_REGISTER_CONVENTION;
3022 i387_ext_type (struct gdbarch *gdbarch)
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3026 if (!tdep->i387_ext_type)
3028 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3029 gdb_assert (tdep->i387_ext_type != NULL);
3032 return tdep->i387_ext_type;
3035 /* Construct type for pseudo BND registers. We can't use
3036 tdesc_find_type since a complement of one value has to be used
3037 to describe the upper bound. */
3039 static struct type *
3040 i386_bnd_type (struct gdbarch *gdbarch)
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3045 if (!tdep->i386_bnd_type)
3048 const struct builtin_type *bt = builtin_type (gdbarch);
3050 /* The type we're building is described bellow: */
3055 void *ubound; /* One complement of raw ubound field. */
3059 t = arch_composite_type (gdbarch,
3060 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3062 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3063 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3065 TYPE_NAME (t) = "builtin_type_bound128";
3066 tdep->i386_bnd_type = t;
3069 return tdep->i386_bnd_type;
3072 /* Construct vector type for pseudo ZMM registers. We can't use
3073 tdesc_find_type since ZMM isn't described in target description. */
3075 static struct type *
3076 i386_zmm_type (struct gdbarch *gdbarch)
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3080 if (!tdep->i386_zmm_type)
3082 const struct builtin_type *bt = builtin_type (gdbarch);
3084 /* The type we're building is this: */
3086 union __gdb_builtin_type_vec512i
3088 int128_t uint128[4];
3089 int64_t v4_int64[8];
3090 int32_t v8_int32[16];
3091 int16_t v16_int16[32];
3092 int8_t v32_int8[64];
3093 double v4_double[8];
3100 t = arch_composite_type (gdbarch,
3101 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3102 append_composite_type_field (t, "v16_float",
3103 init_vector_type (bt->builtin_float, 16));
3104 append_composite_type_field (t, "v8_double",
3105 init_vector_type (bt->builtin_double, 8));
3106 append_composite_type_field (t, "v64_int8",
3107 init_vector_type (bt->builtin_int8, 64));
3108 append_composite_type_field (t, "v32_int16",
3109 init_vector_type (bt->builtin_int16, 32));
3110 append_composite_type_field (t, "v16_int32",
3111 init_vector_type (bt->builtin_int32, 16));
3112 append_composite_type_field (t, "v8_int64",
3113 init_vector_type (bt->builtin_int64, 8));
3114 append_composite_type_field (t, "v4_int128",
3115 init_vector_type (bt->builtin_int128, 4));
3117 TYPE_VECTOR (t) = 1;
3118 TYPE_NAME (t) = "builtin_type_vec512i";
3119 tdep->i386_zmm_type = t;
3122 return tdep->i386_zmm_type;
3125 /* Construct vector type for pseudo YMM registers. We can't use
3126 tdesc_find_type since YMM isn't described in target description. */
3128 static struct type *
3129 i386_ymm_type (struct gdbarch *gdbarch)
3131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3133 if (!tdep->i386_ymm_type)
3135 const struct builtin_type *bt = builtin_type (gdbarch);
3137 /* The type we're building is this: */
3139 union __gdb_builtin_type_vec256i
3141 int128_t uint128[2];
3142 int64_t v2_int64[4];
3143 int32_t v4_int32[8];
3144 int16_t v8_int16[16];
3145 int8_t v16_int8[32];
3146 double v2_double[4];
3153 t = arch_composite_type (gdbarch,
3154 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3155 append_composite_type_field (t, "v8_float",
3156 init_vector_type (bt->builtin_float, 8));
3157 append_composite_type_field (t, "v4_double",
3158 init_vector_type (bt->builtin_double, 4));
3159 append_composite_type_field (t, "v32_int8",
3160 init_vector_type (bt->builtin_int8, 32));
3161 append_composite_type_field (t, "v16_int16",
3162 init_vector_type (bt->builtin_int16, 16));
3163 append_composite_type_field (t, "v8_int32",
3164 init_vector_type (bt->builtin_int32, 8));
3165 append_composite_type_field (t, "v4_int64",
3166 init_vector_type (bt->builtin_int64, 4));
3167 append_composite_type_field (t, "v2_int128",
3168 init_vector_type (bt->builtin_int128, 2));
3170 TYPE_VECTOR (t) = 1;
3171 TYPE_NAME (t) = "builtin_type_vec256i";
3172 tdep->i386_ymm_type = t;
3175 return tdep->i386_ymm_type;
3178 /* Construct vector type for MMX registers. */
3179 static struct type *
3180 i386_mmx_type (struct gdbarch *gdbarch)
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3184 if (!tdep->i386_mmx_type)
3186 const struct builtin_type *bt = builtin_type (gdbarch);
3188 /* The type we're building is this: */
3190 union __gdb_builtin_type_vec64i
3193 int32_t v2_int32[2];
3194 int16_t v4_int16[4];
3201 t = arch_composite_type (gdbarch,
3202 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3204 append_composite_type_field (t, "uint64", bt->builtin_int64);
3205 append_composite_type_field (t, "v2_int32",
3206 init_vector_type (bt->builtin_int32, 2));
3207 append_composite_type_field (t, "v4_int16",
3208 init_vector_type (bt->builtin_int16, 4));
3209 append_composite_type_field (t, "v8_int8",
3210 init_vector_type (bt->builtin_int8, 8));
3212 TYPE_VECTOR (t) = 1;
3213 TYPE_NAME (t) = "builtin_type_vec64i";
3214 tdep->i386_mmx_type = t;
3217 return tdep->i386_mmx_type;
3220 /* Return the GDB type object for the "standard" data type of data in
3224 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3226 if (i386_bnd_regnum_p (gdbarch, regnum))
3227 return i386_bnd_type (gdbarch);
3228 if (i386_mmx_regnum_p (gdbarch, regnum))
3229 return i386_mmx_type (gdbarch);
3230 else if (i386_ymm_regnum_p (gdbarch, regnum))
3231 return i386_ymm_type (gdbarch);
3232 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3233 return i386_ymm_type (gdbarch);
3234 else if (i386_zmm_regnum_p (gdbarch, regnum))
3235 return i386_zmm_type (gdbarch);
3238 const struct builtin_type *bt = builtin_type (gdbarch);
3239 if (i386_byte_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int8;
3241 else if (i386_word_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int16;
3243 else if (i386_dword_regnum_p (gdbarch, regnum))
3244 return bt->builtin_int32;
3245 else if (i386_k_regnum_p (gdbarch, regnum))
3246 return bt->builtin_int64;
3249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3252 /* Map a cooked register onto a raw register or memory. For the i386,
3253 the MMX registers need to be mapped onto floating point registers. */
3256 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3263 mmxreg = regnum - tdep->mm0_regnum;
3264 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3265 tos = (fstat >> 11) & 0x7;
3266 fpreg = (mmxreg + tos) % 8;
3268 return (I387_ST0_REGNUM (tdep) + fpreg);
3271 /* A helper function for us by i386_pseudo_register_read_value and
3272 amd64_pseudo_register_read_value. It does all the work but reads
3273 the data into an already-allocated value. */
3276 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3277 struct regcache *regcache,
3279 struct value *result_value)
3281 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3282 enum register_status status;
3283 gdb_byte *buf = value_contents_raw (result_value);
3285 if (i386_mmx_regnum_p (gdbarch, regnum))
3287 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3289 /* Extract (always little endian). */
3290 status = regcache_raw_read (regcache, fpnum, raw_buf);
3291 if (status != REG_VALID)
3292 mark_value_bytes_unavailable (result_value, 0,
3293 TYPE_LENGTH (value_type (result_value)));
3295 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3300 if (i386_bnd_regnum_p (gdbarch, regnum))
3302 regnum -= tdep->bnd0_regnum;
3304 /* Extract (always little endian). Read lower 128bits. */
3305 status = regcache_raw_read (regcache,
3306 I387_BND0R_REGNUM (tdep) + regnum,
3308 if (status != REG_VALID)
3309 mark_value_bytes_unavailable (result_value, 0, 16);
3312 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3313 LONGEST upper, lower;
3314 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3316 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3317 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3320 memcpy (buf, &lower, size);
3321 memcpy (buf + size, &upper, size);
3324 else if (i386_k_regnum_p (gdbarch, regnum))
3326 regnum -= tdep->k0_regnum;
3328 /* Extract (always little endian). */
3329 status = regcache_raw_read (regcache,
3330 tdep->k0_regnum + regnum,
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 8);
3335 memcpy (buf, raw_buf, 8);
3337 else if (i386_zmm_regnum_p (gdbarch, regnum))
3339 regnum -= tdep->zmm0_regnum;
3341 if (regnum < num_lower_zmm_regs)
3343 /* Extract (always little endian). Read lower 128bits. */
3344 status = regcache_raw_read (regcache,
3345 I387_XMM0_REGNUM (tdep) + regnum,
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 0, 16);
3350 memcpy (buf, raw_buf, 16);
3352 /* Extract (always little endian). Read upper 128bits. */
3353 status = regcache_raw_read (regcache,
3354 tdep->ymm0h_regnum + regnum,
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 16, 16);
3359 memcpy (buf + 16, raw_buf, 16);
3363 /* Extract (always little endian). Read lower 128bits. */
3364 status = regcache_raw_read (regcache,
3365 I387_XMM16_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3371 memcpy (buf, raw_buf, 16);
3373 /* Extract (always little endian). Read upper 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_YMM16H_REGNUM (tdep) + regnum
3376 - num_lower_zmm_regs,
3378 if (status != REG_VALID)
3379 mark_value_bytes_unavailable (result_value, 16, 16);
3381 memcpy (buf + 16, raw_buf, 16);
3384 /* Read upper 256bits. */
3385 status = regcache_raw_read (regcache,
3386 tdep->zmm0h_regnum + regnum,
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 32, 32);
3391 memcpy (buf + 32, raw_buf, 32);
3393 else if (i386_ymm_regnum_p (gdbarch, regnum))
3395 regnum -= tdep->ymm0_regnum;
3397 /* Extract (always little endian). Read lower 128bits. */
3398 status = regcache_raw_read (regcache,
3399 I387_XMM0_REGNUM (tdep) + regnum,
3401 if (status != REG_VALID)
3402 mark_value_bytes_unavailable (result_value, 0, 16);
3404 memcpy (buf, raw_buf, 16);
3405 /* Read upper 128bits. */
3406 status = regcache_raw_read (regcache,
3407 tdep->ymm0h_regnum + regnum,
3409 if (status != REG_VALID)
3410 mark_value_bytes_unavailable (result_value, 16, 32);
3412 memcpy (buf + 16, raw_buf, 16);
3414 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3416 regnum -= tdep->ymm16_regnum;
3417 /* Extract (always little endian). Read lower 128bits. */
3418 status = regcache_raw_read (regcache,
3419 I387_XMM16_REGNUM (tdep) + regnum,
3421 if (status != REG_VALID)
3422 mark_value_bytes_unavailable (result_value, 0, 16);
3424 memcpy (buf, raw_buf, 16);
3425 /* Read upper 128bits. */
3426 status = regcache_raw_read (regcache,
3427 tdep->ymm16h_regnum + regnum,
3429 if (status != REG_VALID)
3430 mark_value_bytes_unavailable (result_value, 16, 16);
3432 memcpy (buf + 16, raw_buf, 16);
3434 else if (i386_word_regnum_p (gdbarch, regnum))
3436 int gpnum = regnum - tdep->ax_regnum;
3438 /* Extract (always little endian). */
3439 status = regcache_raw_read (regcache, gpnum, raw_buf);
3440 if (status != REG_VALID)
3441 mark_value_bytes_unavailable (result_value, 0,
3442 TYPE_LENGTH (value_type (result_value)));
3444 memcpy (buf, raw_buf, 2);
3446 else if (i386_byte_regnum_p (gdbarch, regnum))
3448 int gpnum = regnum - tdep->al_regnum;
3450 /* Extract (always little endian). We read both lower and
3452 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3453 if (status != REG_VALID)
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else if (gpnum >= 4)
3457 memcpy (buf, raw_buf + 1, 1);
3459 memcpy (buf, raw_buf, 1);
3462 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3466 static struct value *
3467 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3468 struct regcache *regcache,
3471 struct value *result;
3473 result = allocate_value (register_type (gdbarch, regnum));
3474 VALUE_LVAL (result) = lval_register;
3475 VALUE_REGNUM (result) = regnum;
3477 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3483 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3484 int regnum, const gdb_byte *buf)
3486 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3488 if (i386_mmx_regnum_p (gdbarch, regnum))
3490 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3493 regcache_raw_read (regcache, fpnum, raw_buf);
3494 /* ... Modify ... (always little endian). */
3495 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3497 regcache_raw_write (regcache, fpnum, raw_buf);
3501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3503 if (i386_bnd_regnum_p (gdbarch, regnum))
3505 ULONGEST upper, lower;
3506 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3507 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3509 /* New values from input value. */
3510 regnum -= tdep->bnd0_regnum;
3511 lower = extract_unsigned_integer (buf, size, byte_order);
3512 upper = extract_unsigned_integer (buf + size, size, byte_order);
3514 /* Fetching register buffer. */
3515 regcache_raw_read (regcache,
3516 I387_BND0R_REGNUM (tdep) + regnum,
3521 /* Set register bits. */
3522 memcpy (raw_buf, &lower, 8);
3523 memcpy (raw_buf + 8, &upper, 8);
3526 regcache_raw_write (regcache,
3527 I387_BND0R_REGNUM (tdep) + regnum,
3530 else if (i386_k_regnum_p (gdbarch, regnum))
3532 regnum -= tdep->k0_regnum;
3534 regcache_raw_write (regcache,
3535 tdep->k0_regnum + regnum,
3538 else if (i386_zmm_regnum_p (gdbarch, regnum))
3540 regnum -= tdep->zmm0_regnum;
3542 if (regnum < num_lower_zmm_regs)
3544 /* Write lower 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_XMM0_REGNUM (tdep) + regnum,
3548 /* Write upper 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_YMM0_REGNUM (tdep) + regnum,
3555 /* Write lower 128bits. */
3556 regcache_raw_write (regcache,
3557 I387_XMM16_REGNUM (tdep) + regnum
3558 - num_lower_zmm_regs,
3560 /* Write upper 128bits. */
3561 regcache_raw_write (regcache,
3562 I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs,
3566 /* Write upper 256bits. */
3567 regcache_raw_write (regcache,
3568 tdep->zmm0h_regnum + regnum,
3571 else if (i386_ymm_regnum_p (gdbarch, regnum))
3573 regnum -= tdep->ymm0_regnum;
3575 /* ... Write lower 128bits. */
3576 regcache_raw_write (regcache,
3577 I387_XMM0_REGNUM (tdep) + regnum,
3579 /* ... Write upper 128bits. */
3580 regcache_raw_write (regcache,
3581 tdep->ymm0h_regnum + regnum,
3584 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3586 regnum -= tdep->ymm16_regnum;
3588 /* ... Write lower 128bits. */
3589 regcache_raw_write (regcache,
3590 I387_XMM16_REGNUM (tdep) + regnum,
3592 /* ... Write upper 128bits. */
3593 regcache_raw_write (regcache,
3594 tdep->ymm16h_regnum + regnum,
3597 else if (i386_word_regnum_p (gdbarch, regnum))
3599 int gpnum = regnum - tdep->ax_regnum;
3602 regcache_raw_read (regcache, gpnum, raw_buf);
3603 /* ... Modify ... (always little endian). */
3604 memcpy (raw_buf, buf, 2);
3606 regcache_raw_write (regcache, gpnum, raw_buf);
3608 else if (i386_byte_regnum_p (gdbarch, regnum))
3610 int gpnum = regnum - tdep->al_regnum;
3612 /* Read ... We read both lower and upper registers. */
3613 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3614 /* ... Modify ... (always little endian). */
3616 memcpy (raw_buf + 1, buf, 1);
3618 memcpy (raw_buf, buf, 1);
3620 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3623 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3627 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3630 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3631 struct agent_expr *ax, int regnum)
3633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3635 if (i386_mmx_regnum_p (gdbarch, regnum))
3637 /* MMX to FPU register mapping depends on current TOS. Let's just
3638 not care and collect everything... */
3641 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3642 for (i = 0; i < 8; i++)
3643 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3646 else if (i386_bnd_regnum_p (gdbarch, regnum))
3648 regnum -= tdep->bnd0_regnum;
3649 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3652 else if (i386_k_regnum_p (gdbarch, regnum))
3654 regnum -= tdep->k0_regnum;
3655 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3658 else if (i386_zmm_regnum_p (gdbarch, regnum))
3660 regnum -= tdep->zmm0_regnum;
3661 if (regnum < num_lower_zmm_regs)
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3668 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3669 - num_lower_zmm_regs);
3670 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3671 - num_lower_zmm_regs);
3673 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3676 else if (i386_ymm_regnum_p (gdbarch, regnum))
3678 regnum -= tdep->ymm0_regnum;
3679 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3683 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3685 regnum -= tdep->ymm16_regnum;
3686 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3687 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3690 else if (i386_word_regnum_p (gdbarch, regnum))
3692 int gpnum = regnum - tdep->ax_regnum;
3694 ax_reg_mask (ax, gpnum);
3697 else if (i386_byte_regnum_p (gdbarch, regnum))
3699 int gpnum = regnum - tdep->al_regnum;
3701 ax_reg_mask (ax, gpnum % 4);
3705 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3710 /* Return the register number of the register allocated by GCC after
3711 REGNUM, or -1 if there is no such register. */
3714 i386_next_regnum (int regnum)
3716 /* GCC allocates the registers in the order:
3718 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3720 Since storing a variable in %esp doesn't make any sense we return
3721 -1 for %ebp and for %esp itself. */
3722 static int next_regnum[] =
3724 I386_EDX_REGNUM, /* Slot for %eax. */
3725 I386_EBX_REGNUM, /* Slot for %ecx. */
3726 I386_ECX_REGNUM, /* Slot for %edx. */
3727 I386_ESI_REGNUM, /* Slot for %ebx. */
3728 -1, -1, /* Slots for %esp and %ebp. */
3729 I386_EDI_REGNUM, /* Slot for %esi. */
3730 I386_EBP_REGNUM /* Slot for %edi. */
3733 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3734 return next_regnum[regnum];
3739 /* Return nonzero if a value of type TYPE stored in register REGNUM
3740 needs any special handling. */
3743 i386_convert_register_p (struct gdbarch *gdbarch,
3744 int regnum, struct type *type)
3746 int len = TYPE_LENGTH (type);
3748 /* Values may be spread across multiple registers. Most debugging
3749 formats aren't expressive enough to specify the locations, so
3750 some heuristics is involved. Right now we only handle types that
3751 have a length that is a multiple of the word size, since GCC
3752 doesn't seem to put any other types into registers. */
3753 if (len > 4 && len % 4 == 0)
3755 int last_regnum = regnum;
3759 last_regnum = i386_next_regnum (last_regnum);
3763 if (last_regnum != -1)
3767 return i387_convert_register_p (gdbarch, regnum, type);
3770 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3771 return its contents in TO. */
3774 i386_register_to_value (struct frame_info *frame, int regnum,
3775 struct type *type, gdb_byte *to,
3776 int *optimizedp, int *unavailablep)
3778 struct gdbarch *gdbarch = get_frame_arch (frame);
3779 int len = TYPE_LENGTH (type);
3781 if (i386_fp_regnum_p (gdbarch, regnum))
3782 return i387_register_to_value (frame, regnum, type, to,
3783 optimizedp, unavailablep);
3785 /* Read a value spread across multiple registers. */
3787 gdb_assert (len > 4 && len % 4 == 0);
3791 gdb_assert (regnum != -1);
3792 gdb_assert (register_size (gdbarch, regnum) == 4);
3794 if (!get_frame_register_bytes (frame, regnum, 0,
3795 register_size (gdbarch, regnum),
3796 to, optimizedp, unavailablep))
3799 regnum = i386_next_regnum (regnum);
3804 *optimizedp = *unavailablep = 0;
3808 /* Write the contents FROM of a value of type TYPE into register
3809 REGNUM in frame FRAME. */
3812 i386_value_to_register (struct frame_info *frame, int regnum,
3813 struct type *type, const gdb_byte *from)
3815 int len = TYPE_LENGTH (type);
3817 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3819 i387_value_to_register (frame, regnum, type, from);
3823 /* Write a value spread across multiple registers. */
3825 gdb_assert (len > 4 && len % 4 == 0);
3829 gdb_assert (regnum != -1);
3830 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3832 put_frame_register (frame, regnum, from);
3833 regnum = i386_next_regnum (regnum);
3839 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3840 in the general-purpose register set REGSET to register cache
3841 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3844 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3845 int regnum, const void *gregs, size_t len)
3847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3848 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3849 const gdb_byte *regs = (const gdb_byte *) gregs;
3852 gdb_assert (len >= tdep->sizeof_gregset);
3854 for (i = 0; i < tdep->gregset_num_regs; i++)
3856 if ((regnum == i || regnum == -1)
3857 && tdep->gregset_reg_offset[i] != -1)
3858 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3862 /* Collect register REGNUM from the register cache REGCACHE and store
3863 it in the buffer specified by GREGS and LEN as described by the
3864 general-purpose register set REGSET. If REGNUM is -1, do this for
3865 all registers in REGSET. */
3868 i386_collect_gregset (const struct regset *regset,
3869 const struct regcache *regcache,
3870 int regnum, void *gregs, size_t len)
3872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3873 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3874 gdb_byte *regs = (gdb_byte *) gregs;
3877 gdb_assert (len >= tdep->sizeof_gregset);
3879 for (i = 0; i < tdep->gregset_num_regs; i++)
3881 if ((regnum == i || regnum == -1)
3882 && tdep->gregset_reg_offset[i] != -1)
3883 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3887 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3888 in the floating-point register set REGSET to register cache
3889 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3892 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3893 int regnum, const void *fpregs, size_t len)
3895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3896 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3898 if (len == I387_SIZEOF_FXSAVE)
3900 i387_supply_fxsave (regcache, regnum, fpregs);
3904 gdb_assert (len >= tdep->sizeof_fpregset);
3905 i387_supply_fsave (regcache, regnum, fpregs);
3908 /* Collect register REGNUM from the register cache REGCACHE and store
3909 it in the buffer specified by FPREGS and LEN as described by the
3910 floating-point register set REGSET. If REGNUM is -1, do this for
3911 all registers in REGSET. */
3914 i386_collect_fpregset (const struct regset *regset,
3915 const struct regcache *regcache,
3916 int regnum, void *fpregs, size_t len)
3918 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3919 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3921 if (len == I387_SIZEOF_FXSAVE)
3923 i387_collect_fxsave (regcache, regnum, fpregs);
3927 gdb_assert (len >= tdep->sizeof_fpregset);
3928 i387_collect_fsave (regcache, regnum, fpregs);
3931 /* Register set definitions. */
3933 const struct regset i386_gregset =
3935 NULL, i386_supply_gregset, i386_collect_gregset
3938 const struct regset i386_fpregset =
3940 NULL, i386_supply_fpregset, i386_collect_fpregset
3943 /* Default iterator over core file register note sections. */
3946 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3947 iterate_over_regset_sections_cb *cb,
3949 const struct regcache *regcache)
3951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3953 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3954 if (tdep->sizeof_fpregset)
3955 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3959 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3962 i386_pe_skip_trampoline_code (struct frame_info *frame,
3963 CORE_ADDR pc, char *name)
3965 struct gdbarch *gdbarch = get_frame_arch (frame);
3966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3969 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3971 unsigned long indirect =
3972 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3973 struct minimal_symbol *indsym =
3974 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3975 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3979 if (startswith (symname, "__imp_")
3980 || startswith (symname, "_imp_"))
3982 read_memory_unsigned_integer (indirect, 4, byte_order);
3985 return 0; /* Not a trampoline. */
3989 /* Return whether the THIS_FRAME corresponds to a sigtramp
3993 i386_sigtramp_p (struct frame_info *this_frame)
3995 CORE_ADDR pc = get_frame_pc (this_frame);
3998 find_pc_partial_function (pc, &name, NULL, NULL);
3999 return (name && strcmp ("_sigtramp", name) == 0);
4003 /* We have two flavours of disassembly. The machinery on this page
4004 deals with switching between those. */
4007 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4009 gdb_assert (disassembly_flavor == att_flavor
4010 || disassembly_flavor == intel_flavor);
4012 info->disassembler_options = disassembly_flavor;
4014 return print_insn_i386 (pc, info);
4018 /* There are a few i386 architecture variants that differ only
4019 slightly from the generic i386 target. For now, we don't give them
4020 their own source file, but include them here. As a consequence,
4021 they'll always be included. */
4023 /* System V Release 4 (SVR4). */
4025 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4029 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4031 CORE_ADDR pc = get_frame_pc (this_frame);
4034 /* The origin of these symbols is currently unknown. */
4035 find_pc_partial_function (pc, &name, NULL, NULL);
4036 return (name && (strcmp ("_sigreturn", name) == 0
4037 || strcmp ("sigvechandler", name) == 0));
4040 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4041 address of the associated sigcontext (ucontext) structure. */
4044 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4046 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4051 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4052 sp = extract_unsigned_integer (buf, 4, byte_order);
4054 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4059 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4063 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4065 return (*s == '$' /* Literal number. */
4066 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4067 || (*s == '(' && s[1] == '%') /* Register indirection. */
4068 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4071 /* Helper function for i386_stap_parse_special_token.
4073 This function parses operands of the form `-8+3+1(%rbp)', which
4074 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4076 Return 1 if the operand was parsed successfully, zero
4080 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4081 struct stap_parse_info *p)
4083 const char *s = p->arg;
4085 if (isdigit (*s) || *s == '-' || *s == '+')
4089 long displacements[3];
4105 if (!isdigit ((unsigned char) *s))
4108 displacements[0] = strtol (s, &endp, 10);
4111 if (*s != '+' && *s != '-')
4113 /* We are not dealing with a triplet. */
4126 if (!isdigit ((unsigned char) *s))
4129 displacements[1] = strtol (s, &endp, 10);
4132 if (*s != '+' && *s != '-')
4134 /* We are not dealing with a triplet. */
4147 if (!isdigit ((unsigned char) *s))
4150 displacements[2] = strtol (s, &endp, 10);
4153 if (*s != '(' || s[1] != '%')
4159 while (isalnum (*s))
4165 len = s - start - 1;
4166 regname = (char *) alloca (len + 1);
4168 strncpy (regname, start, len);
4169 regname[len] = '\0';
4171 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4172 error (_("Invalid register name `%s' on expression `%s'."),
4173 regname, p->saved_arg);
4175 for (i = 0; i < 3; i++)
4177 write_exp_elt_opcode (&p->pstate, OP_LONG);
4179 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4180 write_exp_elt_longcst (&p->pstate, displacements[i]);
4181 write_exp_elt_opcode (&p->pstate, OP_LONG);
4183 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4186 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4189 write_exp_string (&p->pstate, str);
4190 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4192 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4193 write_exp_elt_type (&p->pstate,
4194 builtin_type (gdbarch)->builtin_data_ptr);
4195 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4197 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4198 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4199 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4201 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4202 write_exp_elt_type (&p->pstate,
4203 lookup_pointer_type (p->arg_type));
4204 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4206 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4216 /* Helper function for i386_stap_parse_special_token.
4218 This function parses operands of the form `register base +
4219 (register index * size) + offset', as represented in
4220 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4222 Return 1 if the operand was parsed successfully, zero
4226 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4227 struct stap_parse_info *p)
4229 const char *s = p->arg;
4231 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4233 int offset_minus = 0;
4242 struct stoken base_token, index_token;
4252 if (offset_minus && !isdigit (*s))
4259 offset = strtol (s, &endp, 10);
4263 if (*s != '(' || s[1] != '%')
4269 while (isalnum (*s))
4272 if (*s != ',' || s[1] != '%')
4275 len_base = s - start;
4276 base = (char *) alloca (len_base + 1);
4277 strncpy (base, start, len_base);
4278 base[len_base] = '\0';
4280 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4281 error (_("Invalid register name `%s' on expression `%s'."),
4282 base, p->saved_arg);
4287 while (isalnum (*s))
4290 len_index = s - start;
4291 index = (char *) alloca (len_index + 1);
4292 strncpy (index, start, len_index);
4293 index[len_index] = '\0';
4295 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4296 error (_("Invalid register name `%s' on expression `%s'."),
4297 index, p->saved_arg);
4299 if (*s != ',' && *s != ')')
4315 size = strtol (s, &endp, 10);
4326 write_exp_elt_opcode (&p->pstate, OP_LONG);
4327 write_exp_elt_type (&p->pstate,
4328 builtin_type (gdbarch)->builtin_long);
4329 write_exp_elt_longcst (&p->pstate, offset);
4330 write_exp_elt_opcode (&p->pstate, OP_LONG);
4332 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4335 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4336 base_token.ptr = base;
4337 base_token.length = len_base;
4338 write_exp_string (&p->pstate, base_token);
4339 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4342 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4344 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4345 index_token.ptr = index;
4346 index_token.length = len_index;
4347 write_exp_string (&p->pstate, index_token);
4348 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4352 write_exp_elt_opcode (&p->pstate, OP_LONG);
4353 write_exp_elt_type (&p->pstate,
4354 builtin_type (gdbarch)->builtin_long);
4355 write_exp_elt_longcst (&p->pstate, size);
4356 write_exp_elt_opcode (&p->pstate, OP_LONG);
4358 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4359 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4362 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4364 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4365 write_exp_elt_type (&p->pstate,
4366 lookup_pointer_type (p->arg_type));
4367 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4369 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4379 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4383 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4384 struct stap_parse_info *p)
4386 /* In order to parse special tokens, we use a state-machine that go
4387 through every known token and try to get a match. */
4391 THREE_ARG_DISPLACEMENT,
4396 current_state = TRIPLET;
4398 /* The special tokens to be parsed here are:
4400 - `register base + (register index * size) + offset', as represented
4401 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4403 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4404 `*(-8 + 3 - 1 + (void *) $eax)'. */
4406 while (current_state != DONE)
4408 switch (current_state)
4411 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4415 case THREE_ARG_DISPLACEMENT:
4416 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4421 /* Advancing to the next state. */
4430 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4431 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4434 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4436 return "(x86_64|i.86)";
4444 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4446 static const char *const stap_integer_prefixes[] = { "$", NULL };
4447 static const char *const stap_register_prefixes[] = { "%", NULL };
4448 static const char *const stap_register_indirection_prefixes[] = { "(",
4450 static const char *const stap_register_indirection_suffixes[] = { ")",
4453 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4454 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4456 /* Registering SystemTap handlers. */
4457 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4458 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4459 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4460 stap_register_indirection_prefixes);
4461 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4462 stap_register_indirection_suffixes);
4463 set_gdbarch_stap_is_single_operand (gdbarch,
4464 i386_stap_is_single_operand);
4465 set_gdbarch_stap_parse_special_token (gdbarch,
4466 i386_stap_parse_special_token);
4469 /* System V Release 4 (SVR4). */
4472 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4476 /* System V Release 4 uses ELF. */
4477 i386_elf_init_abi (info, gdbarch);
4479 /* System V Release 4 has shared libraries. */
4480 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4482 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4483 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4484 tdep->sc_pc_offset = 36 + 14 * 4;
4485 tdep->sc_sp_offset = 36 + 17 * 4;
4487 tdep->jb_pc_offset = 20;
4492 /* i386 register groups. In addition to the normal groups, add "mmx"
4495 static struct reggroup *i386_sse_reggroup;
4496 static struct reggroup *i386_mmx_reggroup;
4499 i386_init_reggroups (void)
4501 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4502 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4506 i386_add_reggroups (struct gdbarch *gdbarch)
4508 reggroup_add (gdbarch, i386_sse_reggroup);
4509 reggroup_add (gdbarch, i386_mmx_reggroup);
4510 reggroup_add (gdbarch, general_reggroup);
4511 reggroup_add (gdbarch, float_reggroup);
4512 reggroup_add (gdbarch, all_reggroup);
4513 reggroup_add (gdbarch, save_reggroup);
4514 reggroup_add (gdbarch, restore_reggroup);
4515 reggroup_add (gdbarch, vector_reggroup);
4516 reggroup_add (gdbarch, system_reggroup);
4520 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4521 struct reggroup *group)
4523 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4524 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4525 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4526 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4527 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4528 avx512_p, avx_p, sse_p, pkru_regnum_p;
4530 /* Don't include pseudo registers, except for MMX, in any register
4532 if (i386_byte_regnum_p (gdbarch, regnum))
4535 if (i386_word_regnum_p (gdbarch, regnum))
4538 if (i386_dword_regnum_p (gdbarch, regnum))
4541 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4542 if (group == i386_mmx_reggroup)
4543 return mmx_regnum_p;
4545 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4546 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4547 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4548 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4549 if (group == i386_sse_reggroup)
4550 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4552 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4553 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4554 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4556 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4557 == X86_XSTATE_AVX_AVX512_MASK);
4558 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4559 == X86_XSTATE_AVX_MASK) && !avx512_p;
4560 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4561 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4563 if (group == vector_reggroup)
4564 return (mmx_regnum_p
4565 || (zmm_regnum_p && avx512_p)
4566 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4567 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4570 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4571 || i386_fpc_regnum_p (gdbarch, regnum));
4572 if (group == float_reggroup)
4575 /* For "info reg all", don't include upper YMM registers nor XMM
4576 registers when AVX is supported. */
4577 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4578 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4579 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4580 if (group == all_reggroup
4581 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4582 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4584 || ymmh_avx512_regnum_p
4588 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4589 if (group == all_reggroup
4590 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4591 return bnd_regnum_p;
4593 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4594 if (group == all_reggroup
4595 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4598 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4599 if (group == all_reggroup
4600 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4601 return mpx_ctrl_regnum_p;
4603 if (group == general_reggroup)
4604 return (!fp_regnum_p
4608 && !xmm_avx512_regnum_p
4611 && !ymm_avx512_regnum_p
4612 && !ymmh_avx512_regnum_p
4615 && !mpx_ctrl_regnum_p
4620 return default_register_reggroup_p (gdbarch, regnum, group);
4624 /* Get the ARGIth function argument for the current function. */
4627 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4630 struct gdbarch *gdbarch = get_frame_arch (frame);
4631 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4632 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4633 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4636 #define PREFIX_REPZ 0x01
4637 #define PREFIX_REPNZ 0x02
4638 #define PREFIX_LOCK 0x04
4639 #define PREFIX_DATA 0x08
4640 #define PREFIX_ADDR 0x10
4652 /* i386 arith/logic operations */
4665 struct i386_record_s
4667 struct gdbarch *gdbarch;
4668 struct regcache *regcache;
4669 CORE_ADDR orig_addr;
4675 uint8_t mod, reg, rm;
4684 /* Parse the "modrm" part of the memory address irp->addr points at.
4685 Returns -1 if something goes wrong, 0 otherwise. */
4688 i386_record_modrm (struct i386_record_s *irp)
4690 struct gdbarch *gdbarch = irp->gdbarch;
4692 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4696 irp->mod = (irp->modrm >> 6) & 3;
4697 irp->reg = (irp->modrm >> 3) & 7;
4698 irp->rm = irp->modrm & 7;
4703 /* Extract the memory address that the current instruction writes to,
4704 and return it in *ADDR. Return -1 if something goes wrong. */
4707 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4709 struct gdbarch *gdbarch = irp->gdbarch;
4710 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4715 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4722 uint8_t base = irp->rm;
4727 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4730 scale = (byte >> 6) & 3;
4731 index = ((byte >> 3) & 7) | irp->rex_x;
4739 if ((base & 7) == 5)
4742 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4745 *addr = extract_signed_integer (buf, 4, byte_order);
4746 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4747 *addr += irp->addr + irp->rip_offset;
4751 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4754 *addr = (int8_t) buf[0];
4757 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4759 *addr = extract_signed_integer (buf, 4, byte_order);
4767 if (base == 4 && irp->popl_esp_hack)
4768 *addr += irp->popl_esp_hack;
4769 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4772 if (irp->aflag == 2)
4777 *addr = (uint32_t) (offset64 + *addr);
4779 if (havesib && (index != 4 || scale != 0))
4781 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4783 if (irp->aflag == 2)
4784 *addr += offset64 << scale;
4786 *addr = (uint32_t) (*addr + (offset64 << scale));
4791 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4792 address from 32-bit to 64-bit. */
4793 *addr = (uint32_t) *addr;
4804 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4807 *addr = extract_signed_integer (buf, 2, byte_order);
4813 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4816 *addr = (int8_t) buf[0];
4819 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4822 *addr = extract_signed_integer (buf, 2, byte_order);
4829 regcache_raw_read_unsigned (irp->regcache,
4830 irp->regmap[X86_RECORD_REBX_REGNUM],
4832 *addr = (uint32_t) (*addr + offset64);
4833 regcache_raw_read_unsigned (irp->regcache,
4834 irp->regmap[X86_RECORD_RESI_REGNUM],
4836 *addr = (uint32_t) (*addr + offset64);
4839 regcache_raw_read_unsigned (irp->regcache,
4840 irp->regmap[X86_RECORD_REBX_REGNUM],
4842 *addr = (uint32_t) (*addr + offset64);
4843 regcache_raw_read_unsigned (irp->regcache,
4844 irp->regmap[X86_RECORD_REDI_REGNUM],
4846 *addr = (uint32_t) (*addr + offset64);
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_REBP_REGNUM],
4852 *addr = (uint32_t) (*addr + offset64);
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_RESI_REGNUM],
4856 *addr = (uint32_t) (*addr + offset64);
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REBP_REGNUM],
4862 *addr = (uint32_t) (*addr + offset64);
4863 regcache_raw_read_unsigned (irp->regcache,
4864 irp->regmap[X86_RECORD_REDI_REGNUM],
4866 *addr = (uint32_t) (*addr + offset64);
4869 regcache_raw_read_unsigned (irp->regcache,
4870 irp->regmap[X86_RECORD_RESI_REGNUM],
4872 *addr = (uint32_t) (*addr + offset64);
4875 regcache_raw_read_unsigned (irp->regcache,
4876 irp->regmap[X86_RECORD_REDI_REGNUM],
4878 *addr = (uint32_t) (*addr + offset64);
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_REBP_REGNUM],
4884 *addr = (uint32_t) (*addr + offset64);
4887 regcache_raw_read_unsigned (irp->regcache,
4888 irp->regmap[X86_RECORD_REBX_REGNUM],
4890 *addr = (uint32_t) (*addr + offset64);
4900 /* Record the address and contents of the memory that will be changed
4901 by the current instruction. Return -1 if something goes wrong, 0
4905 i386_record_lea_modrm (struct i386_record_s *irp)
4907 struct gdbarch *gdbarch = irp->gdbarch;
4910 if (irp->override >= 0)
4912 if (record_full_memory_query)
4915 Process record ignores the memory change of instruction at address %s\n\
4916 because it can't get the value of the segment register.\n\
4917 Do you want to stop the program?"),
4918 paddress (gdbarch, irp->orig_addr)))
4925 if (i386_record_lea_modrm_addr (irp, &addr))
4928 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4934 /* Record the effects of a push operation. Return -1 if something
4935 goes wrong, 0 otherwise. */
4938 i386_record_push (struct i386_record_s *irp, int size)
4942 if (record_full_arch_list_add_reg (irp->regcache,
4943 irp->regmap[X86_RECORD_RESP_REGNUM]))
4945 regcache_raw_read_unsigned (irp->regcache,
4946 irp->regmap[X86_RECORD_RESP_REGNUM],
4948 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4955 /* Defines contents to record. */
4956 #define I386_SAVE_FPU_REGS 0xfffd
4957 #define I386_SAVE_FPU_ENV 0xfffe
4958 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4960 /* Record the values of the floating point registers which will be
4961 changed by the current instruction. Returns -1 if something is
4962 wrong, 0 otherwise. */
4964 static int i386_record_floats (struct gdbarch *gdbarch,
4965 struct i386_record_s *ir,
4968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4971 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4972 happen. Currently we store st0-st7 registers, but we need not store all
4973 registers all the time, in future we use ftag register and record only
4974 those who are not marked as an empty. */
4976 if (I386_SAVE_FPU_REGS == iregnum)
4978 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4980 if (record_full_arch_list_add_reg (ir->regcache, i))
4984 else if (I386_SAVE_FPU_ENV == iregnum)
4986 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4988 if (record_full_arch_list_add_reg (ir->regcache, i))
4992 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4994 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4996 if (record_full_arch_list_add_reg (ir->regcache, i))
5000 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5001 (iregnum <= I387_FOP_REGNUM (tdep)))
5003 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5008 /* Parameter error. */
5011 if(I386_SAVE_FPU_ENV != iregnum)
5013 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5015 if (record_full_arch_list_add_reg (ir->regcache, i))
5022 /* Parse the current instruction, and record the values of the
5023 registers and memory that will be changed by the current
5024 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5026 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5027 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5030 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5031 CORE_ADDR input_addr)
5033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5039 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5040 struct i386_record_s ir;
5041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5045 memset (&ir, 0, sizeof (struct i386_record_s));
5046 ir.regcache = regcache;
5047 ir.addr = input_addr;
5048 ir.orig_addr = input_addr;
5052 ir.popl_esp_hack = 0;
5053 ir.regmap = tdep->record_regmap;
5054 ir.gdbarch = gdbarch;
5056 if (record_debug > 1)
5057 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5059 paddress (gdbarch, ir.addr));
5064 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5067 switch (opcode8) /* Instruction prefixes */
5069 case REPE_PREFIX_OPCODE:
5070 prefixes |= PREFIX_REPZ;
5072 case REPNE_PREFIX_OPCODE:
5073 prefixes |= PREFIX_REPNZ;
5075 case LOCK_PREFIX_OPCODE:
5076 prefixes |= PREFIX_LOCK;
5078 case CS_PREFIX_OPCODE:
5079 ir.override = X86_RECORD_CS_REGNUM;
5081 case SS_PREFIX_OPCODE:
5082 ir.override = X86_RECORD_SS_REGNUM;
5084 case DS_PREFIX_OPCODE:
5085 ir.override = X86_RECORD_DS_REGNUM;
5087 case ES_PREFIX_OPCODE:
5088 ir.override = X86_RECORD_ES_REGNUM;
5090 case FS_PREFIX_OPCODE:
5091 ir.override = X86_RECORD_FS_REGNUM;
5093 case GS_PREFIX_OPCODE:
5094 ir.override = X86_RECORD_GS_REGNUM;
5096 case DATA_PREFIX_OPCODE:
5097 prefixes |= PREFIX_DATA;
5099 case ADDR_PREFIX_OPCODE:
5100 prefixes |= PREFIX_ADDR;
5102 case 0x40: /* i386 inc %eax */
5103 case 0x41: /* i386 inc %ecx */
5104 case 0x42: /* i386 inc %edx */
5105 case 0x43: /* i386 inc %ebx */
5106 case 0x44: /* i386 inc %esp */
5107 case 0x45: /* i386 inc %ebp */
5108 case 0x46: /* i386 inc %esi */
5109 case 0x47: /* i386 inc %edi */
5110 case 0x48: /* i386 dec %eax */
5111 case 0x49: /* i386 dec %ecx */
5112 case 0x4a: /* i386 dec %edx */
5113 case 0x4b: /* i386 dec %ebx */
5114 case 0x4c: /* i386 dec %esp */
5115 case 0x4d: /* i386 dec %ebp */
5116 case 0x4e: /* i386 dec %esi */
5117 case 0x4f: /* i386 dec %edi */
5118 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5121 rex_w = (opcode8 >> 3) & 1;
5122 rex_r = (opcode8 & 0x4) << 1;
5123 ir.rex_x = (opcode8 & 0x2) << 2;
5124 ir.rex_b = (opcode8 & 0x1) << 3;
5126 else /* 32 bit target */
5135 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5141 if (prefixes & PREFIX_DATA)
5144 if (prefixes & PREFIX_ADDR)
5146 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5149 /* Now check op code. */
5150 opcode = (uint32_t) opcode8;
5155 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5158 opcode = (uint32_t) opcode8 | 0x0f00;
5162 case 0x00: /* arith & logic */
5210 if (((opcode >> 3) & 7) != OP_CMPL)
5212 if ((opcode & 1) == 0)
5215 ir.ot = ir.dflag + OT_WORD;
5217 switch ((opcode >> 1) & 3)
5219 case 0: /* OP Ev, Gv */
5220 if (i386_record_modrm (&ir))
5224 if (i386_record_lea_modrm (&ir))
5230 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5235 case 1: /* OP Gv, Ev */
5236 if (i386_record_modrm (&ir))
5239 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5243 case 2: /* OP A, Iv */
5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5251 case 0x80: /* GRP1 */
5255 if (i386_record_modrm (&ir))
5258 if (ir.reg != OP_CMPL)
5260 if ((opcode & 1) == 0)
5263 ir.ot = ir.dflag + OT_WORD;
5270 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5271 if (i386_record_lea_modrm (&ir))
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5280 case 0x40: /* inc */
5289 case 0x48: /* dec */
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5302 case 0xf6: /* GRP3 */
5304 if ((opcode & 1) == 0)
5307 ir.ot = ir.dflag + OT_WORD;
5308 if (i386_record_modrm (&ir))
5311 if (ir.mod != 3 && ir.reg == 0)
5312 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5323 if (i386_record_lea_modrm (&ir))
5329 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5333 if (ir.reg == 3) /* neg */
5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5341 if (ir.ot != OT_BYTE)
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5347 opcode = opcode << 8 | ir.modrm;
5353 case 0xfe: /* GRP4 */
5354 case 0xff: /* GRP5 */
5355 if (i386_record_modrm (&ir))
5357 if (ir.reg >= 2 && opcode == 0xfe)
5360 opcode = opcode << 8 | ir.modrm;
5367 if ((opcode & 1) == 0)
5370 ir.ot = ir.dflag + OT_WORD;
5373 if (i386_record_lea_modrm (&ir))
5379 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5386 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5388 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5394 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5403 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5405 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5410 opcode = opcode << 8 | ir.modrm;
5416 case 0x84: /* test */
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5423 case 0x98: /* CWDE/CBW */
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5427 case 0x99: /* CDQ/CWD */
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5432 case 0x0faf: /* imul */
5435 ir.ot = ir.dflag + OT_WORD;
5436 if (i386_record_modrm (&ir))
5439 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5440 else if (opcode == 0x6b)
5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5449 case 0x0fc0: /* xadd */
5451 if ((opcode & 1) == 0)
5454 ir.ot = ir.dflag + OT_WORD;
5455 if (i386_record_modrm (&ir))
5460 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5463 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5469 if (i386_record_lea_modrm (&ir))
5471 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5478 case 0x0fb0: /* cmpxchg */
5480 if ((opcode & 1) == 0)
5483 ir.ot = ir.dflag + OT_WORD;
5484 if (i386_record_modrm (&ir))
5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5490 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5497 if (i386_record_lea_modrm (&ir))
5500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5503 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5504 if (i386_record_modrm (&ir))
5508 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5509 an extended opcode. rdrand has bits 110 (/6) and rdseed
5510 has bits 111 (/7). */
5511 if (ir.reg == 6 || ir.reg == 7)
5513 /* The storage register is described by the 3 R/M bits, but the
5514 REX.B prefix may be used to give access to registers
5515 R8~R15. In this case ir.rex_b + R/M will give us the register
5516 in the range R8~R15.
5518 REX.W may also be used to access 64-bit registers, but we
5519 already record entire registers and not just partial bits
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5522 /* These instructions also set conditional bits. */
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5528 /* We don't handle this particular instruction yet. */
5530 opcode = opcode << 8 | ir.modrm;
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5536 if (i386_record_lea_modrm (&ir))
5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5541 case 0x50: /* push */
5551 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5553 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5557 case 0x06: /* push es */
5558 case 0x0e: /* push cs */
5559 case 0x16: /* push ss */
5560 case 0x1e: /* push ds */
5561 if (ir.regmap[X86_RECORD_R8_REGNUM])
5566 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5570 case 0x0fa0: /* push fs */
5571 case 0x0fa8: /* push gs */
5572 if (ir.regmap[X86_RECORD_R8_REGNUM])
5577 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5581 case 0x60: /* pusha */
5582 if (ir.regmap[X86_RECORD_R8_REGNUM])
5587 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5591 case 0x58: /* pop */
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5600 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5603 case 0x61: /* popa */
5604 if (ir.regmap[X86_RECORD_R8_REGNUM])
5609 for (regnum = X86_RECORD_REAX_REGNUM;
5610 regnum <= X86_RECORD_REDI_REGNUM;
5612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5615 case 0x8f: /* pop */
5616 if (ir.regmap[X86_RECORD_R8_REGNUM])
5617 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5619 ir.ot = ir.dflag + OT_WORD;
5620 if (i386_record_modrm (&ir))
5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5626 ir.popl_esp_hack = 1 << ir.ot;
5627 if (i386_record_lea_modrm (&ir))
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5633 case 0xc8: /* enter */
5634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5635 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5637 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5641 case 0xc9: /* leave */
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5646 case 0x07: /* pop es */
5647 if (ir.regmap[X86_RECORD_R8_REGNUM])
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5657 case 0x17: /* pop ss */
5658 if (ir.regmap[X86_RECORD_R8_REGNUM])
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5668 case 0x1f: /* pop ds */
5669 if (ir.regmap[X86_RECORD_R8_REGNUM])
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5679 case 0x0fa1: /* pop fs */
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5685 case 0x0fa9: /* pop gs */
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5691 case 0x88: /* mov */
5695 if ((opcode & 1) == 0)
5698 ir.ot = ir.dflag + OT_WORD;
5700 if (i386_record_modrm (&ir))
5705 if (opcode == 0xc6 || opcode == 0xc7)
5706 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5707 if (i386_record_lea_modrm (&ir))
5712 if (opcode == 0xc6 || opcode == 0xc7)
5714 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5720 case 0x8a: /* mov */
5722 if ((opcode & 1) == 0)
5725 ir.ot = ir.dflag + OT_WORD;
5726 if (i386_record_modrm (&ir))
5729 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5734 case 0x8c: /* mov seg */
5735 if (i386_record_modrm (&ir))
5740 opcode = opcode << 8 | ir.modrm;
5745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5749 if (i386_record_lea_modrm (&ir))
5754 case 0x8e: /* mov seg */
5755 if (i386_record_modrm (&ir))
5760 regnum = X86_RECORD_ES_REGNUM;
5763 regnum = X86_RECORD_SS_REGNUM;
5766 regnum = X86_RECORD_DS_REGNUM;
5769 regnum = X86_RECORD_FS_REGNUM;
5772 regnum = X86_RECORD_GS_REGNUM;
5776 opcode = opcode << 8 | ir.modrm;
5780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5784 case 0x0fb6: /* movzbS */
5785 case 0x0fb7: /* movzwS */
5786 case 0x0fbe: /* movsbS */
5787 case 0x0fbf: /* movswS */
5788 if (i386_record_modrm (&ir))
5790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5793 case 0x8d: /* lea */
5794 if (i386_record_modrm (&ir))
5799 opcode = opcode << 8 | ir.modrm;
5804 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5809 case 0xa0: /* mov EAX */
5812 case 0xd7: /* xlat */
5813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5816 case 0xa2: /* mov EAX */
5818 if (ir.override >= 0)
5820 if (record_full_memory_query)
5823 Process record ignores the memory change of instruction at address %s\n\
5824 because it can't get the value of the segment register.\n\
5825 Do you want to stop the program?"),
5826 paddress (gdbarch, ir.orig_addr)))
5832 if ((opcode & 1) == 0)
5835 ir.ot = ir.dflag + OT_WORD;
5838 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5841 addr = extract_unsigned_integer (buf, 8, byte_order);
5845 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5848 addr = extract_unsigned_integer (buf, 4, byte_order);
5852 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5855 addr = extract_unsigned_integer (buf, 2, byte_order);
5857 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5862 case 0xb0: /* mov R, Ib */
5870 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5871 ? ((opcode & 0x7) | ir.rex_b)
5872 : ((opcode & 0x7) & 0x3));
5875 case 0xb8: /* mov R, Iv */
5883 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5886 case 0x91: /* xchg R, EAX */
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5897 case 0x86: /* xchg Ev, Gv */
5899 if ((opcode & 1) == 0)
5902 ir.ot = ir.dflag + OT_WORD;
5903 if (i386_record_modrm (&ir))
5908 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5914 if (i386_record_lea_modrm (&ir))
5918 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5923 case 0xc4: /* les Gv */
5924 case 0xc5: /* lds Gv */
5925 if (ir.regmap[X86_RECORD_R8_REGNUM])
5931 case 0x0fb2: /* lss Gv */
5932 case 0x0fb4: /* lfs Gv */
5933 case 0x0fb5: /* lgs Gv */
5934 if (i386_record_modrm (&ir))
5942 opcode = opcode << 8 | ir.modrm;
5947 case 0xc4: /* les Gv */
5948 regnum = X86_RECORD_ES_REGNUM;
5950 case 0xc5: /* lds Gv */
5951 regnum = X86_RECORD_DS_REGNUM;
5953 case 0x0fb2: /* lss Gv */
5954 regnum = X86_RECORD_SS_REGNUM;
5956 case 0x0fb4: /* lfs Gv */
5957 regnum = X86_RECORD_FS_REGNUM;
5959 case 0x0fb5: /* lgs Gv */
5960 regnum = X86_RECORD_GS_REGNUM;
5963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5968 case 0xc0: /* shifts */
5974 if ((opcode & 1) == 0)
5977 ir.ot = ir.dflag + OT_WORD;
5978 if (i386_record_modrm (&ir))
5980 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5982 if (i386_record_lea_modrm (&ir))
5988 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5999 if (i386_record_modrm (&ir))
6003 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6008 if (i386_record_lea_modrm (&ir))
6013 case 0xd8: /* Floats. */
6021 if (i386_record_modrm (&ir))
6023 ir.reg |= ((opcode & 7) << 3);
6029 if (i386_record_lea_modrm_addr (&ir, &addr64))
6037 /* For fcom, ficom nothing to do. */
6043 /* For fcomp, ficomp pop FPU stack, store all. */
6044 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6071 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6072 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6073 of code, always affects st(0) register. */
6074 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6098 /* Handling fld, fild. */
6099 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6103 switch (ir.reg >> 4)
6106 if (record_full_arch_list_add_mem (addr64, 4))
6110 if (record_full_arch_list_add_mem (addr64, 8))
6116 if (record_full_arch_list_add_mem (addr64, 2))
6122 switch (ir.reg >> 4)
6125 if (record_full_arch_list_add_mem (addr64, 4))
6127 if (3 == (ir.reg & 7))
6129 /* For fstp m32fp. */
6130 if (i386_record_floats (gdbarch, &ir,
6131 I386_SAVE_FPU_REGS))
6136 if (record_full_arch_list_add_mem (addr64, 4))
6138 if ((3 == (ir.reg & 7))
6139 || (5 == (ir.reg & 7))
6140 || (7 == (ir.reg & 7)))
6142 /* For fstp insn. */
6143 if (i386_record_floats (gdbarch, &ir,
6144 I386_SAVE_FPU_REGS))
6149 if (record_full_arch_list_add_mem (addr64, 8))
6151 if (3 == (ir.reg & 7))
6153 /* For fstp m64fp. */
6154 if (i386_record_floats (gdbarch, &ir,
6155 I386_SAVE_FPU_REGS))
6160 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6162 /* For fistp, fbld, fild, fbstp. */
6163 if (i386_record_floats (gdbarch, &ir,
6164 I386_SAVE_FPU_REGS))
6169 if (record_full_arch_list_add_mem (addr64, 2))
6178 if (i386_record_floats (gdbarch, &ir,
6179 I386_SAVE_FPU_ENV_REG_STACK))
6184 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6189 if (i386_record_floats (gdbarch, &ir,
6190 I386_SAVE_FPU_ENV_REG_STACK))
6196 if (record_full_arch_list_add_mem (addr64, 28))
6201 if (record_full_arch_list_add_mem (addr64, 14))
6207 if (record_full_arch_list_add_mem (addr64, 2))
6209 /* Insn fstp, fbstp. */
6210 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6215 if (record_full_arch_list_add_mem (addr64, 10))
6221 if (record_full_arch_list_add_mem (addr64, 28))
6227 if (record_full_arch_list_add_mem (addr64, 14))
6231 if (record_full_arch_list_add_mem (addr64, 80))
6234 if (i386_record_floats (gdbarch, &ir,
6235 I386_SAVE_FPU_ENV_REG_STACK))
6239 if (record_full_arch_list_add_mem (addr64, 8))
6242 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6247 opcode = opcode << 8 | ir.modrm;
6252 /* Opcode is an extension of modR/M byte. */
6258 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6262 if (0x0c == (ir.modrm >> 4))
6264 if ((ir.modrm & 0x0f) <= 7)
6266 if (i386_record_floats (gdbarch, &ir,
6267 I386_SAVE_FPU_REGS))
6272 if (i386_record_floats (gdbarch, &ir,
6273 I387_ST0_REGNUM (tdep)))
6275 /* If only st(0) is changing, then we have already
6277 if ((ir.modrm & 0x0f) - 0x08)
6279 if (i386_record_floats (gdbarch, &ir,
6280 I387_ST0_REGNUM (tdep) +
6281 ((ir.modrm & 0x0f) - 0x08)))
6299 if (i386_record_floats (gdbarch, &ir,
6300 I387_ST0_REGNUM (tdep)))
6318 if (i386_record_floats (gdbarch, &ir,
6319 I386_SAVE_FPU_REGS))
6323 if (i386_record_floats (gdbarch, &ir,
6324 I387_ST0_REGNUM (tdep)))
6326 if (i386_record_floats (gdbarch, &ir,
6327 I387_ST0_REGNUM (tdep) + 1))
6334 if (0xe9 == ir.modrm)
6336 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6339 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6341 if (i386_record_floats (gdbarch, &ir,
6342 I387_ST0_REGNUM (tdep)))
6344 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6346 if (i386_record_floats (gdbarch, &ir,
6347 I387_ST0_REGNUM (tdep) +
6351 else if ((ir.modrm & 0x0f) - 0x08)
6353 if (i386_record_floats (gdbarch, &ir,
6354 I387_ST0_REGNUM (tdep) +
6355 ((ir.modrm & 0x0f) - 0x08)))
6361 if (0xe3 == ir.modrm)
6363 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6366 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6368 if (i386_record_floats (gdbarch, &ir,
6369 I387_ST0_REGNUM (tdep)))
6371 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep) +
6378 else if ((ir.modrm & 0x0f) - 0x08)
6380 if (i386_record_floats (gdbarch, &ir,
6381 I387_ST0_REGNUM (tdep) +
6382 ((ir.modrm & 0x0f) - 0x08)))
6388 if ((0x0c == ir.modrm >> 4)
6389 || (0x0d == ir.modrm >> 4)
6390 || (0x0f == ir.modrm >> 4))
6392 if ((ir.modrm & 0x0f) <= 7)
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6401 if (i386_record_floats (gdbarch, &ir,
6402 I387_ST0_REGNUM (tdep) +
6403 ((ir.modrm & 0x0f) - 0x08)))
6409 if (0x0c == ir.modrm >> 4)
6411 if (i386_record_floats (gdbarch, &ir,
6412 I387_FTAG_REGNUM (tdep)))
6415 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6417 if ((ir.modrm & 0x0f) <= 7)
6419 if (i386_record_floats (gdbarch, &ir,
6420 I387_ST0_REGNUM (tdep) +
6426 if (i386_record_floats (gdbarch, &ir,
6427 I386_SAVE_FPU_REGS))
6433 if ((0x0c == ir.modrm >> 4)
6434 || (0x0e == ir.modrm >> 4)
6435 || (0x0f == ir.modrm >> 4)
6436 || (0xd9 == ir.modrm))
6438 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6443 if (0xe0 == ir.modrm)
6445 if (record_full_arch_list_add_reg (ir.regcache,
6449 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6451 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6459 case 0xa4: /* movsS */
6461 case 0xaa: /* stosS */
6463 case 0x6c: /* insS */
6465 regcache_raw_read_unsigned (ir.regcache,
6466 ir.regmap[X86_RECORD_RECX_REGNUM],
6472 if ((opcode & 1) == 0)
6475 ir.ot = ir.dflag + OT_WORD;
6476 regcache_raw_read_unsigned (ir.regcache,
6477 ir.regmap[X86_RECORD_REDI_REGNUM],
6480 regcache_raw_read_unsigned (ir.regcache,
6481 ir.regmap[X86_RECORD_ES_REGNUM],
6483 regcache_raw_read_unsigned (ir.regcache,
6484 ir.regmap[X86_RECORD_DS_REGNUM],
6486 if (ir.aflag && (es != ds))
6488 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6489 if (record_full_memory_query)
6492 Process record ignores the memory change of instruction at address %s\n\
6493 because it can't get the value of the segment register.\n\
6494 Do you want to stop the program?"),
6495 paddress (gdbarch, ir.orig_addr)))
6501 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6505 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6507 if (opcode == 0xa4 || opcode == 0xa5)
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6514 case 0xa6: /* cmpsS */
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6523 case 0xac: /* lodsS */
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6527 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6532 case 0xae: /* scasS */
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6535 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6540 case 0x6e: /* outsS */
6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6543 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6548 case 0xe4: /* port I/O */
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6563 case 0xc2: /* ret im */
6564 case 0xc3: /* ret */
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6569 case 0xca: /* lret im */
6570 case 0xcb: /* lret */
6571 case 0xcf: /* iret */
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6577 case 0xe8: /* call im */
6578 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6580 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6584 case 0x9a: /* lcall im */
6585 if (ir.regmap[X86_RECORD_R8_REGNUM])
6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6591 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6595 case 0xe9: /* jmp im */
6596 case 0xea: /* ljmp im */
6597 case 0xeb: /* jmp Jb */
6598 case 0x70: /* jcc Jb */
6614 case 0x0f80: /* jcc Jv */
6632 case 0x0f90: /* setcc Gv */
6648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6650 if (i386_record_modrm (&ir))
6653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6657 if (i386_record_lea_modrm (&ir))
6662 case 0x0f40: /* cmov Gv, Ev */
6678 if (i386_record_modrm (&ir))
6681 if (ir.dflag == OT_BYTE)
6683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6687 case 0x9c: /* pushf */
6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6689 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6691 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6695 case 0x9d: /* popf */
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6700 case 0x9e: /* sahf */
6701 if (ir.regmap[X86_RECORD_R8_REGNUM])
6707 case 0xf5: /* cmc */
6708 case 0xf8: /* clc */
6709 case 0xf9: /* stc */
6710 case 0xfc: /* cld */
6711 case 0xfd: /* std */
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6715 case 0x9f: /* lahf */
6716 if (ir.regmap[X86_RECORD_R8_REGNUM])
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6725 /* bit operations */
6726 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6727 ir.ot = ir.dflag + OT_WORD;
6728 if (i386_record_modrm (&ir))
6733 opcode = opcode << 8 | ir.modrm;
6739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6742 if (i386_record_lea_modrm (&ir))
6746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6749 case 0x0fa3: /* bt Gv, Ev */
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6753 case 0x0fab: /* bts */
6754 case 0x0fb3: /* btr */
6755 case 0x0fbb: /* btc */
6756 ir.ot = ir.dflag + OT_WORD;
6757 if (i386_record_modrm (&ir))
6760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6764 if (i386_record_lea_modrm_addr (&ir, &addr64))
6766 regcache_raw_read_unsigned (ir.regcache,
6767 ir.regmap[ir.reg | rex_r],
6772 addr64 += ((int16_t) addr >> 4) << 4;
6775 addr64 += ((int32_t) addr >> 5) << 5;
6778 addr64 += ((int64_t) addr >> 6) << 6;
6781 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6783 if (i386_record_lea_modrm (&ir))
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6789 case 0x0fbc: /* bsf */
6790 case 0x0fbd: /* bsr */
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6796 case 0x27: /* daa */
6797 case 0x2f: /* das */
6798 case 0x37: /* aaa */
6799 case 0x3f: /* aas */
6800 case 0xd4: /* aam */
6801 case 0xd5: /* aad */
6802 if (ir.regmap[X86_RECORD_R8_REGNUM])
6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6812 case 0x90: /* nop */
6813 if (prefixes & PREFIX_LOCK)
6820 case 0x9b: /* fwait */
6821 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6823 opcode = (uint32_t) opcode8;
6829 case 0xcc: /* int3 */
6830 printf_unfiltered (_("Process record does not support instruction "
6837 case 0xcd: /* int */
6841 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6844 if (interrupt != 0x80
6845 || tdep->i386_intx80_record == NULL)
6847 printf_unfiltered (_("Process record does not support "
6848 "instruction int 0x%02x.\n"),
6853 ret = tdep->i386_intx80_record (ir.regcache);
6860 case 0xce: /* into */
6861 printf_unfiltered (_("Process record does not support "
6862 "instruction into.\n"));
6867 case 0xfa: /* cli */
6868 case 0xfb: /* sti */
6871 case 0x62: /* bound */
6872 printf_unfiltered (_("Process record does not support "
6873 "instruction bound.\n"));
6878 case 0x0fc8: /* bswap reg */
6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6889 case 0xd6: /* salc */
6890 if (ir.regmap[X86_RECORD_R8_REGNUM])
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6899 case 0xe0: /* loopnz */
6900 case 0xe1: /* loopz */
6901 case 0xe2: /* loop */
6902 case 0xe3: /* jecxz */
6903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6907 case 0x0f30: /* wrmsr */
6908 printf_unfiltered (_("Process record does not support "
6909 "instruction wrmsr.\n"));
6914 case 0x0f32: /* rdmsr */
6915 printf_unfiltered (_("Process record does not support "
6916 "instruction rdmsr.\n"));
6921 case 0x0f31: /* rdtsc */
6922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6926 case 0x0f34: /* sysenter */
6929 if (ir.regmap[X86_RECORD_R8_REGNUM])
6934 if (tdep->i386_sysenter_record == NULL)
6936 printf_unfiltered (_("Process record does not support "
6937 "instruction sysenter.\n"));
6941 ret = tdep->i386_sysenter_record (ir.regcache);
6947 case 0x0f35: /* sysexit */
6948 printf_unfiltered (_("Process record does not support "
6949 "instruction sysexit.\n"));
6954 case 0x0f05: /* syscall */
6957 if (tdep->i386_syscall_record == NULL)
6959 printf_unfiltered (_("Process record does not support "
6960 "instruction syscall.\n"));
6964 ret = tdep->i386_syscall_record (ir.regcache);
6970 case 0x0f07: /* sysret */
6971 printf_unfiltered (_("Process record does not support "
6972 "instruction sysret.\n"));
6977 case 0x0fa2: /* cpuid */
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6984 case 0xf4: /* hlt */
6985 printf_unfiltered (_("Process record does not support "
6986 "instruction hlt.\n"));
6992 if (i386_record_modrm (&ir))
6999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7003 if (i386_record_lea_modrm (&ir))
7012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7016 opcode = opcode << 8 | ir.modrm;
7023 if (i386_record_modrm (&ir))
7034 opcode = opcode << 8 | ir.modrm;
7037 if (ir.override >= 0)
7039 if (record_full_memory_query)
7042 Process record ignores the memory change of instruction at address %s\n\
7043 because it can't get the value of the segment register.\n\
7044 Do you want to stop the program?"),
7045 paddress (gdbarch, ir.orig_addr)))
7051 if (i386_record_lea_modrm_addr (&ir, &addr64))
7053 if (record_full_arch_list_add_mem (addr64, 2))
7056 if (ir.regmap[X86_RECORD_R8_REGNUM])
7058 if (record_full_arch_list_add_mem (addr64, 8))
7063 if (record_full_arch_list_add_mem (addr64, 4))
7074 case 0: /* monitor */
7077 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7081 opcode = opcode << 8 | ir.modrm;
7089 if (ir.override >= 0)
7091 if (record_full_memory_query)
7094 Process record ignores the memory change of instruction at address %s\n\
7095 because it can't get the value of the segment register.\n\
7096 Do you want to stop the program?"),
7097 paddress (gdbarch, ir.orig_addr)))
7105 if (i386_record_lea_modrm_addr (&ir, &addr64))
7107 if (record_full_arch_list_add_mem (addr64, 2))
7110 if (ir.regmap[X86_RECORD_R8_REGNUM])
7112 if (record_full_arch_list_add_mem (addr64, 8))
7117 if (record_full_arch_list_add_mem (addr64, 4))
7129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7134 else if (ir.rm == 1)
7141 opcode = opcode << 8 | ir.modrm;
7148 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7154 if (i386_record_lea_modrm (&ir))
7157 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7162 case 7: /* invlpg */
7165 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7170 opcode = opcode << 8 | ir.modrm;
7175 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7179 opcode = opcode << 8 | ir.modrm;
7185 case 0x0f08: /* invd */
7186 case 0x0f09: /* wbinvd */
7189 case 0x63: /* arpl */
7190 if (i386_record_modrm (&ir))
7192 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7195 ? (ir.reg | rex_r) : ir.rm);
7199 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7200 if (i386_record_lea_modrm (&ir))
7203 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7207 case 0x0f02: /* lar */
7208 case 0x0f03: /* lsl */
7209 if (i386_record_modrm (&ir))
7211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7216 if (i386_record_modrm (&ir))
7218 if (ir.mod == 3 && ir.reg == 3)
7221 opcode = opcode << 8 | ir.modrm;
7233 /* nop (multi byte) */
7236 case 0x0f20: /* mov reg, crN */
7237 case 0x0f22: /* mov crN, reg */
7238 if (i386_record_modrm (&ir))
7240 if ((ir.modrm & 0xc0) != 0xc0)
7243 opcode = opcode << 8 | ir.modrm;
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7260 opcode = opcode << 8 | ir.modrm;
7266 case 0x0f21: /* mov reg, drN */
7267 case 0x0f23: /* mov drN, reg */
7268 if (i386_record_modrm (&ir))
7270 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7271 || ir.reg == 5 || ir.reg >= 8)
7274 opcode = opcode << 8 | ir.modrm;
7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7283 case 0x0f06: /* clts */
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7287 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7289 case 0x0f0d: /* 3DNow! prefetch */
7292 case 0x0f0e: /* 3DNow! femms */
7293 case 0x0f77: /* emms */
7294 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7296 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7299 case 0x0f0f: /* 3DNow! data */
7300 if (i386_record_modrm (&ir))
7302 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7307 case 0x0c: /* 3DNow! pi2fw */
7308 case 0x0d: /* 3DNow! pi2fd */
7309 case 0x1c: /* 3DNow! pf2iw */
7310 case 0x1d: /* 3DNow! pf2id */
7311 case 0x8a: /* 3DNow! pfnacc */
7312 case 0x8e: /* 3DNow! pfpnacc */
7313 case 0x90: /* 3DNow! pfcmpge */
7314 case 0x94: /* 3DNow! pfmin */
7315 case 0x96: /* 3DNow! pfrcp */
7316 case 0x97: /* 3DNow! pfrsqrt */
7317 case 0x9a: /* 3DNow! pfsub */
7318 case 0x9e: /* 3DNow! pfadd */
7319 case 0xa0: /* 3DNow! pfcmpgt */
7320 case 0xa4: /* 3DNow! pfmax */
7321 case 0xa6: /* 3DNow! pfrcpit1 */
7322 case 0xa7: /* 3DNow! pfrsqit1 */
7323 case 0xaa: /* 3DNow! pfsubr */
7324 case 0xae: /* 3DNow! pfacc */
7325 case 0xb0: /* 3DNow! pfcmpeq */
7326 case 0xb4: /* 3DNow! pfmul */
7327 case 0xb6: /* 3DNow! pfrcpit2 */
7328 case 0xb7: /* 3DNow! pmulhrw */
7329 case 0xbb: /* 3DNow! pswapd */
7330 case 0xbf: /* 3DNow! pavgusb */
7331 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7332 goto no_support_3dnow_data;
7333 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7337 no_support_3dnow_data:
7338 opcode = (opcode << 8) | opcode8;
7344 case 0x0faa: /* rsm */
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7357 if (i386_record_modrm (&ir))
7361 case 0: /* fxsave */
7365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7366 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7368 if (record_full_arch_list_add_mem (tmpu64, 512))
7373 case 1: /* fxrstor */
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7379 for (i = I387_MM0_REGNUM (tdep);
7380 i386_mmx_regnum_p (gdbarch, i); i++)
7381 record_full_arch_list_add_reg (ir.regcache, i);
7383 for (i = I387_XMM0_REGNUM (tdep);
7384 i386_xmm_regnum_p (gdbarch, i); i++)
7385 record_full_arch_list_add_reg (ir.regcache, i);
7387 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7388 record_full_arch_list_add_reg (ir.regcache,
7389 I387_MXCSR_REGNUM(tdep));
7391 for (i = I387_ST0_REGNUM (tdep);
7392 i386_fp_regnum_p (gdbarch, i); i++)
7393 record_full_arch_list_add_reg (ir.regcache, i);
7395 for (i = I387_FCTRL_REGNUM (tdep);
7396 i386_fpc_regnum_p (gdbarch, i); i++)
7397 record_full_arch_list_add_reg (ir.regcache, i);
7401 case 2: /* ldmxcsr */
7402 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7404 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7407 case 3: /* stmxcsr */
7409 if (i386_record_lea_modrm (&ir))
7413 case 5: /* lfence */
7414 case 6: /* mfence */
7415 case 7: /* sfence clflush */
7419 opcode = (opcode << 8) | ir.modrm;
7425 case 0x0fc3: /* movnti */
7426 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7427 if (i386_record_modrm (&ir))
7432 if (i386_record_lea_modrm (&ir))
7436 /* Add prefix to opcode. */
7551 /* Mask out PREFIX_ADDR. */
7552 switch ((prefixes & ~PREFIX_ADDR))
7564 reswitch_prefix_add:
7572 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7575 opcode = (uint32_t) opcode8 | opcode << 8;
7576 goto reswitch_prefix_add;
7579 case 0x0f10: /* movups */
7580 case 0x660f10: /* movupd */
7581 case 0xf30f10: /* movss */
7582 case 0xf20f10: /* movsd */
7583 case 0x0f12: /* movlps */
7584 case 0x660f12: /* movlpd */
7585 case 0xf30f12: /* movsldup */
7586 case 0xf20f12: /* movddup */
7587 case 0x0f14: /* unpcklps */
7588 case 0x660f14: /* unpcklpd */
7589 case 0x0f15: /* unpckhps */
7590 case 0x660f15: /* unpckhpd */
7591 case 0x0f16: /* movhps */
7592 case 0x660f16: /* movhpd */
7593 case 0xf30f16: /* movshdup */
7594 case 0x0f28: /* movaps */
7595 case 0x660f28: /* movapd */
7596 case 0x0f2a: /* cvtpi2ps */
7597 case 0x660f2a: /* cvtpi2pd */
7598 case 0xf30f2a: /* cvtsi2ss */
7599 case 0xf20f2a: /* cvtsi2sd */
7600 case 0x0f2c: /* cvttps2pi */
7601 case 0x660f2c: /* cvttpd2pi */
7602 case 0x0f2d: /* cvtps2pi */
7603 case 0x660f2d: /* cvtpd2pi */
7604 case 0x660f3800: /* pshufb */
7605 case 0x660f3801: /* phaddw */
7606 case 0x660f3802: /* phaddd */
7607 case 0x660f3803: /* phaddsw */
7608 case 0x660f3804: /* pmaddubsw */
7609 case 0x660f3805: /* phsubw */
7610 case 0x660f3806: /* phsubd */
7611 case 0x660f3807: /* phsubsw */
7612 case 0x660f3808: /* psignb */
7613 case 0x660f3809: /* psignw */
7614 case 0x660f380a: /* psignd */
7615 case 0x660f380b: /* pmulhrsw */
7616 case 0x660f3810: /* pblendvb */
7617 case 0x660f3814: /* blendvps */
7618 case 0x660f3815: /* blendvpd */
7619 case 0x660f381c: /* pabsb */
7620 case 0x660f381d: /* pabsw */
7621 case 0x660f381e: /* pabsd */
7622 case 0x660f3820: /* pmovsxbw */
7623 case 0x660f3821: /* pmovsxbd */
7624 case 0x660f3822: /* pmovsxbq */
7625 case 0x660f3823: /* pmovsxwd */
7626 case 0x660f3824: /* pmovsxwq */
7627 case 0x660f3825: /* pmovsxdq */
7628 case 0x660f3828: /* pmuldq */
7629 case 0x660f3829: /* pcmpeqq */
7630 case 0x660f382a: /* movntdqa */
7631 case 0x660f3a08: /* roundps */
7632 case 0x660f3a09: /* roundpd */
7633 case 0x660f3a0a: /* roundss */
7634 case 0x660f3a0b: /* roundsd */
7635 case 0x660f3a0c: /* blendps */
7636 case 0x660f3a0d: /* blendpd */
7637 case 0x660f3a0e: /* pblendw */
7638 case 0x660f3a0f: /* palignr */
7639 case 0x660f3a20: /* pinsrb */
7640 case 0x660f3a21: /* insertps */
7641 case 0x660f3a22: /* pinsrd pinsrq */
7642 case 0x660f3a40: /* dpps */
7643 case 0x660f3a41: /* dppd */
7644 case 0x660f3a42: /* mpsadbw */
7645 case 0x660f3a60: /* pcmpestrm */
7646 case 0x660f3a61: /* pcmpestri */
7647 case 0x660f3a62: /* pcmpistrm */
7648 case 0x660f3a63: /* pcmpistri */
7649 case 0x0f51: /* sqrtps */
7650 case 0x660f51: /* sqrtpd */
7651 case 0xf20f51: /* sqrtsd */
7652 case 0xf30f51: /* sqrtss */
7653 case 0x0f52: /* rsqrtps */
7654 case 0xf30f52: /* rsqrtss */
7655 case 0x0f53: /* rcpps */
7656 case 0xf30f53: /* rcpss */
7657 case 0x0f54: /* andps */
7658 case 0x660f54: /* andpd */
7659 case 0x0f55: /* andnps */
7660 case 0x660f55: /* andnpd */
7661 case 0x0f56: /* orps */
7662 case 0x660f56: /* orpd */
7663 case 0x0f57: /* xorps */
7664 case 0x660f57: /* xorpd */
7665 case 0x0f58: /* addps */
7666 case 0x660f58: /* addpd */
7667 case 0xf20f58: /* addsd */
7668 case 0xf30f58: /* addss */
7669 case 0x0f59: /* mulps */
7670 case 0x660f59: /* mulpd */
7671 case 0xf20f59: /* mulsd */
7672 case 0xf30f59: /* mulss */
7673 case 0x0f5a: /* cvtps2pd */
7674 case 0x660f5a: /* cvtpd2ps */
7675 case 0xf20f5a: /* cvtsd2ss */
7676 case 0xf30f5a: /* cvtss2sd */
7677 case 0x0f5b: /* cvtdq2ps */
7678 case 0x660f5b: /* cvtps2dq */
7679 case 0xf30f5b: /* cvttps2dq */
7680 case 0x0f5c: /* subps */
7681 case 0x660f5c: /* subpd */
7682 case 0xf20f5c: /* subsd */
7683 case 0xf30f5c: /* subss */
7684 case 0x0f5d: /* minps */
7685 case 0x660f5d: /* minpd */
7686 case 0xf20f5d: /* minsd */
7687 case 0xf30f5d: /* minss */
7688 case 0x0f5e: /* divps */
7689 case 0x660f5e: /* divpd */
7690 case 0xf20f5e: /* divsd */
7691 case 0xf30f5e: /* divss */
7692 case 0x0f5f: /* maxps */
7693 case 0x660f5f: /* maxpd */
7694 case 0xf20f5f: /* maxsd */
7695 case 0xf30f5f: /* maxss */
7696 case 0x660f60: /* punpcklbw */
7697 case 0x660f61: /* punpcklwd */
7698 case 0x660f62: /* punpckldq */
7699 case 0x660f63: /* packsswb */
7700 case 0x660f64: /* pcmpgtb */
7701 case 0x660f65: /* pcmpgtw */
7702 case 0x660f66: /* pcmpgtd */
7703 case 0x660f67: /* packuswb */
7704 case 0x660f68: /* punpckhbw */
7705 case 0x660f69: /* punpckhwd */
7706 case 0x660f6a: /* punpckhdq */
7707 case 0x660f6b: /* packssdw */
7708 case 0x660f6c: /* punpcklqdq */
7709 case 0x660f6d: /* punpckhqdq */
7710 case 0x660f6e: /* movd */
7711 case 0x660f6f: /* movdqa */
7712 case 0xf30f6f: /* movdqu */
7713 case 0x660f70: /* pshufd */
7714 case 0xf20f70: /* pshuflw */
7715 case 0xf30f70: /* pshufhw */
7716 case 0x660f74: /* pcmpeqb */
7717 case 0x660f75: /* pcmpeqw */
7718 case 0x660f76: /* pcmpeqd */
7719 case 0x660f7c: /* haddpd */
7720 case 0xf20f7c: /* haddps */
7721 case 0x660f7d: /* hsubpd */
7722 case 0xf20f7d: /* hsubps */
7723 case 0xf30f7e: /* movq */
7724 case 0x0fc2: /* cmpps */
7725 case 0x660fc2: /* cmppd */
7726 case 0xf20fc2: /* cmpsd */
7727 case 0xf30fc2: /* cmpss */
7728 case 0x660fc4: /* pinsrw */
7729 case 0x0fc6: /* shufps */
7730 case 0x660fc6: /* shufpd */
7731 case 0x660fd0: /* addsubpd */
7732 case 0xf20fd0: /* addsubps */
7733 case 0x660fd1: /* psrlw */
7734 case 0x660fd2: /* psrld */
7735 case 0x660fd3: /* psrlq */
7736 case 0x660fd4: /* paddq */
7737 case 0x660fd5: /* pmullw */
7738 case 0xf30fd6: /* movq2dq */
7739 case 0x660fd8: /* psubusb */
7740 case 0x660fd9: /* psubusw */
7741 case 0x660fda: /* pminub */
7742 case 0x660fdb: /* pand */
7743 case 0x660fdc: /* paddusb */
7744 case 0x660fdd: /* paddusw */
7745 case 0x660fde: /* pmaxub */
7746 case 0x660fdf: /* pandn */
7747 case 0x660fe0: /* pavgb */
7748 case 0x660fe1: /* psraw */
7749 case 0x660fe2: /* psrad */
7750 case 0x660fe3: /* pavgw */
7751 case 0x660fe4: /* pmulhuw */
7752 case 0x660fe5: /* pmulhw */
7753 case 0x660fe6: /* cvttpd2dq */
7754 case 0xf20fe6: /* cvtpd2dq */
7755 case 0xf30fe6: /* cvtdq2pd */
7756 case 0x660fe8: /* psubsb */
7757 case 0x660fe9: /* psubsw */
7758 case 0x660fea: /* pminsw */
7759 case 0x660feb: /* por */
7760 case 0x660fec: /* paddsb */
7761 case 0x660fed: /* paddsw */
7762 case 0x660fee: /* pmaxsw */
7763 case 0x660fef: /* pxor */
7764 case 0xf20ff0: /* lddqu */
7765 case 0x660ff1: /* psllw */
7766 case 0x660ff2: /* pslld */
7767 case 0x660ff3: /* psllq */
7768 case 0x660ff4: /* pmuludq */
7769 case 0x660ff5: /* pmaddwd */
7770 case 0x660ff6: /* psadbw */
7771 case 0x660ff8: /* psubb */
7772 case 0x660ff9: /* psubw */
7773 case 0x660ffa: /* psubd */
7774 case 0x660ffb: /* psubq */
7775 case 0x660ffc: /* paddb */
7776 case 0x660ffd: /* paddw */
7777 case 0x660ffe: /* paddd */
7778 if (i386_record_modrm (&ir))
7781 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7783 record_full_arch_list_add_reg (ir.regcache,
7784 I387_XMM0_REGNUM (tdep) + ir.reg);
7785 if ((opcode & 0xfffffffc) == 0x660f3a60)
7786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7789 case 0x0f11: /* movups */
7790 case 0x660f11: /* movupd */
7791 case 0xf30f11: /* movss */
7792 case 0xf20f11: /* movsd */
7793 case 0x0f13: /* movlps */
7794 case 0x660f13: /* movlpd */
7795 case 0x0f17: /* movhps */
7796 case 0x660f17: /* movhpd */
7797 case 0x0f29: /* movaps */
7798 case 0x660f29: /* movapd */
7799 case 0x660f3a14: /* pextrb */
7800 case 0x660f3a15: /* pextrw */
7801 case 0x660f3a16: /* pextrd pextrq */
7802 case 0x660f3a17: /* extractps */
7803 case 0x660f7f: /* movdqa */
7804 case 0xf30f7f: /* movdqu */
7805 if (i386_record_modrm (&ir))
7809 if (opcode == 0x0f13 || opcode == 0x660f13
7810 || opcode == 0x0f17 || opcode == 0x660f17)
7813 if (!i386_xmm_regnum_p (gdbarch,
7814 I387_XMM0_REGNUM (tdep) + ir.rm))
7816 record_full_arch_list_add_reg (ir.regcache,
7817 I387_XMM0_REGNUM (tdep) + ir.rm);
7839 if (i386_record_lea_modrm (&ir))
7844 case 0x0f2b: /* movntps */
7845 case 0x660f2b: /* movntpd */
7846 case 0x0fe7: /* movntq */
7847 case 0x660fe7: /* movntdq */
7850 if (opcode == 0x0fe7)
7854 if (i386_record_lea_modrm (&ir))
7858 case 0xf30f2c: /* cvttss2si */
7859 case 0xf20f2c: /* cvttsd2si */
7860 case 0xf30f2d: /* cvtss2si */
7861 case 0xf20f2d: /* cvtsd2si */
7862 case 0xf20f38f0: /* crc32 */
7863 case 0xf20f38f1: /* crc32 */
7864 case 0x0f50: /* movmskps */
7865 case 0x660f50: /* movmskpd */
7866 case 0x0fc5: /* pextrw */
7867 case 0x660fc5: /* pextrw */
7868 case 0x0fd7: /* pmovmskb */
7869 case 0x660fd7: /* pmovmskb */
7870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7873 case 0x0f3800: /* pshufb */
7874 case 0x0f3801: /* phaddw */
7875 case 0x0f3802: /* phaddd */
7876 case 0x0f3803: /* phaddsw */
7877 case 0x0f3804: /* pmaddubsw */
7878 case 0x0f3805: /* phsubw */
7879 case 0x0f3806: /* phsubd */
7880 case 0x0f3807: /* phsubsw */
7881 case 0x0f3808: /* psignb */
7882 case 0x0f3809: /* psignw */
7883 case 0x0f380a: /* psignd */
7884 case 0x0f380b: /* pmulhrsw */
7885 case 0x0f381c: /* pabsb */
7886 case 0x0f381d: /* pabsw */
7887 case 0x0f381e: /* pabsd */
7888 case 0x0f382b: /* packusdw */
7889 case 0x0f3830: /* pmovzxbw */
7890 case 0x0f3831: /* pmovzxbd */
7891 case 0x0f3832: /* pmovzxbq */
7892 case 0x0f3833: /* pmovzxwd */
7893 case 0x0f3834: /* pmovzxwq */
7894 case 0x0f3835: /* pmovzxdq */
7895 case 0x0f3837: /* pcmpgtq */
7896 case 0x0f3838: /* pminsb */
7897 case 0x0f3839: /* pminsd */
7898 case 0x0f383a: /* pminuw */
7899 case 0x0f383b: /* pminud */
7900 case 0x0f383c: /* pmaxsb */
7901 case 0x0f383d: /* pmaxsd */
7902 case 0x0f383e: /* pmaxuw */
7903 case 0x0f383f: /* pmaxud */
7904 case 0x0f3840: /* pmulld */
7905 case 0x0f3841: /* phminposuw */
7906 case 0x0f3a0f: /* palignr */
7907 case 0x0f60: /* punpcklbw */
7908 case 0x0f61: /* punpcklwd */
7909 case 0x0f62: /* punpckldq */
7910 case 0x0f63: /* packsswb */
7911 case 0x0f64: /* pcmpgtb */
7912 case 0x0f65: /* pcmpgtw */
7913 case 0x0f66: /* pcmpgtd */
7914 case 0x0f67: /* packuswb */
7915 case 0x0f68: /* punpckhbw */
7916 case 0x0f69: /* punpckhwd */
7917 case 0x0f6a: /* punpckhdq */
7918 case 0x0f6b: /* packssdw */
7919 case 0x0f6e: /* movd */
7920 case 0x0f6f: /* movq */
7921 case 0x0f70: /* pshufw */
7922 case 0x0f74: /* pcmpeqb */
7923 case 0x0f75: /* pcmpeqw */
7924 case 0x0f76: /* pcmpeqd */
7925 case 0x0fc4: /* pinsrw */
7926 case 0x0fd1: /* psrlw */
7927 case 0x0fd2: /* psrld */
7928 case 0x0fd3: /* psrlq */
7929 case 0x0fd4: /* paddq */
7930 case 0x0fd5: /* pmullw */
7931 case 0xf20fd6: /* movdq2q */
7932 case 0x0fd8: /* psubusb */
7933 case 0x0fd9: /* psubusw */
7934 case 0x0fda: /* pminub */
7935 case 0x0fdb: /* pand */
7936 case 0x0fdc: /* paddusb */
7937 case 0x0fdd: /* paddusw */
7938 case 0x0fde: /* pmaxub */
7939 case 0x0fdf: /* pandn */
7940 case 0x0fe0: /* pavgb */
7941 case 0x0fe1: /* psraw */
7942 case 0x0fe2: /* psrad */
7943 case 0x0fe3: /* pavgw */
7944 case 0x0fe4: /* pmulhuw */
7945 case 0x0fe5: /* pmulhw */
7946 case 0x0fe8: /* psubsb */
7947 case 0x0fe9: /* psubsw */
7948 case 0x0fea: /* pminsw */
7949 case 0x0feb: /* por */
7950 case 0x0fec: /* paddsb */
7951 case 0x0fed: /* paddsw */
7952 case 0x0fee: /* pmaxsw */
7953 case 0x0fef: /* pxor */
7954 case 0x0ff1: /* psllw */
7955 case 0x0ff2: /* pslld */
7956 case 0x0ff3: /* psllq */
7957 case 0x0ff4: /* pmuludq */
7958 case 0x0ff5: /* pmaddwd */
7959 case 0x0ff6: /* psadbw */
7960 case 0x0ff8: /* psubb */
7961 case 0x0ff9: /* psubw */
7962 case 0x0ffa: /* psubd */
7963 case 0x0ffb: /* psubq */
7964 case 0x0ffc: /* paddb */
7965 case 0x0ffd: /* paddw */
7966 case 0x0ffe: /* paddd */
7967 if (i386_record_modrm (&ir))
7969 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7971 record_full_arch_list_add_reg (ir.regcache,
7972 I387_MM0_REGNUM (tdep) + ir.reg);
7975 case 0x0f71: /* psllw */
7976 case 0x0f72: /* pslld */
7977 case 0x0f73: /* psllq */
7978 if (i386_record_modrm (&ir))
7980 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7982 record_full_arch_list_add_reg (ir.regcache,
7983 I387_MM0_REGNUM (tdep) + ir.rm);
7986 case 0x660f71: /* psllw */
7987 case 0x660f72: /* pslld */
7988 case 0x660f73: /* psllq */
7989 if (i386_record_modrm (&ir))
7992 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7994 record_full_arch_list_add_reg (ir.regcache,
7995 I387_XMM0_REGNUM (tdep) + ir.rm);
7998 case 0x0f7e: /* movd */
7999 case 0x660f7e: /* movd */
8000 if (i386_record_modrm (&ir))
8003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8010 if (i386_record_lea_modrm (&ir))
8015 case 0x0f7f: /* movq */
8016 if (i386_record_modrm (&ir))
8020 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8022 record_full_arch_list_add_reg (ir.regcache,
8023 I387_MM0_REGNUM (tdep) + ir.rm);
8028 if (i386_record_lea_modrm (&ir))
8033 case 0xf30fb8: /* popcnt */
8034 if (i386_record_modrm (&ir))
8036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8037 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8040 case 0x660fd6: /* movq */
8041 if (i386_record_modrm (&ir))
8046 if (!i386_xmm_regnum_p (gdbarch,
8047 I387_XMM0_REGNUM (tdep) + ir.rm))
8049 record_full_arch_list_add_reg (ir.regcache,
8050 I387_XMM0_REGNUM (tdep) + ir.rm);
8055 if (i386_record_lea_modrm (&ir))
8060 case 0x660f3817: /* ptest */
8061 case 0x0f2e: /* ucomiss */
8062 case 0x660f2e: /* ucomisd */
8063 case 0x0f2f: /* comiss */
8064 case 0x660f2f: /* comisd */
8065 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8068 case 0x0ff7: /* maskmovq */
8069 regcache_raw_read_unsigned (ir.regcache,
8070 ir.regmap[X86_RECORD_REDI_REGNUM],
8072 if (record_full_arch_list_add_mem (addr, 64))
8076 case 0x660ff7: /* maskmovdqu */
8077 regcache_raw_read_unsigned (ir.regcache,
8078 ir.regmap[X86_RECORD_REDI_REGNUM],
8080 if (record_full_arch_list_add_mem (addr, 128))
8095 /* In the future, maybe still need to deal with need_dasm. */
8096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8097 if (record_full_arch_list_add_end ())
8103 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8104 "at address %s.\n"),
8105 (unsigned int) (opcode),
8106 paddress (gdbarch, ir.orig_addr));
8110 static const int i386_record_regmap[] =
8112 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8113 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8114 0, 0, 0, 0, 0, 0, 0, 0,
8115 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8116 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8119 /* Check that the given address appears suitable for a fast
8120 tracepoint, which on x86-64 means that we need an instruction of at
8121 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8122 jump and not have to worry about program jumps to an address in the
8123 middle of the tracepoint jump. On x86, it may be possible to use
8124 4-byte jumps with a 2-byte offset to a trampoline located in the
8125 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8126 of instruction to replace, and 0 if not, plus an explanatory
8130 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8135 /* Ask the target for the minimum instruction length supported. */
8136 jumplen = target_get_min_fast_tracepoint_insn_len ();
8140 /* If the target does not support the get_min_fast_tracepoint_insn_len
8141 operation, assume that fast tracepoints will always be implemented
8142 using 4-byte relative jumps on both x86 and x86-64. */
8145 else if (jumplen == 0)
8147 /* If the target does support get_min_fast_tracepoint_insn_len but
8148 returns zero, then the IPA has not loaded yet. In this case,
8149 we optimistically assume that truncated 2-byte relative jumps
8150 will be available on x86, and compensate later if this assumption
8151 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8152 jumps will always be used. */
8153 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8156 /* Check for fit. */
8157 len = gdb_insn_length (gdbarch, addr);
8161 /* Return a bit of target-specific detail to add to the caller's
8162 generic failure message. */
8164 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8165 "need at least %d bytes for the jump"),
8177 /* Return a floating-point format for a floating-point variable of
8178 length LEN in bits. If non-NULL, NAME is the name of its type.
8179 If no suitable type is found, return NULL. */
8181 const struct floatformat **
8182 i386_floatformat_for_type (struct gdbarch *gdbarch,
8183 const char *name, int len)
8185 if (len == 128 && name)
8186 if (strcmp (name, "__float128") == 0
8187 || strcmp (name, "_Float128") == 0
8188 || strcmp (name, "complex _Float128") == 0)
8189 return floatformats_ia64_quad;
8191 return default_floatformat_for_type (gdbarch, name, len);
8195 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8196 struct tdesc_arch_data *tdesc_data)
8198 const struct target_desc *tdesc = tdep->tdesc;
8199 const struct tdesc_feature *feature_core;
8201 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8202 *feature_avx512, *feature_pkeys;
8203 int i, num_regs, valid_p;
8205 if (! tdesc_has_registers (tdesc))
8208 /* Get core registers. */
8209 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8210 if (feature_core == NULL)
8213 /* Get SSE registers. */
8214 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8216 /* Try AVX registers. */
8217 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8219 /* Try MPX registers. */
8220 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8222 /* Try AVX512 registers. */
8223 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8226 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8230 /* The XCR0 bits. */
8233 /* AVX512 register description requires AVX register description. */
8237 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8239 /* It may have been set by OSABI initialization function. */
8240 if (tdep->k0_regnum < 0)
8242 tdep->k_register_names = i386_k_names;
8243 tdep->k0_regnum = I386_K0_REGNUM;
8246 for (i = 0; i < I387_NUM_K_REGS; i++)
8247 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8248 tdep->k0_regnum + i,
8251 if (tdep->num_zmm_regs == 0)
8253 tdep->zmmh_register_names = i386_zmmh_names;
8254 tdep->num_zmm_regs = 8;
8255 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8258 for (i = 0; i < tdep->num_zmm_regs; i++)
8259 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8260 tdep->zmm0h_regnum + i,
8261 tdep->zmmh_register_names[i]);
8263 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8264 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8265 tdep->xmm16_regnum + i,
8266 tdep->xmm_avx512_register_names[i]);
8268 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8269 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8270 tdep->ymm16h_regnum + i,
8271 tdep->ymm16h_register_names[i]);
8275 /* AVX register description requires SSE register description. */
8279 if (!feature_avx512)
8280 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8282 /* It may have been set by OSABI initialization function. */
8283 if (tdep->num_ymm_regs == 0)
8285 tdep->ymmh_register_names = i386_ymmh_names;
8286 tdep->num_ymm_regs = 8;
8287 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8290 for (i = 0; i < tdep->num_ymm_regs; i++)
8291 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8292 tdep->ymm0h_regnum + i,
8293 tdep->ymmh_register_names[i]);
8295 else if (feature_sse)
8296 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8299 tdep->xcr0 = X86_XSTATE_X87_MASK;
8300 tdep->num_xmm_regs = 0;
8303 num_regs = tdep->num_core_regs;
8304 for (i = 0; i < num_regs; i++)
8305 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8306 tdep->register_names[i]);
8310 /* Need to include %mxcsr, so add one. */
8311 num_regs += tdep->num_xmm_regs + 1;
8312 for (; i < num_regs; i++)
8313 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8314 tdep->register_names[i]);
8319 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8321 if (tdep->bnd0r_regnum < 0)
8323 tdep->mpx_register_names = i386_mpx_names;
8324 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8325 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8328 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8329 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8330 I387_BND0R_REGNUM (tdep) + i,
8331 tdep->mpx_register_names[i]);
8336 tdep->xcr0 |= X86_XSTATE_PKRU;
8337 if (tdep->pkru_regnum < 0)
8339 tdep->pkeys_register_names = i386_pkeys_names;
8340 tdep->pkru_regnum = I386_PKRU_REGNUM;
8341 tdep->num_pkeys_regs = 1;
8344 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8345 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8346 I387_PKRU_REGNUM (tdep) + i,
8347 tdep->pkeys_register_names[i]);
8354 /* Note: This is called for both i386 and amd64. */
8356 static struct gdbarch *
8357 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8359 struct gdbarch_tdep *tdep;
8360 struct gdbarch *gdbarch;
8361 struct tdesc_arch_data *tdesc_data;
8362 const struct target_desc *tdesc;
8368 /* If there is already a candidate, use it. */
8369 arches = gdbarch_list_lookup_by_info (arches, &info);
8371 return arches->gdbarch;
8373 /* Allocate space for the new architecture. Assume i386 for now. */
8374 tdep = XCNEW (struct gdbarch_tdep);
8375 gdbarch = gdbarch_alloc (&info, tdep);
8377 /* General-purpose registers. */
8378 tdep->gregset_reg_offset = NULL;
8379 tdep->gregset_num_regs = I386_NUM_GREGS;
8380 tdep->sizeof_gregset = 0;
8382 /* Floating-point registers. */
8383 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8384 tdep->fpregset = &i386_fpregset;
8386 /* The default settings include the FPU registers, the MMX registers
8387 and the SSE registers. This can be overridden for a specific ABI
8388 by adjusting the members `st0_regnum', `mm0_regnum' and
8389 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8390 will show up in the output of "info all-registers". */
8392 tdep->st0_regnum = I386_ST0_REGNUM;
8394 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8395 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8397 tdep->jb_pc_offset = -1;
8398 tdep->struct_return = pcc_struct_return;
8399 tdep->sigtramp_start = 0;
8400 tdep->sigtramp_end = 0;
8401 tdep->sigtramp_p = i386_sigtramp_p;
8402 tdep->sigcontext_addr = NULL;
8403 tdep->sc_reg_offset = NULL;
8404 tdep->sc_pc_offset = -1;
8405 tdep->sc_sp_offset = -1;
8407 tdep->xsave_xcr0_offset = -1;
8409 tdep->record_regmap = i386_record_regmap;
8411 set_gdbarch_long_long_align_bit (gdbarch, 32);
8413 /* The format used for `long double' on almost all i386 targets is
8414 the i387 extended floating-point format. In fact, of all targets
8415 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8416 on having a `long double' that's not `long' at all. */
8417 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8419 /* Although the i387 extended floating-point has only 80 significant
8420 bits, a `long double' actually takes up 96, probably to enforce
8422 set_gdbarch_long_double_bit (gdbarch, 96);
8424 /* Support for floating-point data type variants. */
8425 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8427 /* Register numbers of various important registers. */
8428 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8429 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8430 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8431 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8433 /* NOTE: kettenis/20040418: GCC does have two possible register
8434 numbering schemes on the i386: dbx and SVR4. These schemes
8435 differ in how they number %ebp, %esp, %eflags, and the
8436 floating-point registers, and are implemented by the arrays
8437 dbx_register_map[] and svr4_dbx_register_map in
8438 gcc/config/i386.c. GCC also defines a third numbering scheme in
8439 gcc/config/i386.c, which it designates as the "default" register
8440 map used in 64bit mode. This last register numbering scheme is
8441 implemented in dbx64_register_map, and is used for AMD64; see
8444 Currently, each GCC i386 target always uses the same register
8445 numbering scheme across all its supported debugging formats
8446 i.e. SDB (COFF), stabs and DWARF 2. This is because
8447 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8448 DBX_REGISTER_NUMBER macro which is defined by each target's
8449 respective config header in a manner independent of the requested
8450 output debugging format.
8452 This does not match the arrangement below, which presumes that
8453 the SDB and stabs numbering schemes differ from the DWARF and
8454 DWARF 2 ones. The reason for this arrangement is that it is
8455 likely to get the numbering scheme for the target's
8456 default/native debug format right. For targets where GCC is the
8457 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8458 targets where the native toolchain uses a different numbering
8459 scheme for a particular debug format (stabs-in-ELF on Solaris)
8460 the defaults below will have to be overridden, like
8461 i386_elf_init_abi() does. */
8463 /* Use the dbx register numbering scheme for stabs and COFF. */
8464 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8465 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8467 /* Use the SVR4 register numbering scheme for DWARF 2. */
8468 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8470 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8471 be in use on any of the supported i386 targets. */
8473 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8475 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8477 /* Call dummy code. */
8478 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8479 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8480 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8481 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8483 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8484 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8485 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8487 set_gdbarch_return_value (gdbarch, i386_return_value);
8489 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8491 /* Stack grows downward. */
8492 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8494 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8495 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8497 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8498 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8500 set_gdbarch_frame_args_skip (gdbarch, 8);
8502 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8504 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8506 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8508 /* Add the i386 register groups. */
8509 i386_add_reggroups (gdbarch);
8510 tdep->register_reggroup_p = i386_register_reggroup_p;
8512 /* Helper for function argument information. */
8513 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8515 /* Hook the function epilogue frame unwinder. This unwinder is
8516 appended to the list first, so that it supercedes the DWARF
8517 unwinder in function epilogues (where the DWARF unwinder
8518 currently fails). */
8519 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8521 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8522 to the list before the prologue-based unwinders, so that DWARF
8523 CFI info will be used if it is available. */
8524 dwarf2_append_unwinders (gdbarch);
8526 frame_base_set_default (gdbarch, &i386_frame_base);
8528 /* Pseudo registers may be changed by amd64_init_abi. */
8529 set_gdbarch_pseudo_register_read_value (gdbarch,
8530 i386_pseudo_register_read_value);
8531 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8532 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8533 i386_ax_pseudo_register_collect);
8535 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8536 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8538 /* Override the normal target description method to make the AVX
8539 upper halves anonymous. */
8540 set_gdbarch_register_name (gdbarch, i386_register_name);
8542 /* Even though the default ABI only includes general-purpose registers,
8543 floating-point registers and the SSE registers, we have to leave a
8544 gap for the upper AVX, MPX and AVX512 registers. */
8545 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8547 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8549 /* Get the x86 target description from INFO. */
8550 tdesc = info.target_desc;
8551 if (! tdesc_has_registers (tdesc))
8553 tdep->tdesc = tdesc;
8555 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8556 tdep->register_names = i386_register_names;
8558 /* No upper YMM registers. */
8559 tdep->ymmh_register_names = NULL;
8560 tdep->ymm0h_regnum = -1;
8562 /* No upper ZMM registers. */
8563 tdep->zmmh_register_names = NULL;
8564 tdep->zmm0h_regnum = -1;
8566 /* No high XMM registers. */
8567 tdep->xmm_avx512_register_names = NULL;
8568 tdep->xmm16_regnum = -1;
8570 /* No upper YMM16-31 registers. */
8571 tdep->ymm16h_register_names = NULL;
8572 tdep->ymm16h_regnum = -1;
8574 tdep->num_byte_regs = 8;
8575 tdep->num_word_regs = 8;
8576 tdep->num_dword_regs = 0;
8577 tdep->num_mmx_regs = 8;
8578 tdep->num_ymm_regs = 0;
8580 /* No MPX registers. */
8581 tdep->bnd0r_regnum = -1;
8582 tdep->bndcfgu_regnum = -1;
8584 /* No AVX512 registers. */
8585 tdep->k0_regnum = -1;
8586 tdep->num_zmm_regs = 0;
8587 tdep->num_ymm_avx512_regs = 0;
8588 tdep->num_xmm_avx512_regs = 0;
8590 /* No PKEYS registers */
8591 tdep->pkru_regnum = -1;
8592 tdep->num_pkeys_regs = 0;
8594 tdesc_data = tdesc_data_alloc ();
8596 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8598 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8600 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8601 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8602 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8604 /* Hook in ABI-specific overrides, if they have been registered.
8605 Note: If INFO specifies a 64 bit arch, this is where we turn
8606 a 32-bit i386 into a 64-bit amd64. */
8607 info.tdep_info = tdesc_data;
8608 gdbarch_init_osabi (info, gdbarch);
8610 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8612 tdesc_data_cleanup (tdesc_data);
8614 gdbarch_free (gdbarch);
8618 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8620 /* Wire in pseudo registers. Number of pseudo registers may be
8622 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8623 + tdep->num_word_regs
8624 + tdep->num_dword_regs
8625 + tdep->num_mmx_regs
8626 + tdep->num_ymm_regs
8628 + tdep->num_ymm_avx512_regs
8629 + tdep->num_zmm_regs));
8631 /* Target description may be changed. */
8632 tdesc = tdep->tdesc;
8634 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8636 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8637 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8639 /* Make %al the first pseudo-register. */
8640 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8641 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8643 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8644 if (tdep->num_dword_regs)
8646 /* Support dword pseudo-register if it hasn't been disabled. */
8647 tdep->eax_regnum = ymm0_regnum;
8648 ymm0_regnum += tdep->num_dword_regs;
8651 tdep->eax_regnum = -1;
8653 mm0_regnum = ymm0_regnum;
8654 if (tdep->num_ymm_regs)
8656 /* Support YMM pseudo-register if it is available. */
8657 tdep->ymm0_regnum = ymm0_regnum;
8658 mm0_regnum += tdep->num_ymm_regs;
8661 tdep->ymm0_regnum = -1;
8663 if (tdep->num_ymm_avx512_regs)
8665 /* Support YMM16-31 pseudo registers if available. */
8666 tdep->ymm16_regnum = mm0_regnum;
8667 mm0_regnum += tdep->num_ymm_avx512_regs;
8670 tdep->ymm16_regnum = -1;
8672 if (tdep->num_zmm_regs)
8674 /* Support ZMM pseudo-register if it is available. */
8675 tdep->zmm0_regnum = mm0_regnum;
8676 mm0_regnum += tdep->num_zmm_regs;
8679 tdep->zmm0_regnum = -1;
8681 bnd0_regnum = mm0_regnum;
8682 if (tdep->num_mmx_regs != 0)
8684 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8685 tdep->mm0_regnum = mm0_regnum;
8686 bnd0_regnum += tdep->num_mmx_regs;
8689 tdep->mm0_regnum = -1;
8691 if (tdep->bnd0r_regnum > 0)
8692 tdep->bnd0_regnum = bnd0_regnum;
8694 tdep-> bnd0_regnum = -1;
8696 /* Hook in the legacy prologue-based unwinders last (fallback). */
8697 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8698 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8699 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8701 /* If we have a register mapping, enable the generic core file
8702 support, unless it has already been enabled. */
8703 if (tdep->gregset_reg_offset
8704 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8705 set_gdbarch_iterate_over_regset_sections
8706 (gdbarch, i386_iterate_over_regset_sections);
8708 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8709 i386_fast_tracepoint_valid_at);
8716 /* Return the target description for a specified XSAVE feature mask. */
8718 const struct target_desc *
8719 i386_target_description (uint64_t xcr0)
8721 switch (xcr0 & X86_XSTATE_ALL_MASK)
8723 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
8724 return tdesc_i386_avx_mpx_avx512_pku;
8725 case X86_XSTATE_AVX_AVX512_MASK:
8726 return tdesc_i386_avx_avx512;
8727 case X86_XSTATE_AVX_MPX_MASK:
8728 return tdesc_i386_avx_mpx;
8729 case X86_XSTATE_MPX_MASK:
8730 return tdesc_i386_mpx;
8731 case X86_XSTATE_AVX_MASK:
8732 return tdesc_i386_avx;
8738 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8740 /* Find the bound directory base address. */
8742 static unsigned long
8743 i386_mpx_bd_base (void)
8745 struct regcache *rcache;
8746 struct gdbarch_tdep *tdep;
8748 enum register_status regstatus;
8750 rcache = get_current_regcache ();
8751 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8753 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8755 if (regstatus != REG_VALID)
8756 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8758 return ret & MPX_BASE_MASK;
8762 i386_mpx_enabled (void)
8764 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8765 const struct target_desc *tdesc = tdep->tdesc;
8767 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8770 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8771 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8772 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8773 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8775 /* Find the bound table entry given the pointer location and the base
8776 address of the table. */
8779 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8783 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8784 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8785 CORE_ADDR bd_entry_addr;
8788 struct gdbarch *gdbarch = get_current_arch ();
8789 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8792 if (gdbarch_ptr_bit (gdbarch) == 64)
8794 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8795 bd_ptr_r_shift = 20;
8797 bt_select_r_shift = 3;
8798 bt_select_l_shift = 5;
8799 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8801 if ( sizeof (CORE_ADDR) == 4)
8802 error (_("bound table examination not supported\
8803 for 64-bit process with 32-bit GDB"));
8807 mpx_bd_mask = MPX_BD_MASK_32;
8808 bd_ptr_r_shift = 12;
8810 bt_select_r_shift = 2;
8811 bt_select_l_shift = 4;
8812 bt_mask = MPX_BT_MASK_32;
8815 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8816 bd_entry_addr = bd_base + offset1;
8817 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8819 if ((bd_entry & 0x1) == 0)
8820 error (_("Invalid bounds directory entry at %s."),
8821 paddress (get_current_arch (), bd_entry_addr));
8823 /* Clearing status bit. */
8825 bt_addr = bd_entry & ~bt_select_r_shift;
8826 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8828 return bt_addr + offset2;
8831 /* Print routine for the mpx bounds. */
8834 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8836 struct ui_out *uiout = current_uiout;
8838 struct gdbarch *gdbarch = get_current_arch ();
8839 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8840 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8842 if (bounds_in_map == 1)
8844 uiout->text ("Null bounds on map:");
8845 uiout->text (" pointer value = ");
8846 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8852 uiout->text ("{lbound = ");
8853 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8854 uiout->text (", ubound = ");
8856 /* The upper bound is stored in 1's complement. */
8857 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8858 uiout->text ("}: pointer value = ");
8859 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8861 if (gdbarch_ptr_bit (gdbarch) == 64)
8862 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8864 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8866 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8867 -1 represents in this sense full memory access, and there is no need
8870 size = (size > -1 ? size + 1 : size);
8871 uiout->text (", size = ");
8872 uiout->field_fmt ("size", "%s", plongest (size));
8874 uiout->text (", metadata = ");
8875 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8880 /* Implement the command "show mpx bound". */
8883 i386_mpx_info_bounds (char *args, int from_tty)
8885 CORE_ADDR bd_base = 0;
8887 CORE_ADDR bt_entry_addr = 0;
8888 CORE_ADDR bt_entry[4];
8890 struct gdbarch *gdbarch = get_current_arch ();
8891 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8893 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8894 || !i386_mpx_enabled ())
8896 printf_unfiltered (_("Intel Memory Protection Extensions not "
8897 "supported on this target.\n"));
8903 printf_unfiltered (_("Address of pointer variable expected.\n"));
8907 addr = parse_and_eval_address (args);
8909 bd_base = i386_mpx_bd_base ();
8910 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8912 memset (bt_entry, 0, sizeof (bt_entry));
8914 for (i = 0; i < 4; i++)
8915 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8916 + i * TYPE_LENGTH (data_ptr_type),
8919 i386_mpx_print_bounds (bt_entry);
8922 /* Implement the command "set mpx bound". */
8925 i386_mpx_set_bounds (char *args, int from_tty)
8927 CORE_ADDR bd_base = 0;
8928 CORE_ADDR addr, lower, upper;
8929 CORE_ADDR bt_entry_addr = 0;
8930 CORE_ADDR bt_entry[2];
8931 const char *input = args;
8933 struct gdbarch *gdbarch = get_current_arch ();
8934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8935 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8937 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8938 || !i386_mpx_enabled ())
8939 error (_("Intel Memory Protection Extensions not supported\
8943 error (_("Pointer value expected."));
8945 addr = value_as_address (parse_to_comma_and_eval (&input));
8947 if (input[0] == ',')
8949 if (input[0] == '\0')
8950 error (_("wrong number of arguments: missing lower and upper bound."));
8951 lower = value_as_address (parse_to_comma_and_eval (&input));
8953 if (input[0] == ',')
8955 if (input[0] == '\0')
8956 error (_("Wrong number of arguments; Missing upper bound."));
8957 upper = value_as_address (parse_to_comma_and_eval (&input));
8959 bd_base = i386_mpx_bd_base ();
8960 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8961 for (i = 0; i < 2; i++)
8962 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8963 + i * TYPE_LENGTH (data_ptr_type),
8965 bt_entry[0] = (uint64_t) lower;
8966 bt_entry[1] = ~(uint64_t) upper;
8968 for (i = 0; i < 2; i++)
8969 write_memory_unsigned_integer (bt_entry_addr
8970 + i * TYPE_LENGTH (data_ptr_type),
8971 TYPE_LENGTH (data_ptr_type), byte_order,
8975 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8977 /* Helper function for the CLI commands. */
8980 set_mpx_cmd (char *args, int from_tty)
8982 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8985 /* Helper function for the CLI commands. */
8988 show_mpx_cmd (char *args, int from_tty)
8990 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8993 /* Provide a prototype to silence -Wmissing-prototypes. */
8994 void _initialize_i386_tdep (void);
8997 _initialize_i386_tdep (void)
8999 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9001 /* Add the variable that controls the disassembly flavor. */
9002 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9003 &disassembly_flavor, _("\
9004 Set the disassembly flavor."), _("\
9005 Show the disassembly flavor."), _("\
9006 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9008 NULL, /* FIXME: i18n: */
9009 &setlist, &showlist);
9011 /* Add the variable that controls the convention for returning
9013 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9014 &struct_convention, _("\
9015 Set the convention for returning small structs."), _("\
9016 Show the convention for returning small structs."), _("\
9017 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9020 NULL, /* FIXME: i18n: */
9021 &setlist, &showlist);
9023 /* Add "mpx" prefix for the set commands. */
9025 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9026 Set Intel Memory Protection Extensions specific variables."),
9027 &mpx_set_cmdlist, "set mpx ",
9028 0 /* allow-unknown */, &setlist);
9030 /* Add "mpx" prefix for the show commands. */
9032 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9033 Show Intel Memory Protection Extensions specific variables."),
9034 &mpx_show_cmdlist, "show mpx ",
9035 0 /* allow-unknown */, &showlist);
9037 /* Add "bound" command for the show mpx commands list. */
9039 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9040 "Show the memory bounds for a given array/pointer storage\
9041 in the bound table.",
9044 /* Add "bound" command for the set mpx commands list. */
9046 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9047 "Set the memory bounds for a given array/pointer storage\
9048 in the bound table.",
9051 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9052 i386_svr4_init_abi);
9054 /* Initialize the i386-specific register groups. */
9055 i386_init_reggroups ();
9057 /* Initialize the standard target descriptions. */
9058 initialize_tdesc_i386 ();
9059 initialize_tdesc_i386_mmx ();
9060 initialize_tdesc_i386_avx ();
9061 initialize_tdesc_i386_mpx ();
9062 initialize_tdesc_i386_avx_mpx ();
9063 initialize_tdesc_i386_avx_avx512 ();
9064 initialize_tdesc_i386_avx_mpx_avx512_pku ();
9066 /* Tell remote stub that we support XML target description. */
9067 register_remote_support_xml ("i386");