1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
37 #include "reggroups.h"
42 #include "target-float.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
67 #include <unordered_set>
71 static const char *i386_register_names[] =
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
86 static const char *i386_zmm_names[] =
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
92 static const char *i386_zmmh_names[] =
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 static const char *i386_k_names[] =
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
104 static const char *i386_ymm_names[] =
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
110 static const char *i386_ymmh_names[] =
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 static const char *i386_mpx_names[] =
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 static const char* i386_pkeys_names[] =
126 /* Register names for MPX pseudo-registers. */
128 static const char *i386_bnd_names[] =
130 "bnd0", "bnd1", "bnd2", "bnd3"
133 /* Register names for MMX pseudo-registers. */
135 static const char *i386_mmx_names[] =
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
141 /* Register names for byte pseudo-registers. */
143 static const char *i386_byte_names[] =
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
149 /* Register names for word pseudo-registers. */
151 static const char *i386_word_names[] =
153 "ax", "cx", "dx", "bx",
157 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
161 const int num_lower_zmm_regs = 16;
166 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 int mm0_regnum = tdep->mm0_regnum;
174 regnum -= mm0_regnum;
175 return regnum >= 0 && regnum < tdep->num_mmx_regs;
181 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185 regnum -= tdep->al_regnum;
186 return regnum >= 0 && regnum < tdep->num_byte_regs;
192 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196 regnum -= tdep->ax_regnum;
197 return regnum >= 0 && regnum < tdep->num_word_regs;
200 /* Dword register? */
203 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 int eax_regnum = tdep->eax_regnum;
211 regnum -= eax_regnum;
212 return regnum >= 0 && regnum < tdep->num_dword_regs;
215 /* AVX512 register? */
218 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221 int zmm0h_regnum = tdep->zmm0h_regnum;
223 if (zmm0h_regnum < 0)
226 regnum -= zmm0h_regnum;
227 return regnum >= 0 && regnum < tdep->num_zmm_regs;
231 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 int zmm0_regnum = tdep->zmm0_regnum;
239 regnum -= zmm0_regnum;
240 return regnum >= 0 && regnum < tdep->num_zmm_regs;
244 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247 int k0_regnum = tdep->k0_regnum;
253 return regnum >= 0 && regnum < I387_NUM_K_REGS;
257 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 int ymm0h_regnum = tdep->ymm0h_regnum;
262 if (ymm0h_regnum < 0)
265 regnum -= ymm0h_regnum;
266 return regnum >= 0 && regnum < tdep->num_ymm_regs;
272 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 int ymm0_regnum = tdep->ymm0_regnum;
280 regnum -= ymm0_regnum;
281 return regnum >= 0 && regnum < tdep->num_ymm_regs;
285 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 int ymm16h_regnum = tdep->ymm16h_regnum;
290 if (ymm16h_regnum < 0)
293 regnum -= ymm16h_regnum;
294 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
298 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
301 int ymm16_regnum = tdep->ymm16_regnum;
303 if (ymm16_regnum < 0)
306 regnum -= ymm16_regnum;
307 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
313 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 int bnd0_regnum = tdep->bnd0_regnum;
321 regnum -= bnd0_regnum;
322 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
328 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
333 if (num_xmm_regs == 0)
336 regnum -= I387_XMM0_REGNUM (tdep);
337 return regnum >= 0 && regnum < num_xmm_regs;
340 /* XMM_512 register? */
343 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
348 if (num_xmm_avx512_regs == 0)
351 regnum -= I387_XMM16_REGNUM (tdep);
352 return regnum >= 0 && regnum < num_xmm_avx512_regs;
356 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360 if (I387_NUM_XMM_REGS (tdep) == 0)
363 return (regnum == I387_MXCSR_REGNUM (tdep));
369 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373 if (I387_ST0_REGNUM (tdep) < 0)
376 return (I387_ST0_REGNUM (tdep) <= regnum
377 && regnum < I387_FCTRL_REGNUM (tdep));
381 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
385 if (I387_ST0_REGNUM (tdep) < 0)
388 return (I387_FCTRL_REGNUM (tdep) <= regnum
389 && regnum < I387_XMM0_REGNUM (tdep));
392 /* BNDr (raw) register? */
395 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
399 if (I387_BND0R_REGNUM (tdep) < 0)
402 regnum -= tdep->bnd0r_regnum;
403 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
406 /* BND control register? */
409 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413 if (I387_BNDCFGU_REGNUM (tdep) < 0)
416 regnum -= I387_BNDCFGU_REGNUM (tdep);
417 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
423 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
426 int pkru_regnum = tdep->pkru_regnum;
431 regnum -= pkru_regnum;
432 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
435 /* Return the name of register REGNUM, or the empty string if it is
436 an anonymous register. */
439 i386_register_name (struct gdbarch *gdbarch, int regnum)
441 /* Hide the upper YMM registers. */
442 if (i386_ymmh_regnum_p (gdbarch, regnum))
445 /* Hide the upper YMM16-31 registers. */
446 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
449 /* Hide the upper ZMM registers. */
450 if (i386_zmmh_regnum_p (gdbarch, regnum))
453 return tdesc_register_name (gdbarch, regnum);
456 /* Return the name of register REGNUM. */
459 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
462 if (i386_bnd_regnum_p (gdbarch, regnum))
463 return i386_bnd_names[regnum - tdep->bnd0_regnum];
464 if (i386_mmx_regnum_p (gdbarch, regnum))
465 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
466 else if (i386_ymm_regnum_p (gdbarch, regnum))
467 return i386_ymm_names[regnum - tdep->ymm0_regnum];
468 else if (i386_zmm_regnum_p (gdbarch, regnum))
469 return i386_zmm_names[regnum - tdep->zmm0_regnum];
470 else if (i386_byte_regnum_p (gdbarch, regnum))
471 return i386_byte_names[regnum - tdep->al_regnum];
472 else if (i386_word_regnum_p (gdbarch, regnum))
473 return i386_word_names[regnum - tdep->ax_regnum];
475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
478 /* Convert a dbx register number REG to the appropriate register
479 number used by GDB. */
482 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
486 /* This implements what GCC calls the "default" register map
487 (dbx_register_map[]). */
489 if (reg >= 0 && reg <= 7)
491 /* General-purpose registers. The debug info calls %ebp
492 register 4, and %esp register 5. */
499 else if (reg >= 12 && reg <= 19)
501 /* Floating-point registers. */
502 return reg - 12 + I387_ST0_REGNUM (tdep);
504 else if (reg >= 21 && reg <= 28)
507 int ymm0_regnum = tdep->ymm0_regnum;
510 && i386_xmm_regnum_p (gdbarch, reg))
511 return reg - 21 + ymm0_regnum;
513 return reg - 21 + I387_XMM0_REGNUM (tdep);
515 else if (reg >= 29 && reg <= 36)
518 return reg - 29 + I387_MM0_REGNUM (tdep);
521 /* This will hopefully provoke a warning. */
522 return gdbarch_num_cooked_regs (gdbarch);
525 /* Convert SVR4 DWARF register number REG to the appropriate register number
529 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
533 /* This implements the GCC register map that tries to be compatible
534 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
536 /* The SVR4 register numbering includes %eip and %eflags, and
537 numbers the floating point registers differently. */
538 if (reg >= 0 && reg <= 9)
540 /* General-purpose registers. */
543 else if (reg >= 11 && reg <= 18)
545 /* Floating-point registers. */
546 return reg - 11 + I387_ST0_REGNUM (tdep);
548 else if (reg >= 21 && reg <= 36)
550 /* The SSE and MMX registers have the same numbers as with dbx. */
551 return i386_dbx_reg_to_regnum (gdbarch, reg);
556 case 37: return I387_FCTRL_REGNUM (tdep);
557 case 38: return I387_FSTAT_REGNUM (tdep);
558 case 39: return I387_MXCSR_REGNUM (tdep);
559 case 40: return I386_ES_REGNUM;
560 case 41: return I386_CS_REGNUM;
561 case 42: return I386_SS_REGNUM;
562 case 43: return I386_DS_REGNUM;
563 case 44: return I386_FS_REGNUM;
564 case 45: return I386_GS_REGNUM;
570 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
571 num_regs + num_pseudo_regs for other debug formats. */
574 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
576 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
579 return gdbarch_num_cooked_regs (gdbarch);
585 /* This is the variable that is set with "set disassembly-flavor", and
586 its legitimate values. */
587 static const char att_flavor[] = "att";
588 static const char intel_flavor[] = "intel";
589 static const char *const valid_flavors[] =
595 static const char *disassembly_flavor = att_flavor;
598 /* Use the program counter to determine the contents and size of a
599 breakpoint instruction. Return a pointer to a string of bytes that
600 encode a breakpoint instruction, store the length of the string in
601 *LEN and optionally adjust *PC to point to the correct memory
602 location for inserting the breakpoint.
604 On the i386 we have a single breakpoint that fits in a single byte
605 and can be inserted anywhere.
607 This function is 64-bit safe. */
609 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
611 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
614 /* Displaced instruction handling. */
616 /* Skip the legacy instruction prefixes in INSN.
617 Not all prefixes are valid for any particular insn
618 but we needn't care, the insn will fault if it's invalid.
619 The result is a pointer to the first opcode byte,
620 or NULL if we run off the end of the buffer. */
623 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
625 gdb_byte *end = insn + max_len;
631 case DATA_PREFIX_OPCODE:
632 case ADDR_PREFIX_OPCODE:
633 case CS_PREFIX_OPCODE:
634 case DS_PREFIX_OPCODE:
635 case ES_PREFIX_OPCODE:
636 case FS_PREFIX_OPCODE:
637 case GS_PREFIX_OPCODE:
638 case SS_PREFIX_OPCODE:
639 case LOCK_PREFIX_OPCODE:
640 case REPE_PREFIX_OPCODE:
641 case REPNE_PREFIX_OPCODE:
653 i386_absolute_jmp_p (const gdb_byte *insn)
655 /* jmp far (absolute address in operand). */
661 /* jump near, absolute indirect (/4). */
662 if ((insn[1] & 0x38) == 0x20)
665 /* jump far, absolute indirect (/5). */
666 if ((insn[1] & 0x38) == 0x28)
673 /* Return non-zero if INSN is a jump, zero otherwise. */
676 i386_jmp_p (const gdb_byte *insn)
678 /* jump short, relative. */
682 /* jump near, relative. */
686 return i386_absolute_jmp_p (insn);
690 i386_absolute_call_p (const gdb_byte *insn)
692 /* call far, absolute. */
698 /* Call near, absolute indirect (/2). */
699 if ((insn[1] & 0x38) == 0x10)
702 /* Call far, absolute indirect (/3). */
703 if ((insn[1] & 0x38) == 0x18)
711 i386_ret_p (const gdb_byte *insn)
715 case 0xc2: /* ret near, pop N bytes. */
716 case 0xc3: /* ret near */
717 case 0xca: /* ret far, pop N bytes. */
718 case 0xcb: /* ret far */
719 case 0xcf: /* iret */
728 i386_call_p (const gdb_byte *insn)
730 if (i386_absolute_call_p (insn))
733 /* call near, relative. */
740 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
741 length in bytes. Otherwise, return zero. */
744 i386_syscall_p (const gdb_byte *insn, int *lengthp)
746 /* Is it 'int $0x80'? */
747 if ((insn[0] == 0xcd && insn[1] == 0x80)
748 /* Or is it 'sysenter'? */
749 || (insn[0] == 0x0f && insn[1] == 0x34)
750 /* Or is it 'syscall'? */
751 || (insn[0] == 0x0f && insn[1] == 0x05))
760 /* The gdbarch insn_is_call method. */
763 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770 return i386_call_p (insn);
773 /* The gdbarch insn_is_ret method. */
776 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
778 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
780 read_code (addr, buf, I386_MAX_INSN_LEN);
781 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
783 return i386_ret_p (insn);
786 /* The gdbarch insn_is_jump method. */
789 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
791 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
793 read_code (addr, buf, I386_MAX_INSN_LEN);
794 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
796 return i386_jmp_p (insn);
799 /* Some kernels may run one past a syscall insn, so we have to cope. */
801 struct displaced_step_closure *
802 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 CORE_ADDR from, CORE_ADDR to,
804 struct regcache *regs)
806 size_t len = gdbarch_max_insn_length (gdbarch);
807 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
808 gdb_byte *buf = closure->buf.data ();
810 read_memory (from, buf, len);
812 /* GDB may get control back after the insn after the syscall.
813 Presumably this is a kernel bug.
814 If this is a syscall, make sure there's a nop afterwards. */
819 insn = i386_skip_prefixes (buf, len);
820 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
821 insn[syscall_length] = NOP_OPCODE;
824 write_memory (to, buf, len);
828 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
829 paddress (gdbarch, from), paddress (gdbarch, to));
830 displaced_step_dump_bytes (gdb_stdlog, buf, len);
836 /* Fix up the state of registers and memory after having single-stepped
837 a displaced instruction. */
840 i386_displaced_step_fixup (struct gdbarch *gdbarch,
841 struct displaced_step_closure *closure_,
842 CORE_ADDR from, CORE_ADDR to,
843 struct regcache *regs)
845 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847 /* The offset we applied to the instruction's address.
848 This could well be negative (when viewed as a signed 32-bit
849 value), but ULONGEST won't reflect that, so take care when
851 ULONGEST insn_offset = to - from;
853 i386_displaced_step_closure *closure
854 = (i386_displaced_step_closure *) closure_;
855 gdb_byte *insn = closure->buf.data ();
856 /* The start of the insn, needed in case we see some prefixes. */
857 gdb_byte *insn_start = insn;
860 fprintf_unfiltered (gdb_stdlog,
861 "displaced: fixup (%s, %s), "
862 "insn = 0x%02x 0x%02x ...\n",
863 paddress (gdbarch, from), paddress (gdbarch, to),
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
870 /* Relocate the %eip, if necessary. */
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
877 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (! i386_absolute_jmp_p (insn)
890 && ! i386_absolute_call_p (insn)
891 && ! i386_ret_p (insn))
896 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
903 But most system calls don't, and we do need to relocate %eip.
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
912 if (i386_syscall_p (insn, &insn_len)
913 && orig_eip != to + (insn - insn_start) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures its a nop,
917 we add one to the length for it. */
918 && orig_eip != to + (insn - insn_start) + insn_len + 1)
921 fprintf_unfiltered (gdb_stdlog,
922 "displaced: syscall changed %%eip; "
927 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
929 /* If we just stepped over a breakpoint insn, we don't backup
930 the pc on purpose; this is to match behaviour without
933 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
936 fprintf_unfiltered (gdb_stdlog,
938 "relocated %%eip from %s to %s\n",
939 paddress (gdbarch, orig_eip),
940 paddress (gdbarch, eip));
944 /* If the instruction was PUSHFL, then the TF bit will be set in the
945 pushed value, and should be cleared. We'll leave this for later,
946 since GDB already messes up the TF flag when stepping over a
949 /* If the instruction was a call, the return address now atop the
950 stack is the address following the copied instruction. We need
951 to make it the address following the original instruction. */
952 if (i386_call_p (insn))
956 const ULONGEST retaddr_len = 4;
958 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
959 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
960 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
961 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
964 fprintf_unfiltered (gdb_stdlog,
965 "displaced: relocated return addr at %s to %s\n",
966 paddress (gdbarch, esp),
967 paddress (gdbarch, retaddr));
972 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
974 target_write_memory (*to, buf, len);
979 i386_relocate_instruction (struct gdbarch *gdbarch,
980 CORE_ADDR *to, CORE_ADDR oldloc)
982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
983 gdb_byte buf[I386_MAX_INSN_LEN];
984 int offset = 0, rel32, newrel;
986 gdb_byte *insn = buf;
988 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
990 insn_length = gdb_buffered_insn_length (gdbarch, insn,
991 I386_MAX_INSN_LEN, oldloc);
993 /* Get past the prefixes. */
994 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
996 /* Adjust calls with 32-bit relative addresses as push/jump, with
997 the address pushed being the location where the original call in
998 the user program would return to. */
1001 gdb_byte push_buf[16];
1002 unsigned int ret_addr;
1004 /* Where "ret" in the original code will return to. */
1005 ret_addr = oldloc + insn_length;
1006 push_buf[0] = 0x68; /* pushq $... */
1007 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1008 /* Push the push. */
1009 append_insns (to, 5, push_buf);
1011 /* Convert the relative call to a relative jump. */
1014 /* Adjust the destination offset. */
1015 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
1017 store_signed_integer (insn + 1, 4, byte_order, newrel);
1019 if (debug_displaced)
1020 fprintf_unfiltered (gdb_stdlog,
1021 "Adjusted insn rel32=%s at %s to"
1022 " rel32=%s at %s\n",
1023 hex_string (rel32), paddress (gdbarch, oldloc),
1024 hex_string (newrel), paddress (gdbarch, *to));
1026 /* Write the adjusted jump into its displaced location. */
1027 append_insns (to, 5, insn);
1031 /* Adjust jumps with 32-bit relative addresses. Calls are already
1033 if (insn[0] == 0xe9)
1035 /* Adjust conditional jumps. */
1036 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1041 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1042 newrel = (oldloc - *to) + rel32;
1043 store_signed_integer (insn + offset, 4, byte_order, newrel);
1044 if (debug_displaced)
1045 fprintf_unfiltered (gdb_stdlog,
1046 "Adjusted insn rel32=%s at %s to"
1047 " rel32=%s at %s\n",
1048 hex_string (rel32), paddress (gdbarch, oldloc),
1049 hex_string (newrel), paddress (gdbarch, *to));
1052 /* Write the adjusted instructions into their displaced
1054 append_insns (to, insn_length, buf);
1058 #ifdef I386_REGNO_TO_SYMMETRY
1059 #error "The Sequent Symmetry is no longer supported."
1062 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1063 and %esp "belong" to the calling function. Therefore these
1064 registers should be saved if they're going to be modified. */
1066 /* The maximum number of saved registers. This should include all
1067 registers mentioned above, and %eip. */
1068 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1070 struct i386_frame_cache
1078 /* Saved registers. */
1079 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1084 /* Stack space reserved for local variables. */
1088 /* Allocate and initialize a frame cache. */
1090 static struct i386_frame_cache *
1091 i386_alloc_frame_cache (void)
1093 struct i386_frame_cache *cache;
1096 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1101 cache->sp_offset = -4;
1104 /* Saved registers. We initialize these to -1 since zero is a valid
1105 offset (that's where %ebp is supposed to be stored). */
1106 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1107 cache->saved_regs[i] = -1;
1108 cache->saved_sp = 0;
1109 cache->saved_sp_reg = -1;
1110 cache->pc_in_eax = 0;
1112 /* Frameless until proven otherwise. */
1118 /* If the instruction at PC is a jump, return the address of its
1119 target. Otherwise, return PC. */
1122 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1124 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1129 if (target_read_code (pc, &op, 1))
1136 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1142 /* Relative jump: if data16 == 0, disp32, else disp16. */
1145 delta = read_memory_integer (pc + 2, 2, byte_order);
1147 /* Include the size of the jmp instruction (including the
1153 delta = read_memory_integer (pc + 1, 4, byte_order);
1155 /* Include the size of the jmp instruction. */
1160 /* Relative jump, disp8 (ignore data16). */
1161 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1163 delta += data16 + 2;
1170 /* Check whether PC points at a prologue for a function returning a
1171 structure or union. If so, it updates CACHE and returns the
1172 address of the first instruction after the code sequence that
1173 removes the "hidden" argument from the stack or CURRENT_PC,
1174 whichever is smaller. Otherwise, return PC. */
1177 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1178 struct i386_frame_cache *cache)
1180 /* Functions that return a structure or union start with:
1183 xchgl %eax, (%esp) 0x87 0x04 0x24
1184 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1186 (the System V compiler puts out the second `xchg' instruction,
1187 and the assembler doesn't try to optimize it, so the 'sib' form
1188 gets generated). This sequence is used to get the address of the
1189 return buffer for a function that returns a structure. */
1190 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1191 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 if (current_pc <= pc)
1198 if (target_read_code (pc, &op, 1))
1201 if (op != 0x58) /* popl %eax */
1204 if (target_read_code (pc + 1, buf, 4))
1207 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1210 if (current_pc == pc)
1212 cache->sp_offset += 4;
1216 if (current_pc == pc + 1)
1218 cache->pc_in_eax = 1;
1222 if (buf[1] == proto1[1])
1229 i386_skip_probe (CORE_ADDR pc)
1231 /* A function may start with
1245 if (target_read_code (pc, &op, 1))
1248 if (op == 0x68 || op == 0x6a)
1252 /* Skip past the `pushl' instruction; it has either a one-byte or a
1253 four-byte operand, depending on the opcode. */
1259 /* Read the following 8 bytes, which should be `call _probe' (6
1260 bytes) followed by `addl $4,%esp' (2 bytes). */
1261 read_memory (pc + delta, buf, sizeof (buf));
1262 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1263 pc += delta + sizeof (buf);
1269 /* GCC 4.1 and later, can put code in the prologue to realign the
1270 stack pointer. Check whether PC points to such code, and update
1271 CACHE accordingly. Return the first instruction after the code
1272 sequence or CURRENT_PC, whichever is smaller. If we don't
1273 recognize the code, return PC. */
1276 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1277 struct i386_frame_cache *cache)
1279 /* There are 2 code sequences to re-align stack before the frame
1282 1. Use a caller-saved saved register:
1288 2. Use a callee-saved saved register:
1295 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1297 0x83 0xe4 0xf0 andl $-16, %esp
1298 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1303 int offset, offset_and;
1304 static int regnums[8] = {
1305 I386_EAX_REGNUM, /* %eax */
1306 I386_ECX_REGNUM, /* %ecx */
1307 I386_EDX_REGNUM, /* %edx */
1308 I386_EBX_REGNUM, /* %ebx */
1309 I386_ESP_REGNUM, /* %esp */
1310 I386_EBP_REGNUM, /* %ebp */
1311 I386_ESI_REGNUM, /* %esi */
1312 I386_EDI_REGNUM /* %edi */
1315 if (target_read_code (pc, buf, sizeof buf))
1318 /* Check caller-saved saved register. The first instruction has
1319 to be "leal 4(%esp), %reg". */
1320 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1322 /* MOD must be binary 10 and R/M must be binary 100. */
1323 if ((buf[1] & 0xc7) != 0x44)
1326 /* REG has register number. */
1327 reg = (buf[1] >> 3) & 7;
1332 /* Check callee-saved saved register. The first instruction
1333 has to be "pushl %reg". */
1334 if ((buf[0] & 0xf8) != 0x50)
1340 /* The next instruction has to be "leal 8(%esp), %reg". */
1341 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1344 /* MOD must be binary 10 and R/M must be binary 100. */
1345 if ((buf[2] & 0xc7) != 0x44)
1348 /* REG has register number. Registers in pushl and leal have to
1350 if (reg != ((buf[2] >> 3) & 7))
1356 /* Rigister can't be %esp nor %ebp. */
1357 if (reg == 4 || reg == 5)
1360 /* The next instruction has to be "andl $-XXX, %esp". */
1361 if (buf[offset + 1] != 0xe4
1362 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1365 offset_and = offset;
1366 offset += buf[offset] == 0x81 ? 6 : 3;
1368 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1369 0xfc. REG must be binary 110 and MOD must be binary 01. */
1370 if (buf[offset] != 0xff
1371 || buf[offset + 2] != 0xfc
1372 || (buf[offset + 1] & 0xf8) != 0x70)
1375 /* R/M has register. Registers in leal and pushl have to be the
1377 if (reg != (buf[offset + 1] & 7))
1380 if (current_pc > pc + offset_and)
1381 cache->saved_sp_reg = regnums[reg];
1383 return std::min (pc + offset + 3, current_pc);
1386 /* Maximum instruction length we need to handle. */
1387 #define I386_MAX_MATCHED_INSN_LEN 6
1389 /* Instruction description. */
1393 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1394 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1397 /* Return whether instruction at PC matches PATTERN. */
1400 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1404 if (target_read_code (pc, &op, 1))
1407 if ((op & pattern.mask[0]) == pattern.insn[0])
1409 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1410 int insn_matched = 1;
1413 gdb_assert (pattern.len > 1);
1414 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1416 if (target_read_code (pc + 1, buf, pattern.len - 1))
1419 for (i = 1; i < pattern.len; i++)
1421 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1424 return insn_matched;
1429 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1430 the first instruction description that matches. Otherwise, return
1433 static struct i386_insn *
1434 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 struct i386_insn *pattern;
1438 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1440 if (i386_match_pattern (pc, *pattern))
1447 /* Return whether PC points inside a sequence of instructions that
1448 matches INSN_PATTERNS. */
1451 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1453 CORE_ADDR current_pc;
1455 struct i386_insn *insn;
1457 insn = i386_match_insn (pc, insn_patterns);
1462 ix = insn - insn_patterns;
1463 for (i = ix - 1; i >= 0; i--)
1465 current_pc -= insn_patterns[i].len;
1467 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 current_pc = pc + insn->len;
1472 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1474 if (!i386_match_pattern (current_pc, *insn))
1477 current_pc += insn->len;
1483 /* Some special instructions that might be migrated by GCC into the
1484 part of the prologue that sets up the new stack frame. Because the
1485 stack frame hasn't been setup yet, no registers have been saved
1486 yet, and only the scratch registers %eax, %ecx and %edx can be
1489 struct i386_insn i386_frame_setup_skip_insns[] =
1491 /* Check for `movb imm8, r' and `movl imm32, r'.
1493 ??? Should we handle 16-bit operand-sizes here? */
1495 /* `movb imm8, %al' and `movb imm8, %ah' */
1496 /* `movb imm8, %cl' and `movb imm8, %ch' */
1497 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1498 /* `movb imm8, %dl' and `movb imm8, %dh' */
1499 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1500 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1501 { 5, { 0xb8 }, { 0xfe } },
1502 /* `movl imm32, %edx' */
1503 { 5, { 0xba }, { 0xff } },
1505 /* Check for `mov imm32, r32'. Note that there is an alternative
1506 encoding for `mov m32, %eax'.
1508 ??? Should we handle SIB adressing here?
1509 ??? Should we handle 16-bit operand-sizes here? */
1511 /* `movl m32, %eax' */
1512 { 5, { 0xa1 }, { 0xff } },
1513 /* `movl m32, %eax' and `mov; m32, %ecx' */
1514 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1515 /* `movl m32, %edx' */
1516 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1518 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1519 Because of the symmetry, there are actually two ways to encode
1520 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1521 opcode bytes 0x31 and 0x33 for `xorl'. */
1523 /* `subl %eax, %eax' */
1524 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1525 /* `subl %ecx, %ecx' */
1526 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1527 /* `subl %edx, %edx' */
1528 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1529 /* `xorl %eax, %eax' */
1530 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1531 /* `xorl %ecx, %ecx' */
1532 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1533 /* `xorl %edx, %edx' */
1534 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1539 /* Check whether PC points to a no-op instruction. */
1541 i386_skip_noop (CORE_ADDR pc)
1546 if (target_read_code (pc, &op, 1))
1552 /* Ignore `nop' instruction. */
1556 if (target_read_code (pc, &op, 1))
1560 /* Ignore no-op instruction `mov %edi, %edi'.
1561 Microsoft system dlls often start with
1562 a `mov %edi,%edi' instruction.
1563 The 5 bytes before the function start are
1564 filled with `nop' instructions.
1565 This pattern can be used for hot-patching:
1566 The `mov %edi, %edi' instruction can be replaced by a
1567 near jump to the location of the 5 `nop' instructions
1568 which can be replaced by a 32-bit jump to anywhere
1569 in the 32-bit address space. */
1571 else if (op == 0x8b)
1573 if (target_read_code (pc + 1, &op, 1))
1579 if (target_read_code (pc, &op, 1))
1589 /* Check whether PC points at a code that sets up a new stack frame.
1590 If so, it updates CACHE and returns the address of the first
1591 instruction after the sequence that sets up the frame or LIMIT,
1592 whichever is smaller. If we don't recognize the code, return PC. */
1595 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1596 CORE_ADDR pc, CORE_ADDR limit,
1597 struct i386_frame_cache *cache)
1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1600 struct i386_insn *insn;
1607 if (target_read_code (pc, &op, 1))
1610 if (op == 0x55) /* pushl %ebp */
1612 /* Take into account that we've executed the `pushl %ebp' that
1613 starts this instruction sequence. */
1614 cache->saved_regs[I386_EBP_REGNUM] = 0;
1615 cache->sp_offset += 4;
1618 /* If that's all, return now. */
1622 /* Check for some special instructions that might be migrated by
1623 GCC into the prologue and skip them. At this point in the
1624 prologue, code should only touch the scratch registers %eax,
1625 %ecx and %edx, so while the number of posibilities is sheer,
1628 Make sure we only skip these instructions if we later see the
1629 `movl %esp, %ebp' that actually sets up the frame. */
1630 while (pc + skip < limit)
1632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1639 /* If that's all, return now. */
1640 if (limit <= pc + skip)
1643 if (target_read_code (pc + skip, &op, 1))
1646 /* The i386 prologue looks like
1652 and a different prologue can be generated for atom.
1656 lea -0x10(%esp),%esp
1658 We handle both of them here. */
1662 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1664 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1670 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1675 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1676 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1685 /* OK, we actually have a frame. We just don't know how large
1686 it is yet. Set its size to zero. We'll adjust it if
1687 necessary. We also now commit to skipping the special
1688 instructions mentioned before. */
1691 /* If that's all, return now. */
1695 /* Check for stack adjustment
1701 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1702 reg, so we don't have to worry about a data16 prefix. */
1703 if (target_read_code (pc, &op, 1))
1707 /* `subl' with 8-bit immediate. */
1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1709 /* Some instruction starting with 0x83 other than `subl'. */
1712 /* `subl' with signed 8-bit immediate (though it wouldn't
1713 make sense to be negative). */
1714 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1717 else if (op == 0x81)
1719 /* Maybe it is `subl' with a 32-bit immediate. */
1720 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1721 /* Some instruction starting with 0x81 other than `subl'. */
1724 /* It is `subl' with a 32-bit immediate. */
1725 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1728 else if (op == 0x8d)
1730 /* The ModR/M byte is 0x64. */
1731 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1733 /* 'lea' with 8-bit displacement. */
1734 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1739 /* Some instruction other than `subl' nor 'lea'. */
1743 else if (op == 0xc8) /* enter */
1745 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1752 /* Check whether PC points at code that saves registers on the stack.
1753 If so, it updates CACHE and returns the address of the first
1754 instruction after the register saves or CURRENT_PC, whichever is
1755 smaller. Otherwise, return PC. */
1758 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1759 struct i386_frame_cache *cache)
1761 CORE_ADDR offset = 0;
1765 if (cache->locals > 0)
1766 offset -= cache->locals;
1767 for (i = 0; i < 8 && pc < current_pc; i++)
1769 if (target_read_code (pc, &op, 1))
1771 if (op < 0x50 || op > 0x57)
1775 cache->saved_regs[op - 0x50] = offset;
1776 cache->sp_offset += 4;
1783 /* Do a full analysis of the prologue at PC and update CACHE
1784 accordingly. Bail out early if CURRENT_PC is reached. Return the
1785 address where the analysis stopped.
1787 We handle these cases:
1789 The startup sequence can be at the start of the function, or the
1790 function can start with a branch to startup code at the end.
1792 %ebp can be set up with either the 'enter' instruction, or "pushl
1793 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1794 once used in the System V compiler).
1796 Local space is allocated just below the saved %ebp by either the
1797 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1798 16-bit unsigned argument for space to allocate, and the 'addl'
1799 instruction could have either a signed byte, or 32-bit immediate.
1801 Next, the registers used by this function are pushed. With the
1802 System V compiler they will always be in the order: %edi, %esi,
1803 %ebx (and sometimes a harmless bug causes it to also save but not
1804 restore %eax); however, the code below is willing to see the pushes
1805 in any order, and will handle up to 8 of them.
1807 If the setup sequence is at the end of the function, then the next
1808 instruction will be a branch back to the start. */
1811 i386_analyze_prologue (struct gdbarch *gdbarch,
1812 CORE_ADDR pc, CORE_ADDR current_pc,
1813 struct i386_frame_cache *cache)
1815 pc = i386_skip_noop (pc);
1816 pc = i386_follow_jump (gdbarch, pc);
1817 pc = i386_analyze_struct_return (pc, current_pc, cache);
1818 pc = i386_skip_probe (pc);
1819 pc = i386_analyze_stack_align (pc, current_pc, cache);
1820 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1821 return i386_analyze_register_saves (pc, current_pc, cache);
1824 /* Return PC of first real instruction. */
1827 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1831 static gdb_byte pic_pat[6] =
1833 0xe8, 0, 0, 0, 0, /* call 0x0 */
1834 0x5b, /* popl %ebx */
1836 struct i386_frame_cache cache;
1840 CORE_ADDR func_addr;
1842 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1844 CORE_ADDR post_prologue_pc
1845 = skip_prologue_using_sal (gdbarch, func_addr);
1846 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1848 /* Clang always emits a line note before the prologue and another
1849 one after. We trust clang to emit usable line notes. */
1850 if (post_prologue_pc
1852 && COMPUNIT_PRODUCER (cust) != NULL
1853 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1854 return std::max (start_pc, post_prologue_pc);
1858 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1859 if (cache.locals < 0)
1862 /* Found valid frame setup. */
1864 /* The native cc on SVR4 in -K PIC mode inserts the following code
1865 to get the address of the global offset table (GOT) into register
1870 movl %ebx,x(%ebp) (optional)
1873 This code is with the rest of the prologue (at the end of the
1874 function), so we have to skip it to get to the first real
1875 instruction at the start of the function. */
1877 for (i = 0; i < 6; i++)
1879 if (target_read_code (pc + i, &op, 1))
1882 if (pic_pat[i] != op)
1889 if (target_read_code (pc + delta, &op, 1))
1892 if (op == 0x89) /* movl %ebx, x(%ebp) */
1894 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1896 if (op == 0x5d) /* One byte offset from %ebp. */
1898 else if (op == 0x9d) /* Four byte offset from %ebp. */
1900 else /* Unexpected instruction. */
1903 if (target_read_code (pc + delta, &op, 1))
1908 if (delta > 0 && op == 0x81
1909 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1916 /* If the function starts with a branch (to startup code at the end)
1917 the last instruction should bring us back to the first
1918 instruction of the real code. */
1919 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1920 pc = i386_follow_jump (gdbarch, pc);
1925 /* Check that the code pointed to by PC corresponds to a call to
1926 __main, skip it if so. Return PC otherwise. */
1929 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1931 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1934 if (target_read_code (pc, &op, 1))
1940 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1942 /* Make sure address is computed correctly as a 32bit
1943 integer even if CORE_ADDR is 64 bit wide. */
1944 struct bound_minimal_symbol s;
1945 CORE_ADDR call_dest;
1947 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1948 call_dest = call_dest & 0xffffffffU;
1949 s = lookup_minimal_symbol_by_pc (call_dest);
1950 if (s.minsym != NULL
1951 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1952 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1960 /* This function is 64-bit safe. */
1963 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1968 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1972 /* Normal frames. */
1975 i386_frame_cache_1 (struct frame_info *this_frame,
1976 struct i386_frame_cache *cache)
1978 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1979 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1983 cache->pc = get_frame_func (this_frame);
1985 /* In principle, for normal frames, %ebp holds the frame pointer,
1986 which holds the base address for the current stack frame.
1987 However, for functions that don't need it, the frame pointer is
1988 optional. For these "frameless" functions the frame pointer is
1989 actually the frame pointer of the calling frame. Signal
1990 trampolines are just a special case of a "frameless" function.
1991 They (usually) share their frame pointer with the frame that was
1992 in progress when the signal occurred. */
1994 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1995 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1996 if (cache->base == 0)
2002 /* For normal frames, %eip is stored at 4(%ebp). */
2003 cache->saved_regs[I386_EIP_REGNUM] = 4;
2006 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2009 if (cache->locals < 0)
2011 /* We didn't find a valid frame, which means that CACHE->base
2012 currently holds the frame pointer for our calling frame. If
2013 we're at the start of a function, or somewhere half-way its
2014 prologue, the function's frame probably hasn't been fully
2015 setup yet. Try to reconstruct the base address for the stack
2016 frame by looking at the stack pointer. For truly "frameless"
2017 functions this might work too. */
2019 if (cache->saved_sp_reg != -1)
2021 /* Saved stack pointer has been saved. */
2022 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2023 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2025 /* We're halfway aligning the stack. */
2026 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2027 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2029 /* This will be added back below. */
2030 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2032 else if (cache->pc != 0
2033 || target_read_code (get_frame_pc (this_frame), buf, 1))
2035 /* We're in a known function, but did not find a frame
2036 setup. Assume that the function does not use %ebp.
2037 Alternatively, we may have jumped to an invalid
2038 address; in that case there is definitely no new
2040 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2041 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 /* We're in an unknown function. We could not find the start
2046 of the function to analyze the prologue; our best option is
2047 to assume a typical frame layout with the caller's %ebp
2049 cache->saved_regs[I386_EBP_REGNUM] = 0;
2052 if (cache->saved_sp_reg != -1)
2054 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2055 register may be unavailable). */
2056 if (cache->saved_sp == 0
2057 && deprecated_frame_register_read (this_frame,
2058 cache->saved_sp_reg, buf))
2059 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2061 /* Now that we have the base address for the stack frame we can
2062 calculate the value of %esp in the calling frame. */
2063 else if (cache->saved_sp == 0)
2064 cache->saved_sp = cache->base + 8;
2066 /* Adjust all the saved registers such that they contain addresses
2067 instead of offsets. */
2068 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2069 if (cache->saved_regs[i] != -1)
2070 cache->saved_regs[i] += cache->base;
2075 static struct i386_frame_cache *
2076 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2078 struct i386_frame_cache *cache;
2081 return (struct i386_frame_cache *) *this_cache;
2083 cache = i386_alloc_frame_cache ();
2084 *this_cache = cache;
2088 i386_frame_cache_1 (this_frame, cache);
2090 catch (const gdb_exception_error &ex)
2092 if (ex.error != NOT_AVAILABLE_ERROR)
2100 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2101 struct frame_id *this_id)
2103 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2106 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2107 else if (cache->base == 0)
2109 /* This marks the outermost frame. */
2113 /* See the end of i386_push_dummy_call. */
2114 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2118 static enum unwind_stop_reason
2119 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2122 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2125 return UNWIND_UNAVAILABLE;
2127 /* This marks the outermost frame. */
2128 if (cache->base == 0)
2129 return UNWIND_OUTERMOST;
2131 return UNWIND_NO_REASON;
2134 static struct value *
2135 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2138 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2140 gdb_assert (regnum >= 0);
2142 /* The System V ABI says that:
2144 "The flags register contains the system flags, such as the
2145 direction flag and the carry flag. The direction flag must be
2146 set to the forward (that is, zero) direction before entry and
2147 upon exit from a function. Other user flags have no specified
2148 role in the standard calling sequence and are not preserved."
2150 To guarantee the "upon exit" part of that statement we fake a
2151 saved flags register that has its direction flag cleared.
2153 Note that GCC doesn't seem to rely on the fact that the direction
2154 flag is cleared after a function return; it always explicitly
2155 clears the flag before operations where it matters.
2157 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2158 right thing to do. The way we fake the flags register here makes
2159 it impossible to change it. */
2161 if (regnum == I386_EFLAGS_REGNUM)
2165 val = get_frame_register_unsigned (this_frame, regnum);
2167 return frame_unwind_got_constant (this_frame, regnum, val);
2170 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2171 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2173 if (regnum == I386_ESP_REGNUM
2174 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2176 /* If the SP has been saved, but we don't know where, then this
2177 means that SAVED_SP_REG register was found unavailable back
2178 when we built the cache. */
2179 if (cache->saved_sp == 0)
2180 return frame_unwind_got_register (this_frame, regnum,
2181 cache->saved_sp_reg);
2183 return frame_unwind_got_constant (this_frame, regnum,
2187 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2188 return frame_unwind_got_memory (this_frame, regnum,
2189 cache->saved_regs[regnum]);
2191 return frame_unwind_got_register (this_frame, regnum, regnum);
2194 static const struct frame_unwind i386_frame_unwind =
2197 i386_frame_unwind_stop_reason,
2199 i386_frame_prev_register,
2201 default_frame_sniffer
2204 /* Normal frames, but in a function epilogue. */
2206 /* Implement the stack_frame_destroyed_p gdbarch method.
2208 The epilogue is defined here as the 'ret' instruction, which will
2209 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2210 the function's stack frame. */
2213 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2216 struct compunit_symtab *cust;
2218 cust = find_pc_compunit_symtab (pc);
2219 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2222 if (target_read_memory (pc, &insn, 1))
2223 return 0; /* Can't read memory at pc. */
2225 if (insn != 0xc3) /* 'ret' instruction. */
2232 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2233 struct frame_info *this_frame,
2234 void **this_prologue_cache)
2236 if (frame_relative_level (this_frame) == 0)
2237 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2238 get_frame_pc (this_frame));
2243 static struct i386_frame_cache *
2244 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2246 struct i386_frame_cache *cache;
2250 return (struct i386_frame_cache *) *this_cache;
2252 cache = i386_alloc_frame_cache ();
2253 *this_cache = cache;
2257 cache->pc = get_frame_func (this_frame);
2259 /* At this point the stack looks as if we just entered the
2260 function, with the return address at the top of the
2262 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2263 cache->base = sp + cache->sp_offset;
2264 cache->saved_sp = cache->base + 8;
2265 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2269 catch (const gdb_exception_error &ex)
2271 if (ex.error != NOT_AVAILABLE_ERROR)
2278 static enum unwind_stop_reason
2279 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2282 struct i386_frame_cache *cache =
2283 i386_epilogue_frame_cache (this_frame, this_cache);
2286 return UNWIND_UNAVAILABLE;
2288 return UNWIND_NO_REASON;
2292 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 struct frame_id *this_id)
2296 struct i386_frame_cache *cache =
2297 i386_epilogue_frame_cache (this_frame, this_cache);
2300 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2305 static struct value *
2306 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2307 void **this_cache, int regnum)
2309 /* Make sure we've initialized the cache. */
2310 i386_epilogue_frame_cache (this_frame, this_cache);
2312 return i386_frame_prev_register (this_frame, this_cache, regnum);
2315 static const struct frame_unwind i386_epilogue_frame_unwind =
2318 i386_epilogue_frame_unwind_stop_reason,
2319 i386_epilogue_frame_this_id,
2320 i386_epilogue_frame_prev_register,
2322 i386_epilogue_frame_sniffer
2326 /* Stack-based trampolines. */
2328 /* These trampolines are used on cross x86 targets, when taking the
2329 address of a nested function. When executing these trampolines,
2330 no stack frame is set up, so we are in a similar situation as in
2331 epilogues and i386_epilogue_frame_this_id can be re-used. */
2333 /* Static chain passed in register. */
2335 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2337 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2338 { 5, { 0xb8 }, { 0xfe } },
2341 { 5, { 0xe9 }, { 0xff } },
2346 /* Static chain passed on stack (when regparm=3). */
2348 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2351 { 5, { 0x68 }, { 0xff } },
2354 { 5, { 0xe9 }, { 0xff } },
2359 /* Return whether PC points inside a stack trampoline. */
2362 i386_in_stack_tramp_p (CORE_ADDR pc)
2367 /* A stack trampoline is detected if no name is associated
2368 to the current pc and if it points inside a trampoline
2371 find_pc_partial_function (pc, &name, NULL, NULL);
2375 if (target_read_memory (pc, &insn, 1))
2378 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2379 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2386 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2387 struct frame_info *this_frame,
2390 if (frame_relative_level (this_frame) == 0)
2391 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2396 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2399 i386_epilogue_frame_unwind_stop_reason,
2400 i386_epilogue_frame_this_id,
2401 i386_epilogue_frame_prev_register,
2403 i386_stack_tramp_frame_sniffer
2406 /* Generate a bytecode expression to get the value of the saved PC. */
2409 i386_gen_return_address (struct gdbarch *gdbarch,
2410 struct agent_expr *ax, struct axs_value *value,
2413 /* The following sequence assumes the traditional use of the base
2415 ax_reg (ax, I386_EBP_REGNUM);
2417 ax_simple (ax, aop_add);
2418 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2419 value->kind = axs_lvalue_memory;
2423 /* Signal trampolines. */
2425 static struct i386_frame_cache *
2426 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2428 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2429 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2431 struct i386_frame_cache *cache;
2436 return (struct i386_frame_cache *) *this_cache;
2438 cache = i386_alloc_frame_cache ();
2442 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2443 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2445 addr = tdep->sigcontext_addr (this_frame);
2446 if (tdep->sc_reg_offset)
2450 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452 for (i = 0; i < tdep->sc_num_regs; i++)
2453 if (tdep->sc_reg_offset[i] != -1)
2454 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2458 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2459 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2464 catch (const gdb_exception_error &ex)
2466 if (ex.error != NOT_AVAILABLE_ERROR)
2470 *this_cache = cache;
2474 static enum unwind_stop_reason
2475 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2478 struct i386_frame_cache *cache =
2479 i386_sigtramp_frame_cache (this_frame, this_cache);
2482 return UNWIND_UNAVAILABLE;
2484 return UNWIND_NO_REASON;
2488 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2489 struct frame_id *this_id)
2491 struct i386_frame_cache *cache =
2492 i386_sigtramp_frame_cache (this_frame, this_cache);
2495 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2498 /* See the end of i386_push_dummy_call. */
2499 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2503 static struct value *
2504 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2505 void **this_cache, int regnum)
2507 /* Make sure we've initialized the cache. */
2508 i386_sigtramp_frame_cache (this_frame, this_cache);
2510 return i386_frame_prev_register (this_frame, this_cache, regnum);
2514 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2515 struct frame_info *this_frame,
2516 void **this_prologue_cache)
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2520 /* We shouldn't even bother if we don't have a sigcontext_addr
2522 if (tdep->sigcontext_addr == NULL)
2525 if (tdep->sigtramp_p != NULL)
2527 if (tdep->sigtramp_p (this_frame))
2531 if (tdep->sigtramp_start != 0)
2533 CORE_ADDR pc = get_frame_pc (this_frame);
2535 gdb_assert (tdep->sigtramp_end != 0);
2536 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2543 static const struct frame_unwind i386_sigtramp_frame_unwind =
2546 i386_sigtramp_frame_unwind_stop_reason,
2547 i386_sigtramp_frame_this_id,
2548 i386_sigtramp_frame_prev_register,
2550 i386_sigtramp_frame_sniffer
2555 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2557 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2562 static const struct frame_base i386_frame_base =
2565 i386_frame_base_address,
2566 i386_frame_base_address,
2567 i386_frame_base_address
2570 static struct frame_id
2571 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2575 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2577 /* See the end of i386_push_dummy_call. */
2578 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2581 /* _Decimal128 function return values need 16-byte alignment on the
2585 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2587 return sp & -(CORE_ADDR)16;
2591 /* Figure out where the longjmp will land. Slurp the args out of the
2592 stack. We expect the first arg to be a pointer to the jmp_buf
2593 structure from which we extract the address that we will land at.
2594 This address is copied into PC. This routine returns non-zero on
2598 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2601 CORE_ADDR sp, jb_addr;
2602 struct gdbarch *gdbarch = get_frame_arch (frame);
2603 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2604 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2606 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2607 longjmp will land. */
2608 if (jb_pc_offset == -1)
2611 get_frame_register (frame, I386_ESP_REGNUM, buf);
2612 sp = extract_unsigned_integer (buf, 4, byte_order);
2613 if (target_read_memory (sp + 4, buf, 4))
2616 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2617 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2620 *pc = extract_unsigned_integer (buf, 4, byte_order);
2625 /* Check whether TYPE must be 16-byte-aligned when passed as a
2626 function argument. 16-byte vectors, _Decimal128 and structures or
2627 unions containing such types must be 16-byte-aligned; other
2628 arguments are 4-byte-aligned. */
2631 i386_16_byte_align_p (struct type *type)
2633 type = check_typedef (type);
2634 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2635 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2636 && TYPE_LENGTH (type) == 16)
2638 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2639 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2640 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2641 || TYPE_CODE (type) == TYPE_CODE_UNION)
2644 for (i = 0; i < TYPE_NFIELDS (type); i++)
2646 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2653 /* Implementation for set_gdbarch_push_dummy_code. */
2656 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2657 struct value **args, int nargs, struct type *value_type,
2658 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2659 struct regcache *regcache)
2661 /* Use 0xcc breakpoint - 1 byte. */
2665 /* Keep the stack aligned. */
2670 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2671 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2672 struct value **args, CORE_ADDR sp,
2673 function_call_return_method return_method,
2674 CORE_ADDR struct_addr)
2676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2682 /* BND registers can be in arbitrary values at the moment of the
2683 inferior call. This can cause boundary violations that are not
2684 due to a real bug or even desired by the user. The best to be done
2685 is set the BND registers to allow access to the whole memory, INIT
2686 state, before pushing the inferior call. */
2687 i387_reset_bnd_regs (gdbarch, regcache);
2689 /* Determine the total space required for arguments and struct
2690 return address in a first pass (allowing for 16-byte-aligned
2691 arguments), then push arguments in a second pass. */
2693 for (write_pass = 0; write_pass < 2; write_pass++)
2695 int args_space_used = 0;
2697 if (return_method == return_method_struct)
2701 /* Push value address. */
2702 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2703 write_memory (sp, buf, 4);
2704 args_space_used += 4;
2710 for (i = 0; i < nargs; i++)
2712 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2716 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2717 args_space_used = align_up (args_space_used, 16);
2719 write_memory (sp + args_space_used,
2720 value_contents_all (args[i]), len);
2721 /* The System V ABI says that:
2723 "An argument's size is increased, if necessary, to make it a
2724 multiple of [32-bit] words. This may require tail padding,
2725 depending on the size of the argument."
2727 This makes sure the stack stays word-aligned. */
2728 args_space_used += align_up (len, 4);
2732 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2733 args_space = align_up (args_space, 16);
2734 args_space += align_up (len, 4);
2742 /* The original System V ABI only requires word alignment,
2743 but modern incarnations need 16-byte alignment in order
2744 to support SSE. Since wasting a few bytes here isn't
2745 harmful we unconditionally enforce 16-byte alignment. */
2750 /* Store return address. */
2752 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2753 write_memory (sp, buf, 4);
2755 /* Finally, update the stack pointer... */
2756 store_unsigned_integer (buf, 4, byte_order, sp);
2757 regcache->cooked_write (I386_ESP_REGNUM, buf);
2759 /* ...and fake a frame pointer. */
2760 regcache->cooked_write (I386_EBP_REGNUM, buf);
2762 /* MarkK wrote: This "+ 8" is all over the place:
2763 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2764 i386_dummy_id). It's there, since all frame unwinders for
2765 a given target have to agree (within a certain margin) on the
2766 definition of the stack address of a frame. Otherwise frame id
2767 comparison might not work correctly. Since DWARF2/GCC uses the
2768 stack address *before* the function call as a frame's CFA. On
2769 the i386, when %ebp is used as a frame pointer, the offset
2770 between the contents %ebp and the CFA as defined by GCC. */
2774 /* These registers are used for returning integers (and on some
2775 targets also for returning `struct' and `union' values when their
2776 size and alignment match an integer type). */
2777 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2778 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2780 /* Read, for architecture GDBARCH, a function return value of TYPE
2781 from REGCACHE, and copy that into VALBUF. */
2784 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2785 struct regcache *regcache, gdb_byte *valbuf)
2787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2788 int len = TYPE_LENGTH (type);
2789 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2791 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2793 if (tdep->st0_regnum < 0)
2795 warning (_("Cannot find floating-point return value."));
2796 memset (valbuf, 0, len);
2800 /* Floating-point return values can be found in %st(0). Convert
2801 its contents to the desired type. This is probably not
2802 exactly how it would happen on the target itself, but it is
2803 the best we can do. */
2804 regcache->raw_read (I386_ST0_REGNUM, buf);
2805 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2809 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2810 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2812 if (len <= low_size)
2814 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2815 memcpy (valbuf, buf, len);
2817 else if (len <= (low_size + high_size))
2819 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2820 memcpy (valbuf, buf, low_size);
2821 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2822 memcpy (valbuf + low_size, buf, len - low_size);
2825 internal_error (__FILE__, __LINE__,
2826 _("Cannot extract return value of %d bytes long."),
2831 /* Write, for architecture GDBARCH, a function return value of TYPE
2832 from VALBUF into REGCACHE. */
2835 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2836 struct regcache *regcache, const gdb_byte *valbuf)
2838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2839 int len = TYPE_LENGTH (type);
2841 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2844 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2846 if (tdep->st0_regnum < 0)
2848 warning (_("Cannot set floating-point return value."));
2852 /* Returning floating-point values is a bit tricky. Apart from
2853 storing the return value in %st(0), we have to simulate the
2854 state of the FPU at function return point. */
2856 /* Convert the value found in VALBUF to the extended
2857 floating-point format used by the FPU. This is probably
2858 not exactly how it would happen on the target itself, but
2859 it is the best we can do. */
2860 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2861 regcache->raw_write (I386_ST0_REGNUM, buf);
2863 /* Set the top of the floating-point register stack to 7. The
2864 actual value doesn't really matter, but 7 is what a normal
2865 function return would end up with if the program started out
2866 with a freshly initialized FPU. */
2867 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2869 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2871 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2872 the floating-point register stack to 7, the appropriate value
2873 for the tag word is 0x3fff. */
2874 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2878 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2879 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2881 if (len <= low_size)
2882 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2883 else if (len <= (low_size + high_size))
2885 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2886 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2890 internal_error (__FILE__, __LINE__,
2891 _("Cannot store return value of %d bytes long."), len);
2896 /* This is the variable that is set with "set struct-convention", and
2897 its legitimate values. */
2898 static const char default_struct_convention[] = "default";
2899 static const char pcc_struct_convention[] = "pcc";
2900 static const char reg_struct_convention[] = "reg";
2901 static const char *const valid_conventions[] =
2903 default_struct_convention,
2904 pcc_struct_convention,
2905 reg_struct_convention,
2908 static const char *struct_convention = default_struct_convention;
2910 /* Return non-zero if TYPE, which is assumed to be a structure,
2911 a union type, or an array type, should be returned in registers
2912 for architecture GDBARCH. */
2915 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2917 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2918 enum type_code code = TYPE_CODE (type);
2919 int len = TYPE_LENGTH (type);
2921 gdb_assert (code == TYPE_CODE_STRUCT
2922 || code == TYPE_CODE_UNION
2923 || code == TYPE_CODE_ARRAY);
2925 if (struct_convention == pcc_struct_convention
2926 || (struct_convention == default_struct_convention
2927 && tdep->struct_return == pcc_struct_return))
2930 /* Structures consisting of a single `float', `double' or 'long
2931 double' member are returned in %st(0). */
2932 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2934 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2935 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2936 return (len == 4 || len == 8 || len == 12);
2939 return (len == 1 || len == 2 || len == 4 || len == 8);
2942 /* Determine, for architecture GDBARCH, how a return value of TYPE
2943 should be returned. If it is supposed to be returned in registers,
2944 and READBUF is non-zero, read the appropriate value from REGCACHE,
2945 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2946 from WRITEBUF into REGCACHE. */
2948 static enum return_value_convention
2949 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2950 struct type *type, struct regcache *regcache,
2951 gdb_byte *readbuf, const gdb_byte *writebuf)
2953 enum type_code code = TYPE_CODE (type);
2955 if (((code == TYPE_CODE_STRUCT
2956 || code == TYPE_CODE_UNION
2957 || code == TYPE_CODE_ARRAY)
2958 && !i386_reg_struct_return_p (gdbarch, type))
2959 /* Complex double and long double uses the struct return covention. */
2960 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2961 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2962 /* 128-bit decimal float uses the struct return convention. */
2963 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2965 /* The System V ABI says that:
2967 "A function that returns a structure or union also sets %eax
2968 to the value of the original address of the caller's area
2969 before it returns. Thus when the caller receives control
2970 again, the address of the returned object resides in register
2971 %eax and can be used to access the object."
2973 So the ABI guarantees that we can always find the return
2974 value just after the function has returned. */
2976 /* Note that the ABI doesn't mention functions returning arrays,
2977 which is something possible in certain languages such as Ada.
2978 In this case, the value is returned as if it was wrapped in
2979 a record, so the convention applied to records also applies
2986 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2987 read_memory (addr, readbuf, TYPE_LENGTH (type));
2990 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2993 /* This special case is for structures consisting of a single
2994 `float', `double' or 'long double' member. These structures are
2995 returned in %st(0). For these structures, we call ourselves
2996 recursively, changing TYPE into the type of the first member of
2997 the structure. Since that should work for all structures that
2998 have only one member, we don't bother to check the member's type
3000 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3002 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3003 return i386_return_value (gdbarch, function, type, regcache,
3008 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3010 i386_store_return_value (gdbarch, type, regcache, writebuf);
3012 return RETURN_VALUE_REGISTER_CONVENTION;
3017 i387_ext_type (struct gdbarch *gdbarch)
3019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3021 if (!tdep->i387_ext_type)
3023 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3024 gdb_assert (tdep->i387_ext_type != NULL);
3027 return tdep->i387_ext_type;
3030 /* Construct type for pseudo BND registers. We can't use
3031 tdesc_find_type since a complement of one value has to be used
3032 to describe the upper bound. */
3034 static struct type *
3035 i386_bnd_type (struct gdbarch *gdbarch)
3037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3040 if (!tdep->i386_bnd_type)
3043 const struct builtin_type *bt = builtin_type (gdbarch);
3045 /* The type we're building is described bellow: */
3050 void *ubound; /* One complement of raw ubound field. */
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3057 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3058 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3060 TYPE_NAME (t) = "builtin_type_bound128";
3061 tdep->i386_bnd_type = t;
3064 return tdep->i386_bnd_type;
3067 /* Construct vector type for pseudo ZMM registers. We can't use
3068 tdesc_find_type since ZMM isn't described in target description. */
3070 static struct type *
3071 i386_zmm_type (struct gdbarch *gdbarch)
3073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3075 if (!tdep->i386_zmm_type)
3077 const struct builtin_type *bt = builtin_type (gdbarch);
3079 /* The type we're building is this: */
3081 union __gdb_builtin_type_vec512i
3083 int128_t uint128[4];
3084 int64_t v4_int64[8];
3085 int32_t v8_int32[16];
3086 int16_t v16_int16[32];
3087 int8_t v32_int8[64];
3088 double v4_double[8];
3095 t = arch_composite_type (gdbarch,
3096 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3097 append_composite_type_field (t, "v16_float",
3098 init_vector_type (bt->builtin_float, 16));
3099 append_composite_type_field (t, "v8_double",
3100 init_vector_type (bt->builtin_double, 8));
3101 append_composite_type_field (t, "v64_int8",
3102 init_vector_type (bt->builtin_int8, 64));
3103 append_composite_type_field (t, "v32_int16",
3104 init_vector_type (bt->builtin_int16, 32));
3105 append_composite_type_field (t, "v16_int32",
3106 init_vector_type (bt->builtin_int32, 16));
3107 append_composite_type_field (t, "v8_int64",
3108 init_vector_type (bt->builtin_int64, 8));
3109 append_composite_type_field (t, "v4_int128",
3110 init_vector_type (bt->builtin_int128, 4));
3112 TYPE_VECTOR (t) = 1;
3113 TYPE_NAME (t) = "builtin_type_vec512i";
3114 tdep->i386_zmm_type = t;
3117 return tdep->i386_zmm_type;
3120 /* Construct vector type for pseudo YMM registers. We can't use
3121 tdesc_find_type since YMM isn't described in target description. */
3123 static struct type *
3124 i386_ymm_type (struct gdbarch *gdbarch)
3126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3128 if (!tdep->i386_ymm_type)
3130 const struct builtin_type *bt = builtin_type (gdbarch);
3132 /* The type we're building is this: */
3134 union __gdb_builtin_type_vec256i
3136 int128_t uint128[2];
3137 int64_t v2_int64[4];
3138 int32_t v4_int32[8];
3139 int16_t v8_int16[16];
3140 int8_t v16_int8[32];
3141 double v2_double[4];
3148 t = arch_composite_type (gdbarch,
3149 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3150 append_composite_type_field (t, "v8_float",
3151 init_vector_type (bt->builtin_float, 8));
3152 append_composite_type_field (t, "v4_double",
3153 init_vector_type (bt->builtin_double, 4));
3154 append_composite_type_field (t, "v32_int8",
3155 init_vector_type (bt->builtin_int8, 32));
3156 append_composite_type_field (t, "v16_int16",
3157 init_vector_type (bt->builtin_int16, 16));
3158 append_composite_type_field (t, "v8_int32",
3159 init_vector_type (bt->builtin_int32, 8));
3160 append_composite_type_field (t, "v4_int64",
3161 init_vector_type (bt->builtin_int64, 4));
3162 append_composite_type_field (t, "v2_int128",
3163 init_vector_type (bt->builtin_int128, 2));
3165 TYPE_VECTOR (t) = 1;
3166 TYPE_NAME (t) = "builtin_type_vec256i";
3167 tdep->i386_ymm_type = t;
3170 return tdep->i386_ymm_type;
3173 /* Construct vector type for MMX registers. */
3174 static struct type *
3175 i386_mmx_type (struct gdbarch *gdbarch)
3177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3179 if (!tdep->i386_mmx_type)
3181 const struct builtin_type *bt = builtin_type (gdbarch);
3183 /* The type we're building is this: */
3185 union __gdb_builtin_type_vec64i
3188 int32_t v2_int32[2];
3189 int16_t v4_int16[4];
3196 t = arch_composite_type (gdbarch,
3197 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3199 append_composite_type_field (t, "uint64", bt->builtin_int64);
3200 append_composite_type_field (t, "v2_int32",
3201 init_vector_type (bt->builtin_int32, 2));
3202 append_composite_type_field (t, "v4_int16",
3203 init_vector_type (bt->builtin_int16, 4));
3204 append_composite_type_field (t, "v8_int8",
3205 init_vector_type (bt->builtin_int8, 8));
3207 TYPE_VECTOR (t) = 1;
3208 TYPE_NAME (t) = "builtin_type_vec64i";
3209 tdep->i386_mmx_type = t;
3212 return tdep->i386_mmx_type;
3215 /* Return the GDB type object for the "standard" data type of data in
3219 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3221 if (i386_bnd_regnum_p (gdbarch, regnum))
3222 return i386_bnd_type (gdbarch);
3223 if (i386_mmx_regnum_p (gdbarch, regnum))
3224 return i386_mmx_type (gdbarch);
3225 else if (i386_ymm_regnum_p (gdbarch, regnum))
3226 return i386_ymm_type (gdbarch);
3227 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3228 return i386_ymm_type (gdbarch);
3229 else if (i386_zmm_regnum_p (gdbarch, regnum))
3230 return i386_zmm_type (gdbarch);
3233 const struct builtin_type *bt = builtin_type (gdbarch);
3234 if (i386_byte_regnum_p (gdbarch, regnum))
3235 return bt->builtin_int8;
3236 else if (i386_word_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int16;
3238 else if (i386_dword_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int32;
3240 else if (i386_k_regnum_p (gdbarch, regnum))
3241 return bt->builtin_int64;
3244 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3247 /* Map a cooked register onto a raw register or memory. For the i386,
3248 the MMX registers need to be mapped onto floating point registers. */
3251 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3258 mmxreg = regnum - tdep->mm0_regnum;
3259 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3260 tos = (fstat >> 11) & 0x7;
3261 fpreg = (mmxreg + tos) % 8;
3263 return (I387_ST0_REGNUM (tdep) + fpreg);
3266 /* A helper function for us by i386_pseudo_register_read_value and
3267 amd64_pseudo_register_read_value. It does all the work but reads
3268 the data into an already-allocated value. */
3271 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3272 readable_regcache *regcache,
3274 struct value *result_value)
3276 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3277 enum register_status status;
3278 gdb_byte *buf = value_contents_raw (result_value);
3280 if (i386_mmx_regnum_p (gdbarch, regnum))
3282 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3284 /* Extract (always little endian). */
3285 status = regcache->raw_read (fpnum, raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0,
3288 TYPE_LENGTH (value_type (result_value)));
3290 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3295 if (i386_bnd_regnum_p (gdbarch, regnum))
3297 regnum -= tdep->bnd0_regnum;
3299 /* Extract (always little endian). Read lower 128bits. */
3300 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3302 if (status != REG_VALID)
3303 mark_value_bytes_unavailable (result_value, 0, 16);
3306 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3307 LONGEST upper, lower;
3308 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3310 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3311 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3314 memcpy (buf, &lower, size);
3315 memcpy (buf + size, &upper, size);
3318 else if (i386_k_regnum_p (gdbarch, regnum))
3320 regnum -= tdep->k0_regnum;
3322 /* Extract (always little endian). */
3323 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3324 if (status != REG_VALID)
3325 mark_value_bytes_unavailable (result_value, 0, 8);
3327 memcpy (buf, raw_buf, 8);
3329 else if (i386_zmm_regnum_p (gdbarch, regnum))
3331 regnum -= tdep->zmm0_regnum;
3333 if (regnum < num_lower_zmm_regs)
3335 /* Extract (always little endian). Read lower 128bits. */
3336 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3338 if (status != REG_VALID)
3339 mark_value_bytes_unavailable (result_value, 0, 16);
3341 memcpy (buf, raw_buf, 16);
3343 /* Extract (always little endian). Read upper 128bits. */
3344 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3346 if (status != REG_VALID)
3347 mark_value_bytes_unavailable (result_value, 16, 16);
3349 memcpy (buf + 16, raw_buf, 16);
3353 /* Extract (always little endian). Read lower 128bits. */
3354 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3355 - num_lower_zmm_regs,
3357 if (status != REG_VALID)
3358 mark_value_bytes_unavailable (result_value, 0, 16);
3360 memcpy (buf, raw_buf, 16);
3362 /* Extract (always little endian). Read upper 128bits. */
3363 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3364 - num_lower_zmm_regs,
3366 if (status != REG_VALID)
3367 mark_value_bytes_unavailable (result_value, 16, 16);
3369 memcpy (buf + 16, raw_buf, 16);
3372 /* Read upper 256bits. */
3373 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 32, 32);
3378 memcpy (buf + 32, raw_buf, 32);
3380 else if (i386_ymm_regnum_p (gdbarch, regnum))
3382 regnum -= tdep->ymm0_regnum;
3384 /* Extract (always little endian). Read lower 128bits. */
3385 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3387 if (status != REG_VALID)
3388 mark_value_bytes_unavailable (result_value, 0, 16);
3390 memcpy (buf, raw_buf, 16);
3391 /* Read upper 128bits. */
3392 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 16, 32);
3397 memcpy (buf + 16, raw_buf, 16);
3399 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3401 regnum -= tdep->ymm16_regnum;
3402 /* Extract (always little endian). Read lower 128bits. */
3403 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3405 if (status != REG_VALID)
3406 mark_value_bytes_unavailable (result_value, 0, 16);
3408 memcpy (buf, raw_buf, 16);
3409 /* Read upper 128bits. */
3410 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3412 if (status != REG_VALID)
3413 mark_value_bytes_unavailable (result_value, 16, 16);
3415 memcpy (buf + 16, raw_buf, 16);
3417 else if (i386_word_regnum_p (gdbarch, regnum))
3419 int gpnum = regnum - tdep->ax_regnum;
3421 /* Extract (always little endian). */
3422 status = regcache->raw_read (gpnum, raw_buf);
3423 if (status != REG_VALID)
3424 mark_value_bytes_unavailable (result_value, 0,
3425 TYPE_LENGTH (value_type (result_value)));
3427 memcpy (buf, raw_buf, 2);
3429 else if (i386_byte_regnum_p (gdbarch, regnum))
3431 int gpnum = regnum - tdep->al_regnum;
3433 /* Extract (always little endian). We read both lower and
3435 status = regcache->raw_read (gpnum % 4, raw_buf);
3436 if (status != REG_VALID)
3437 mark_value_bytes_unavailable (result_value, 0,
3438 TYPE_LENGTH (value_type (result_value)));
3439 else if (gpnum >= 4)
3440 memcpy (buf, raw_buf + 1, 1);
3442 memcpy (buf, raw_buf, 1);
3445 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3449 static struct value *
3450 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3451 readable_regcache *regcache,
3454 struct value *result;
3456 result = allocate_value (register_type (gdbarch, regnum));
3457 VALUE_LVAL (result) = lval_register;
3458 VALUE_REGNUM (result) = regnum;
3460 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3466 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3467 int regnum, const gdb_byte *buf)
3469 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3471 if (i386_mmx_regnum_p (gdbarch, regnum))
3473 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3476 regcache->raw_read (fpnum, raw_buf);
3477 /* ... Modify ... (always little endian). */
3478 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3480 regcache->raw_write (fpnum, raw_buf);
3484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3486 if (i386_bnd_regnum_p (gdbarch, regnum))
3488 ULONGEST upper, lower;
3489 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3490 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3492 /* New values from input value. */
3493 regnum -= tdep->bnd0_regnum;
3494 lower = extract_unsigned_integer (buf, size, byte_order);
3495 upper = extract_unsigned_integer (buf + size, size, byte_order);
3497 /* Fetching register buffer. */
3498 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3503 /* Set register bits. */
3504 memcpy (raw_buf, &lower, 8);
3505 memcpy (raw_buf + 8, &upper, 8);
3507 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3509 else if (i386_k_regnum_p (gdbarch, regnum))
3511 regnum -= tdep->k0_regnum;
3513 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3515 else if (i386_zmm_regnum_p (gdbarch, regnum))
3517 regnum -= tdep->zmm0_regnum;
3519 if (regnum < num_lower_zmm_regs)
3521 /* Write lower 128bits. */
3522 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3523 /* Write upper 128bits. */
3524 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3528 /* Write lower 128bits. */
3529 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3530 - num_lower_zmm_regs, buf);
3531 /* Write upper 128bits. */
3532 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3533 - num_lower_zmm_regs, buf + 16);
3535 /* Write upper 256bits. */
3536 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3538 else if (i386_ymm_regnum_p (gdbarch, regnum))
3540 regnum -= tdep->ymm0_regnum;
3542 /* ... Write lower 128bits. */
3543 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3544 /* ... Write upper 128bits. */
3545 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3547 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3549 regnum -= tdep->ymm16_regnum;
3551 /* ... Write lower 128bits. */
3552 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3553 /* ... Write upper 128bits. */
3554 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3556 else if (i386_word_regnum_p (gdbarch, regnum))
3558 int gpnum = regnum - tdep->ax_regnum;
3561 regcache->raw_read (gpnum, raw_buf);
3562 /* ... Modify ... (always little endian). */
3563 memcpy (raw_buf, buf, 2);
3565 regcache->raw_write (gpnum, raw_buf);
3567 else if (i386_byte_regnum_p (gdbarch, regnum))
3569 int gpnum = regnum - tdep->al_regnum;
3571 /* Read ... We read both lower and upper registers. */
3572 regcache->raw_read (gpnum % 4, raw_buf);
3573 /* ... Modify ... (always little endian). */
3575 memcpy (raw_buf + 1, buf, 1);
3577 memcpy (raw_buf, buf, 1);
3579 regcache->raw_write (gpnum % 4, raw_buf);
3582 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3586 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3589 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3590 struct agent_expr *ax, int regnum)
3592 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3594 if (i386_mmx_regnum_p (gdbarch, regnum))
3596 /* MMX to FPU register mapping depends on current TOS. Let's just
3597 not care and collect everything... */
3600 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3601 for (i = 0; i < 8; i++)
3602 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3605 else if (i386_bnd_regnum_p (gdbarch, regnum))
3607 regnum -= tdep->bnd0_regnum;
3608 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3611 else if (i386_k_regnum_p (gdbarch, regnum))
3613 regnum -= tdep->k0_regnum;
3614 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3617 else if (i386_zmm_regnum_p (gdbarch, regnum))
3619 regnum -= tdep->zmm0_regnum;
3620 if (regnum < num_lower_zmm_regs)
3622 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3623 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3627 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3628 - num_lower_zmm_regs);
3629 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3630 - num_lower_zmm_regs);
3632 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3635 else if (i386_ymm_regnum_p (gdbarch, regnum))
3637 regnum -= tdep->ymm0_regnum;
3638 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3639 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3642 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3644 regnum -= tdep->ymm16_regnum;
3645 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3646 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3649 else if (i386_word_regnum_p (gdbarch, regnum))
3651 int gpnum = regnum - tdep->ax_regnum;
3653 ax_reg_mask (ax, gpnum);
3656 else if (i386_byte_regnum_p (gdbarch, regnum))
3658 int gpnum = regnum - tdep->al_regnum;
3660 ax_reg_mask (ax, gpnum % 4);
3664 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3669 /* Return the register number of the register allocated by GCC after
3670 REGNUM, or -1 if there is no such register. */
3673 i386_next_regnum (int regnum)
3675 /* GCC allocates the registers in the order:
3677 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3679 Since storing a variable in %esp doesn't make any sense we return
3680 -1 for %ebp and for %esp itself. */
3681 static int next_regnum[] =
3683 I386_EDX_REGNUM, /* Slot for %eax. */
3684 I386_EBX_REGNUM, /* Slot for %ecx. */
3685 I386_ECX_REGNUM, /* Slot for %edx. */
3686 I386_ESI_REGNUM, /* Slot for %ebx. */
3687 -1, -1, /* Slots for %esp and %ebp. */
3688 I386_EDI_REGNUM, /* Slot for %esi. */
3689 I386_EBP_REGNUM /* Slot for %edi. */
3692 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3693 return next_regnum[regnum];
3698 /* Return nonzero if a value of type TYPE stored in register REGNUM
3699 needs any special handling. */
3702 i386_convert_register_p (struct gdbarch *gdbarch,
3703 int regnum, struct type *type)
3705 int len = TYPE_LENGTH (type);
3707 /* Values may be spread across multiple registers. Most debugging
3708 formats aren't expressive enough to specify the locations, so
3709 some heuristics is involved. Right now we only handle types that
3710 have a length that is a multiple of the word size, since GCC
3711 doesn't seem to put any other types into registers. */
3712 if (len > 4 && len % 4 == 0)
3714 int last_regnum = regnum;
3718 last_regnum = i386_next_regnum (last_regnum);
3722 if (last_regnum != -1)
3726 return i387_convert_register_p (gdbarch, regnum, type);
3729 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3730 return its contents in TO. */
3733 i386_register_to_value (struct frame_info *frame, int regnum,
3734 struct type *type, gdb_byte *to,
3735 int *optimizedp, int *unavailablep)
3737 struct gdbarch *gdbarch = get_frame_arch (frame);
3738 int len = TYPE_LENGTH (type);
3740 if (i386_fp_regnum_p (gdbarch, regnum))
3741 return i387_register_to_value (frame, regnum, type, to,
3742 optimizedp, unavailablep);
3744 /* Read a value spread across multiple registers. */
3746 gdb_assert (len > 4 && len % 4 == 0);
3750 gdb_assert (regnum != -1);
3751 gdb_assert (register_size (gdbarch, regnum) == 4);
3753 if (!get_frame_register_bytes (frame, regnum, 0,
3754 register_size (gdbarch, regnum),
3755 to, optimizedp, unavailablep))
3758 regnum = i386_next_regnum (regnum);
3763 *optimizedp = *unavailablep = 0;
3767 /* Write the contents FROM of a value of type TYPE into register
3768 REGNUM in frame FRAME. */
3771 i386_value_to_register (struct frame_info *frame, int regnum,
3772 struct type *type, const gdb_byte *from)
3774 int len = TYPE_LENGTH (type);
3776 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3778 i387_value_to_register (frame, regnum, type, from);
3782 /* Write a value spread across multiple registers. */
3784 gdb_assert (len > 4 && len % 4 == 0);
3788 gdb_assert (regnum != -1);
3789 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3791 put_frame_register (frame, regnum, from);
3792 regnum = i386_next_regnum (regnum);
3798 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3799 in the general-purpose register set REGSET to register cache
3800 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3803 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3804 int regnum, const void *gregs, size_t len)
3806 struct gdbarch *gdbarch = regcache->arch ();
3807 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3808 const gdb_byte *regs = (const gdb_byte *) gregs;
3811 gdb_assert (len >= tdep->sizeof_gregset);
3813 for (i = 0; i < tdep->gregset_num_regs; i++)
3815 if ((regnum == i || regnum == -1)
3816 && tdep->gregset_reg_offset[i] != -1)
3817 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3821 /* Collect register REGNUM from the register cache REGCACHE and store
3822 it in the buffer specified by GREGS and LEN as described by the
3823 general-purpose register set REGSET. If REGNUM is -1, do this for
3824 all registers in REGSET. */
3827 i386_collect_gregset (const struct regset *regset,
3828 const struct regcache *regcache,
3829 int regnum, void *gregs, size_t len)
3831 struct gdbarch *gdbarch = regcache->arch ();
3832 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3833 gdb_byte *regs = (gdb_byte *) gregs;
3836 gdb_assert (len >= tdep->sizeof_gregset);
3838 for (i = 0; i < tdep->gregset_num_regs; i++)
3840 if ((regnum == i || regnum == -1)
3841 && tdep->gregset_reg_offset[i] != -1)
3842 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3846 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3847 in the floating-point register set REGSET to register cache
3848 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3851 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3852 int regnum, const void *fpregs, size_t len)
3854 struct gdbarch *gdbarch = regcache->arch ();
3855 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3857 if (len == I387_SIZEOF_FXSAVE)
3859 i387_supply_fxsave (regcache, regnum, fpregs);
3863 gdb_assert (len >= tdep->sizeof_fpregset);
3864 i387_supply_fsave (regcache, regnum, fpregs);
3867 /* Collect register REGNUM from the register cache REGCACHE and store
3868 it in the buffer specified by FPREGS and LEN as described by the
3869 floating-point register set REGSET. If REGNUM is -1, do this for
3870 all registers in REGSET. */
3873 i386_collect_fpregset (const struct regset *regset,
3874 const struct regcache *regcache,
3875 int regnum, void *fpregs, size_t len)
3877 struct gdbarch *gdbarch = regcache->arch ();
3878 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3880 if (len == I387_SIZEOF_FXSAVE)
3882 i387_collect_fxsave (regcache, regnum, fpregs);
3886 gdb_assert (len >= tdep->sizeof_fpregset);
3887 i387_collect_fsave (regcache, regnum, fpregs);
3890 /* Register set definitions. */
3892 const struct regset i386_gregset =
3894 NULL, i386_supply_gregset, i386_collect_gregset
3897 const struct regset i386_fpregset =
3899 NULL, i386_supply_fpregset, i386_collect_fpregset
3902 /* Default iterator over core file register note sections. */
3905 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3906 iterate_over_regset_sections_cb *cb,
3908 const struct regcache *regcache)
3910 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3912 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3914 if (tdep->sizeof_fpregset)
3915 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3920 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3923 i386_pe_skip_trampoline_code (struct frame_info *frame,
3924 CORE_ADDR pc, char *name)
3926 struct gdbarch *gdbarch = get_frame_arch (frame);
3927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3930 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3932 unsigned long indirect =
3933 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3934 struct minimal_symbol *indsym =
3935 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3936 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3940 if (startswith (symname, "__imp_")
3941 || startswith (symname, "_imp_"))
3943 read_memory_unsigned_integer (indirect, 4, byte_order);
3946 return 0; /* Not a trampoline. */
3950 /* Return whether the THIS_FRAME corresponds to a sigtramp
3954 i386_sigtramp_p (struct frame_info *this_frame)
3956 CORE_ADDR pc = get_frame_pc (this_frame);
3959 find_pc_partial_function (pc, &name, NULL, NULL);
3960 return (name && strcmp ("_sigtramp", name) == 0);
3964 /* We have two flavours of disassembly. The machinery on this page
3965 deals with switching between those. */
3968 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3970 gdb_assert (disassembly_flavor == att_flavor
3971 || disassembly_flavor == intel_flavor);
3973 info->disassembler_options = disassembly_flavor;
3975 return default_print_insn (pc, info);
3979 /* There are a few i386 architecture variants that differ only
3980 slightly from the generic i386 target. For now, we don't give them
3981 their own source file, but include them here. As a consequence,
3982 they'll always be included. */
3984 /* System V Release 4 (SVR4). */
3986 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3990 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3992 CORE_ADDR pc = get_frame_pc (this_frame);
3995 /* The origin of these symbols is currently unknown. */
3996 find_pc_partial_function (pc, &name, NULL, NULL);
3997 return (name && (strcmp ("_sigreturn", name) == 0
3998 || strcmp ("sigvechandler", name) == 0));
4001 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4002 address of the associated sigcontext (ucontext) structure. */
4005 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4007 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4012 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4013 sp = extract_unsigned_integer (buf, 4, byte_order);
4015 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4020 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4024 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4026 return (*s == '$' /* Literal number. */
4027 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4028 || (*s == '(' && s[1] == '%') /* Register indirection. */
4029 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4032 /* Helper function for i386_stap_parse_special_token.
4034 This function parses operands of the form `-8+3+1(%rbp)', which
4035 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4037 Return true if the operand was parsed successfully, false
4041 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4042 struct stap_parse_info *p)
4044 const char *s = p->arg;
4046 if (isdigit (*s) || *s == '-' || *s == '+')
4050 long displacements[3];
4057 got_minus[0] = false;
4063 got_minus[0] = true;
4066 if (!isdigit ((unsigned char) *s))
4069 displacements[0] = strtol (s, &endp, 10);
4072 if (*s != '+' && *s != '-')
4074 /* We are not dealing with a triplet. */
4078 got_minus[1] = false;
4084 got_minus[1] = true;
4087 if (!isdigit ((unsigned char) *s))
4090 displacements[1] = strtol (s, &endp, 10);
4093 if (*s != '+' && *s != '-')
4095 /* We are not dealing with a triplet. */
4099 got_minus[2] = false;
4105 got_minus[2] = true;
4108 if (!isdigit ((unsigned char) *s))
4111 displacements[2] = strtol (s, &endp, 10);
4114 if (*s != '(' || s[1] != '%')
4120 while (isalnum (*s))
4126 len = s - start - 1;
4127 regname = (char *) alloca (len + 1);
4129 strncpy (regname, start, len);
4130 regname[len] = '\0';
4132 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4133 error (_("Invalid register name `%s' on expression `%s'."),
4134 regname, p->saved_arg);
4136 for (i = 0; i < 3; i++)
4138 write_exp_elt_opcode (&p->pstate, OP_LONG);
4140 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4141 write_exp_elt_longcst (&p->pstate, displacements[i]);
4142 write_exp_elt_opcode (&p->pstate, OP_LONG);
4144 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4147 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4150 write_exp_string (&p->pstate, str);
4151 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4153 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4154 write_exp_elt_type (&p->pstate,
4155 builtin_type (gdbarch)->builtin_data_ptr);
4156 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4158 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4159 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4160 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4162 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4163 write_exp_elt_type (&p->pstate,
4164 lookup_pointer_type (p->arg_type));
4165 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4167 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4177 /* Helper function for i386_stap_parse_special_token.
4179 This function parses operands of the form `register base +
4180 (register index * size) + offset', as represented in
4181 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4183 Return true if the operand was parsed successfully, false
4187 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4188 struct stap_parse_info *p)
4190 const char *s = p->arg;
4192 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4194 bool offset_minus = false;
4196 bool size_minus = false;
4203 struct stoken base_token, index_token;
4210 offset_minus = true;
4213 if (offset_minus && !isdigit (*s))
4220 offset = strtol (s, &endp, 10);
4224 if (*s != '(' || s[1] != '%')
4230 while (isalnum (*s))
4233 if (*s != ',' || s[1] != '%')
4236 len_base = s - start;
4237 base = (char *) alloca (len_base + 1);
4238 strncpy (base, start, len_base);
4239 base[len_base] = '\0';
4241 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4242 error (_("Invalid register name `%s' on expression `%s'."),
4243 base, p->saved_arg);
4248 while (isalnum (*s))
4251 len_index = s - start;
4252 index = (char *) alloca (len_index + 1);
4253 strncpy (index, start, len_index);
4254 index[len_index] = '\0';
4256 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4257 error (_("Invalid register name `%s' on expression `%s'."),
4258 index, p->saved_arg);
4260 if (*s != ',' && *s != ')')
4276 size = strtol (s, &endp, 10);
4287 write_exp_elt_opcode (&p->pstate, OP_LONG);
4288 write_exp_elt_type (&p->pstate,
4289 builtin_type (gdbarch)->builtin_long);
4290 write_exp_elt_longcst (&p->pstate, offset);
4291 write_exp_elt_opcode (&p->pstate, OP_LONG);
4293 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4296 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4297 base_token.ptr = base;
4298 base_token.length = len_base;
4299 write_exp_string (&p->pstate, base_token);
4300 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4303 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4305 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4306 index_token.ptr = index;
4307 index_token.length = len_index;
4308 write_exp_string (&p->pstate, index_token);
4309 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4313 write_exp_elt_opcode (&p->pstate, OP_LONG);
4314 write_exp_elt_type (&p->pstate,
4315 builtin_type (gdbarch)->builtin_long);
4316 write_exp_elt_longcst (&p->pstate, size);
4317 write_exp_elt_opcode (&p->pstate, OP_LONG);
4319 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4320 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4323 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4325 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4326 write_exp_elt_type (&p->pstate,
4327 lookup_pointer_type (p->arg_type));
4328 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4330 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4340 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4344 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4345 struct stap_parse_info *p)
4347 /* In order to parse special tokens, we use a state-machine that go
4348 through every known token and try to get a match. */
4352 THREE_ARG_DISPLACEMENT,
4357 current_state = TRIPLET;
4359 /* The special tokens to be parsed here are:
4361 - `register base + (register index * size) + offset', as represented
4362 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4364 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4365 `*(-8 + 3 - 1 + (void *) $eax)'. */
4367 while (current_state != DONE)
4369 switch (current_state)
4372 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4376 case THREE_ARG_DISPLACEMENT:
4377 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4382 /* Advancing to the next state. */
4389 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4393 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4394 const std::string ®name, int regnum)
4396 static const std::unordered_set<std::string> reg_assoc
4397 = { "ax", "bx", "cx", "dx",
4398 "si", "di", "bp", "sp" };
4400 /* If we are dealing with a register whose size is less than the size
4401 specified by the "[-]N@" prefix, and it is one of the registers that
4402 we know has an extended variant available, then use the extended
4403 version of the register instead. */
4404 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4405 && reg_assoc.find (regname) != reg_assoc.end ())
4406 return "e" + regname;
4408 /* Otherwise, just use the requested register. */
4414 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4415 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4418 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4420 return "(x86_64|i.86)";
4425 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4428 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4430 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4431 I386_EAX_REGNUM, I386_EIP_REGNUM);
4437 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4439 static const char *const stap_integer_prefixes[] = { "$", NULL };
4440 static const char *const stap_register_prefixes[] = { "%", NULL };
4441 static const char *const stap_register_indirection_prefixes[] = { "(",
4443 static const char *const stap_register_indirection_suffixes[] = { ")",
4446 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4447 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4449 /* Registering SystemTap handlers. */
4450 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4451 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4452 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4453 stap_register_indirection_prefixes);
4454 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4455 stap_register_indirection_suffixes);
4456 set_gdbarch_stap_is_single_operand (gdbarch,
4457 i386_stap_is_single_operand);
4458 set_gdbarch_stap_parse_special_token (gdbarch,
4459 i386_stap_parse_special_token);
4460 set_gdbarch_stap_adjust_register (gdbarch,
4461 i386_stap_adjust_register);
4463 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4464 i386_in_indirect_branch_thunk);
4467 /* System V Release 4 (SVR4). */
4470 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4472 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4474 /* System V Release 4 uses ELF. */
4475 i386_elf_init_abi (info, gdbarch);
4477 /* System V Release 4 has shared libraries. */
4478 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4480 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4481 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4482 tdep->sc_pc_offset = 36 + 14 * 4;
4483 tdep->sc_sp_offset = 36 + 17 * 4;
4485 tdep->jb_pc_offset = 20;
4490 /* i386 register groups. In addition to the normal groups, add "mmx"
4493 static struct reggroup *i386_sse_reggroup;
4494 static struct reggroup *i386_mmx_reggroup;
4497 i386_init_reggroups (void)
4499 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4500 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4504 i386_add_reggroups (struct gdbarch *gdbarch)
4506 reggroup_add (gdbarch, i386_sse_reggroup);
4507 reggroup_add (gdbarch, i386_mmx_reggroup);
4508 reggroup_add (gdbarch, general_reggroup);
4509 reggroup_add (gdbarch, float_reggroup);
4510 reggroup_add (gdbarch, all_reggroup);
4511 reggroup_add (gdbarch, save_reggroup);
4512 reggroup_add (gdbarch, restore_reggroup);
4513 reggroup_add (gdbarch, vector_reggroup);
4514 reggroup_add (gdbarch, system_reggroup);
4518 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4519 struct reggroup *group)
4521 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4522 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4523 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4524 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4525 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4526 avx512_p, avx_p, sse_p, pkru_regnum_p;
4528 /* Don't include pseudo registers, except for MMX, in any register
4530 if (i386_byte_regnum_p (gdbarch, regnum))
4533 if (i386_word_regnum_p (gdbarch, regnum))
4536 if (i386_dword_regnum_p (gdbarch, regnum))
4539 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4540 if (group == i386_mmx_reggroup)
4541 return mmx_regnum_p;
4543 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4544 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4545 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4546 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4547 if (group == i386_sse_reggroup)
4548 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4550 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4551 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4552 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4554 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4555 == X86_XSTATE_AVX_AVX512_MASK);
4556 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4557 == X86_XSTATE_AVX_MASK) && !avx512_p;
4558 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4559 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4561 if (group == vector_reggroup)
4562 return (mmx_regnum_p
4563 || (zmm_regnum_p && avx512_p)
4564 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4565 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4568 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4569 || i386_fpc_regnum_p (gdbarch, regnum));
4570 if (group == float_reggroup)
4573 /* For "info reg all", don't include upper YMM registers nor XMM
4574 registers when AVX is supported. */
4575 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4576 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4577 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4578 if (group == all_reggroup
4579 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4580 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4582 || ymmh_avx512_regnum_p
4586 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4587 if (group == all_reggroup
4588 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4589 return bnd_regnum_p;
4591 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4592 if (group == all_reggroup
4593 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4596 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4597 if (group == all_reggroup
4598 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4599 return mpx_ctrl_regnum_p;
4601 if (group == general_reggroup)
4602 return (!fp_regnum_p
4606 && !xmm_avx512_regnum_p
4609 && !ymm_avx512_regnum_p
4610 && !ymmh_avx512_regnum_p
4613 && !mpx_ctrl_regnum_p
4618 return default_register_reggroup_p (gdbarch, regnum, group);
4622 /* Get the ARGIth function argument for the current function. */
4625 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4628 struct gdbarch *gdbarch = get_frame_arch (frame);
4629 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4630 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4631 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4634 #define PREFIX_REPZ 0x01
4635 #define PREFIX_REPNZ 0x02
4636 #define PREFIX_LOCK 0x04
4637 #define PREFIX_DATA 0x08
4638 #define PREFIX_ADDR 0x10
4650 /* i386 arith/logic operations */
4663 struct i386_record_s
4665 struct gdbarch *gdbarch;
4666 struct regcache *regcache;
4667 CORE_ADDR orig_addr;
4673 uint8_t mod, reg, rm;
4682 /* Parse the "modrm" part of the memory address irp->addr points at.
4683 Returns -1 if something goes wrong, 0 otherwise. */
4686 i386_record_modrm (struct i386_record_s *irp)
4688 struct gdbarch *gdbarch = irp->gdbarch;
4690 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4694 irp->mod = (irp->modrm >> 6) & 3;
4695 irp->reg = (irp->modrm >> 3) & 7;
4696 irp->rm = irp->modrm & 7;
4701 /* Extract the memory address that the current instruction writes to,
4702 and return it in *ADDR. Return -1 if something goes wrong. */
4705 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4707 struct gdbarch *gdbarch = irp->gdbarch;
4708 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4713 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4720 uint8_t base = irp->rm;
4725 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4728 scale = (byte >> 6) & 3;
4729 index = ((byte >> 3) & 7) | irp->rex_x;
4737 if ((base & 7) == 5)
4740 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4743 *addr = extract_signed_integer (buf, 4, byte_order);
4744 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4745 *addr += irp->addr + irp->rip_offset;
4749 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4752 *addr = (int8_t) buf[0];
4755 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4757 *addr = extract_signed_integer (buf, 4, byte_order);
4765 if (base == 4 && irp->popl_esp_hack)
4766 *addr += irp->popl_esp_hack;
4767 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4770 if (irp->aflag == 2)
4775 *addr = (uint32_t) (offset64 + *addr);
4777 if (havesib && (index != 4 || scale != 0))
4779 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4781 if (irp->aflag == 2)
4782 *addr += offset64 << scale;
4784 *addr = (uint32_t) (*addr + (offset64 << scale));
4789 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4790 address from 32-bit to 64-bit. */
4791 *addr = (uint32_t) *addr;
4802 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4805 *addr = extract_signed_integer (buf, 2, byte_order);
4811 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4814 *addr = (int8_t) buf[0];
4817 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4820 *addr = extract_signed_integer (buf, 2, byte_order);
4827 regcache_raw_read_unsigned (irp->regcache,
4828 irp->regmap[X86_RECORD_REBX_REGNUM],
4830 *addr = (uint32_t) (*addr + offset64);
4831 regcache_raw_read_unsigned (irp->regcache,
4832 irp->regmap[X86_RECORD_RESI_REGNUM],
4834 *addr = (uint32_t) (*addr + offset64);
4837 regcache_raw_read_unsigned (irp->regcache,
4838 irp->regmap[X86_RECORD_REBX_REGNUM],
4840 *addr = (uint32_t) (*addr + offset64);
4841 regcache_raw_read_unsigned (irp->regcache,
4842 irp->regmap[X86_RECORD_REDI_REGNUM],
4844 *addr = (uint32_t) (*addr + offset64);
4847 regcache_raw_read_unsigned (irp->regcache,
4848 irp->regmap[X86_RECORD_REBP_REGNUM],
4850 *addr = (uint32_t) (*addr + offset64);
4851 regcache_raw_read_unsigned (irp->regcache,
4852 irp->regmap[X86_RECORD_RESI_REGNUM],
4854 *addr = (uint32_t) (*addr + offset64);
4857 regcache_raw_read_unsigned (irp->regcache,
4858 irp->regmap[X86_RECORD_REBP_REGNUM],
4860 *addr = (uint32_t) (*addr + offset64);
4861 regcache_raw_read_unsigned (irp->regcache,
4862 irp->regmap[X86_RECORD_REDI_REGNUM],
4864 *addr = (uint32_t) (*addr + offset64);
4867 regcache_raw_read_unsigned (irp->regcache,
4868 irp->regmap[X86_RECORD_RESI_REGNUM],
4870 *addr = (uint32_t) (*addr + offset64);
4873 regcache_raw_read_unsigned (irp->regcache,
4874 irp->regmap[X86_RECORD_REDI_REGNUM],
4876 *addr = (uint32_t) (*addr + offset64);
4879 regcache_raw_read_unsigned (irp->regcache,
4880 irp->regmap[X86_RECORD_REBP_REGNUM],
4882 *addr = (uint32_t) (*addr + offset64);
4885 regcache_raw_read_unsigned (irp->regcache,
4886 irp->regmap[X86_RECORD_REBX_REGNUM],
4888 *addr = (uint32_t) (*addr + offset64);
4898 /* Record the address and contents of the memory that will be changed
4899 by the current instruction. Return -1 if something goes wrong, 0
4903 i386_record_lea_modrm (struct i386_record_s *irp)
4905 struct gdbarch *gdbarch = irp->gdbarch;
4908 if (irp->override >= 0)
4910 if (record_full_memory_query)
4913 Process record ignores the memory change of instruction at address %s\n\
4914 because it can't get the value of the segment register.\n\
4915 Do you want to stop the program?"),
4916 paddress (gdbarch, irp->orig_addr)))
4923 if (i386_record_lea_modrm_addr (irp, &addr))
4926 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4932 /* Record the effects of a push operation. Return -1 if something
4933 goes wrong, 0 otherwise. */
4936 i386_record_push (struct i386_record_s *irp, int size)
4940 if (record_full_arch_list_add_reg (irp->regcache,
4941 irp->regmap[X86_RECORD_RESP_REGNUM]))
4943 regcache_raw_read_unsigned (irp->regcache,
4944 irp->regmap[X86_RECORD_RESP_REGNUM],
4946 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4953 /* Defines contents to record. */
4954 #define I386_SAVE_FPU_REGS 0xfffd
4955 #define I386_SAVE_FPU_ENV 0xfffe
4956 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4958 /* Record the values of the floating point registers which will be
4959 changed by the current instruction. Returns -1 if something is
4960 wrong, 0 otherwise. */
4962 static int i386_record_floats (struct gdbarch *gdbarch,
4963 struct i386_record_s *ir,
4966 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4969 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4970 happen. Currently we store st0-st7 registers, but we need not store all
4971 registers all the time, in future we use ftag register and record only
4972 those who are not marked as an empty. */
4974 if (I386_SAVE_FPU_REGS == iregnum)
4976 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4978 if (record_full_arch_list_add_reg (ir->regcache, i))
4982 else if (I386_SAVE_FPU_ENV == iregnum)
4984 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4986 if (record_full_arch_list_add_reg (ir->regcache, i))
4990 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4992 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4994 if (record_full_arch_list_add_reg (ir->regcache, i))
4998 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4999 (iregnum <= I387_FOP_REGNUM (tdep)))
5001 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5006 /* Parameter error. */
5009 if(I386_SAVE_FPU_ENV != iregnum)
5011 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5013 if (record_full_arch_list_add_reg (ir->regcache, i))
5020 /* Parse the current instruction, and record the values of the
5021 registers and memory that will be changed by the current
5022 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5024 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5025 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5028 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5029 CORE_ADDR input_addr)
5031 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5037 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5038 struct i386_record_s ir;
5039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5043 memset (&ir, 0, sizeof (struct i386_record_s));
5044 ir.regcache = regcache;
5045 ir.addr = input_addr;
5046 ir.orig_addr = input_addr;
5050 ir.popl_esp_hack = 0;
5051 ir.regmap = tdep->record_regmap;
5052 ir.gdbarch = gdbarch;
5054 if (record_debug > 1)
5055 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5057 paddress (gdbarch, ir.addr));
5062 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5065 switch (opcode8) /* Instruction prefixes */
5067 case REPE_PREFIX_OPCODE:
5068 prefixes |= PREFIX_REPZ;
5070 case REPNE_PREFIX_OPCODE:
5071 prefixes |= PREFIX_REPNZ;
5073 case LOCK_PREFIX_OPCODE:
5074 prefixes |= PREFIX_LOCK;
5076 case CS_PREFIX_OPCODE:
5077 ir.override = X86_RECORD_CS_REGNUM;
5079 case SS_PREFIX_OPCODE:
5080 ir.override = X86_RECORD_SS_REGNUM;
5082 case DS_PREFIX_OPCODE:
5083 ir.override = X86_RECORD_DS_REGNUM;
5085 case ES_PREFIX_OPCODE:
5086 ir.override = X86_RECORD_ES_REGNUM;
5088 case FS_PREFIX_OPCODE:
5089 ir.override = X86_RECORD_FS_REGNUM;
5091 case GS_PREFIX_OPCODE:
5092 ir.override = X86_RECORD_GS_REGNUM;
5094 case DATA_PREFIX_OPCODE:
5095 prefixes |= PREFIX_DATA;
5097 case ADDR_PREFIX_OPCODE:
5098 prefixes |= PREFIX_ADDR;
5100 case 0x40: /* i386 inc %eax */
5101 case 0x41: /* i386 inc %ecx */
5102 case 0x42: /* i386 inc %edx */
5103 case 0x43: /* i386 inc %ebx */
5104 case 0x44: /* i386 inc %esp */
5105 case 0x45: /* i386 inc %ebp */
5106 case 0x46: /* i386 inc %esi */
5107 case 0x47: /* i386 inc %edi */
5108 case 0x48: /* i386 dec %eax */
5109 case 0x49: /* i386 dec %ecx */
5110 case 0x4a: /* i386 dec %edx */
5111 case 0x4b: /* i386 dec %ebx */
5112 case 0x4c: /* i386 dec %esp */
5113 case 0x4d: /* i386 dec %ebp */
5114 case 0x4e: /* i386 dec %esi */
5115 case 0x4f: /* i386 dec %edi */
5116 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5119 rex_w = (opcode8 >> 3) & 1;
5120 rex_r = (opcode8 & 0x4) << 1;
5121 ir.rex_x = (opcode8 & 0x2) << 2;
5122 ir.rex_b = (opcode8 & 0x1) << 3;
5124 else /* 32 bit target */
5133 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5139 if (prefixes & PREFIX_DATA)
5142 if (prefixes & PREFIX_ADDR)
5144 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5147 /* Now check op code. */
5148 opcode = (uint32_t) opcode8;
5153 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5156 opcode = (uint32_t) opcode8 | 0x0f00;
5160 case 0x00: /* arith & logic */
5208 if (((opcode >> 3) & 7) != OP_CMPL)
5210 if ((opcode & 1) == 0)
5213 ir.ot = ir.dflag + OT_WORD;
5215 switch ((opcode >> 1) & 3)
5217 case 0: /* OP Ev, Gv */
5218 if (i386_record_modrm (&ir))
5222 if (i386_record_lea_modrm (&ir))
5228 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5230 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5233 case 1: /* OP Gv, Ev */
5234 if (i386_record_modrm (&ir))
5237 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5241 case 2: /* OP A, Iv */
5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5249 case 0x80: /* GRP1 */
5253 if (i386_record_modrm (&ir))
5256 if (ir.reg != OP_CMPL)
5258 if ((opcode & 1) == 0)
5261 ir.ot = ir.dflag + OT_WORD;
5268 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5269 if (i386_record_lea_modrm (&ir))
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5278 case 0x40: /* inc */
5287 case 0x48: /* dec */
5296 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5300 case 0xf6: /* GRP3 */
5302 if ((opcode & 1) == 0)
5305 ir.ot = ir.dflag + OT_WORD;
5306 if (i386_record_modrm (&ir))
5309 if (ir.mod != 3 && ir.reg == 0)
5310 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5321 if (i386_record_lea_modrm (&ir))
5327 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5331 if (ir.reg == 3) /* neg */
5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5338 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5339 if (ir.ot != OT_BYTE)
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5345 opcode = opcode << 8 | ir.modrm;
5351 case 0xfe: /* GRP4 */
5352 case 0xff: /* GRP5 */
5353 if (i386_record_modrm (&ir))
5355 if (ir.reg >= 2 && opcode == 0xfe)
5358 opcode = opcode << 8 | ir.modrm;
5365 if ((opcode & 1) == 0)
5368 ir.ot = ir.dflag + OT_WORD;
5371 if (i386_record_lea_modrm (&ir))
5377 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5384 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5386 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5388 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5392 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5398 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5401 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5403 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5408 opcode = opcode << 8 | ir.modrm;
5414 case 0x84: /* test */
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 case 0x98: /* CWDE/CBW */
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5425 case 0x99: /* CDQ/CWD */
5426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5430 case 0x0faf: /* imul */
5433 ir.ot = ir.dflag + OT_WORD;
5434 if (i386_record_modrm (&ir))
5437 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5438 else if (opcode == 0x6b)
5441 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5443 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5447 case 0x0fc0: /* xadd */
5449 if ((opcode & 1) == 0)
5452 ir.ot = ir.dflag + OT_WORD;
5453 if (i386_record_modrm (&ir))
5458 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5461 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5467 if (i386_record_lea_modrm (&ir))
5469 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476 case 0x0fb0: /* cmpxchg */
5478 if ((opcode & 1) == 0)
5481 ir.ot = ir.dflag + OT_WORD;
5482 if (i386_record_modrm (&ir))
5487 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5488 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5495 if (i386_record_lea_modrm (&ir))
5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5501 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5502 if (i386_record_modrm (&ir))
5506 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5507 an extended opcode. rdrand has bits 110 (/6) and rdseed
5508 has bits 111 (/7). */
5509 if (ir.reg == 6 || ir.reg == 7)
5511 /* The storage register is described by the 3 R/M bits, but the
5512 REX.B prefix may be used to give access to registers
5513 R8~R15. In this case ir.rex_b + R/M will give us the register
5514 in the range R8~R15.
5516 REX.W may also be used to access 64-bit registers, but we
5517 already record entire registers and not just partial bits
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5520 /* These instructions also set conditional bits. */
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5526 /* We don't handle this particular instruction yet. */
5528 opcode = opcode << 8 | ir.modrm;
5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5534 if (i386_record_lea_modrm (&ir))
5536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5539 case 0x50: /* push */
5549 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5551 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5555 case 0x06: /* push es */
5556 case 0x0e: /* push cs */
5557 case 0x16: /* push ss */
5558 case 0x1e: /* push ds */
5559 if (ir.regmap[X86_RECORD_R8_REGNUM])
5564 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5568 case 0x0fa0: /* push fs */
5569 case 0x0fa8: /* push gs */
5570 if (ir.regmap[X86_RECORD_R8_REGNUM])
5575 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5579 case 0x60: /* pusha */
5580 if (ir.regmap[X86_RECORD_R8_REGNUM])
5585 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5589 case 0x58: /* pop */
5597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5601 case 0x61: /* popa */
5602 if (ir.regmap[X86_RECORD_R8_REGNUM])
5607 for (regnum = X86_RECORD_REAX_REGNUM;
5608 regnum <= X86_RECORD_REDI_REGNUM;
5610 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5613 case 0x8f: /* pop */
5614 if (ir.regmap[X86_RECORD_R8_REGNUM])
5615 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5617 ir.ot = ir.dflag + OT_WORD;
5618 if (i386_record_modrm (&ir))
5621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5624 ir.popl_esp_hack = 1 << ir.ot;
5625 if (i386_record_lea_modrm (&ir))
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5631 case 0xc8: /* enter */
5632 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5633 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5635 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5639 case 0xc9: /* leave */
5640 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5644 case 0x07: /* pop es */
5645 if (ir.regmap[X86_RECORD_R8_REGNUM])
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5655 case 0x17: /* pop ss */
5656 if (ir.regmap[X86_RECORD_R8_REGNUM])
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5666 case 0x1f: /* pop ds */
5667 if (ir.regmap[X86_RECORD_R8_REGNUM])
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5677 case 0x0fa1: /* pop fs */
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5683 case 0x0fa9: /* pop gs */
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5689 case 0x88: /* mov */
5693 if ((opcode & 1) == 0)
5696 ir.ot = ir.dflag + OT_WORD;
5698 if (i386_record_modrm (&ir))
5703 if (opcode == 0xc6 || opcode == 0xc7)
5704 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5705 if (i386_record_lea_modrm (&ir))
5710 if (opcode == 0xc6 || opcode == 0xc7)
5712 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5718 case 0x8a: /* mov */
5720 if ((opcode & 1) == 0)
5723 ir.ot = ir.dflag + OT_WORD;
5724 if (i386_record_modrm (&ir))
5727 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5729 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5732 case 0x8c: /* mov seg */
5733 if (i386_record_modrm (&ir))
5738 opcode = opcode << 8 | ir.modrm;
5743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5747 if (i386_record_lea_modrm (&ir))
5752 case 0x8e: /* mov seg */
5753 if (i386_record_modrm (&ir))
5758 regnum = X86_RECORD_ES_REGNUM;
5761 regnum = X86_RECORD_SS_REGNUM;
5764 regnum = X86_RECORD_DS_REGNUM;
5767 regnum = X86_RECORD_FS_REGNUM;
5770 regnum = X86_RECORD_GS_REGNUM;
5774 opcode = opcode << 8 | ir.modrm;
5778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5782 case 0x0fb6: /* movzbS */
5783 case 0x0fb7: /* movzwS */
5784 case 0x0fbe: /* movsbS */
5785 case 0x0fbf: /* movswS */
5786 if (i386_record_modrm (&ir))
5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5791 case 0x8d: /* lea */
5792 if (i386_record_modrm (&ir))
5797 opcode = opcode << 8 | ir.modrm;
5802 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5807 case 0xa0: /* mov EAX */
5810 case 0xd7: /* xlat */
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5814 case 0xa2: /* mov EAX */
5816 if (ir.override >= 0)
5818 if (record_full_memory_query)
5821 Process record ignores the memory change of instruction at address %s\n\
5822 because it can't get the value of the segment register.\n\
5823 Do you want to stop the program?"),
5824 paddress (gdbarch, ir.orig_addr)))
5830 if ((opcode & 1) == 0)
5833 ir.ot = ir.dflag + OT_WORD;
5836 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5839 addr = extract_unsigned_integer (buf, 8, byte_order);
5843 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5846 addr = extract_unsigned_integer (buf, 4, byte_order);
5850 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5853 addr = extract_unsigned_integer (buf, 2, byte_order);
5855 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5860 case 0xb0: /* mov R, Ib */
5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5869 ? ((opcode & 0x7) | ir.rex_b)
5870 : ((opcode & 0x7) & 0x3));
5873 case 0xb8: /* mov R, Iv */
5881 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5884 case 0x91: /* xchg R, EAX */
5891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5895 case 0x86: /* xchg Ev, Gv */
5897 if ((opcode & 1) == 0)
5900 ir.ot = ir.dflag + OT_WORD;
5901 if (i386_record_modrm (&ir))
5906 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5908 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5912 if (i386_record_lea_modrm (&ir))
5916 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5918 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5921 case 0xc4: /* les Gv */
5922 case 0xc5: /* lds Gv */
5923 if (ir.regmap[X86_RECORD_R8_REGNUM])
5929 case 0x0fb2: /* lss Gv */
5930 case 0x0fb4: /* lfs Gv */
5931 case 0x0fb5: /* lgs Gv */
5932 if (i386_record_modrm (&ir))
5940 opcode = opcode << 8 | ir.modrm;
5945 case 0xc4: /* les Gv */
5946 regnum = X86_RECORD_ES_REGNUM;
5948 case 0xc5: /* lds Gv */
5949 regnum = X86_RECORD_DS_REGNUM;
5951 case 0x0fb2: /* lss Gv */
5952 regnum = X86_RECORD_SS_REGNUM;
5954 case 0x0fb4: /* lfs Gv */
5955 regnum = X86_RECORD_FS_REGNUM;
5957 case 0x0fb5: /* lgs Gv */
5958 regnum = X86_RECORD_GS_REGNUM;
5961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5966 case 0xc0: /* shifts */
5972 if ((opcode & 1) == 0)
5975 ir.ot = ir.dflag + OT_WORD;
5976 if (i386_record_modrm (&ir))
5978 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5980 if (i386_record_lea_modrm (&ir))
5986 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5988 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5997 if (i386_record_modrm (&ir))
6001 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6006 if (i386_record_lea_modrm (&ir))
6011 case 0xd8: /* Floats. */
6019 if (i386_record_modrm (&ir))
6021 ir.reg |= ((opcode & 7) << 3);
6027 if (i386_record_lea_modrm_addr (&ir, &addr64))
6035 /* For fcom, ficom nothing to do. */
6041 /* For fcomp, ficomp pop FPU stack, store all. */
6042 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6069 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6070 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6071 of code, always affects st(0) register. */
6072 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6096 /* Handling fld, fild. */
6097 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6101 switch (ir.reg >> 4)
6104 if (record_full_arch_list_add_mem (addr64, 4))
6108 if (record_full_arch_list_add_mem (addr64, 8))
6114 if (record_full_arch_list_add_mem (addr64, 2))
6120 switch (ir.reg >> 4)
6123 if (record_full_arch_list_add_mem (addr64, 4))
6125 if (3 == (ir.reg & 7))
6127 /* For fstp m32fp. */
6128 if (i386_record_floats (gdbarch, &ir,
6129 I386_SAVE_FPU_REGS))
6134 if (record_full_arch_list_add_mem (addr64, 4))
6136 if ((3 == (ir.reg & 7))
6137 || (5 == (ir.reg & 7))
6138 || (7 == (ir.reg & 7)))
6140 /* For fstp insn. */
6141 if (i386_record_floats (gdbarch, &ir,
6142 I386_SAVE_FPU_REGS))
6147 if (record_full_arch_list_add_mem (addr64, 8))
6149 if (3 == (ir.reg & 7))
6151 /* For fstp m64fp. */
6152 if (i386_record_floats (gdbarch, &ir,
6153 I386_SAVE_FPU_REGS))
6158 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6160 /* For fistp, fbld, fild, fbstp. */
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_REGS))
6167 if (record_full_arch_list_add_mem (addr64, 2))
6176 if (i386_record_floats (gdbarch, &ir,
6177 I386_SAVE_FPU_ENV_REG_STACK))
6182 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6187 if (i386_record_floats (gdbarch, &ir,
6188 I386_SAVE_FPU_ENV_REG_STACK))
6194 if (record_full_arch_list_add_mem (addr64, 28))
6199 if (record_full_arch_list_add_mem (addr64, 14))
6205 if (record_full_arch_list_add_mem (addr64, 2))
6207 /* Insn fstp, fbstp. */
6208 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6213 if (record_full_arch_list_add_mem (addr64, 10))
6219 if (record_full_arch_list_add_mem (addr64, 28))
6225 if (record_full_arch_list_add_mem (addr64, 14))
6229 if (record_full_arch_list_add_mem (addr64, 80))
6232 if (i386_record_floats (gdbarch, &ir,
6233 I386_SAVE_FPU_ENV_REG_STACK))
6237 if (record_full_arch_list_add_mem (addr64, 8))
6240 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6245 opcode = opcode << 8 | ir.modrm;
6250 /* Opcode is an extension of modR/M byte. */
6256 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6260 if (0x0c == (ir.modrm >> 4))
6262 if ((ir.modrm & 0x0f) <= 7)
6264 if (i386_record_floats (gdbarch, &ir,
6265 I386_SAVE_FPU_REGS))
6270 if (i386_record_floats (gdbarch, &ir,
6271 I387_ST0_REGNUM (tdep)))
6273 /* If only st(0) is changing, then we have already
6275 if ((ir.modrm & 0x0f) - 0x08)
6277 if (i386_record_floats (gdbarch, &ir,
6278 I387_ST0_REGNUM (tdep) +
6279 ((ir.modrm & 0x0f) - 0x08)))
6297 if (i386_record_floats (gdbarch, &ir,
6298 I387_ST0_REGNUM (tdep)))
6316 if (i386_record_floats (gdbarch, &ir,
6317 I386_SAVE_FPU_REGS))
6321 if (i386_record_floats (gdbarch, &ir,
6322 I387_ST0_REGNUM (tdep)))
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep) + 1))
6332 if (0xe9 == ir.modrm)
6334 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6337 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6339 if (i386_record_floats (gdbarch, &ir,
6340 I387_ST0_REGNUM (tdep)))
6342 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6344 if (i386_record_floats (gdbarch, &ir,
6345 I387_ST0_REGNUM (tdep) +
6349 else if ((ir.modrm & 0x0f) - 0x08)
6351 if (i386_record_floats (gdbarch, &ir,
6352 I387_ST0_REGNUM (tdep) +
6353 ((ir.modrm & 0x0f) - 0x08)))
6359 if (0xe3 == ir.modrm)
6361 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6364 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6366 if (i386_record_floats (gdbarch, &ir,
6367 I387_ST0_REGNUM (tdep)))
6369 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6371 if (i386_record_floats (gdbarch, &ir,
6372 I387_ST0_REGNUM (tdep) +
6376 else if ((ir.modrm & 0x0f) - 0x08)
6378 if (i386_record_floats (gdbarch, &ir,
6379 I387_ST0_REGNUM (tdep) +
6380 ((ir.modrm & 0x0f) - 0x08)))
6386 if ((0x0c == ir.modrm >> 4)
6387 || (0x0d == ir.modrm >> 4)
6388 || (0x0f == ir.modrm >> 4))
6390 if ((ir.modrm & 0x0f) <= 7)
6392 if (i386_record_floats (gdbarch, &ir,
6393 I387_ST0_REGNUM (tdep) +
6399 if (i386_record_floats (gdbarch, &ir,
6400 I387_ST0_REGNUM (tdep) +
6401 ((ir.modrm & 0x0f) - 0x08)))
6407 if (0x0c == ir.modrm >> 4)
6409 if (i386_record_floats (gdbarch, &ir,
6410 I387_FTAG_REGNUM (tdep)))
6413 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6415 if ((ir.modrm & 0x0f) <= 7)
6417 if (i386_record_floats (gdbarch, &ir,
6418 I387_ST0_REGNUM (tdep) +
6424 if (i386_record_floats (gdbarch, &ir,
6425 I386_SAVE_FPU_REGS))
6431 if ((0x0c == ir.modrm >> 4)
6432 || (0x0e == ir.modrm >> 4)
6433 || (0x0f == ir.modrm >> 4)
6434 || (0xd9 == ir.modrm))
6436 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6441 if (0xe0 == ir.modrm)
6443 if (record_full_arch_list_add_reg (ir.regcache,
6447 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6449 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6457 case 0xa4: /* movsS */
6459 case 0xaa: /* stosS */
6461 case 0x6c: /* insS */
6463 regcache_raw_read_unsigned (ir.regcache,
6464 ir.regmap[X86_RECORD_RECX_REGNUM],
6470 if ((opcode & 1) == 0)
6473 ir.ot = ir.dflag + OT_WORD;
6474 regcache_raw_read_unsigned (ir.regcache,
6475 ir.regmap[X86_RECORD_REDI_REGNUM],
6478 regcache_raw_read_unsigned (ir.regcache,
6479 ir.regmap[X86_RECORD_ES_REGNUM],
6481 regcache_raw_read_unsigned (ir.regcache,
6482 ir.regmap[X86_RECORD_DS_REGNUM],
6484 if (ir.aflag && (es != ds))
6486 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6487 if (record_full_memory_query)
6490 Process record ignores the memory change of instruction at address %s\n\
6491 because it can't get the value of the segment register.\n\
6492 Do you want to stop the program?"),
6493 paddress (gdbarch, ir.orig_addr)))
6499 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6503 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6505 if (opcode == 0xa4 || opcode == 0xa5)
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512 case 0xa6: /* cmpsS */
6514 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6516 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6521 case 0xac: /* lodsS */
6523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6525 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6530 case 0xae: /* scasS */
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6533 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6538 case 0x6e: /* outsS */
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6541 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6546 case 0xe4: /* port I/O */
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6561 case 0xc2: /* ret im */
6562 case 0xc3: /* ret */
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6567 case 0xca: /* lret im */
6568 case 0xcb: /* lret */
6569 case 0xcf: /* iret */
6570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6575 case 0xe8: /* call im */
6576 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6578 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6582 case 0x9a: /* lcall im */
6583 if (ir.regmap[X86_RECORD_R8_REGNUM])
6588 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6589 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6593 case 0xe9: /* jmp im */
6594 case 0xea: /* ljmp im */
6595 case 0xeb: /* jmp Jb */
6596 case 0x70: /* jcc Jb */
6612 case 0x0f80: /* jcc Jv */
6630 case 0x0f90: /* setcc Gv */
6646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6648 if (i386_record_modrm (&ir))
6651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6655 if (i386_record_lea_modrm (&ir))
6660 case 0x0f40: /* cmov Gv, Ev */
6676 if (i386_record_modrm (&ir))
6679 if (ir.dflag == OT_BYTE)
6681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6685 case 0x9c: /* pushf */
6686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6687 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6689 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6693 case 0x9d: /* popf */
6694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6698 case 0x9e: /* sahf */
6699 if (ir.regmap[X86_RECORD_R8_REGNUM])
6705 case 0xf5: /* cmc */
6706 case 0xf8: /* clc */
6707 case 0xf9: /* stc */
6708 case 0xfc: /* cld */
6709 case 0xfd: /* std */
6710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6713 case 0x9f: /* lahf */
6714 if (ir.regmap[X86_RECORD_R8_REGNUM])
6719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6723 /* bit operations */
6724 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6725 ir.ot = ir.dflag + OT_WORD;
6726 if (i386_record_modrm (&ir))
6731 opcode = opcode << 8 | ir.modrm;
6737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6740 if (i386_record_lea_modrm (&ir))
6744 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6747 case 0x0fa3: /* bt Gv, Ev */
6748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6751 case 0x0fab: /* bts */
6752 case 0x0fb3: /* btr */
6753 case 0x0fbb: /* btc */
6754 ir.ot = ir.dflag + OT_WORD;
6755 if (i386_record_modrm (&ir))
6758 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6762 if (i386_record_lea_modrm_addr (&ir, &addr64))
6764 regcache_raw_read_unsigned (ir.regcache,
6765 ir.regmap[ir.reg | rex_r],
6770 addr64 += ((int16_t) addr >> 4) << 4;
6773 addr64 += ((int32_t) addr >> 5) << 5;
6776 addr64 += ((int64_t) addr >> 6) << 6;
6779 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6781 if (i386_record_lea_modrm (&ir))
6784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6787 case 0x0fbc: /* bsf */
6788 case 0x0fbd: /* bsr */
6789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6794 case 0x27: /* daa */
6795 case 0x2f: /* das */
6796 case 0x37: /* aaa */
6797 case 0x3f: /* aas */
6798 case 0xd4: /* aam */
6799 case 0xd5: /* aad */
6800 if (ir.regmap[X86_RECORD_R8_REGNUM])
6805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6810 case 0x90: /* nop */
6811 if (prefixes & PREFIX_LOCK)
6818 case 0x9b: /* fwait */
6819 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6821 opcode = (uint32_t) opcode8;
6827 case 0xcc: /* int3 */
6828 printf_unfiltered (_("Process record does not support instruction "
6835 case 0xcd: /* int */
6839 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6842 if (interrupt != 0x80
6843 || tdep->i386_intx80_record == NULL)
6845 printf_unfiltered (_("Process record does not support "
6846 "instruction int 0x%02x.\n"),
6851 ret = tdep->i386_intx80_record (ir.regcache);
6858 case 0xce: /* into */
6859 printf_unfiltered (_("Process record does not support "
6860 "instruction into.\n"));
6865 case 0xfa: /* cli */
6866 case 0xfb: /* sti */
6869 case 0x62: /* bound */
6870 printf_unfiltered (_("Process record does not support "
6871 "instruction bound.\n"));
6876 case 0x0fc8: /* bswap reg */
6884 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6887 case 0xd6: /* salc */
6888 if (ir.regmap[X86_RECORD_R8_REGNUM])
6893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6897 case 0xe0: /* loopnz */
6898 case 0xe1: /* loopz */
6899 case 0xe2: /* loop */
6900 case 0xe3: /* jecxz */
6901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6902 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6905 case 0x0f30: /* wrmsr */
6906 printf_unfiltered (_("Process record does not support "
6907 "instruction wrmsr.\n"));
6912 case 0x0f32: /* rdmsr */
6913 printf_unfiltered (_("Process record does not support "
6914 "instruction rdmsr.\n"));
6919 case 0x0f31: /* rdtsc */
6920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6924 case 0x0f34: /* sysenter */
6927 if (ir.regmap[X86_RECORD_R8_REGNUM])
6932 if (tdep->i386_sysenter_record == NULL)
6934 printf_unfiltered (_("Process record does not support "
6935 "instruction sysenter.\n"));
6939 ret = tdep->i386_sysenter_record (ir.regcache);
6945 case 0x0f35: /* sysexit */
6946 printf_unfiltered (_("Process record does not support "
6947 "instruction sysexit.\n"));
6952 case 0x0f05: /* syscall */
6955 if (tdep->i386_syscall_record == NULL)
6957 printf_unfiltered (_("Process record does not support "
6958 "instruction syscall.\n"));
6962 ret = tdep->i386_syscall_record (ir.regcache);
6968 case 0x0f07: /* sysret */
6969 printf_unfiltered (_("Process record does not support "
6970 "instruction sysret.\n"));
6975 case 0x0fa2: /* cpuid */
6976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6982 case 0xf4: /* hlt */
6983 printf_unfiltered (_("Process record does not support "
6984 "instruction hlt.\n"));
6990 if (i386_record_modrm (&ir))
6997 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7001 if (i386_record_lea_modrm (&ir))
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7014 opcode = opcode << 8 | ir.modrm;
7021 if (i386_record_modrm (&ir))
7032 opcode = opcode << 8 | ir.modrm;
7035 if (ir.override >= 0)
7037 if (record_full_memory_query)
7040 Process record ignores the memory change of instruction at address %s\n\
7041 because it can't get the value of the segment register.\n\
7042 Do you want to stop the program?"),
7043 paddress (gdbarch, ir.orig_addr)))
7049 if (i386_record_lea_modrm_addr (&ir, &addr64))
7051 if (record_full_arch_list_add_mem (addr64, 2))
7054 if (ir.regmap[X86_RECORD_R8_REGNUM])
7056 if (record_full_arch_list_add_mem (addr64, 8))
7061 if (record_full_arch_list_add_mem (addr64, 4))
7072 case 0: /* monitor */
7075 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7079 opcode = opcode << 8 | ir.modrm;
7087 if (ir.override >= 0)
7089 if (record_full_memory_query)
7092 Process record ignores the memory change of instruction at address %s\n\
7093 because it can't get the value of the segment register.\n\
7094 Do you want to stop the program?"),
7095 paddress (gdbarch, ir.orig_addr)))
7103 if (i386_record_lea_modrm_addr (&ir, &addr64))
7105 if (record_full_arch_list_add_mem (addr64, 2))
7108 if (ir.regmap[X86_RECORD_R8_REGNUM])
7110 if (record_full_arch_list_add_mem (addr64, 8))
7115 if (record_full_arch_list_add_mem (addr64, 4))
7127 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7128 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7132 else if (ir.rm == 1)
7140 opcode = opcode << 8 | ir.modrm;
7147 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7153 if (i386_record_lea_modrm (&ir))
7156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7161 case 7: /* invlpg */
7164 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7165 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7169 opcode = opcode << 8 | ir.modrm;
7174 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7178 opcode = opcode << 8 | ir.modrm;
7184 case 0x0f08: /* invd */
7185 case 0x0f09: /* wbinvd */
7188 case 0x63: /* arpl */
7189 if (i386_record_modrm (&ir))
7191 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7194 ? (ir.reg | rex_r) : ir.rm);
7198 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7199 if (i386_record_lea_modrm (&ir))
7202 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7203 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7206 case 0x0f02: /* lar */
7207 case 0x0f03: /* lsl */
7208 if (i386_record_modrm (&ir))
7210 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7215 if (i386_record_modrm (&ir))
7217 if (ir.mod == 3 && ir.reg == 3)
7220 opcode = opcode << 8 | ir.modrm;
7232 /* nop (multi byte) */
7235 case 0x0f20: /* mov reg, crN */
7236 case 0x0f22: /* mov crN, reg */
7237 if (i386_record_modrm (&ir))
7239 if ((ir.modrm & 0xc0) != 0xc0)
7242 opcode = opcode << 8 | ir.modrm;
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7259 opcode = opcode << 8 | ir.modrm;
7265 case 0x0f21: /* mov reg, drN */
7266 case 0x0f23: /* mov drN, reg */
7267 if (i386_record_modrm (&ir))
7269 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7270 || ir.reg == 5 || ir.reg >= 8)
7273 opcode = opcode << 8 | ir.modrm;
7277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7282 case 0x0f06: /* clts */
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7286 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7288 case 0x0f0d: /* 3DNow! prefetch */
7291 case 0x0f0e: /* 3DNow! femms */
7292 case 0x0f77: /* emms */
7293 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7295 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7298 case 0x0f0f: /* 3DNow! data */
7299 if (i386_record_modrm (&ir))
7301 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7306 case 0x0c: /* 3DNow! pi2fw */
7307 case 0x0d: /* 3DNow! pi2fd */
7308 case 0x1c: /* 3DNow! pf2iw */
7309 case 0x1d: /* 3DNow! pf2id */
7310 case 0x8a: /* 3DNow! pfnacc */
7311 case 0x8e: /* 3DNow! pfpnacc */
7312 case 0x90: /* 3DNow! pfcmpge */
7313 case 0x94: /* 3DNow! pfmin */
7314 case 0x96: /* 3DNow! pfrcp */
7315 case 0x97: /* 3DNow! pfrsqrt */
7316 case 0x9a: /* 3DNow! pfsub */
7317 case 0x9e: /* 3DNow! pfadd */
7318 case 0xa0: /* 3DNow! pfcmpgt */
7319 case 0xa4: /* 3DNow! pfmax */
7320 case 0xa6: /* 3DNow! pfrcpit1 */
7321 case 0xa7: /* 3DNow! pfrsqit1 */
7322 case 0xaa: /* 3DNow! pfsubr */
7323 case 0xae: /* 3DNow! pfacc */
7324 case 0xb0: /* 3DNow! pfcmpeq */
7325 case 0xb4: /* 3DNow! pfmul */
7326 case 0xb6: /* 3DNow! pfrcpit2 */
7327 case 0xb7: /* 3DNow! pmulhrw */
7328 case 0xbb: /* 3DNow! pswapd */
7329 case 0xbf: /* 3DNow! pavgusb */
7330 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7331 goto no_support_3dnow_data;
7332 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7336 no_support_3dnow_data:
7337 opcode = (opcode << 8) | opcode8;
7343 case 0x0faa: /* rsm */
7344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7356 if (i386_record_modrm (&ir))
7360 case 0: /* fxsave */
7364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7365 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7367 if (record_full_arch_list_add_mem (tmpu64, 512))
7372 case 1: /* fxrstor */
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7378 for (i = I387_MM0_REGNUM (tdep);
7379 i386_mmx_regnum_p (gdbarch, i); i++)
7380 record_full_arch_list_add_reg (ir.regcache, i);
7382 for (i = I387_XMM0_REGNUM (tdep);
7383 i386_xmm_regnum_p (gdbarch, i); i++)
7384 record_full_arch_list_add_reg (ir.regcache, i);
7386 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7387 record_full_arch_list_add_reg (ir.regcache,
7388 I387_MXCSR_REGNUM(tdep));
7390 for (i = I387_ST0_REGNUM (tdep);
7391 i386_fp_regnum_p (gdbarch, i); i++)
7392 record_full_arch_list_add_reg (ir.regcache, i);
7394 for (i = I387_FCTRL_REGNUM (tdep);
7395 i386_fpc_regnum_p (gdbarch, i); i++)
7396 record_full_arch_list_add_reg (ir.regcache, i);
7400 case 2: /* ldmxcsr */
7401 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7403 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7406 case 3: /* stmxcsr */
7408 if (i386_record_lea_modrm (&ir))
7412 case 5: /* lfence */
7413 case 6: /* mfence */
7414 case 7: /* sfence clflush */
7418 opcode = (opcode << 8) | ir.modrm;
7424 case 0x0fc3: /* movnti */
7425 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7426 if (i386_record_modrm (&ir))
7431 if (i386_record_lea_modrm (&ir))
7435 /* Add prefix to opcode. */
7550 /* Mask out PREFIX_ADDR. */
7551 switch ((prefixes & ~PREFIX_ADDR))
7563 reswitch_prefix_add:
7571 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7574 opcode = (uint32_t) opcode8 | opcode << 8;
7575 goto reswitch_prefix_add;
7578 case 0x0f10: /* movups */
7579 case 0x660f10: /* movupd */
7580 case 0xf30f10: /* movss */
7581 case 0xf20f10: /* movsd */
7582 case 0x0f12: /* movlps */
7583 case 0x660f12: /* movlpd */
7584 case 0xf30f12: /* movsldup */
7585 case 0xf20f12: /* movddup */
7586 case 0x0f14: /* unpcklps */
7587 case 0x660f14: /* unpcklpd */
7588 case 0x0f15: /* unpckhps */
7589 case 0x660f15: /* unpckhpd */
7590 case 0x0f16: /* movhps */
7591 case 0x660f16: /* movhpd */
7592 case 0xf30f16: /* movshdup */
7593 case 0x0f28: /* movaps */
7594 case 0x660f28: /* movapd */
7595 case 0x0f2a: /* cvtpi2ps */
7596 case 0x660f2a: /* cvtpi2pd */
7597 case 0xf30f2a: /* cvtsi2ss */
7598 case 0xf20f2a: /* cvtsi2sd */
7599 case 0x0f2c: /* cvttps2pi */
7600 case 0x660f2c: /* cvttpd2pi */
7601 case 0x0f2d: /* cvtps2pi */
7602 case 0x660f2d: /* cvtpd2pi */
7603 case 0x660f3800: /* pshufb */
7604 case 0x660f3801: /* phaddw */
7605 case 0x660f3802: /* phaddd */
7606 case 0x660f3803: /* phaddsw */
7607 case 0x660f3804: /* pmaddubsw */
7608 case 0x660f3805: /* phsubw */
7609 case 0x660f3806: /* phsubd */
7610 case 0x660f3807: /* phsubsw */
7611 case 0x660f3808: /* psignb */
7612 case 0x660f3809: /* psignw */
7613 case 0x660f380a: /* psignd */
7614 case 0x660f380b: /* pmulhrsw */
7615 case 0x660f3810: /* pblendvb */
7616 case 0x660f3814: /* blendvps */
7617 case 0x660f3815: /* blendvpd */
7618 case 0x660f381c: /* pabsb */
7619 case 0x660f381d: /* pabsw */
7620 case 0x660f381e: /* pabsd */
7621 case 0x660f3820: /* pmovsxbw */
7622 case 0x660f3821: /* pmovsxbd */
7623 case 0x660f3822: /* pmovsxbq */
7624 case 0x660f3823: /* pmovsxwd */
7625 case 0x660f3824: /* pmovsxwq */
7626 case 0x660f3825: /* pmovsxdq */
7627 case 0x660f3828: /* pmuldq */
7628 case 0x660f3829: /* pcmpeqq */
7629 case 0x660f382a: /* movntdqa */
7630 case 0x660f3a08: /* roundps */
7631 case 0x660f3a09: /* roundpd */
7632 case 0x660f3a0a: /* roundss */
7633 case 0x660f3a0b: /* roundsd */
7634 case 0x660f3a0c: /* blendps */
7635 case 0x660f3a0d: /* blendpd */
7636 case 0x660f3a0e: /* pblendw */
7637 case 0x660f3a0f: /* palignr */
7638 case 0x660f3a20: /* pinsrb */
7639 case 0x660f3a21: /* insertps */
7640 case 0x660f3a22: /* pinsrd pinsrq */
7641 case 0x660f3a40: /* dpps */
7642 case 0x660f3a41: /* dppd */
7643 case 0x660f3a42: /* mpsadbw */
7644 case 0x660f3a60: /* pcmpestrm */
7645 case 0x660f3a61: /* pcmpestri */
7646 case 0x660f3a62: /* pcmpistrm */
7647 case 0x660f3a63: /* pcmpistri */
7648 case 0x0f51: /* sqrtps */
7649 case 0x660f51: /* sqrtpd */
7650 case 0xf20f51: /* sqrtsd */
7651 case 0xf30f51: /* sqrtss */
7652 case 0x0f52: /* rsqrtps */
7653 case 0xf30f52: /* rsqrtss */
7654 case 0x0f53: /* rcpps */
7655 case 0xf30f53: /* rcpss */
7656 case 0x0f54: /* andps */
7657 case 0x660f54: /* andpd */
7658 case 0x0f55: /* andnps */
7659 case 0x660f55: /* andnpd */
7660 case 0x0f56: /* orps */
7661 case 0x660f56: /* orpd */
7662 case 0x0f57: /* xorps */
7663 case 0x660f57: /* xorpd */
7664 case 0x0f58: /* addps */
7665 case 0x660f58: /* addpd */
7666 case 0xf20f58: /* addsd */
7667 case 0xf30f58: /* addss */
7668 case 0x0f59: /* mulps */
7669 case 0x660f59: /* mulpd */
7670 case 0xf20f59: /* mulsd */
7671 case 0xf30f59: /* mulss */
7672 case 0x0f5a: /* cvtps2pd */
7673 case 0x660f5a: /* cvtpd2ps */
7674 case 0xf20f5a: /* cvtsd2ss */
7675 case 0xf30f5a: /* cvtss2sd */
7676 case 0x0f5b: /* cvtdq2ps */
7677 case 0x660f5b: /* cvtps2dq */
7678 case 0xf30f5b: /* cvttps2dq */
7679 case 0x0f5c: /* subps */
7680 case 0x660f5c: /* subpd */
7681 case 0xf20f5c: /* subsd */
7682 case 0xf30f5c: /* subss */
7683 case 0x0f5d: /* minps */
7684 case 0x660f5d: /* minpd */
7685 case 0xf20f5d: /* minsd */
7686 case 0xf30f5d: /* minss */
7687 case 0x0f5e: /* divps */
7688 case 0x660f5e: /* divpd */
7689 case 0xf20f5e: /* divsd */
7690 case 0xf30f5e: /* divss */
7691 case 0x0f5f: /* maxps */
7692 case 0x660f5f: /* maxpd */
7693 case 0xf20f5f: /* maxsd */
7694 case 0xf30f5f: /* maxss */
7695 case 0x660f60: /* punpcklbw */
7696 case 0x660f61: /* punpcklwd */
7697 case 0x660f62: /* punpckldq */
7698 case 0x660f63: /* packsswb */
7699 case 0x660f64: /* pcmpgtb */
7700 case 0x660f65: /* pcmpgtw */
7701 case 0x660f66: /* pcmpgtd */
7702 case 0x660f67: /* packuswb */
7703 case 0x660f68: /* punpckhbw */
7704 case 0x660f69: /* punpckhwd */
7705 case 0x660f6a: /* punpckhdq */
7706 case 0x660f6b: /* packssdw */
7707 case 0x660f6c: /* punpcklqdq */
7708 case 0x660f6d: /* punpckhqdq */
7709 case 0x660f6e: /* movd */
7710 case 0x660f6f: /* movdqa */
7711 case 0xf30f6f: /* movdqu */
7712 case 0x660f70: /* pshufd */
7713 case 0xf20f70: /* pshuflw */
7714 case 0xf30f70: /* pshufhw */
7715 case 0x660f74: /* pcmpeqb */
7716 case 0x660f75: /* pcmpeqw */
7717 case 0x660f76: /* pcmpeqd */
7718 case 0x660f7c: /* haddpd */
7719 case 0xf20f7c: /* haddps */
7720 case 0x660f7d: /* hsubpd */
7721 case 0xf20f7d: /* hsubps */
7722 case 0xf30f7e: /* movq */
7723 case 0x0fc2: /* cmpps */
7724 case 0x660fc2: /* cmppd */
7725 case 0xf20fc2: /* cmpsd */
7726 case 0xf30fc2: /* cmpss */
7727 case 0x660fc4: /* pinsrw */
7728 case 0x0fc6: /* shufps */
7729 case 0x660fc6: /* shufpd */
7730 case 0x660fd0: /* addsubpd */
7731 case 0xf20fd0: /* addsubps */
7732 case 0x660fd1: /* psrlw */
7733 case 0x660fd2: /* psrld */
7734 case 0x660fd3: /* psrlq */
7735 case 0x660fd4: /* paddq */
7736 case 0x660fd5: /* pmullw */
7737 case 0xf30fd6: /* movq2dq */
7738 case 0x660fd8: /* psubusb */
7739 case 0x660fd9: /* psubusw */
7740 case 0x660fda: /* pminub */
7741 case 0x660fdb: /* pand */
7742 case 0x660fdc: /* paddusb */
7743 case 0x660fdd: /* paddusw */
7744 case 0x660fde: /* pmaxub */
7745 case 0x660fdf: /* pandn */
7746 case 0x660fe0: /* pavgb */
7747 case 0x660fe1: /* psraw */
7748 case 0x660fe2: /* psrad */
7749 case 0x660fe3: /* pavgw */
7750 case 0x660fe4: /* pmulhuw */
7751 case 0x660fe5: /* pmulhw */
7752 case 0x660fe6: /* cvttpd2dq */
7753 case 0xf20fe6: /* cvtpd2dq */
7754 case 0xf30fe6: /* cvtdq2pd */
7755 case 0x660fe8: /* psubsb */
7756 case 0x660fe9: /* psubsw */
7757 case 0x660fea: /* pminsw */
7758 case 0x660feb: /* por */
7759 case 0x660fec: /* paddsb */
7760 case 0x660fed: /* paddsw */
7761 case 0x660fee: /* pmaxsw */
7762 case 0x660fef: /* pxor */
7763 case 0xf20ff0: /* lddqu */
7764 case 0x660ff1: /* psllw */
7765 case 0x660ff2: /* pslld */
7766 case 0x660ff3: /* psllq */
7767 case 0x660ff4: /* pmuludq */
7768 case 0x660ff5: /* pmaddwd */
7769 case 0x660ff6: /* psadbw */
7770 case 0x660ff8: /* psubb */
7771 case 0x660ff9: /* psubw */
7772 case 0x660ffa: /* psubd */
7773 case 0x660ffb: /* psubq */
7774 case 0x660ffc: /* paddb */
7775 case 0x660ffd: /* paddw */
7776 case 0x660ffe: /* paddd */
7777 if (i386_record_modrm (&ir))
7780 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7782 record_full_arch_list_add_reg (ir.regcache,
7783 I387_XMM0_REGNUM (tdep) + ir.reg);
7784 if ((opcode & 0xfffffffc) == 0x660f3a60)
7785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7788 case 0x0f11: /* movups */
7789 case 0x660f11: /* movupd */
7790 case 0xf30f11: /* movss */
7791 case 0xf20f11: /* movsd */
7792 case 0x0f13: /* movlps */
7793 case 0x660f13: /* movlpd */
7794 case 0x0f17: /* movhps */
7795 case 0x660f17: /* movhpd */
7796 case 0x0f29: /* movaps */
7797 case 0x660f29: /* movapd */
7798 case 0x660f3a14: /* pextrb */
7799 case 0x660f3a15: /* pextrw */
7800 case 0x660f3a16: /* pextrd pextrq */
7801 case 0x660f3a17: /* extractps */
7802 case 0x660f7f: /* movdqa */
7803 case 0xf30f7f: /* movdqu */
7804 if (i386_record_modrm (&ir))
7808 if (opcode == 0x0f13 || opcode == 0x660f13
7809 || opcode == 0x0f17 || opcode == 0x660f17)
7812 if (!i386_xmm_regnum_p (gdbarch,
7813 I387_XMM0_REGNUM (tdep) + ir.rm))
7815 record_full_arch_list_add_reg (ir.regcache,
7816 I387_XMM0_REGNUM (tdep) + ir.rm);
7838 if (i386_record_lea_modrm (&ir))
7843 case 0x0f2b: /* movntps */
7844 case 0x660f2b: /* movntpd */
7845 case 0x0fe7: /* movntq */
7846 case 0x660fe7: /* movntdq */
7849 if (opcode == 0x0fe7)
7853 if (i386_record_lea_modrm (&ir))
7857 case 0xf30f2c: /* cvttss2si */
7858 case 0xf20f2c: /* cvttsd2si */
7859 case 0xf30f2d: /* cvtss2si */
7860 case 0xf20f2d: /* cvtsd2si */
7861 case 0xf20f38f0: /* crc32 */
7862 case 0xf20f38f1: /* crc32 */
7863 case 0x0f50: /* movmskps */
7864 case 0x660f50: /* movmskpd */
7865 case 0x0fc5: /* pextrw */
7866 case 0x660fc5: /* pextrw */
7867 case 0x0fd7: /* pmovmskb */
7868 case 0x660fd7: /* pmovmskb */
7869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7872 case 0x0f3800: /* pshufb */
7873 case 0x0f3801: /* phaddw */
7874 case 0x0f3802: /* phaddd */
7875 case 0x0f3803: /* phaddsw */
7876 case 0x0f3804: /* pmaddubsw */
7877 case 0x0f3805: /* phsubw */
7878 case 0x0f3806: /* phsubd */
7879 case 0x0f3807: /* phsubsw */
7880 case 0x0f3808: /* psignb */
7881 case 0x0f3809: /* psignw */
7882 case 0x0f380a: /* psignd */
7883 case 0x0f380b: /* pmulhrsw */
7884 case 0x0f381c: /* pabsb */
7885 case 0x0f381d: /* pabsw */
7886 case 0x0f381e: /* pabsd */
7887 case 0x0f382b: /* packusdw */
7888 case 0x0f3830: /* pmovzxbw */
7889 case 0x0f3831: /* pmovzxbd */
7890 case 0x0f3832: /* pmovzxbq */
7891 case 0x0f3833: /* pmovzxwd */
7892 case 0x0f3834: /* pmovzxwq */
7893 case 0x0f3835: /* pmovzxdq */
7894 case 0x0f3837: /* pcmpgtq */
7895 case 0x0f3838: /* pminsb */
7896 case 0x0f3839: /* pminsd */
7897 case 0x0f383a: /* pminuw */
7898 case 0x0f383b: /* pminud */
7899 case 0x0f383c: /* pmaxsb */
7900 case 0x0f383d: /* pmaxsd */
7901 case 0x0f383e: /* pmaxuw */
7902 case 0x0f383f: /* pmaxud */
7903 case 0x0f3840: /* pmulld */
7904 case 0x0f3841: /* phminposuw */
7905 case 0x0f3a0f: /* palignr */
7906 case 0x0f60: /* punpcklbw */
7907 case 0x0f61: /* punpcklwd */
7908 case 0x0f62: /* punpckldq */
7909 case 0x0f63: /* packsswb */
7910 case 0x0f64: /* pcmpgtb */
7911 case 0x0f65: /* pcmpgtw */
7912 case 0x0f66: /* pcmpgtd */
7913 case 0x0f67: /* packuswb */
7914 case 0x0f68: /* punpckhbw */
7915 case 0x0f69: /* punpckhwd */
7916 case 0x0f6a: /* punpckhdq */
7917 case 0x0f6b: /* packssdw */
7918 case 0x0f6e: /* movd */
7919 case 0x0f6f: /* movq */
7920 case 0x0f70: /* pshufw */
7921 case 0x0f74: /* pcmpeqb */
7922 case 0x0f75: /* pcmpeqw */
7923 case 0x0f76: /* pcmpeqd */
7924 case 0x0fc4: /* pinsrw */
7925 case 0x0fd1: /* psrlw */
7926 case 0x0fd2: /* psrld */
7927 case 0x0fd3: /* psrlq */
7928 case 0x0fd4: /* paddq */
7929 case 0x0fd5: /* pmullw */
7930 case 0xf20fd6: /* movdq2q */
7931 case 0x0fd8: /* psubusb */
7932 case 0x0fd9: /* psubusw */
7933 case 0x0fda: /* pminub */
7934 case 0x0fdb: /* pand */
7935 case 0x0fdc: /* paddusb */
7936 case 0x0fdd: /* paddusw */
7937 case 0x0fde: /* pmaxub */
7938 case 0x0fdf: /* pandn */
7939 case 0x0fe0: /* pavgb */
7940 case 0x0fe1: /* psraw */
7941 case 0x0fe2: /* psrad */
7942 case 0x0fe3: /* pavgw */
7943 case 0x0fe4: /* pmulhuw */
7944 case 0x0fe5: /* pmulhw */
7945 case 0x0fe8: /* psubsb */
7946 case 0x0fe9: /* psubsw */
7947 case 0x0fea: /* pminsw */
7948 case 0x0feb: /* por */
7949 case 0x0fec: /* paddsb */
7950 case 0x0fed: /* paddsw */
7951 case 0x0fee: /* pmaxsw */
7952 case 0x0fef: /* pxor */
7953 case 0x0ff1: /* psllw */
7954 case 0x0ff2: /* pslld */
7955 case 0x0ff3: /* psllq */
7956 case 0x0ff4: /* pmuludq */
7957 case 0x0ff5: /* pmaddwd */
7958 case 0x0ff6: /* psadbw */
7959 case 0x0ff8: /* psubb */
7960 case 0x0ff9: /* psubw */
7961 case 0x0ffa: /* psubd */
7962 case 0x0ffb: /* psubq */
7963 case 0x0ffc: /* paddb */
7964 case 0x0ffd: /* paddw */
7965 case 0x0ffe: /* paddd */
7966 if (i386_record_modrm (&ir))
7968 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7970 record_full_arch_list_add_reg (ir.regcache,
7971 I387_MM0_REGNUM (tdep) + ir.reg);
7974 case 0x0f71: /* psllw */
7975 case 0x0f72: /* pslld */
7976 case 0x0f73: /* psllq */
7977 if (i386_record_modrm (&ir))
7979 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7981 record_full_arch_list_add_reg (ir.regcache,
7982 I387_MM0_REGNUM (tdep) + ir.rm);
7985 case 0x660f71: /* psllw */
7986 case 0x660f72: /* pslld */
7987 case 0x660f73: /* psllq */
7988 if (i386_record_modrm (&ir))
7991 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7993 record_full_arch_list_add_reg (ir.regcache,
7994 I387_XMM0_REGNUM (tdep) + ir.rm);
7997 case 0x0f7e: /* movd */
7998 case 0x660f7e: /* movd */
7999 if (i386_record_modrm (&ir))
8002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8009 if (i386_record_lea_modrm (&ir))
8014 case 0x0f7f: /* movq */
8015 if (i386_record_modrm (&ir))
8019 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8021 record_full_arch_list_add_reg (ir.regcache,
8022 I387_MM0_REGNUM (tdep) + ir.rm);
8027 if (i386_record_lea_modrm (&ir))
8032 case 0xf30fb8: /* popcnt */
8033 if (i386_record_modrm (&ir))
8035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8039 case 0x660fd6: /* movq */
8040 if (i386_record_modrm (&ir))
8045 if (!i386_xmm_regnum_p (gdbarch,
8046 I387_XMM0_REGNUM (tdep) + ir.rm))
8048 record_full_arch_list_add_reg (ir.regcache,
8049 I387_XMM0_REGNUM (tdep) + ir.rm);
8054 if (i386_record_lea_modrm (&ir))
8059 case 0x660f3817: /* ptest */
8060 case 0x0f2e: /* ucomiss */
8061 case 0x660f2e: /* ucomisd */
8062 case 0x0f2f: /* comiss */
8063 case 0x660f2f: /* comisd */
8064 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8067 case 0x0ff7: /* maskmovq */
8068 regcache_raw_read_unsigned (ir.regcache,
8069 ir.regmap[X86_RECORD_REDI_REGNUM],
8071 if (record_full_arch_list_add_mem (addr, 64))
8075 case 0x660ff7: /* maskmovdqu */
8076 regcache_raw_read_unsigned (ir.regcache,
8077 ir.regmap[X86_RECORD_REDI_REGNUM],
8079 if (record_full_arch_list_add_mem (addr, 128))
8094 /* In the future, maybe still need to deal with need_dasm. */
8095 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8096 if (record_full_arch_list_add_end ())
8102 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8103 "at address %s.\n"),
8104 (unsigned int) (opcode),
8105 paddress (gdbarch, ir.orig_addr));
8109 static const int i386_record_regmap[] =
8111 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8112 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8113 0, 0, 0, 0, 0, 0, 0, 0,
8114 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8115 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8118 /* Check that the given address appears suitable for a fast
8119 tracepoint, which on x86-64 means that we need an instruction of at
8120 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8121 jump and not have to worry about program jumps to an address in the
8122 middle of the tracepoint jump. On x86, it may be possible to use
8123 4-byte jumps with a 2-byte offset to a trampoline located in the
8124 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8125 of instruction to replace, and 0 if not, plus an explanatory
8129 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8134 /* Ask the target for the minimum instruction length supported. */
8135 jumplen = target_get_min_fast_tracepoint_insn_len ();
8139 /* If the target does not support the get_min_fast_tracepoint_insn_len
8140 operation, assume that fast tracepoints will always be implemented
8141 using 4-byte relative jumps on both x86 and x86-64. */
8144 else if (jumplen == 0)
8146 /* If the target does support get_min_fast_tracepoint_insn_len but
8147 returns zero, then the IPA has not loaded yet. In this case,
8148 we optimistically assume that truncated 2-byte relative jumps
8149 will be available on x86, and compensate later if this assumption
8150 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8151 jumps will always be used. */
8152 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8155 /* Check for fit. */
8156 len = gdb_insn_length (gdbarch, addr);
8160 /* Return a bit of target-specific detail to add to the caller's
8161 generic failure message. */
8163 *msg = string_printf (_("; instruction is only %d bytes long, "
8164 "need at least %d bytes for the jump"),
8176 /* Return a floating-point format for a floating-point variable of
8177 length LEN in bits. If non-NULL, NAME is the name of its type.
8178 If no suitable type is found, return NULL. */
8180 const struct floatformat **
8181 i386_floatformat_for_type (struct gdbarch *gdbarch,
8182 const char *name, int len)
8184 if (len == 128 && name)
8185 if (strcmp (name, "__float128") == 0
8186 || strcmp (name, "_Float128") == 0
8187 || strcmp (name, "complex _Float128") == 0
8188 || strcmp (name, "complex(kind=16)") == 0
8189 || strcmp (name, "real(kind=16)") == 0)
8190 return floatformats_ia64_quad;
8192 return default_floatformat_for_type (gdbarch, name, len);
8196 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8197 struct tdesc_arch_data *tdesc_data)
8199 const struct target_desc *tdesc = tdep->tdesc;
8200 const struct tdesc_feature *feature_core;
8202 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8203 *feature_avx512, *feature_pkeys, *feature_segments;
8204 int i, num_regs, valid_p;
8206 if (! tdesc_has_registers (tdesc))
8209 /* Get core registers. */
8210 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8211 if (feature_core == NULL)
8214 /* Get SSE registers. */
8215 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8217 /* Try AVX registers. */
8218 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8220 /* Try MPX registers. */
8221 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8223 /* Try AVX512 registers. */
8224 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8226 /* Try segment base registers. */
8227 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8230 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8234 /* The XCR0 bits. */
8237 /* AVX512 register description requires AVX register description. */
8241 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8243 /* It may have been set by OSABI initialization function. */
8244 if (tdep->k0_regnum < 0)
8246 tdep->k_register_names = i386_k_names;
8247 tdep->k0_regnum = I386_K0_REGNUM;
8250 for (i = 0; i < I387_NUM_K_REGS; i++)
8251 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8252 tdep->k0_regnum + i,
8255 if (tdep->num_zmm_regs == 0)
8257 tdep->zmmh_register_names = i386_zmmh_names;
8258 tdep->num_zmm_regs = 8;
8259 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8262 for (i = 0; i < tdep->num_zmm_regs; i++)
8263 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8264 tdep->zmm0h_regnum + i,
8265 tdep->zmmh_register_names[i]);
8267 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8268 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8269 tdep->xmm16_regnum + i,
8270 tdep->xmm_avx512_register_names[i]);
8272 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8273 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8274 tdep->ymm16h_regnum + i,
8275 tdep->ymm16h_register_names[i]);
8279 /* AVX register description requires SSE register description. */
8283 if (!feature_avx512)
8284 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8286 /* It may have been set by OSABI initialization function. */
8287 if (tdep->num_ymm_regs == 0)
8289 tdep->ymmh_register_names = i386_ymmh_names;
8290 tdep->num_ymm_regs = 8;
8291 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8294 for (i = 0; i < tdep->num_ymm_regs; i++)
8295 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8296 tdep->ymm0h_regnum + i,
8297 tdep->ymmh_register_names[i]);
8299 else if (feature_sse)
8300 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8303 tdep->xcr0 = X86_XSTATE_X87_MASK;
8304 tdep->num_xmm_regs = 0;
8307 num_regs = tdep->num_core_regs;
8308 for (i = 0; i < num_regs; i++)
8309 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8310 tdep->register_names[i]);
8314 /* Need to include %mxcsr, so add one. */
8315 num_regs += tdep->num_xmm_regs + 1;
8316 for (; i < num_regs; i++)
8317 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8318 tdep->register_names[i]);
8323 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8325 if (tdep->bnd0r_regnum < 0)
8327 tdep->mpx_register_names = i386_mpx_names;
8328 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8329 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8332 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8333 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8334 I387_BND0R_REGNUM (tdep) + i,
8335 tdep->mpx_register_names[i]);
8338 if (feature_segments)
8340 if (tdep->fsbase_regnum < 0)
8341 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8342 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8343 tdep->fsbase_regnum, "fs_base");
8344 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8345 tdep->fsbase_regnum + 1, "gs_base");
8350 tdep->xcr0 |= X86_XSTATE_PKRU;
8351 if (tdep->pkru_regnum < 0)
8353 tdep->pkeys_register_names = i386_pkeys_names;
8354 tdep->pkru_regnum = I386_PKRU_REGNUM;
8355 tdep->num_pkeys_regs = 1;
8358 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8359 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8360 I387_PKRU_REGNUM (tdep) + i,
8361 tdep->pkeys_register_names[i]);
8369 /* Implement the type_align gdbarch function. */
8372 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8374 type = check_typedef (type);
8376 if (gdbarch_ptr_bit (gdbarch) == 32)
8378 if ((TYPE_CODE (type) == TYPE_CODE_INT
8379 || TYPE_CODE (type) == TYPE_CODE_FLT)
8380 && TYPE_LENGTH (type) > 4)
8383 /* Handle x86's funny long double. */
8384 if (TYPE_CODE (type) == TYPE_CODE_FLT
8385 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8393 /* Note: This is called for both i386 and amd64. */
8395 static struct gdbarch *
8396 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8398 struct gdbarch_tdep *tdep;
8399 struct gdbarch *gdbarch;
8400 struct tdesc_arch_data *tdesc_data;
8401 const struct target_desc *tdesc;
8407 /* If there is already a candidate, use it. */
8408 arches = gdbarch_list_lookup_by_info (arches, &info);
8410 return arches->gdbarch;
8412 /* Allocate space for the new architecture. Assume i386 for now. */
8413 tdep = XCNEW (struct gdbarch_tdep);
8414 gdbarch = gdbarch_alloc (&info, tdep);
8416 /* General-purpose registers. */
8417 tdep->gregset_reg_offset = NULL;
8418 tdep->gregset_num_regs = I386_NUM_GREGS;
8419 tdep->sizeof_gregset = 0;
8421 /* Floating-point registers. */
8422 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8423 tdep->fpregset = &i386_fpregset;
8425 /* The default settings include the FPU registers, the MMX registers
8426 and the SSE registers. This can be overridden for a specific ABI
8427 by adjusting the members `st0_regnum', `mm0_regnum' and
8428 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8429 will show up in the output of "info all-registers". */
8431 tdep->st0_regnum = I386_ST0_REGNUM;
8433 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8434 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8436 tdep->jb_pc_offset = -1;
8437 tdep->struct_return = pcc_struct_return;
8438 tdep->sigtramp_start = 0;
8439 tdep->sigtramp_end = 0;
8440 tdep->sigtramp_p = i386_sigtramp_p;
8441 tdep->sigcontext_addr = NULL;
8442 tdep->sc_reg_offset = NULL;
8443 tdep->sc_pc_offset = -1;
8444 tdep->sc_sp_offset = -1;
8446 tdep->xsave_xcr0_offset = -1;
8448 tdep->record_regmap = i386_record_regmap;
8450 set_gdbarch_type_align (gdbarch, i386_type_align);
8452 /* The format used for `long double' on almost all i386 targets is
8453 the i387 extended floating-point format. In fact, of all targets
8454 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8455 on having a `long double' that's not `long' at all. */
8456 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8458 /* Although the i387 extended floating-point has only 80 significant
8459 bits, a `long double' actually takes up 96, probably to enforce
8461 set_gdbarch_long_double_bit (gdbarch, 96);
8463 /* Support for floating-point data type variants. */
8464 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8466 /* Register numbers of various important registers. */
8467 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8468 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8469 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8470 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8472 /* NOTE: kettenis/20040418: GCC does have two possible register
8473 numbering schemes on the i386: dbx and SVR4. These schemes
8474 differ in how they number %ebp, %esp, %eflags, and the
8475 floating-point registers, and are implemented by the arrays
8476 dbx_register_map[] and svr4_dbx_register_map in
8477 gcc/config/i386.c. GCC also defines a third numbering scheme in
8478 gcc/config/i386.c, which it designates as the "default" register
8479 map used in 64bit mode. This last register numbering scheme is
8480 implemented in dbx64_register_map, and is used for AMD64; see
8483 Currently, each GCC i386 target always uses the same register
8484 numbering scheme across all its supported debugging formats
8485 i.e. SDB (COFF), stabs and DWARF 2. This is because
8486 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8487 DBX_REGISTER_NUMBER macro which is defined by each target's
8488 respective config header in a manner independent of the requested
8489 output debugging format.
8491 This does not match the arrangement below, which presumes that
8492 the SDB and stabs numbering schemes differ from the DWARF and
8493 DWARF 2 ones. The reason for this arrangement is that it is
8494 likely to get the numbering scheme for the target's
8495 default/native debug format right. For targets where GCC is the
8496 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8497 targets where the native toolchain uses a different numbering
8498 scheme for a particular debug format (stabs-in-ELF on Solaris)
8499 the defaults below will have to be overridden, like
8500 i386_elf_init_abi() does. */
8502 /* Use the dbx register numbering scheme for stabs and COFF. */
8503 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8504 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8506 /* Use the SVR4 register numbering scheme for DWARF 2. */
8507 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8509 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8510 be in use on any of the supported i386 targets. */
8512 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8514 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8516 /* Call dummy code. */
8517 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8518 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8519 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8520 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8522 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8523 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8524 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8526 set_gdbarch_return_value (gdbarch, i386_return_value);
8528 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8530 /* Stack grows downward. */
8531 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8533 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8534 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8536 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8537 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8539 set_gdbarch_frame_args_skip (gdbarch, 8);
8541 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8543 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8545 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8547 /* Add the i386 register groups. */
8548 i386_add_reggroups (gdbarch);
8549 tdep->register_reggroup_p = i386_register_reggroup_p;
8551 /* Helper for function argument information. */
8552 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8554 /* Hook the function epilogue frame unwinder. This unwinder is
8555 appended to the list first, so that it supercedes the DWARF
8556 unwinder in function epilogues (where the DWARF unwinder
8557 currently fails). */
8558 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8560 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8561 to the list before the prologue-based unwinders, so that DWARF
8562 CFI info will be used if it is available. */
8563 dwarf2_append_unwinders (gdbarch);
8565 frame_base_set_default (gdbarch, &i386_frame_base);
8567 /* Pseudo registers may be changed by amd64_init_abi. */
8568 set_gdbarch_pseudo_register_read_value (gdbarch,
8569 i386_pseudo_register_read_value);
8570 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8571 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8572 i386_ax_pseudo_register_collect);
8574 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8575 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8577 /* Override the normal target description method to make the AVX
8578 upper halves anonymous. */
8579 set_gdbarch_register_name (gdbarch, i386_register_name);
8581 /* Even though the default ABI only includes general-purpose registers,
8582 floating-point registers and the SSE registers, we have to leave a
8583 gap for the upper AVX, MPX and AVX512 registers. */
8584 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8586 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8588 /* Get the x86 target description from INFO. */
8589 tdesc = info.target_desc;
8590 if (! tdesc_has_registers (tdesc))
8591 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8592 tdep->tdesc = tdesc;
8594 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8595 tdep->register_names = i386_register_names;
8597 /* No upper YMM registers. */
8598 tdep->ymmh_register_names = NULL;
8599 tdep->ymm0h_regnum = -1;
8601 /* No upper ZMM registers. */
8602 tdep->zmmh_register_names = NULL;
8603 tdep->zmm0h_regnum = -1;
8605 /* No high XMM registers. */
8606 tdep->xmm_avx512_register_names = NULL;
8607 tdep->xmm16_regnum = -1;
8609 /* No upper YMM16-31 registers. */
8610 tdep->ymm16h_register_names = NULL;
8611 tdep->ymm16h_regnum = -1;
8613 tdep->num_byte_regs = 8;
8614 tdep->num_word_regs = 8;
8615 tdep->num_dword_regs = 0;
8616 tdep->num_mmx_regs = 8;
8617 tdep->num_ymm_regs = 0;
8619 /* No MPX registers. */
8620 tdep->bnd0r_regnum = -1;
8621 tdep->bndcfgu_regnum = -1;
8623 /* No AVX512 registers. */
8624 tdep->k0_regnum = -1;
8625 tdep->num_zmm_regs = 0;
8626 tdep->num_ymm_avx512_regs = 0;
8627 tdep->num_xmm_avx512_regs = 0;
8629 /* No PKEYS registers */
8630 tdep->pkru_regnum = -1;
8631 tdep->num_pkeys_regs = 0;
8633 /* No segment base registers. */
8634 tdep->fsbase_regnum = -1;
8636 tdesc_data = tdesc_data_alloc ();
8638 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8640 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8642 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8643 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8644 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8646 /* Hook in ABI-specific overrides, if they have been registered.
8647 Note: If INFO specifies a 64 bit arch, this is where we turn
8648 a 32-bit i386 into a 64-bit amd64. */
8649 info.tdesc_data = tdesc_data;
8650 gdbarch_init_osabi (info, gdbarch);
8652 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8654 tdesc_data_cleanup (tdesc_data);
8656 gdbarch_free (gdbarch);
8660 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8662 /* Wire in pseudo registers. Number of pseudo registers may be
8664 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8665 + tdep->num_word_regs
8666 + tdep->num_dword_regs
8667 + tdep->num_mmx_regs
8668 + tdep->num_ymm_regs
8670 + tdep->num_ymm_avx512_regs
8671 + tdep->num_zmm_regs));
8673 /* Target description may be changed. */
8674 tdesc = tdep->tdesc;
8676 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8678 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8679 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8681 /* Make %al the first pseudo-register. */
8682 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8683 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8685 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8686 if (tdep->num_dword_regs)
8688 /* Support dword pseudo-register if it hasn't been disabled. */
8689 tdep->eax_regnum = ymm0_regnum;
8690 ymm0_regnum += tdep->num_dword_regs;
8693 tdep->eax_regnum = -1;
8695 mm0_regnum = ymm0_regnum;
8696 if (tdep->num_ymm_regs)
8698 /* Support YMM pseudo-register if it is available. */
8699 tdep->ymm0_regnum = ymm0_regnum;
8700 mm0_regnum += tdep->num_ymm_regs;
8703 tdep->ymm0_regnum = -1;
8705 if (tdep->num_ymm_avx512_regs)
8707 /* Support YMM16-31 pseudo registers if available. */
8708 tdep->ymm16_regnum = mm0_regnum;
8709 mm0_regnum += tdep->num_ymm_avx512_regs;
8712 tdep->ymm16_regnum = -1;
8714 if (tdep->num_zmm_regs)
8716 /* Support ZMM pseudo-register if it is available. */
8717 tdep->zmm0_regnum = mm0_regnum;
8718 mm0_regnum += tdep->num_zmm_regs;
8721 tdep->zmm0_regnum = -1;
8723 bnd0_regnum = mm0_regnum;
8724 if (tdep->num_mmx_regs != 0)
8726 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8727 tdep->mm0_regnum = mm0_regnum;
8728 bnd0_regnum += tdep->num_mmx_regs;
8731 tdep->mm0_regnum = -1;
8733 if (tdep->bnd0r_regnum > 0)
8734 tdep->bnd0_regnum = bnd0_regnum;
8736 tdep-> bnd0_regnum = -1;
8738 /* Hook in the legacy prologue-based unwinders last (fallback). */
8739 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8740 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8741 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8743 /* If we have a register mapping, enable the generic core file
8744 support, unless it has already been enabled. */
8745 if (tdep->gregset_reg_offset
8746 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8747 set_gdbarch_iterate_over_regset_sections
8748 (gdbarch, i386_iterate_over_regset_sections);
8750 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8751 i386_fast_tracepoint_valid_at);
8758 /* Return the target description for a specified XSAVE feature mask. */
8760 const struct target_desc *
8761 i386_target_description (uint64_t xcr0, bool segments)
8763 static target_desc *i386_tdescs \
8764 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8765 target_desc **tdesc;
8767 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8768 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8769 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8770 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8771 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8775 *tdesc = i386_create_target_description (xcr0, false, segments);
8780 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8782 /* Find the bound directory base address. */
8784 static unsigned long
8785 i386_mpx_bd_base (void)
8787 struct regcache *rcache;
8788 struct gdbarch_tdep *tdep;
8790 enum register_status regstatus;
8792 rcache = get_current_regcache ();
8793 tdep = gdbarch_tdep (rcache->arch ());
8795 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8797 if (regstatus != REG_VALID)
8798 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8800 return ret & MPX_BASE_MASK;
8804 i386_mpx_enabled (void)
8806 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8807 const struct target_desc *tdesc = tdep->tdesc;
8809 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8812 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8813 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8814 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8815 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8817 /* Find the bound table entry given the pointer location and the base
8818 address of the table. */
8821 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8825 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8826 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8827 CORE_ADDR bd_entry_addr;
8830 struct gdbarch *gdbarch = get_current_arch ();
8831 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8834 if (gdbarch_ptr_bit (gdbarch) == 64)
8836 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8837 bd_ptr_r_shift = 20;
8839 bt_select_r_shift = 3;
8840 bt_select_l_shift = 5;
8841 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8843 if ( sizeof (CORE_ADDR) == 4)
8844 error (_("bound table examination not supported\
8845 for 64-bit process with 32-bit GDB"));
8849 mpx_bd_mask = MPX_BD_MASK_32;
8850 bd_ptr_r_shift = 12;
8852 bt_select_r_shift = 2;
8853 bt_select_l_shift = 4;
8854 bt_mask = MPX_BT_MASK_32;
8857 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8858 bd_entry_addr = bd_base + offset1;
8859 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8861 if ((bd_entry & 0x1) == 0)
8862 error (_("Invalid bounds directory entry at %s."),
8863 paddress (get_current_arch (), bd_entry_addr));
8865 /* Clearing status bit. */
8867 bt_addr = bd_entry & ~bt_select_r_shift;
8868 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8870 return bt_addr + offset2;
8873 /* Print routine for the mpx bounds. */
8876 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8878 struct ui_out *uiout = current_uiout;
8880 struct gdbarch *gdbarch = get_current_arch ();
8881 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8882 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8884 if (bounds_in_map == 1)
8886 uiout->text ("Null bounds on map:");
8887 uiout->text (" pointer value = ");
8888 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8894 uiout->text ("{lbound = ");
8895 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8896 uiout->text (", ubound = ");
8898 /* The upper bound is stored in 1's complement. */
8899 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8900 uiout->text ("}: pointer value = ");
8901 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8903 if (gdbarch_ptr_bit (gdbarch) == 64)
8904 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8906 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8908 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8909 -1 represents in this sense full memory access, and there is no need
8912 size = (size > -1 ? size + 1 : size);
8913 uiout->text (", size = ");
8914 uiout->field_string ("size", plongest (size));
8916 uiout->text (", metadata = ");
8917 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8922 /* Implement the command "show mpx bound". */
8925 i386_mpx_info_bounds (const char *args, int from_tty)
8927 CORE_ADDR bd_base = 0;
8929 CORE_ADDR bt_entry_addr = 0;
8930 CORE_ADDR bt_entry[4];
8932 struct gdbarch *gdbarch = get_current_arch ();
8933 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8935 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8936 || !i386_mpx_enabled ())
8938 printf_unfiltered (_("Intel Memory Protection Extensions not "
8939 "supported on this target.\n"));
8945 printf_unfiltered (_("Address of pointer variable expected.\n"));
8949 addr = parse_and_eval_address (args);
8951 bd_base = i386_mpx_bd_base ();
8952 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8954 memset (bt_entry, 0, sizeof (bt_entry));
8956 for (i = 0; i < 4; i++)
8957 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8958 + i * TYPE_LENGTH (data_ptr_type),
8961 i386_mpx_print_bounds (bt_entry);
8964 /* Implement the command "set mpx bound". */
8967 i386_mpx_set_bounds (const char *args, int from_tty)
8969 CORE_ADDR bd_base = 0;
8970 CORE_ADDR addr, lower, upper;
8971 CORE_ADDR bt_entry_addr = 0;
8972 CORE_ADDR bt_entry[2];
8973 const char *input = args;
8975 struct gdbarch *gdbarch = get_current_arch ();
8976 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8977 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8979 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8980 || !i386_mpx_enabled ())
8981 error (_("Intel Memory Protection Extensions not supported\
8985 error (_("Pointer value expected."));
8987 addr = value_as_address (parse_to_comma_and_eval (&input));
8989 if (input[0] == ',')
8991 if (input[0] == '\0')
8992 error (_("wrong number of arguments: missing lower and upper bound."));
8993 lower = value_as_address (parse_to_comma_and_eval (&input));
8995 if (input[0] == ',')
8997 if (input[0] == '\0')
8998 error (_("Wrong number of arguments; Missing upper bound."));
8999 upper = value_as_address (parse_to_comma_and_eval (&input));
9001 bd_base = i386_mpx_bd_base ();
9002 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9003 for (i = 0; i < 2; i++)
9004 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9005 + i * TYPE_LENGTH (data_ptr_type),
9007 bt_entry[0] = (uint64_t) lower;
9008 bt_entry[1] = ~(uint64_t) upper;
9010 for (i = 0; i < 2; i++)
9011 write_memory_unsigned_integer (bt_entry_addr
9012 + i * TYPE_LENGTH (data_ptr_type),
9013 TYPE_LENGTH (data_ptr_type), byte_order,
9017 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9019 /* Helper function for the CLI commands. */
9022 set_mpx_cmd (const char *args, int from_tty)
9024 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9027 /* Helper function for the CLI commands. */
9030 show_mpx_cmd (const char *args, int from_tty)
9032 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9036 _initialize_i386_tdep (void)
9038 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9040 /* Add the variable that controls the disassembly flavor. */
9041 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9042 &disassembly_flavor, _("\
9043 Set the disassembly flavor."), _("\
9044 Show the disassembly flavor."), _("\
9045 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9047 NULL, /* FIXME: i18n: */
9048 &setlist, &showlist);
9050 /* Add the variable that controls the convention for returning
9052 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9053 &struct_convention, _("\
9054 Set the convention for returning small structs."), _("\
9055 Show the convention for returning small structs."), _("\
9056 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9059 NULL, /* FIXME: i18n: */
9060 &setlist, &showlist);
9062 /* Add "mpx" prefix for the set commands. */
9064 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9065 Set Intel Memory Protection Extensions specific variables."),
9066 &mpx_set_cmdlist, "set mpx ",
9067 0 /* allow-unknown */, &setlist);
9069 /* Add "mpx" prefix for the show commands. */
9071 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9072 Show Intel Memory Protection Extensions specific variables."),
9073 &mpx_show_cmdlist, "show mpx ",
9074 0 /* allow-unknown */, &showlist);
9076 /* Add "bound" command for the show mpx commands list. */
9078 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9079 "Show the memory bounds for a given array/pointer storage\
9080 in the bound table.",
9083 /* Add "bound" command for the set mpx commands list. */
9085 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9086 "Set the memory bounds for a given array/pointer storage\
9087 in the bound table.",
9090 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9091 i386_svr4_init_abi);
9093 /* Initialize the i386-specific register groups. */
9094 i386_init_reggroups ();
9096 /* Tell remote stub that we support XML target description. */
9097 register_remote_support_xml ("i386");