1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
38 #include "reggroups.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx512.c"
57 #include "features/i386/i386-mmx.c"
62 #include "stap-probe.h"
63 #include "user-regs.h"
64 #include "cli/cli-utils.h"
65 #include "expression.h"
66 #include "parser-defs.h"
71 static const char *i386_register_names[] =
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
86 static const char *i386_zmm_names[] =
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
92 static const char *i386_zmmh_names[] =
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 static const char *i386_k_names[] =
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
104 static const char *i386_ymm_names[] =
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
110 static const char *i386_ymmh_names[] =
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 static const char *i386_mpx_names[] =
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 /* Register names for MPX pseudo-registers. */
123 static const char *i386_bnd_names[] =
125 "bnd0", "bnd1", "bnd2", "bnd3"
128 /* Register names for MMX pseudo-registers. */
130 static const char *i386_mmx_names[] =
132 "mm0", "mm1", "mm2", "mm3",
133 "mm4", "mm5", "mm6", "mm7"
136 /* Register names for byte pseudo-registers. */
138 static const char *i386_byte_names[] =
140 "al", "cl", "dl", "bl",
141 "ah", "ch", "dh", "bh"
144 /* Register names for word pseudo-registers. */
146 static const char *i386_word_names[] =
148 "ax", "cx", "dx", "bx",
152 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
153 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
154 we have 16 upper ZMM regs that have to be handled differently. */
156 const int num_lower_zmm_regs = 16;
161 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164 int mm0_regnum = tdep->mm0_regnum;
169 regnum -= mm0_regnum;
170 return regnum >= 0 && regnum < tdep->num_mmx_regs;
176 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 regnum -= tdep->al_regnum;
181 return regnum >= 0 && regnum < tdep->num_byte_regs;
187 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
191 regnum -= tdep->ax_regnum;
192 return regnum >= 0 && regnum < tdep->num_word_regs;
195 /* Dword register? */
198 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
201 int eax_regnum = tdep->eax_regnum;
206 regnum -= eax_regnum;
207 return regnum >= 0 && regnum < tdep->num_dword_regs;
210 /* AVX512 register? */
213 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
216 int zmm0h_regnum = tdep->zmm0h_regnum;
218 if (zmm0h_regnum < 0)
221 regnum -= zmm0h_regnum;
222 return regnum >= 0 && regnum < tdep->num_zmm_regs;
226 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
229 int zmm0_regnum = tdep->zmm0_regnum;
234 regnum -= zmm0_regnum;
235 return regnum >= 0 && regnum < tdep->num_zmm_regs;
239 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
242 int k0_regnum = tdep->k0_regnum;
248 return regnum >= 0 && regnum < I387_NUM_K_REGS;
252 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255 int ymm0h_regnum = tdep->ymm0h_regnum;
257 if (ymm0h_regnum < 0)
260 regnum -= ymm0h_regnum;
261 return regnum >= 0 && regnum < tdep->num_ymm_regs;
267 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
270 int ymm0_regnum = tdep->ymm0_regnum;
275 regnum -= ymm0_regnum;
276 return regnum >= 0 && regnum < tdep->num_ymm_regs;
280 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
283 int ymm16h_regnum = tdep->ymm16h_regnum;
285 if (ymm16h_regnum < 0)
288 regnum -= ymm16h_regnum;
289 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
293 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
296 int ymm16_regnum = tdep->ymm16_regnum;
298 if (ymm16_regnum < 0)
301 regnum -= ymm16_regnum;
302 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
308 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
311 int bnd0_regnum = tdep->bnd0_regnum;
316 regnum -= bnd0_regnum;
317 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
323 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
325 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
326 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
328 if (num_xmm_regs == 0)
331 regnum -= I387_XMM0_REGNUM (tdep);
332 return regnum >= 0 && regnum < num_xmm_regs;
335 /* XMM_512 register? */
338 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
343 if (num_xmm_avx512_regs == 0)
346 regnum -= I387_XMM16_REGNUM (tdep);
347 return regnum >= 0 && regnum < num_xmm_avx512_regs;
351 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
355 if (I387_NUM_XMM_REGS (tdep) == 0)
358 return (regnum == I387_MXCSR_REGNUM (tdep));
364 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
368 if (I387_ST0_REGNUM (tdep) < 0)
371 return (I387_ST0_REGNUM (tdep) <= regnum
372 && regnum < I387_FCTRL_REGNUM (tdep));
376 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
380 if (I387_ST0_REGNUM (tdep) < 0)
383 return (I387_FCTRL_REGNUM (tdep) <= regnum
384 && regnum < I387_XMM0_REGNUM (tdep));
387 /* BNDr (raw) register? */
390 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
392 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
394 if (I387_BND0R_REGNUM (tdep) < 0)
397 regnum -= tdep->bnd0r_regnum;
398 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401 /* BND control register? */
404 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
408 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 regnum -= I387_BNDCFGU_REGNUM (tdep);
412 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415 /* Return the name of register REGNUM, or the empty string if it is
416 an anonymous register. */
419 i386_register_name (struct gdbarch *gdbarch, int regnum)
421 /* Hide the upper YMM registers. */
422 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 /* Hide the upper YMM16-31 registers. */
426 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 /* Hide the upper ZMM registers. */
430 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return tdesc_register_name (gdbarch, regnum);
436 /* Return the name of register REGNUM. */
439 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
442 if (i386_bnd_regnum_p (gdbarch, regnum))
443 return i386_bnd_names[regnum - tdep->bnd0_regnum];
444 if (i386_mmx_regnum_p (gdbarch, regnum))
445 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
446 else if (i386_ymm_regnum_p (gdbarch, regnum))
447 return i386_ymm_names[regnum - tdep->ymm0_regnum];
448 else if (i386_zmm_regnum_p (gdbarch, regnum))
449 return i386_zmm_names[regnum - tdep->zmm0_regnum];
450 else if (i386_byte_regnum_p (gdbarch, regnum))
451 return i386_byte_names[regnum - tdep->al_regnum];
452 else if (i386_word_regnum_p (gdbarch, regnum))
453 return i386_word_names[regnum - tdep->ax_regnum];
455 internal_error (__FILE__, __LINE__, _("invalid regnum"));
458 /* Convert a dbx register number REG to the appropriate register
459 number used by GDB. */
462 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
466 /* This implements what GCC calls the "default" register map
467 (dbx_register_map[]). */
469 if (reg >= 0 && reg <= 7)
471 /* General-purpose registers. The debug info calls %ebp
472 register 4, and %esp register 5. */
479 else if (reg >= 12 && reg <= 19)
481 /* Floating-point registers. */
482 return reg - 12 + I387_ST0_REGNUM (tdep);
484 else if (reg >= 21 && reg <= 28)
487 int ymm0_regnum = tdep->ymm0_regnum;
490 && i386_xmm_regnum_p (gdbarch, reg))
491 return reg - 21 + ymm0_regnum;
493 return reg - 21 + I387_XMM0_REGNUM (tdep);
495 else if (reg >= 29 && reg <= 36)
498 return reg - 29 + I387_MM0_REGNUM (tdep);
501 /* This will hopefully provoke a warning. */
502 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
505 /* Convert SVR4 DWARF register number REG to the appropriate register number
509 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
513 /* This implements the GCC register map that tries to be compatible
514 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
516 /* The SVR4 register numbering includes %eip and %eflags, and
517 numbers the floating point registers differently. */
518 if (reg >= 0 && reg <= 9)
520 /* General-purpose registers. */
523 else if (reg >= 11 && reg <= 18)
525 /* Floating-point registers. */
526 return reg - 11 + I387_ST0_REGNUM (tdep);
528 else if (reg >= 21 && reg <= 36)
530 /* The SSE and MMX registers have the same numbers as with dbx. */
531 return i386_dbx_reg_to_regnum (gdbarch, reg);
536 case 37: return I387_FCTRL_REGNUM (tdep);
537 case 38: return I387_FSTAT_REGNUM (tdep);
538 case 39: return I387_MXCSR_REGNUM (tdep);
539 case 40: return I386_ES_REGNUM;
540 case 41: return I386_CS_REGNUM;
541 case 42: return I386_SS_REGNUM;
542 case 43: return I386_DS_REGNUM;
543 case 44: return I386_FS_REGNUM;
544 case 45: return I386_GS_REGNUM;
550 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
551 num_regs + num_pseudo_regs for other debug formats. */
554 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
556 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
559 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
565 /* This is the variable that is set with "set disassembly-flavor", and
566 its legitimate values. */
567 static const char att_flavor[] = "att";
568 static const char intel_flavor[] = "intel";
569 static const char *const valid_flavors[] =
575 static const char *disassembly_flavor = att_flavor;
578 /* Use the program counter to determine the contents and size of a
579 breakpoint instruction. Return a pointer to a string of bytes that
580 encode a breakpoint instruction, store the length of the string in
581 *LEN and optionally adjust *PC to point to the correct memory
582 location for inserting the breakpoint.
584 On the i386 we have a single breakpoint that fits in a single byte
585 and can be inserted anywhere.
587 This function is 64-bit safe. */
589 static const gdb_byte *
590 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
592 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
594 *len = sizeof (break_insn);
598 /* Displaced instruction handling. */
600 /* Skip the legacy instruction prefixes in INSN.
601 Not all prefixes are valid for any particular insn
602 but we needn't care, the insn will fault if it's invalid.
603 The result is a pointer to the first opcode byte,
604 or NULL if we run off the end of the buffer. */
607 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
609 gdb_byte *end = insn + max_len;
615 case DATA_PREFIX_OPCODE:
616 case ADDR_PREFIX_OPCODE:
617 case CS_PREFIX_OPCODE:
618 case DS_PREFIX_OPCODE:
619 case ES_PREFIX_OPCODE:
620 case FS_PREFIX_OPCODE:
621 case GS_PREFIX_OPCODE:
622 case SS_PREFIX_OPCODE:
623 case LOCK_PREFIX_OPCODE:
624 case REPE_PREFIX_OPCODE:
625 case REPNE_PREFIX_OPCODE:
637 i386_absolute_jmp_p (const gdb_byte *insn)
639 /* jmp far (absolute address in operand). */
645 /* jump near, absolute indirect (/4). */
646 if ((insn[1] & 0x38) == 0x20)
649 /* jump far, absolute indirect (/5). */
650 if ((insn[1] & 0x38) == 0x28)
657 /* Return non-zero if INSN is a jump, zero otherwise. */
660 i386_jmp_p (const gdb_byte *insn)
662 /* jump short, relative. */
666 /* jump near, relative. */
670 return i386_absolute_jmp_p (insn);
674 i386_absolute_call_p (const gdb_byte *insn)
676 /* call far, absolute. */
682 /* Call near, absolute indirect (/2). */
683 if ((insn[1] & 0x38) == 0x10)
686 /* Call far, absolute indirect (/3). */
687 if ((insn[1] & 0x38) == 0x18)
695 i386_ret_p (const gdb_byte *insn)
699 case 0xc2: /* ret near, pop N bytes. */
700 case 0xc3: /* ret near */
701 case 0xca: /* ret far, pop N bytes. */
702 case 0xcb: /* ret far */
703 case 0xcf: /* iret */
712 i386_call_p (const gdb_byte *insn)
714 if (i386_absolute_call_p (insn))
717 /* call near, relative. */
724 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
725 length in bytes. Otherwise, return zero. */
728 i386_syscall_p (const gdb_byte *insn, int *lengthp)
730 /* Is it 'int $0x80'? */
731 if ((insn[0] == 0xcd && insn[1] == 0x80)
732 /* Or is it 'sysenter'? */
733 || (insn[0] == 0x0f && insn[1] == 0x34)
734 /* Or is it 'syscall'? */
735 || (insn[0] == 0x0f && insn[1] == 0x05))
744 /* The gdbarch insn_is_call method. */
747 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
749 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
751 read_code (addr, buf, I386_MAX_INSN_LEN);
752 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
754 return i386_call_p (insn);
757 /* The gdbarch insn_is_ret method. */
760 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
762 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
764 read_code (addr, buf, I386_MAX_INSN_LEN);
765 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
767 return i386_ret_p (insn);
770 /* The gdbarch insn_is_jump method. */
773 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
775 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
777 read_code (addr, buf, I386_MAX_INSN_LEN);
778 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
780 return i386_jmp_p (insn);
783 /* Some kernels may run one past a syscall insn, so we have to cope.
784 Otherwise this is just simple_displaced_step_copy_insn. */
786 struct displaced_step_closure *
787 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
788 CORE_ADDR from, CORE_ADDR to,
789 struct regcache *regs)
791 size_t len = gdbarch_max_insn_length (gdbarch);
792 gdb_byte *buf = (gdb_byte *) xmalloc (len);
794 read_memory (from, buf, len);
796 /* GDB may get control back after the insn after the syscall.
797 Presumably this is a kernel bug.
798 If this is a syscall, make sure there's a nop afterwards. */
803 insn = i386_skip_prefixes (buf, len);
804 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
805 insn[syscall_length] = NOP_OPCODE;
808 write_memory (to, buf, len);
812 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
813 paddress (gdbarch, from), paddress (gdbarch, to));
814 displaced_step_dump_bytes (gdb_stdlog, buf, len);
817 return (struct displaced_step_closure *) buf;
820 /* Fix up the state of registers and memory after having single-stepped
821 a displaced instruction. */
824 i386_displaced_step_fixup (struct gdbarch *gdbarch,
825 struct displaced_step_closure *closure,
826 CORE_ADDR from, CORE_ADDR to,
827 struct regcache *regs)
829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
831 /* The offset we applied to the instruction's address.
832 This could well be negative (when viewed as a signed 32-bit
833 value), but ULONGEST won't reflect that, so take care when
835 ULONGEST insn_offset = to - from;
837 /* Since we use simple_displaced_step_copy_insn, our closure is a
838 copy of the instruction. */
839 gdb_byte *insn = (gdb_byte *) closure;
840 /* The start of the insn, needed in case we see some prefixes. */
841 gdb_byte *insn_start = insn;
844 fprintf_unfiltered (gdb_stdlog,
845 "displaced: fixup (%s, %s), "
846 "insn = 0x%02x 0x%02x ...\n",
847 paddress (gdbarch, from), paddress (gdbarch, to),
850 /* The list of issues to contend with here is taken from
851 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
852 Yay for Free Software! */
854 /* Relocate the %eip, if necessary. */
856 /* The instruction recognizers we use assume any leading prefixes
857 have been skipped. */
859 /* This is the size of the buffer in closure. */
860 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
861 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
862 /* If there are too many prefixes, just ignore the insn.
863 It will fault when run. */
868 /* Except in the case of absolute or indirect jump or call
869 instructions, or a return instruction, the new eip is relative to
870 the displaced instruction; make it relative. Well, signal
871 handler returns don't need relocation either, but we use the
872 value of %eip to recognize those; see below. */
873 if (! i386_absolute_jmp_p (insn)
874 && ! i386_absolute_call_p (insn)
875 && ! i386_ret_p (insn))
880 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
882 /* A signal trampoline system call changes the %eip, resuming
883 execution of the main program after the signal handler has
884 returned. That makes them like 'return' instructions; we
885 shouldn't relocate %eip.
887 But most system calls don't, and we do need to relocate %eip.
889 Our heuristic for distinguishing these cases: if stepping
890 over the system call instruction left control directly after
891 the instruction, the we relocate --- control almost certainly
892 doesn't belong in the displaced copy. Otherwise, we assume
893 the instruction has put control where it belongs, and leave
894 it unrelocated. Goodness help us if there are PC-relative
896 if (i386_syscall_p (insn, &insn_len)
897 && orig_eip != to + (insn - insn_start) + insn_len
898 /* GDB can get control back after the insn after the syscall.
899 Presumably this is a kernel bug.
900 i386_displaced_step_copy_insn ensures its a nop,
901 we add one to the length for it. */
902 && orig_eip != to + (insn - insn_start) + insn_len + 1)
905 fprintf_unfiltered (gdb_stdlog,
906 "displaced: syscall changed %%eip; "
911 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
913 /* If we just stepped over a breakpoint insn, we don't backup
914 the pc on purpose; this is to match behaviour without
917 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
920 fprintf_unfiltered (gdb_stdlog,
922 "relocated %%eip from %s to %s\n",
923 paddress (gdbarch, orig_eip),
924 paddress (gdbarch, eip));
928 /* If the instruction was PUSHFL, then the TF bit will be set in the
929 pushed value, and should be cleared. We'll leave this for later,
930 since GDB already messes up the TF flag when stepping over a
933 /* If the instruction was a call, the return address now atop the
934 stack is the address following the copied instruction. We need
935 to make it the address following the original instruction. */
936 if (i386_call_p (insn))
940 const ULONGEST retaddr_len = 4;
942 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
943 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
944 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
945 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
948 fprintf_unfiltered (gdb_stdlog,
949 "displaced: relocated return addr at %s to %s\n",
950 paddress (gdbarch, esp),
951 paddress (gdbarch, retaddr));
956 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
958 target_write_memory (*to, buf, len);
963 i386_relocate_instruction (struct gdbarch *gdbarch,
964 CORE_ADDR *to, CORE_ADDR oldloc)
966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
967 gdb_byte buf[I386_MAX_INSN_LEN];
968 int offset = 0, rel32, newrel;
970 gdb_byte *insn = buf;
972 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
974 insn_length = gdb_buffered_insn_length (gdbarch, insn,
975 I386_MAX_INSN_LEN, oldloc);
977 /* Get past the prefixes. */
978 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
980 /* Adjust calls with 32-bit relative addresses as push/jump, with
981 the address pushed being the location where the original call in
982 the user program would return to. */
985 gdb_byte push_buf[16];
986 unsigned int ret_addr;
988 /* Where "ret" in the original code will return to. */
989 ret_addr = oldloc + insn_length;
990 push_buf[0] = 0x68; /* pushq $... */
991 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
993 append_insns (to, 5, push_buf);
995 /* Convert the relative call to a relative jump. */
998 /* Adjust the destination offset. */
999 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1000 newrel = (oldloc - *to) + rel32;
1001 store_signed_integer (insn + 1, 4, byte_order, newrel);
1003 if (debug_displaced)
1004 fprintf_unfiltered (gdb_stdlog,
1005 "Adjusted insn rel32=%s at %s to"
1006 " rel32=%s at %s\n",
1007 hex_string (rel32), paddress (gdbarch, oldloc),
1008 hex_string (newrel), paddress (gdbarch, *to));
1010 /* Write the adjusted jump into its displaced location. */
1011 append_insns (to, 5, insn);
1015 /* Adjust jumps with 32-bit relative addresses. Calls are already
1017 if (insn[0] == 0xe9)
1019 /* Adjust conditional jumps. */
1020 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1025 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1026 newrel = (oldloc - *to) + rel32;
1027 store_signed_integer (insn + offset, 4, byte_order, newrel);
1028 if (debug_displaced)
1029 fprintf_unfiltered (gdb_stdlog,
1030 "Adjusted insn rel32=%s at %s to"
1031 " rel32=%s at %s\n",
1032 hex_string (rel32), paddress (gdbarch, oldloc),
1033 hex_string (newrel), paddress (gdbarch, *to));
1036 /* Write the adjusted instructions into their displaced
1038 append_insns (to, insn_length, buf);
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1054 struct i386_frame_cache
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1068 /* Stack space reserved for local variables. */
1072 /* Allocate and initialize a frame cache. */
1074 static struct i386_frame_cache *
1075 i386_alloc_frame_cache (void)
1077 struct i386_frame_cache *cache;
1080 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1085 cache->sp_offset = -4;
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091 cache->saved_regs[i] = -1;
1092 cache->saved_sp = 0;
1093 cache->saved_sp_reg = -1;
1094 cache->pc_in_eax = 0;
1096 /* Frameless until proven otherwise. */
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1106 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1113 if (target_read_code (pc, &op, 1))
1120 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1129 delta = read_memory_integer (pc + 2, 2, byte_order);
1131 /* Include the size of the jmp instruction (including the
1137 delta = read_memory_integer (pc + 1, 4, byte_order);
1139 /* Include the size of the jmp instruction. */
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1147 delta += data16 + 2;
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1161 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 struct i386_frame_cache *cache)
1164 /* Functions that return a structure or union start with:
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1179 if (current_pc <= pc)
1182 if (target_read_code (pc, &op, 1))
1185 if (op != 0x58) /* popl %eax */
1188 if (target_read_code (pc + 1, buf, 4))
1191 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1194 if (current_pc == pc)
1196 cache->sp_offset += 4;
1200 if (current_pc == pc + 1)
1202 cache->pc_in_eax = 1;
1206 if (buf[1] == proto1[1])
1213 i386_skip_probe (CORE_ADDR pc)
1215 /* A function may start with
1229 if (target_read_code (pc, &op, 1))
1232 if (op == 0x68 || op == 0x6a)
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc + delta, buf, sizeof (buf));
1246 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1247 pc += delta + sizeof (buf);
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1260 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 struct i386_frame_cache *cache)
1263 /* There are 2 code sequences to re-align stack before the frame
1266 1. Use a caller-saved saved register:
1272 2. Use a callee-saved saved register:
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1287 int offset, offset_and;
1288 static int regnums[8] = {
1289 I386_EAX_REGNUM, /* %eax */
1290 I386_ECX_REGNUM, /* %ecx */
1291 I386_EDX_REGNUM, /* %edx */
1292 I386_EBX_REGNUM, /* %ebx */
1293 I386_ESP_REGNUM, /* %esp */
1294 I386_EBP_REGNUM, /* %ebp */
1295 I386_ESI_REGNUM, /* %esi */
1296 I386_EDI_REGNUM /* %edi */
1299 if (target_read_code (pc, buf, sizeof buf))
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf[1] & 0xc7) != 0x44)
1310 /* REG has register number. */
1311 reg = (buf[1] >> 3) & 7;
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf[0] & 0xf8) != 0x50)
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf[2] & 0xc7) != 0x44)
1332 /* REG has register number. Registers in pushl and leal have to
1334 if (reg != ((buf[2] >> 3) & 7))
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg == 4 || reg == 5)
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf[offset + 1] != 0xe4
1346 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1349 offset_and = offset;
1350 offset += buf[offset] == 0x81 ? 6 : 3;
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf[offset] != 0xff
1355 || buf[offset + 2] != 0xfc
1356 || (buf[offset + 1] & 0xf8) != 0x70)
1359 /* R/M has register. Registers in leal and pushl have to be the
1361 if (reg != (buf[offset + 1] & 7))
1364 if (current_pc > pc + offset_and)
1365 cache->saved_sp_reg = regnums[reg];
1367 return min (pc + offset + 3, current_pc);
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1373 /* Instruction description. */
1377 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1381 /* Return whether instruction at PC matches PATTERN. */
1384 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1388 if (target_read_code (pc, &op, 1))
1391 if ((op & pattern.mask[0]) == pattern.insn[0])
1393 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394 int insn_matched = 1;
1397 gdb_assert (pattern.len > 1);
1398 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1400 if (target_read_code (pc + 1, buf, pattern.len - 1))
1403 for (i = 1; i < pattern.len; i++)
1405 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1408 return insn_matched;
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1417 static struct i386_insn *
1418 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1420 struct i386_insn *pattern;
1422 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1424 if (i386_match_pattern (pc, *pattern))
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1435 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1437 CORE_ADDR current_pc;
1439 struct i386_insn *insn;
1441 insn = i386_match_insn (pc, insn_patterns);
1446 ix = insn - insn_patterns;
1447 for (i = ix - 1; i >= 0; i--)
1449 current_pc -= insn_patterns[i].len;
1451 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1455 current_pc = pc + insn->len;
1456 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1458 if (!i386_match_pattern (current_pc, *insn))
1461 current_pc += insn->len;
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1473 struct i386_insn i386_frame_setup_skip_insns[] =
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1477 ??? Should we handle 16-bit operand-sizes here? */
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1492 ??? Should we handle SIB adressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1523 /* Check whether PC points to a no-op instruction. */
1525 i386_skip_noop (CORE_ADDR pc)
1530 if (target_read_code (pc, &op, 1))
1536 /* Ignore `nop' instruction. */
1540 if (target_read_code (pc, &op, 1))
1544 /* Ignore no-op instruction `mov %edi, %edi'.
1545 Microsoft system dlls often start with
1546 a `mov %edi,%edi' instruction.
1547 The 5 bytes before the function start are
1548 filled with `nop' instructions.
1549 This pattern can be used for hot-patching:
1550 The `mov %edi, %edi' instruction can be replaced by a
1551 near jump to the location of the 5 `nop' instructions
1552 which can be replaced by a 32-bit jump to anywhere
1553 in the 32-bit address space. */
1555 else if (op == 0x8b)
1557 if (target_read_code (pc + 1, &op, 1))
1563 if (target_read_code (pc, &op, 1))
1573 /* Check whether PC points at a code that sets up a new stack frame.
1574 If so, it updates CACHE and returns the address of the first
1575 instruction after the sequence that sets up the frame or LIMIT,
1576 whichever is smaller. If we don't recognize the code, return PC. */
1579 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1580 CORE_ADDR pc, CORE_ADDR limit,
1581 struct i386_frame_cache *cache)
1583 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1584 struct i386_insn *insn;
1591 if (target_read_code (pc, &op, 1))
1594 if (op == 0x55) /* pushl %ebp */
1596 /* Take into account that we've executed the `pushl %ebp' that
1597 starts this instruction sequence. */
1598 cache->saved_regs[I386_EBP_REGNUM] = 0;
1599 cache->sp_offset += 4;
1602 /* If that's all, return now. */
1606 /* Check for some special instructions that might be migrated by
1607 GCC into the prologue and skip them. At this point in the
1608 prologue, code should only touch the scratch registers %eax,
1609 %ecx and %edx, so while the number of posibilities is sheer,
1612 Make sure we only skip these instructions if we later see the
1613 `movl %esp, %ebp' that actually sets up the frame. */
1614 while (pc + skip < limit)
1616 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1623 /* If that's all, return now. */
1624 if (limit <= pc + skip)
1627 if (target_read_code (pc + skip, &op, 1))
1630 /* The i386 prologue looks like
1636 and a different prologue can be generated for atom.
1640 lea -0x10(%esp),%esp
1642 We handle both of them here. */
1646 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1648 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1654 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1659 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1660 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1669 /* OK, we actually have a frame. We just don't know how large
1670 it is yet. Set its size to zero. We'll adjust it if
1671 necessary. We also now commit to skipping the special
1672 instructions mentioned before. */
1675 /* If that's all, return now. */
1679 /* Check for stack adjustment
1685 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1686 reg, so we don't have to worry about a data16 prefix. */
1687 if (target_read_code (pc, &op, 1))
1691 /* `subl' with 8-bit immediate. */
1692 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1693 /* Some instruction starting with 0x83 other than `subl'. */
1696 /* `subl' with signed 8-bit immediate (though it wouldn't
1697 make sense to be negative). */
1698 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1701 else if (op == 0x81)
1703 /* Maybe it is `subl' with a 32-bit immediate. */
1704 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1705 /* Some instruction starting with 0x81 other than `subl'. */
1708 /* It is `subl' with a 32-bit immediate. */
1709 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1712 else if (op == 0x8d)
1714 /* The ModR/M byte is 0x64. */
1715 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1717 /* 'lea' with 8-bit displacement. */
1718 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1723 /* Some instruction other than `subl' nor 'lea'. */
1727 else if (op == 0xc8) /* enter */
1729 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1736 /* Check whether PC points at code that saves registers on the stack.
1737 If so, it updates CACHE and returns the address of the first
1738 instruction after the register saves or CURRENT_PC, whichever is
1739 smaller. Otherwise, return PC. */
1742 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1743 struct i386_frame_cache *cache)
1745 CORE_ADDR offset = 0;
1749 if (cache->locals > 0)
1750 offset -= cache->locals;
1751 for (i = 0; i < 8 && pc < current_pc; i++)
1753 if (target_read_code (pc, &op, 1))
1755 if (op < 0x50 || op > 0x57)
1759 cache->saved_regs[op - 0x50] = offset;
1760 cache->sp_offset += 4;
1767 /* Do a full analysis of the prologue at PC and update CACHE
1768 accordingly. Bail out early if CURRENT_PC is reached. Return the
1769 address where the analysis stopped.
1771 We handle these cases:
1773 The startup sequence can be at the start of the function, or the
1774 function can start with a branch to startup code at the end.
1776 %ebp can be set up with either the 'enter' instruction, or "pushl
1777 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1778 once used in the System V compiler).
1780 Local space is allocated just below the saved %ebp by either the
1781 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1782 16-bit unsigned argument for space to allocate, and the 'addl'
1783 instruction could have either a signed byte, or 32-bit immediate.
1785 Next, the registers used by this function are pushed. With the
1786 System V compiler they will always be in the order: %edi, %esi,
1787 %ebx (and sometimes a harmless bug causes it to also save but not
1788 restore %eax); however, the code below is willing to see the pushes
1789 in any order, and will handle up to 8 of them.
1791 If the setup sequence is at the end of the function, then the next
1792 instruction will be a branch back to the start. */
1795 i386_analyze_prologue (struct gdbarch *gdbarch,
1796 CORE_ADDR pc, CORE_ADDR current_pc,
1797 struct i386_frame_cache *cache)
1799 pc = i386_skip_noop (pc);
1800 pc = i386_follow_jump (gdbarch, pc);
1801 pc = i386_analyze_struct_return (pc, current_pc, cache);
1802 pc = i386_skip_probe (pc);
1803 pc = i386_analyze_stack_align (pc, current_pc, cache);
1804 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1805 return i386_analyze_register_saves (pc, current_pc, cache);
1808 /* Return PC of first real instruction. */
1811 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1813 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1815 static gdb_byte pic_pat[6] =
1817 0xe8, 0, 0, 0, 0, /* call 0x0 */
1818 0x5b, /* popl %ebx */
1820 struct i386_frame_cache cache;
1824 CORE_ADDR func_addr;
1826 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1828 CORE_ADDR post_prologue_pc
1829 = skip_prologue_using_sal (gdbarch, func_addr);
1830 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1832 /* Clang always emits a line note before the prologue and another
1833 one after. We trust clang to emit usable line notes. */
1834 if (post_prologue_pc
1836 && COMPUNIT_PRODUCER (cust) != NULL
1837 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1838 return max (start_pc, post_prologue_pc);
1842 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1843 if (cache.locals < 0)
1846 /* Found valid frame setup. */
1848 /* The native cc on SVR4 in -K PIC mode inserts the following code
1849 to get the address of the global offset table (GOT) into register
1854 movl %ebx,x(%ebp) (optional)
1857 This code is with the rest of the prologue (at the end of the
1858 function), so we have to skip it to get to the first real
1859 instruction at the start of the function. */
1861 for (i = 0; i < 6; i++)
1863 if (target_read_code (pc + i, &op, 1))
1866 if (pic_pat[i] != op)
1873 if (target_read_code (pc + delta, &op, 1))
1876 if (op == 0x89) /* movl %ebx, x(%ebp) */
1878 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1880 if (op == 0x5d) /* One byte offset from %ebp. */
1882 else if (op == 0x9d) /* Four byte offset from %ebp. */
1884 else /* Unexpected instruction. */
1887 if (target_read_code (pc + delta, &op, 1))
1892 if (delta > 0 && op == 0x81
1893 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1900 /* If the function starts with a branch (to startup code at the end)
1901 the last instruction should bring us back to the first
1902 instruction of the real code. */
1903 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1904 pc = i386_follow_jump (gdbarch, pc);
1909 /* Check that the code pointed to by PC corresponds to a call to
1910 __main, skip it if so. Return PC otherwise. */
1913 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1915 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1918 if (target_read_code (pc, &op, 1))
1924 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1926 /* Make sure address is computed correctly as a 32bit
1927 integer even if CORE_ADDR is 64 bit wide. */
1928 struct bound_minimal_symbol s;
1929 CORE_ADDR call_dest;
1931 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1932 call_dest = call_dest & 0xffffffffU;
1933 s = lookup_minimal_symbol_by_pc (call_dest);
1934 if (s.minsym != NULL
1935 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1936 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1944 /* This function is 64-bit safe. */
1947 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1951 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1952 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1956 /* Normal frames. */
1959 i386_frame_cache_1 (struct frame_info *this_frame,
1960 struct i386_frame_cache *cache)
1962 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1963 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1967 cache->pc = get_frame_func (this_frame);
1969 /* In principle, for normal frames, %ebp holds the frame pointer,
1970 which holds the base address for the current stack frame.
1971 However, for functions that don't need it, the frame pointer is
1972 optional. For these "frameless" functions the frame pointer is
1973 actually the frame pointer of the calling frame. Signal
1974 trampolines are just a special case of a "frameless" function.
1975 They (usually) share their frame pointer with the frame that was
1976 in progress when the signal occurred. */
1978 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1979 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1980 if (cache->base == 0)
1986 /* For normal frames, %eip is stored at 4(%ebp). */
1987 cache->saved_regs[I386_EIP_REGNUM] = 4;
1990 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1993 if (cache->locals < 0)
1995 /* We didn't find a valid frame, which means that CACHE->base
1996 currently holds the frame pointer for our calling frame. If
1997 we're at the start of a function, or somewhere half-way its
1998 prologue, the function's frame probably hasn't been fully
1999 setup yet. Try to reconstruct the base address for the stack
2000 frame by looking at the stack pointer. For truly "frameless"
2001 functions this might work too. */
2003 if (cache->saved_sp_reg != -1)
2005 /* Saved stack pointer has been saved. */
2006 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2007 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2009 /* We're halfway aligning the stack. */
2010 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2011 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2013 /* This will be added back below. */
2014 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2016 else if (cache->pc != 0
2017 || target_read_code (get_frame_pc (this_frame), buf, 1))
2019 /* We're in a known function, but did not find a frame
2020 setup. Assume that the function does not use %ebp.
2021 Alternatively, we may have jumped to an invalid
2022 address; in that case there is definitely no new
2024 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2025 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2029 /* We're in an unknown function. We could not find the start
2030 of the function to analyze the prologue; our best option is
2031 to assume a typical frame layout with the caller's %ebp
2033 cache->saved_regs[I386_EBP_REGNUM] = 0;
2036 if (cache->saved_sp_reg != -1)
2038 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2039 register may be unavailable). */
2040 if (cache->saved_sp == 0
2041 && deprecated_frame_register_read (this_frame,
2042 cache->saved_sp_reg, buf))
2043 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2045 /* Now that we have the base address for the stack frame we can
2046 calculate the value of %esp in the calling frame. */
2047 else if (cache->saved_sp == 0)
2048 cache->saved_sp = cache->base + 8;
2050 /* Adjust all the saved registers such that they contain addresses
2051 instead of offsets. */
2052 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2053 if (cache->saved_regs[i] != -1)
2054 cache->saved_regs[i] += cache->base;
2059 static struct i386_frame_cache *
2060 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2062 struct i386_frame_cache *cache;
2065 return (struct i386_frame_cache *) *this_cache;
2067 cache = i386_alloc_frame_cache ();
2068 *this_cache = cache;
2072 i386_frame_cache_1 (this_frame, cache);
2074 CATCH (ex, RETURN_MASK_ERROR)
2076 if (ex.error != NOT_AVAILABLE_ERROR)
2077 throw_exception (ex);
2085 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2086 struct frame_id *this_id)
2088 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2091 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2092 else if (cache->base == 0)
2094 /* This marks the outermost frame. */
2098 /* See the end of i386_push_dummy_call. */
2099 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2103 static enum unwind_stop_reason
2104 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2110 return UNWIND_UNAVAILABLE;
2112 /* This marks the outermost frame. */
2113 if (cache->base == 0)
2114 return UNWIND_OUTERMOST;
2116 return UNWIND_NO_REASON;
2119 static struct value *
2120 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2123 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2125 gdb_assert (regnum >= 0);
2127 /* The System V ABI says that:
2129 "The flags register contains the system flags, such as the
2130 direction flag and the carry flag. The direction flag must be
2131 set to the forward (that is, zero) direction before entry and
2132 upon exit from a function. Other user flags have no specified
2133 role in the standard calling sequence and are not preserved."
2135 To guarantee the "upon exit" part of that statement we fake a
2136 saved flags register that has its direction flag cleared.
2138 Note that GCC doesn't seem to rely on the fact that the direction
2139 flag is cleared after a function return; it always explicitly
2140 clears the flag before operations where it matters.
2142 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2143 right thing to do. The way we fake the flags register here makes
2144 it impossible to change it. */
2146 if (regnum == I386_EFLAGS_REGNUM)
2150 val = get_frame_register_unsigned (this_frame, regnum);
2152 return frame_unwind_got_constant (this_frame, regnum, val);
2155 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2156 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2158 if (regnum == I386_ESP_REGNUM
2159 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2161 /* If the SP has been saved, but we don't know where, then this
2162 means that SAVED_SP_REG register was found unavailable back
2163 when we built the cache. */
2164 if (cache->saved_sp == 0)
2165 return frame_unwind_got_register (this_frame, regnum,
2166 cache->saved_sp_reg);
2168 return frame_unwind_got_constant (this_frame, regnum,
2172 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2173 return frame_unwind_got_memory (this_frame, regnum,
2174 cache->saved_regs[regnum]);
2176 return frame_unwind_got_register (this_frame, regnum, regnum);
2179 static const struct frame_unwind i386_frame_unwind =
2182 i386_frame_unwind_stop_reason,
2184 i386_frame_prev_register,
2186 default_frame_sniffer
2189 /* Normal frames, but in a function epilogue. */
2191 /* Implement the stack_frame_destroyed_p gdbarch method.
2193 The epilogue is defined here as the 'ret' instruction, which will
2194 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2195 the function's stack frame. */
2198 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2201 struct compunit_symtab *cust;
2203 cust = find_pc_compunit_symtab (pc);
2204 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2207 if (target_read_memory (pc, &insn, 1))
2208 return 0; /* Can't read memory at pc. */
2210 if (insn != 0xc3) /* 'ret' instruction. */
2217 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2218 struct frame_info *this_frame,
2219 void **this_prologue_cache)
2221 if (frame_relative_level (this_frame) == 0)
2222 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2223 get_frame_pc (this_frame));
2228 static struct i386_frame_cache *
2229 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2231 struct i386_frame_cache *cache;
2235 return (struct i386_frame_cache *) *this_cache;
2237 cache = i386_alloc_frame_cache ();
2238 *this_cache = cache;
2242 cache->pc = get_frame_func (this_frame);
2244 /* At this point the stack looks as if we just entered the
2245 function, with the return address at the top of the
2247 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2248 cache->base = sp + cache->sp_offset;
2249 cache->saved_sp = cache->base + 8;
2250 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2254 CATCH (ex, RETURN_MASK_ERROR)
2256 if (ex.error != NOT_AVAILABLE_ERROR)
2257 throw_exception (ex);
2264 static enum unwind_stop_reason
2265 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2268 struct i386_frame_cache *cache =
2269 i386_epilogue_frame_cache (this_frame, this_cache);
2272 return UNWIND_UNAVAILABLE;
2274 return UNWIND_NO_REASON;
2278 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2280 struct frame_id *this_id)
2282 struct i386_frame_cache *cache =
2283 i386_epilogue_frame_cache (this_frame, this_cache);
2286 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2288 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2291 static struct value *
2292 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2293 void **this_cache, int regnum)
2295 /* Make sure we've initialized the cache. */
2296 i386_epilogue_frame_cache (this_frame, this_cache);
2298 return i386_frame_prev_register (this_frame, this_cache, regnum);
2301 static const struct frame_unwind i386_epilogue_frame_unwind =
2304 i386_epilogue_frame_unwind_stop_reason,
2305 i386_epilogue_frame_this_id,
2306 i386_epilogue_frame_prev_register,
2308 i386_epilogue_frame_sniffer
2312 /* Stack-based trampolines. */
2314 /* These trampolines are used on cross x86 targets, when taking the
2315 address of a nested function. When executing these trampolines,
2316 no stack frame is set up, so we are in a similar situation as in
2317 epilogues and i386_epilogue_frame_this_id can be re-used. */
2319 /* Static chain passed in register. */
2321 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2323 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2324 { 5, { 0xb8 }, { 0xfe } },
2327 { 5, { 0xe9 }, { 0xff } },
2332 /* Static chain passed on stack (when regparm=3). */
2334 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2337 { 5, { 0x68 }, { 0xff } },
2340 { 5, { 0xe9 }, { 0xff } },
2345 /* Return whether PC points inside a stack trampoline. */
2348 i386_in_stack_tramp_p (CORE_ADDR pc)
2353 /* A stack trampoline is detected if no name is associated
2354 to the current pc and if it points inside a trampoline
2357 find_pc_partial_function (pc, &name, NULL, NULL);
2361 if (target_read_memory (pc, &insn, 1))
2364 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2365 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2372 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2373 struct frame_info *this_frame,
2376 if (frame_relative_level (this_frame) == 0)
2377 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2382 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2385 i386_epilogue_frame_unwind_stop_reason,
2386 i386_epilogue_frame_this_id,
2387 i386_epilogue_frame_prev_register,
2389 i386_stack_tramp_frame_sniffer
2392 /* Generate a bytecode expression to get the value of the saved PC. */
2395 i386_gen_return_address (struct gdbarch *gdbarch,
2396 struct agent_expr *ax, struct axs_value *value,
2399 /* The following sequence assumes the traditional use of the base
2401 ax_reg (ax, I386_EBP_REGNUM);
2403 ax_simple (ax, aop_add);
2404 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2405 value->kind = axs_lvalue_memory;
2409 /* Signal trampolines. */
2411 static struct i386_frame_cache *
2412 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2414 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2416 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2417 struct i386_frame_cache *cache;
2422 return (struct i386_frame_cache *) *this_cache;
2424 cache = i386_alloc_frame_cache ();
2428 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2429 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2431 addr = tdep->sigcontext_addr (this_frame);
2432 if (tdep->sc_reg_offset)
2436 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2438 for (i = 0; i < tdep->sc_num_regs; i++)
2439 if (tdep->sc_reg_offset[i] != -1)
2440 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2444 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2445 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2450 CATCH (ex, RETURN_MASK_ERROR)
2452 if (ex.error != NOT_AVAILABLE_ERROR)
2453 throw_exception (ex);
2457 *this_cache = cache;
2461 static enum unwind_stop_reason
2462 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2465 struct i386_frame_cache *cache =
2466 i386_sigtramp_frame_cache (this_frame, this_cache);
2469 return UNWIND_UNAVAILABLE;
2471 return UNWIND_NO_REASON;
2475 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2476 struct frame_id *this_id)
2478 struct i386_frame_cache *cache =
2479 i386_sigtramp_frame_cache (this_frame, this_cache);
2482 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2485 /* See the end of i386_push_dummy_call. */
2486 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2490 static struct value *
2491 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2492 void **this_cache, int regnum)
2494 /* Make sure we've initialized the cache. */
2495 i386_sigtramp_frame_cache (this_frame, this_cache);
2497 return i386_frame_prev_register (this_frame, this_cache, regnum);
2501 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2502 struct frame_info *this_frame,
2503 void **this_prologue_cache)
2505 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2507 /* We shouldn't even bother if we don't have a sigcontext_addr
2509 if (tdep->sigcontext_addr == NULL)
2512 if (tdep->sigtramp_p != NULL)
2514 if (tdep->sigtramp_p (this_frame))
2518 if (tdep->sigtramp_start != 0)
2520 CORE_ADDR pc = get_frame_pc (this_frame);
2522 gdb_assert (tdep->sigtramp_end != 0);
2523 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2530 static const struct frame_unwind i386_sigtramp_frame_unwind =
2533 i386_sigtramp_frame_unwind_stop_reason,
2534 i386_sigtramp_frame_this_id,
2535 i386_sigtramp_frame_prev_register,
2537 i386_sigtramp_frame_sniffer
2542 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2544 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2549 static const struct frame_base i386_frame_base =
2552 i386_frame_base_address,
2553 i386_frame_base_address,
2554 i386_frame_base_address
2557 static struct frame_id
2558 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2562 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2564 /* See the end of i386_push_dummy_call. */
2565 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2568 /* _Decimal128 function return values need 16-byte alignment on the
2572 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2574 return sp & -(CORE_ADDR)16;
2578 /* Figure out where the longjmp will land. Slurp the args out of the
2579 stack. We expect the first arg to be a pointer to the jmp_buf
2580 structure from which we extract the address that we will land at.
2581 This address is copied into PC. This routine returns non-zero on
2585 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2588 CORE_ADDR sp, jb_addr;
2589 struct gdbarch *gdbarch = get_frame_arch (frame);
2590 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2591 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2593 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2594 longjmp will land. */
2595 if (jb_pc_offset == -1)
2598 get_frame_register (frame, I386_ESP_REGNUM, buf);
2599 sp = extract_unsigned_integer (buf, 4, byte_order);
2600 if (target_read_memory (sp + 4, buf, 4))
2603 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2604 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2607 *pc = extract_unsigned_integer (buf, 4, byte_order);
2612 /* Check whether TYPE must be 16-byte-aligned when passed as a
2613 function argument. 16-byte vectors, _Decimal128 and structures or
2614 unions containing such types must be 16-byte-aligned; other
2615 arguments are 4-byte-aligned. */
2618 i386_16_byte_align_p (struct type *type)
2620 type = check_typedef (type);
2621 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2622 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2623 && TYPE_LENGTH (type) == 16)
2625 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2626 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2627 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2628 || TYPE_CODE (type) == TYPE_CODE_UNION)
2631 for (i = 0; i < TYPE_NFIELDS (type); i++)
2633 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2640 /* Implementation for set_gdbarch_push_dummy_code. */
2643 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2644 struct value **args, int nargs, struct type *value_type,
2645 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2646 struct regcache *regcache)
2648 /* Use 0xcc breakpoint - 1 byte. */
2652 /* Keep the stack aligned. */
2657 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2658 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2659 struct value **args, CORE_ADDR sp, int struct_return,
2660 CORE_ADDR struct_addr)
2662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2668 /* Determine the total space required for arguments and struct
2669 return address in a first pass (allowing for 16-byte-aligned
2670 arguments), then push arguments in a second pass. */
2672 for (write_pass = 0; write_pass < 2; write_pass++)
2674 int args_space_used = 0;
2680 /* Push value address. */
2681 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2682 write_memory (sp, buf, 4);
2683 args_space_used += 4;
2689 for (i = 0; i < nargs; i++)
2691 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2695 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2696 args_space_used = align_up (args_space_used, 16);
2698 write_memory (sp + args_space_used,
2699 value_contents_all (args[i]), len);
2700 /* The System V ABI says that:
2702 "An argument's size is increased, if necessary, to make it a
2703 multiple of [32-bit] words. This may require tail padding,
2704 depending on the size of the argument."
2706 This makes sure the stack stays word-aligned. */
2707 args_space_used += align_up (len, 4);
2711 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2712 args_space = align_up (args_space, 16);
2713 args_space += align_up (len, 4);
2721 /* The original System V ABI only requires word alignment,
2722 but modern incarnations need 16-byte alignment in order
2723 to support SSE. Since wasting a few bytes here isn't
2724 harmful we unconditionally enforce 16-byte alignment. */
2729 /* Store return address. */
2731 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2732 write_memory (sp, buf, 4);
2734 /* Finally, update the stack pointer... */
2735 store_unsigned_integer (buf, 4, byte_order, sp);
2736 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2738 /* ...and fake a frame pointer. */
2739 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2741 /* MarkK wrote: This "+ 8" is all over the place:
2742 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2743 i386_dummy_id). It's there, since all frame unwinders for
2744 a given target have to agree (within a certain margin) on the
2745 definition of the stack address of a frame. Otherwise frame id
2746 comparison might not work correctly. Since DWARF2/GCC uses the
2747 stack address *before* the function call as a frame's CFA. On
2748 the i386, when %ebp is used as a frame pointer, the offset
2749 between the contents %ebp and the CFA as defined by GCC. */
2753 /* These registers are used for returning integers (and on some
2754 targets also for returning `struct' and `union' values when their
2755 size and alignment match an integer type). */
2756 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2757 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2759 /* Read, for architecture GDBARCH, a function return value of TYPE
2760 from REGCACHE, and copy that into VALBUF. */
2763 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2764 struct regcache *regcache, gdb_byte *valbuf)
2766 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2767 int len = TYPE_LENGTH (type);
2768 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2770 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2772 if (tdep->st0_regnum < 0)
2774 warning (_("Cannot find floating-point return value."));
2775 memset (valbuf, 0, len);
2779 /* Floating-point return values can be found in %st(0). Convert
2780 its contents to the desired type. This is probably not
2781 exactly how it would happen on the target itself, but it is
2782 the best we can do. */
2783 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2784 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2788 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2789 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2791 if (len <= low_size)
2793 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2794 memcpy (valbuf, buf, len);
2796 else if (len <= (low_size + high_size))
2798 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2799 memcpy (valbuf, buf, low_size);
2800 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2801 memcpy (valbuf + low_size, buf, len - low_size);
2804 internal_error (__FILE__, __LINE__,
2805 _("Cannot extract return value of %d bytes long."),
2810 /* Write, for architecture GDBARCH, a function return value of TYPE
2811 from VALBUF into REGCACHE. */
2814 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2815 struct regcache *regcache, const gdb_byte *valbuf)
2817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2818 int len = TYPE_LENGTH (type);
2820 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2823 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2825 if (tdep->st0_regnum < 0)
2827 warning (_("Cannot set floating-point return value."));
2831 /* Returning floating-point values is a bit tricky. Apart from
2832 storing the return value in %st(0), we have to simulate the
2833 state of the FPU at function return point. */
2835 /* Convert the value found in VALBUF to the extended
2836 floating-point format used by the FPU. This is probably
2837 not exactly how it would happen on the target itself, but
2838 it is the best we can do. */
2839 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2840 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2842 /* Set the top of the floating-point register stack to 7. The
2843 actual value doesn't really matter, but 7 is what a normal
2844 function return would end up with if the program started out
2845 with a freshly initialized FPU. */
2846 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2848 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2850 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2851 the floating-point register stack to 7, the appropriate value
2852 for the tag word is 0x3fff. */
2853 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2857 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2858 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2860 if (len <= low_size)
2861 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2862 else if (len <= (low_size + high_size))
2864 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2865 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2866 len - low_size, valbuf + low_size);
2869 internal_error (__FILE__, __LINE__,
2870 _("Cannot store return value of %d bytes long."), len);
2875 /* This is the variable that is set with "set struct-convention", and
2876 its legitimate values. */
2877 static const char default_struct_convention[] = "default";
2878 static const char pcc_struct_convention[] = "pcc";
2879 static const char reg_struct_convention[] = "reg";
2880 static const char *const valid_conventions[] =
2882 default_struct_convention,
2883 pcc_struct_convention,
2884 reg_struct_convention,
2887 static const char *struct_convention = default_struct_convention;
2889 /* Return non-zero if TYPE, which is assumed to be a structure,
2890 a union type, or an array type, should be returned in registers
2891 for architecture GDBARCH. */
2894 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2896 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2897 enum type_code code = TYPE_CODE (type);
2898 int len = TYPE_LENGTH (type);
2900 gdb_assert (code == TYPE_CODE_STRUCT
2901 || code == TYPE_CODE_UNION
2902 || code == TYPE_CODE_ARRAY);
2904 if (struct_convention == pcc_struct_convention
2905 || (struct_convention == default_struct_convention
2906 && tdep->struct_return == pcc_struct_return))
2909 /* Structures consisting of a single `float', `double' or 'long
2910 double' member are returned in %st(0). */
2911 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2913 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2914 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2915 return (len == 4 || len == 8 || len == 12);
2918 return (len == 1 || len == 2 || len == 4 || len == 8);
2921 /* Determine, for architecture GDBARCH, how a return value of TYPE
2922 should be returned. If it is supposed to be returned in registers,
2923 and READBUF is non-zero, read the appropriate value from REGCACHE,
2924 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2925 from WRITEBUF into REGCACHE. */
2927 static enum return_value_convention
2928 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2929 struct type *type, struct regcache *regcache,
2930 gdb_byte *readbuf, const gdb_byte *writebuf)
2932 enum type_code code = TYPE_CODE (type);
2934 if (((code == TYPE_CODE_STRUCT
2935 || code == TYPE_CODE_UNION
2936 || code == TYPE_CODE_ARRAY)
2937 && !i386_reg_struct_return_p (gdbarch, type))
2938 /* Complex double and long double uses the struct return covention. */
2939 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2940 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2941 /* 128-bit decimal float uses the struct return convention. */
2942 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2944 /* The System V ABI says that:
2946 "A function that returns a structure or union also sets %eax
2947 to the value of the original address of the caller's area
2948 before it returns. Thus when the caller receives control
2949 again, the address of the returned object resides in register
2950 %eax and can be used to access the object."
2952 So the ABI guarantees that we can always find the return
2953 value just after the function has returned. */
2955 /* Note that the ABI doesn't mention functions returning arrays,
2956 which is something possible in certain languages such as Ada.
2957 In this case, the value is returned as if it was wrapped in
2958 a record, so the convention applied to records also applies
2965 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2966 read_memory (addr, readbuf, TYPE_LENGTH (type));
2969 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2972 /* This special case is for structures consisting of a single
2973 `float', `double' or 'long double' member. These structures are
2974 returned in %st(0). For these structures, we call ourselves
2975 recursively, changing TYPE into the type of the first member of
2976 the structure. Since that should work for all structures that
2977 have only one member, we don't bother to check the member's type
2979 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2981 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2982 return i386_return_value (gdbarch, function, type, regcache,
2987 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2989 i386_store_return_value (gdbarch, type, regcache, writebuf);
2991 return RETURN_VALUE_REGISTER_CONVENTION;
2996 i387_ext_type (struct gdbarch *gdbarch)
2998 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3000 if (!tdep->i387_ext_type)
3002 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3003 gdb_assert (tdep->i387_ext_type != NULL);
3006 return tdep->i387_ext_type;
3009 /* Construct type for pseudo BND registers. We can't use
3010 tdesc_find_type since a complement of one value has to be used
3011 to describe the upper bound. */
3013 static struct type *
3014 i386_bnd_type (struct gdbarch *gdbarch)
3016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3019 if (!tdep->i386_bnd_type)
3021 struct type *t, *bound_t;
3022 const struct builtin_type *bt = builtin_type (gdbarch);
3024 /* The type we're building is described bellow: */
3029 void *ubound; /* One complement of raw ubound field. */
3033 t = arch_composite_type (gdbarch,
3034 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3036 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3037 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3039 TYPE_NAME (t) = "builtin_type_bound128";
3040 tdep->i386_bnd_type = t;
3043 return tdep->i386_bnd_type;
3046 /* Construct vector type for pseudo ZMM registers. We can't use
3047 tdesc_find_type since ZMM isn't described in target description. */
3049 static struct type *
3050 i386_zmm_type (struct gdbarch *gdbarch)
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3054 if (!tdep->i386_zmm_type)
3056 const struct builtin_type *bt = builtin_type (gdbarch);
3058 /* The type we're building is this: */
3060 union __gdb_builtin_type_vec512i
3062 int128_t uint128[4];
3063 int64_t v4_int64[8];
3064 int32_t v8_int32[16];
3065 int16_t v16_int16[32];
3066 int8_t v32_int8[64];
3067 double v4_double[8];
3074 t = arch_composite_type (gdbarch,
3075 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3076 append_composite_type_field (t, "v16_float",
3077 init_vector_type (bt->builtin_float, 16));
3078 append_composite_type_field (t, "v8_double",
3079 init_vector_type (bt->builtin_double, 8));
3080 append_composite_type_field (t, "v64_int8",
3081 init_vector_type (bt->builtin_int8, 64));
3082 append_composite_type_field (t, "v32_int16",
3083 init_vector_type (bt->builtin_int16, 32));
3084 append_composite_type_field (t, "v16_int32",
3085 init_vector_type (bt->builtin_int32, 16));
3086 append_composite_type_field (t, "v8_int64",
3087 init_vector_type (bt->builtin_int64, 8));
3088 append_composite_type_field (t, "v4_int128",
3089 init_vector_type (bt->builtin_int128, 4));
3091 TYPE_VECTOR (t) = 1;
3092 TYPE_NAME (t) = "builtin_type_vec512i";
3093 tdep->i386_zmm_type = t;
3096 return tdep->i386_zmm_type;
3099 /* Construct vector type for pseudo YMM registers. We can't use
3100 tdesc_find_type since YMM isn't described in target description. */
3102 static struct type *
3103 i386_ymm_type (struct gdbarch *gdbarch)
3105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3107 if (!tdep->i386_ymm_type)
3109 const struct builtin_type *bt = builtin_type (gdbarch);
3111 /* The type we're building is this: */
3113 union __gdb_builtin_type_vec256i
3115 int128_t uint128[2];
3116 int64_t v2_int64[4];
3117 int32_t v4_int32[8];
3118 int16_t v8_int16[16];
3119 int8_t v16_int8[32];
3120 double v2_double[4];
3127 t = arch_composite_type (gdbarch,
3128 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3129 append_composite_type_field (t, "v8_float",
3130 init_vector_type (bt->builtin_float, 8));
3131 append_composite_type_field (t, "v4_double",
3132 init_vector_type (bt->builtin_double, 4));
3133 append_composite_type_field (t, "v32_int8",
3134 init_vector_type (bt->builtin_int8, 32));
3135 append_composite_type_field (t, "v16_int16",
3136 init_vector_type (bt->builtin_int16, 16));
3137 append_composite_type_field (t, "v8_int32",
3138 init_vector_type (bt->builtin_int32, 8));
3139 append_composite_type_field (t, "v4_int64",
3140 init_vector_type (bt->builtin_int64, 4));
3141 append_composite_type_field (t, "v2_int128",
3142 init_vector_type (bt->builtin_int128, 2));
3144 TYPE_VECTOR (t) = 1;
3145 TYPE_NAME (t) = "builtin_type_vec256i";
3146 tdep->i386_ymm_type = t;
3149 return tdep->i386_ymm_type;
3152 /* Construct vector type for MMX registers. */
3153 static struct type *
3154 i386_mmx_type (struct gdbarch *gdbarch)
3156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3158 if (!tdep->i386_mmx_type)
3160 const struct builtin_type *bt = builtin_type (gdbarch);
3162 /* The type we're building is this: */
3164 union __gdb_builtin_type_vec64i
3167 int32_t v2_int32[2];
3168 int16_t v4_int16[4];
3175 t = arch_composite_type (gdbarch,
3176 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3178 append_composite_type_field (t, "uint64", bt->builtin_int64);
3179 append_composite_type_field (t, "v2_int32",
3180 init_vector_type (bt->builtin_int32, 2));
3181 append_composite_type_field (t, "v4_int16",
3182 init_vector_type (bt->builtin_int16, 4));
3183 append_composite_type_field (t, "v8_int8",
3184 init_vector_type (bt->builtin_int8, 8));
3186 TYPE_VECTOR (t) = 1;
3187 TYPE_NAME (t) = "builtin_type_vec64i";
3188 tdep->i386_mmx_type = t;
3191 return tdep->i386_mmx_type;
3194 /* Return the GDB type object for the "standard" data type of data in
3198 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3200 if (i386_bnd_regnum_p (gdbarch, regnum))
3201 return i386_bnd_type (gdbarch);
3202 if (i386_mmx_regnum_p (gdbarch, regnum))
3203 return i386_mmx_type (gdbarch);
3204 else if (i386_ymm_regnum_p (gdbarch, regnum))
3205 return i386_ymm_type (gdbarch);
3206 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3207 return i386_ymm_type (gdbarch);
3208 else if (i386_zmm_regnum_p (gdbarch, regnum))
3209 return i386_zmm_type (gdbarch);
3212 const struct builtin_type *bt = builtin_type (gdbarch);
3213 if (i386_byte_regnum_p (gdbarch, regnum))
3214 return bt->builtin_int8;
3215 else if (i386_word_regnum_p (gdbarch, regnum))
3216 return bt->builtin_int16;
3217 else if (i386_dword_regnum_p (gdbarch, regnum))
3218 return bt->builtin_int32;
3219 else if (i386_k_regnum_p (gdbarch, regnum))
3220 return bt->builtin_int64;
3223 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3226 /* Map a cooked register onto a raw register or memory. For the i386,
3227 the MMX registers need to be mapped onto floating point registers. */
3230 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3232 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3237 mmxreg = regnum - tdep->mm0_regnum;
3238 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3239 tos = (fstat >> 11) & 0x7;
3240 fpreg = (mmxreg + tos) % 8;
3242 return (I387_ST0_REGNUM (tdep) + fpreg);
3245 /* A helper function for us by i386_pseudo_register_read_value and
3246 amd64_pseudo_register_read_value. It does all the work but reads
3247 the data into an already-allocated value. */
3250 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3251 struct regcache *regcache,
3253 struct value *result_value)
3255 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3256 enum register_status status;
3257 gdb_byte *buf = value_contents_raw (result_value);
3259 if (i386_mmx_regnum_p (gdbarch, regnum))
3261 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3263 /* Extract (always little endian). */
3264 status = regcache_raw_read (regcache, fpnum, raw_buf);
3265 if (status != REG_VALID)
3266 mark_value_bytes_unavailable (result_value, 0,
3267 TYPE_LENGTH (value_type (result_value)));
3269 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3274 if (i386_bnd_regnum_p (gdbarch, regnum))
3276 regnum -= tdep->bnd0_regnum;
3278 /* Extract (always little endian). Read lower 128bits. */
3279 status = regcache_raw_read (regcache,
3280 I387_BND0R_REGNUM (tdep) + regnum,
3282 if (status != REG_VALID)
3283 mark_value_bytes_unavailable (result_value, 0, 16);
3286 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3287 LONGEST upper, lower;
3288 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3290 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3291 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3294 memcpy (buf, &lower, size);
3295 memcpy (buf + size, &upper, size);
3298 else if (i386_k_regnum_p (gdbarch, regnum))
3300 regnum -= tdep->k0_regnum;
3302 /* Extract (always little endian). */
3303 status = regcache_raw_read (regcache,
3304 tdep->k0_regnum + regnum,
3306 if (status != REG_VALID)
3307 mark_value_bytes_unavailable (result_value, 0, 8);
3309 memcpy (buf, raw_buf, 8);
3311 else if (i386_zmm_regnum_p (gdbarch, regnum))
3313 regnum -= tdep->zmm0_regnum;
3315 if (regnum < num_lower_zmm_regs)
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM0_REGNUM (tdep) + regnum,
3321 if (status != REG_VALID)
3322 mark_value_bytes_unavailable (result_value, 0, 16);
3324 memcpy (buf, raw_buf, 16);
3326 /* Extract (always little endian). Read upper 128bits. */
3327 status = regcache_raw_read (regcache,
3328 tdep->ymm0h_regnum + regnum,
3330 if (status != REG_VALID)
3331 mark_value_bytes_unavailable (result_value, 16, 16);
3333 memcpy (buf + 16, raw_buf, 16);
3337 /* Extract (always little endian). Read lower 128bits. */
3338 status = regcache_raw_read (regcache,
3339 I387_XMM16_REGNUM (tdep) + regnum
3340 - num_lower_zmm_regs,
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 0, 16);
3345 memcpy (buf, raw_buf, 16);
3347 /* Extract (always little endian). Read upper 128bits. */
3348 status = regcache_raw_read (regcache,
3349 I387_YMM16H_REGNUM (tdep) + regnum
3350 - num_lower_zmm_regs,
3352 if (status != REG_VALID)
3353 mark_value_bytes_unavailable (result_value, 16, 16);
3355 memcpy (buf + 16, raw_buf, 16);
3358 /* Read upper 256bits. */
3359 status = regcache_raw_read (regcache,
3360 tdep->zmm0h_regnum + regnum,
3362 if (status != REG_VALID)
3363 mark_value_bytes_unavailable (result_value, 32, 32);
3365 memcpy (buf + 32, raw_buf, 32);
3367 else if (i386_ymm_regnum_p (gdbarch, regnum))
3369 regnum -= tdep->ymm0_regnum;
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM0_REGNUM (tdep) + regnum,
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm0h_regnum + regnum,
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 32);
3386 memcpy (buf + 16, raw_buf, 16);
3388 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3390 regnum -= tdep->ymm16_regnum;
3391 /* Extract (always little endian). Read lower 128bits. */
3392 status = regcache_raw_read (regcache,
3393 I387_XMM16_REGNUM (tdep) + regnum,
3395 if (status != REG_VALID)
3396 mark_value_bytes_unavailable (result_value, 0, 16);
3398 memcpy (buf, raw_buf, 16);
3399 /* Read upper 128bits. */
3400 status = regcache_raw_read (regcache,
3401 tdep->ymm16h_regnum + regnum,
3403 if (status != REG_VALID)
3404 mark_value_bytes_unavailable (result_value, 16, 16);
3406 memcpy (buf + 16, raw_buf, 16);
3408 else if (i386_word_regnum_p (gdbarch, regnum))
3410 int gpnum = regnum - tdep->ax_regnum;
3412 /* Extract (always little endian). */
3413 status = regcache_raw_read (regcache, gpnum, raw_buf);
3414 if (status != REG_VALID)
3415 mark_value_bytes_unavailable (result_value, 0,
3416 TYPE_LENGTH (value_type (result_value)));
3418 memcpy (buf, raw_buf, 2);
3420 else if (i386_byte_regnum_p (gdbarch, regnum))
3422 int gpnum = regnum - tdep->al_regnum;
3424 /* Extract (always little endian). We read both lower and
3426 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3427 if (status != REG_VALID)
3428 mark_value_bytes_unavailable (result_value, 0,
3429 TYPE_LENGTH (value_type (result_value)));
3430 else if (gpnum >= 4)
3431 memcpy (buf, raw_buf + 1, 1);
3433 memcpy (buf, raw_buf, 1);
3436 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3440 static struct value *
3441 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3442 struct regcache *regcache,
3445 struct value *result;
3447 result = allocate_value (register_type (gdbarch, regnum));
3448 VALUE_LVAL (result) = lval_register;
3449 VALUE_REGNUM (result) = regnum;
3451 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3457 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3458 int regnum, const gdb_byte *buf)
3460 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3462 if (i386_mmx_regnum_p (gdbarch, regnum))
3464 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3467 regcache_raw_read (regcache, fpnum, raw_buf);
3468 /* ... Modify ... (always little endian). */
3469 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3471 regcache_raw_write (regcache, fpnum, raw_buf);
3475 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3477 if (i386_bnd_regnum_p (gdbarch, regnum))
3479 ULONGEST upper, lower;
3480 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3481 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3483 /* New values from input value. */
3484 regnum -= tdep->bnd0_regnum;
3485 lower = extract_unsigned_integer (buf, size, byte_order);
3486 upper = extract_unsigned_integer (buf + size, size, byte_order);
3488 /* Fetching register buffer. */
3489 regcache_raw_read (regcache,
3490 I387_BND0R_REGNUM (tdep) + regnum,
3495 /* Set register bits. */
3496 memcpy (raw_buf, &lower, 8);
3497 memcpy (raw_buf + 8, &upper, 8);
3500 regcache_raw_write (regcache,
3501 I387_BND0R_REGNUM (tdep) + regnum,
3504 else if (i386_k_regnum_p (gdbarch, regnum))
3506 regnum -= tdep->k0_regnum;
3508 regcache_raw_write (regcache,
3509 tdep->k0_regnum + regnum,
3512 else if (i386_zmm_regnum_p (gdbarch, regnum))
3514 regnum -= tdep->zmm0_regnum;
3516 if (regnum < num_lower_zmm_regs)
3518 /* Write lower 128bits. */
3519 regcache_raw_write (regcache,
3520 I387_XMM0_REGNUM (tdep) + regnum,
3522 /* Write upper 128bits. */
3523 regcache_raw_write (regcache,
3524 I387_YMM0_REGNUM (tdep) + regnum,
3529 /* Write lower 128bits. */
3530 regcache_raw_write (regcache,
3531 I387_XMM16_REGNUM (tdep) + regnum
3532 - num_lower_zmm_regs,
3534 /* Write upper 128bits. */
3535 regcache_raw_write (regcache,
3536 I387_YMM16H_REGNUM (tdep) + regnum
3537 - num_lower_zmm_regs,
3540 /* Write upper 256bits. */
3541 regcache_raw_write (regcache,
3542 tdep->zmm0h_regnum + regnum,
3545 else if (i386_ymm_regnum_p (gdbarch, regnum))
3547 regnum -= tdep->ymm0_regnum;
3549 /* ... Write lower 128bits. */
3550 regcache_raw_write (regcache,
3551 I387_XMM0_REGNUM (tdep) + regnum,
3553 /* ... Write upper 128bits. */
3554 regcache_raw_write (regcache,
3555 tdep->ymm0h_regnum + regnum,
3558 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3560 regnum -= tdep->ymm16_regnum;
3562 /* ... Write lower 128bits. */
3563 regcache_raw_write (regcache,
3564 I387_XMM16_REGNUM (tdep) + regnum,
3566 /* ... Write upper 128bits. */
3567 regcache_raw_write (regcache,
3568 tdep->ymm16h_regnum + regnum,
3571 else if (i386_word_regnum_p (gdbarch, regnum))
3573 int gpnum = regnum - tdep->ax_regnum;
3576 regcache_raw_read (regcache, gpnum, raw_buf);
3577 /* ... Modify ... (always little endian). */
3578 memcpy (raw_buf, buf, 2);
3580 regcache_raw_write (regcache, gpnum, raw_buf);
3582 else if (i386_byte_regnum_p (gdbarch, regnum))
3584 int gpnum = regnum - tdep->al_regnum;
3586 /* Read ... We read both lower and upper registers. */
3587 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3588 /* ... Modify ... (always little endian). */
3590 memcpy (raw_buf + 1, buf, 1);
3592 memcpy (raw_buf, buf, 1);
3594 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3597 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3601 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3604 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3605 struct agent_expr *ax, int regnum)
3607 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3609 if (i386_mmx_regnum_p (gdbarch, regnum))
3611 /* MMX to FPU register mapping depends on current TOS. Let's just
3612 not care and collect everything... */
3615 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3616 for (i = 0; i < 8; i++)
3617 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3620 else if (i386_bnd_regnum_p (gdbarch, regnum))
3622 regnum -= tdep->bnd0_regnum;
3623 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3626 else if (i386_k_regnum_p (gdbarch, regnum))
3628 regnum -= tdep->k0_regnum;
3629 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3632 else if (i386_zmm_regnum_p (gdbarch, regnum))
3634 regnum -= tdep->zmm0_regnum;
3635 if (regnum < num_lower_zmm_regs)
3637 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3638 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3642 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3643 - num_lower_zmm_regs);
3644 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3645 - num_lower_zmm_regs);
3647 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3650 else if (i386_ymm_regnum_p (gdbarch, regnum))
3652 regnum -= tdep->ymm0_regnum;
3653 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3654 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3657 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3659 regnum -= tdep->ymm16_regnum;
3660 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3661 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3664 else if (i386_word_regnum_p (gdbarch, regnum))
3666 int gpnum = regnum - tdep->ax_regnum;
3668 ax_reg_mask (ax, gpnum);
3671 else if (i386_byte_regnum_p (gdbarch, regnum))
3673 int gpnum = regnum - tdep->al_regnum;
3675 ax_reg_mask (ax, gpnum % 4);
3679 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3684 /* Return the register number of the register allocated by GCC after
3685 REGNUM, or -1 if there is no such register. */
3688 i386_next_regnum (int regnum)
3690 /* GCC allocates the registers in the order:
3692 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3694 Since storing a variable in %esp doesn't make any sense we return
3695 -1 for %ebp and for %esp itself. */
3696 static int next_regnum[] =
3698 I386_EDX_REGNUM, /* Slot for %eax. */
3699 I386_EBX_REGNUM, /* Slot for %ecx. */
3700 I386_ECX_REGNUM, /* Slot for %edx. */
3701 I386_ESI_REGNUM, /* Slot for %ebx. */
3702 -1, -1, /* Slots for %esp and %ebp. */
3703 I386_EDI_REGNUM, /* Slot for %esi. */
3704 I386_EBP_REGNUM /* Slot for %edi. */
3707 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3708 return next_regnum[regnum];
3713 /* Return nonzero if a value of type TYPE stored in register REGNUM
3714 needs any special handling. */
3717 i386_convert_register_p (struct gdbarch *gdbarch,
3718 int regnum, struct type *type)
3720 int len = TYPE_LENGTH (type);
3722 /* Values may be spread across multiple registers. Most debugging
3723 formats aren't expressive enough to specify the locations, so
3724 some heuristics is involved. Right now we only handle types that
3725 have a length that is a multiple of the word size, since GCC
3726 doesn't seem to put any other types into registers. */
3727 if (len > 4 && len % 4 == 0)
3729 int last_regnum = regnum;
3733 last_regnum = i386_next_regnum (last_regnum);
3737 if (last_regnum != -1)
3741 return i387_convert_register_p (gdbarch, regnum, type);
3744 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3745 return its contents in TO. */
3748 i386_register_to_value (struct frame_info *frame, int regnum,
3749 struct type *type, gdb_byte *to,
3750 int *optimizedp, int *unavailablep)
3752 struct gdbarch *gdbarch = get_frame_arch (frame);
3753 int len = TYPE_LENGTH (type);
3755 if (i386_fp_regnum_p (gdbarch, regnum))
3756 return i387_register_to_value (frame, regnum, type, to,
3757 optimizedp, unavailablep);
3759 /* Read a value spread across multiple registers. */
3761 gdb_assert (len > 4 && len % 4 == 0);
3765 gdb_assert (regnum != -1);
3766 gdb_assert (register_size (gdbarch, regnum) == 4);
3768 if (!get_frame_register_bytes (frame, regnum, 0,
3769 register_size (gdbarch, regnum),
3770 to, optimizedp, unavailablep))
3773 regnum = i386_next_regnum (regnum);
3778 *optimizedp = *unavailablep = 0;
3782 /* Write the contents FROM of a value of type TYPE into register
3783 REGNUM in frame FRAME. */
3786 i386_value_to_register (struct frame_info *frame, int regnum,
3787 struct type *type, const gdb_byte *from)
3789 int len = TYPE_LENGTH (type);
3791 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3793 i387_value_to_register (frame, regnum, type, from);
3797 /* Write a value spread across multiple registers. */
3799 gdb_assert (len > 4 && len % 4 == 0);
3803 gdb_assert (regnum != -1);
3804 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3806 put_frame_register (frame, regnum, from);
3807 regnum = i386_next_regnum (regnum);
3813 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3814 in the general-purpose register set REGSET to register cache
3815 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3818 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3819 int regnum, const void *gregs, size_t len)
3821 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3822 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3823 const gdb_byte *regs = (const gdb_byte *) gregs;
3826 gdb_assert (len >= tdep->sizeof_gregset);
3828 for (i = 0; i < tdep->gregset_num_regs; i++)
3830 if ((regnum == i || regnum == -1)
3831 && tdep->gregset_reg_offset[i] != -1)
3832 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3836 /* Collect register REGNUM from the register cache REGCACHE and store
3837 it in the buffer specified by GREGS and LEN as described by the
3838 general-purpose register set REGSET. If REGNUM is -1, do this for
3839 all registers in REGSET. */
3842 i386_collect_gregset (const struct regset *regset,
3843 const struct regcache *regcache,
3844 int regnum, void *gregs, size_t len)
3846 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3847 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3848 gdb_byte *regs = (gdb_byte *) gregs;
3851 gdb_assert (len >= tdep->sizeof_gregset);
3853 for (i = 0; i < tdep->gregset_num_regs; i++)
3855 if ((regnum == i || regnum == -1)
3856 && tdep->gregset_reg_offset[i] != -1)
3857 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3861 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3862 in the floating-point register set REGSET to register cache
3863 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3866 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3867 int regnum, const void *fpregs, size_t len)
3869 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3870 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3872 if (len == I387_SIZEOF_FXSAVE)
3874 i387_supply_fxsave (regcache, regnum, fpregs);
3878 gdb_assert (len >= tdep->sizeof_fpregset);
3879 i387_supply_fsave (regcache, regnum, fpregs);
3882 /* Collect register REGNUM from the register cache REGCACHE and store
3883 it in the buffer specified by FPREGS and LEN as described by the
3884 floating-point register set REGSET. If REGNUM is -1, do this for
3885 all registers in REGSET. */
3888 i386_collect_fpregset (const struct regset *regset,
3889 const struct regcache *regcache,
3890 int regnum, void *fpregs, size_t len)
3892 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3893 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3895 if (len == I387_SIZEOF_FXSAVE)
3897 i387_collect_fxsave (regcache, regnum, fpregs);
3901 gdb_assert (len >= tdep->sizeof_fpregset);
3902 i387_collect_fsave (regcache, regnum, fpregs);
3905 /* Register set definitions. */
3907 const struct regset i386_gregset =
3909 NULL, i386_supply_gregset, i386_collect_gregset
3912 const struct regset i386_fpregset =
3914 NULL, i386_supply_fpregset, i386_collect_fpregset
3917 /* Default iterator over core file register note sections. */
3920 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3921 iterate_over_regset_sections_cb *cb,
3923 const struct regcache *regcache)
3925 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3927 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3928 if (tdep->sizeof_fpregset)
3929 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3933 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3936 i386_pe_skip_trampoline_code (struct frame_info *frame,
3937 CORE_ADDR pc, char *name)
3939 struct gdbarch *gdbarch = get_frame_arch (frame);
3940 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3943 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3945 unsigned long indirect =
3946 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3947 struct minimal_symbol *indsym =
3948 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3949 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3953 if (startswith (symname, "__imp_")
3954 || startswith (symname, "_imp_"))
3956 read_memory_unsigned_integer (indirect, 4, byte_order);
3959 return 0; /* Not a trampoline. */
3963 /* Return whether the THIS_FRAME corresponds to a sigtramp
3967 i386_sigtramp_p (struct frame_info *this_frame)
3969 CORE_ADDR pc = get_frame_pc (this_frame);
3972 find_pc_partial_function (pc, &name, NULL, NULL);
3973 return (name && strcmp ("_sigtramp", name) == 0);
3977 /* We have two flavours of disassembly. The machinery on this page
3978 deals with switching between those. */
3981 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3983 gdb_assert (disassembly_flavor == att_flavor
3984 || disassembly_flavor == intel_flavor);
3986 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3987 constified, cast to prevent a compiler warning. */
3988 info->disassembler_options = (char *) disassembly_flavor;
3990 return print_insn_i386 (pc, info);
3994 /* There are a few i386 architecture variants that differ only
3995 slightly from the generic i386 target. For now, we don't give them
3996 their own source file, but include them here. As a consequence,
3997 they'll always be included. */
3999 /* System V Release 4 (SVR4). */
4001 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4005 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4007 CORE_ADDR pc = get_frame_pc (this_frame);
4010 /* The origin of these symbols is currently unknown. */
4011 find_pc_partial_function (pc, &name, NULL, NULL);
4012 return (name && (strcmp ("_sigreturn", name) == 0
4013 || strcmp ("sigvechandler", name) == 0));
4016 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4017 address of the associated sigcontext (ucontext) structure. */
4020 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4022 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4023 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4027 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4028 sp = extract_unsigned_integer (buf, 4, byte_order);
4030 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4035 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4039 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4041 return (*s == '$' /* Literal number. */
4042 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4043 || (*s == '(' && s[1] == '%') /* Register indirection. */
4044 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4047 /* Helper function for i386_stap_parse_special_token.
4049 This function parses operands of the form `-8+3+1(%rbp)', which
4050 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4052 Return 1 if the operand was parsed successfully, zero
4056 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4057 struct stap_parse_info *p)
4059 const char *s = p->arg;
4061 if (isdigit (*s) || *s == '-' || *s == '+')
4065 long displacements[3];
4081 if (!isdigit ((unsigned char) *s))
4084 displacements[0] = strtol (s, &endp, 10);
4087 if (*s != '+' && *s != '-')
4089 /* We are not dealing with a triplet. */
4102 if (!isdigit ((unsigned char) *s))
4105 displacements[1] = strtol (s, &endp, 10);
4108 if (*s != '+' && *s != '-')
4110 /* We are not dealing with a triplet. */
4123 if (!isdigit ((unsigned char) *s))
4126 displacements[2] = strtol (s, &endp, 10);
4129 if (*s != '(' || s[1] != '%')
4135 while (isalnum (*s))
4141 len = s - start - 1;
4142 regname = (char *) alloca (len + 1);
4144 strncpy (regname, start, len);
4145 regname[len] = '\0';
4147 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4148 error (_("Invalid register name `%s' on expression `%s'."),
4149 regname, p->saved_arg);
4151 for (i = 0; i < 3; i++)
4153 write_exp_elt_opcode (&p->pstate, OP_LONG);
4155 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4156 write_exp_elt_longcst (&p->pstate, displacements[i]);
4157 write_exp_elt_opcode (&p->pstate, OP_LONG);
4159 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4162 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4165 write_exp_string (&p->pstate, str);
4166 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4168 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4169 write_exp_elt_type (&p->pstate,
4170 builtin_type (gdbarch)->builtin_data_ptr);
4171 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4173 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4174 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4175 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4177 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4178 write_exp_elt_type (&p->pstate,
4179 lookup_pointer_type (p->arg_type));
4180 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4182 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4192 /* Helper function for i386_stap_parse_special_token.
4194 This function parses operands of the form `register base +
4195 (register index * size) + offset', as represented in
4196 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4198 Return 1 if the operand was parsed successfully, zero
4202 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4203 struct stap_parse_info *p)
4205 const char *s = p->arg;
4207 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4209 int offset_minus = 0;
4218 struct stoken base_token, index_token;
4228 if (offset_minus && !isdigit (*s))
4235 offset = strtol (s, &endp, 10);
4239 if (*s != '(' || s[1] != '%')
4245 while (isalnum (*s))
4248 if (*s != ',' || s[1] != '%')
4251 len_base = s - start;
4252 base = (char *) alloca (len_base + 1);
4253 strncpy (base, start, len_base);
4254 base[len_base] = '\0';
4256 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4257 error (_("Invalid register name `%s' on expression `%s'."),
4258 base, p->saved_arg);
4263 while (isalnum (*s))
4266 len_index = s - start;
4267 index = (char *) alloca (len_index + 1);
4268 strncpy (index, start, len_index);
4269 index[len_index] = '\0';
4271 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4272 error (_("Invalid register name `%s' on expression `%s'."),
4273 index, p->saved_arg);
4275 if (*s != ',' && *s != ')')
4291 size = strtol (s, &endp, 10);
4302 write_exp_elt_opcode (&p->pstate, OP_LONG);
4303 write_exp_elt_type (&p->pstate,
4304 builtin_type (gdbarch)->builtin_long);
4305 write_exp_elt_longcst (&p->pstate, offset);
4306 write_exp_elt_opcode (&p->pstate, OP_LONG);
4308 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4311 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4312 base_token.ptr = base;
4313 base_token.length = len_base;
4314 write_exp_string (&p->pstate, base_token);
4315 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4318 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4320 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4321 index_token.ptr = index;
4322 index_token.length = len_index;
4323 write_exp_string (&p->pstate, index_token);
4324 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4328 write_exp_elt_opcode (&p->pstate, OP_LONG);
4329 write_exp_elt_type (&p->pstate,
4330 builtin_type (gdbarch)->builtin_long);
4331 write_exp_elt_longcst (&p->pstate, size);
4332 write_exp_elt_opcode (&p->pstate, OP_LONG);
4334 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4335 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4338 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4340 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4341 write_exp_elt_type (&p->pstate,
4342 lookup_pointer_type (p->arg_type));
4343 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4345 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4355 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4359 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4360 struct stap_parse_info *p)
4362 /* In order to parse special tokens, we use a state-machine that go
4363 through every known token and try to get a match. */
4367 THREE_ARG_DISPLACEMENT,
4372 current_state = TRIPLET;
4374 /* The special tokens to be parsed here are:
4376 - `register base + (register index * size) + offset', as represented
4377 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4379 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4380 `*(-8 + 3 - 1 + (void *) $eax)'. */
4382 while (current_state != DONE)
4384 switch (current_state)
4387 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4391 case THREE_ARG_DISPLACEMENT:
4392 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4397 /* Advancing to the next state. */
4406 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4407 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4410 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4412 return "(x86_64|i.86)";
4420 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4422 static const char *const stap_integer_prefixes[] = { "$", NULL };
4423 static const char *const stap_register_prefixes[] = { "%", NULL };
4424 static const char *const stap_register_indirection_prefixes[] = { "(",
4426 static const char *const stap_register_indirection_suffixes[] = { ")",
4429 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4430 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4432 /* Registering SystemTap handlers. */
4433 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4434 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4435 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4436 stap_register_indirection_prefixes);
4437 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4438 stap_register_indirection_suffixes);
4439 set_gdbarch_stap_is_single_operand (gdbarch,
4440 i386_stap_is_single_operand);
4441 set_gdbarch_stap_parse_special_token (gdbarch,
4442 i386_stap_parse_special_token);
4444 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4447 /* System V Release 4 (SVR4). */
4450 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4454 /* System V Release 4 uses ELF. */
4455 i386_elf_init_abi (info, gdbarch);
4457 /* System V Release 4 has shared libraries. */
4458 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4460 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4461 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4462 tdep->sc_pc_offset = 36 + 14 * 4;
4463 tdep->sc_sp_offset = 36 + 17 * 4;
4465 tdep->jb_pc_offset = 20;
4471 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4475 /* DJGPP doesn't have any special frames for signal handlers. */
4476 tdep->sigtramp_p = NULL;
4478 tdep->jb_pc_offset = 36;
4480 /* DJGPP does not support the SSE registers. */
4481 if (! tdesc_has_registers (info.target_desc))
4482 tdep->tdesc = tdesc_i386_mmx;
4484 /* Native compiler is GCC, which uses the SVR4 register numbering
4485 even in COFF and STABS. See the comment in i386_gdbarch_init,
4486 before the calls to set_gdbarch_stab_reg_to_regnum and
4487 set_gdbarch_sdb_reg_to_regnum. */
4488 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4489 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4491 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4493 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4497 /* i386 register groups. In addition to the normal groups, add "mmx"
4500 static struct reggroup *i386_sse_reggroup;
4501 static struct reggroup *i386_mmx_reggroup;
4504 i386_init_reggroups (void)
4506 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4507 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4511 i386_add_reggroups (struct gdbarch *gdbarch)
4513 reggroup_add (gdbarch, i386_sse_reggroup);
4514 reggroup_add (gdbarch, i386_mmx_reggroup);
4515 reggroup_add (gdbarch, general_reggroup);
4516 reggroup_add (gdbarch, float_reggroup);
4517 reggroup_add (gdbarch, all_reggroup);
4518 reggroup_add (gdbarch, save_reggroup);
4519 reggroup_add (gdbarch, restore_reggroup);
4520 reggroup_add (gdbarch, vector_reggroup);
4521 reggroup_add (gdbarch, system_reggroup);
4525 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4526 struct reggroup *group)
4528 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4529 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4530 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4531 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4532 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4533 avx512_p, avx_p, sse_p;
4535 /* Don't include pseudo registers, except for MMX, in any register
4537 if (i386_byte_regnum_p (gdbarch, regnum))
4540 if (i386_word_regnum_p (gdbarch, regnum))
4543 if (i386_dword_regnum_p (gdbarch, regnum))
4546 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4547 if (group == i386_mmx_reggroup)
4548 return mmx_regnum_p;
4550 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4551 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4552 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4553 if (group == i386_sse_reggroup)
4554 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4556 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4557 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4558 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4560 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4561 == X86_XSTATE_AVX512_MASK);
4562 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4563 == X86_XSTATE_AVX_MASK) && !avx512_p;
4564 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4565 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4567 if (group == vector_reggroup)
4568 return (mmx_regnum_p
4569 || (zmm_regnum_p && avx512_p)
4570 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4571 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4574 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4575 || i386_fpc_regnum_p (gdbarch, regnum));
4576 if (group == float_reggroup)
4579 /* For "info reg all", don't include upper YMM registers nor XMM
4580 registers when AVX is supported. */
4581 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4582 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4583 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4584 if (group == all_reggroup
4585 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4586 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4588 || ymmh_avx512_regnum_p
4592 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4593 if (group == all_reggroup
4594 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4595 return bnd_regnum_p;
4597 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4598 if (group == all_reggroup
4599 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4602 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4603 if (group == all_reggroup
4604 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4605 return mpx_ctrl_regnum_p;
4607 if (group == general_reggroup)
4608 return (!fp_regnum_p
4612 && !xmm_avx512_regnum_p
4615 && !ymm_avx512_regnum_p
4616 && !ymmh_avx512_regnum_p
4619 && !mpx_ctrl_regnum_p
4623 return default_register_reggroup_p (gdbarch, regnum, group);
4627 /* Get the ARGIth function argument for the current function. */
4630 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4633 struct gdbarch *gdbarch = get_frame_arch (frame);
4634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4635 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4636 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4639 #define PREFIX_REPZ 0x01
4640 #define PREFIX_REPNZ 0x02
4641 #define PREFIX_LOCK 0x04
4642 #define PREFIX_DATA 0x08
4643 #define PREFIX_ADDR 0x10
4655 /* i386 arith/logic operations */
4668 struct i386_record_s
4670 struct gdbarch *gdbarch;
4671 struct regcache *regcache;
4672 CORE_ADDR orig_addr;
4678 uint8_t mod, reg, rm;
4687 /* Parse the "modrm" part of the memory address irp->addr points at.
4688 Returns -1 if something goes wrong, 0 otherwise. */
4691 i386_record_modrm (struct i386_record_s *irp)
4693 struct gdbarch *gdbarch = irp->gdbarch;
4695 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4699 irp->mod = (irp->modrm >> 6) & 3;
4700 irp->reg = (irp->modrm >> 3) & 7;
4701 irp->rm = irp->modrm & 7;
4706 /* Extract the memory address that the current instruction writes to,
4707 and return it in *ADDR. Return -1 if something goes wrong. */
4710 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4712 struct gdbarch *gdbarch = irp->gdbarch;
4713 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4718 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4725 uint8_t base = irp->rm;
4730 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4733 scale = (byte >> 6) & 3;
4734 index = ((byte >> 3) & 7) | irp->rex_x;
4742 if ((base & 7) == 5)
4745 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4748 *addr = extract_signed_integer (buf, 4, byte_order);
4749 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4750 *addr += irp->addr + irp->rip_offset;
4754 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4757 *addr = (int8_t) buf[0];
4760 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4762 *addr = extract_signed_integer (buf, 4, byte_order);
4770 if (base == 4 && irp->popl_esp_hack)
4771 *addr += irp->popl_esp_hack;
4772 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4775 if (irp->aflag == 2)
4780 *addr = (uint32_t) (offset64 + *addr);
4782 if (havesib && (index != 4 || scale != 0))
4784 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4786 if (irp->aflag == 2)
4787 *addr += offset64 << scale;
4789 *addr = (uint32_t) (*addr + (offset64 << scale));
4794 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4795 address from 32-bit to 64-bit. */
4796 *addr = (uint32_t) *addr;
4807 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4810 *addr = extract_signed_integer (buf, 2, byte_order);
4816 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4819 *addr = (int8_t) buf[0];
4822 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4825 *addr = extract_signed_integer (buf, 2, byte_order);
4832 regcache_raw_read_unsigned (irp->regcache,
4833 irp->regmap[X86_RECORD_REBX_REGNUM],
4835 *addr = (uint32_t) (*addr + offset64);
4836 regcache_raw_read_unsigned (irp->regcache,
4837 irp->regmap[X86_RECORD_RESI_REGNUM],
4839 *addr = (uint32_t) (*addr + offset64);
4842 regcache_raw_read_unsigned (irp->regcache,
4843 irp->regmap[X86_RECORD_REBX_REGNUM],
4845 *addr = (uint32_t) (*addr + offset64);
4846 regcache_raw_read_unsigned (irp->regcache,
4847 irp->regmap[X86_RECORD_REDI_REGNUM],
4849 *addr = (uint32_t) (*addr + offset64);
4852 regcache_raw_read_unsigned (irp->regcache,
4853 irp->regmap[X86_RECORD_REBP_REGNUM],
4855 *addr = (uint32_t) (*addr + offset64);
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_RESI_REGNUM],
4859 *addr = (uint32_t) (*addr + offset64);
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_REBP_REGNUM],
4865 *addr = (uint32_t) (*addr + offset64);
4866 regcache_raw_read_unsigned (irp->regcache,
4867 irp->regmap[X86_RECORD_REDI_REGNUM],
4869 *addr = (uint32_t) (*addr + offset64);
4872 regcache_raw_read_unsigned (irp->regcache,
4873 irp->regmap[X86_RECORD_RESI_REGNUM],
4875 *addr = (uint32_t) (*addr + offset64);
4878 regcache_raw_read_unsigned (irp->regcache,
4879 irp->regmap[X86_RECORD_REDI_REGNUM],
4881 *addr = (uint32_t) (*addr + offset64);
4884 regcache_raw_read_unsigned (irp->regcache,
4885 irp->regmap[X86_RECORD_REBP_REGNUM],
4887 *addr = (uint32_t) (*addr + offset64);
4890 regcache_raw_read_unsigned (irp->regcache,
4891 irp->regmap[X86_RECORD_REBX_REGNUM],
4893 *addr = (uint32_t) (*addr + offset64);
4903 /* Record the address and contents of the memory that will be changed
4904 by the current instruction. Return -1 if something goes wrong, 0
4908 i386_record_lea_modrm (struct i386_record_s *irp)
4910 struct gdbarch *gdbarch = irp->gdbarch;
4913 if (irp->override >= 0)
4915 if (record_full_memory_query)
4918 Process record ignores the memory change of instruction at address %s\n\
4919 because it can't get the value of the segment register.\n\
4920 Do you want to stop the program?"),
4921 paddress (gdbarch, irp->orig_addr)))
4928 if (i386_record_lea_modrm_addr (irp, &addr))
4931 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4937 /* Record the effects of a push operation. Return -1 if something
4938 goes wrong, 0 otherwise. */
4941 i386_record_push (struct i386_record_s *irp, int size)
4945 if (record_full_arch_list_add_reg (irp->regcache,
4946 irp->regmap[X86_RECORD_RESP_REGNUM]))
4948 regcache_raw_read_unsigned (irp->regcache,
4949 irp->regmap[X86_RECORD_RESP_REGNUM],
4951 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4958 /* Defines contents to record. */
4959 #define I386_SAVE_FPU_REGS 0xfffd
4960 #define I386_SAVE_FPU_ENV 0xfffe
4961 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4963 /* Record the values of the floating point registers which will be
4964 changed by the current instruction. Returns -1 if something is
4965 wrong, 0 otherwise. */
4967 static int i386_record_floats (struct gdbarch *gdbarch,
4968 struct i386_record_s *ir,
4971 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4974 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4975 happen. Currently we store st0-st7 registers, but we need not store all
4976 registers all the time, in future we use ftag register and record only
4977 those who are not marked as an empty. */
4979 if (I386_SAVE_FPU_REGS == iregnum)
4981 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4983 if (record_full_arch_list_add_reg (ir->regcache, i))
4987 else if (I386_SAVE_FPU_ENV == iregnum)
4989 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4991 if (record_full_arch_list_add_reg (ir->regcache, i))
4995 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4997 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4999 if (record_full_arch_list_add_reg (ir->regcache, i))
5003 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5004 (iregnum <= I387_FOP_REGNUM (tdep)))
5006 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5011 /* Parameter error. */
5014 if(I386_SAVE_FPU_ENV != iregnum)
5016 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5018 if (record_full_arch_list_add_reg (ir->regcache, i))
5025 /* Parse the current instruction, and record the values of the
5026 registers and memory that will be changed by the current
5027 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5029 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5030 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5033 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5034 CORE_ADDR input_addr)
5036 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5042 gdb_byte buf[MAX_REGISTER_SIZE];
5043 struct i386_record_s ir;
5044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5048 memset (&ir, 0, sizeof (struct i386_record_s));
5049 ir.regcache = regcache;
5050 ir.addr = input_addr;
5051 ir.orig_addr = input_addr;
5055 ir.popl_esp_hack = 0;
5056 ir.regmap = tdep->record_regmap;
5057 ir.gdbarch = gdbarch;
5059 if (record_debug > 1)
5060 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5062 paddress (gdbarch, ir.addr));
5067 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5070 switch (opcode8) /* Instruction prefixes */
5072 case REPE_PREFIX_OPCODE:
5073 prefixes |= PREFIX_REPZ;
5075 case REPNE_PREFIX_OPCODE:
5076 prefixes |= PREFIX_REPNZ;
5078 case LOCK_PREFIX_OPCODE:
5079 prefixes |= PREFIX_LOCK;
5081 case CS_PREFIX_OPCODE:
5082 ir.override = X86_RECORD_CS_REGNUM;
5084 case SS_PREFIX_OPCODE:
5085 ir.override = X86_RECORD_SS_REGNUM;
5087 case DS_PREFIX_OPCODE:
5088 ir.override = X86_RECORD_DS_REGNUM;
5090 case ES_PREFIX_OPCODE:
5091 ir.override = X86_RECORD_ES_REGNUM;
5093 case FS_PREFIX_OPCODE:
5094 ir.override = X86_RECORD_FS_REGNUM;
5096 case GS_PREFIX_OPCODE:
5097 ir.override = X86_RECORD_GS_REGNUM;
5099 case DATA_PREFIX_OPCODE:
5100 prefixes |= PREFIX_DATA;
5102 case ADDR_PREFIX_OPCODE:
5103 prefixes |= PREFIX_ADDR;
5105 case 0x40: /* i386 inc %eax */
5106 case 0x41: /* i386 inc %ecx */
5107 case 0x42: /* i386 inc %edx */
5108 case 0x43: /* i386 inc %ebx */
5109 case 0x44: /* i386 inc %esp */
5110 case 0x45: /* i386 inc %ebp */
5111 case 0x46: /* i386 inc %esi */
5112 case 0x47: /* i386 inc %edi */
5113 case 0x48: /* i386 dec %eax */
5114 case 0x49: /* i386 dec %ecx */
5115 case 0x4a: /* i386 dec %edx */
5116 case 0x4b: /* i386 dec %ebx */
5117 case 0x4c: /* i386 dec %esp */
5118 case 0x4d: /* i386 dec %ebp */
5119 case 0x4e: /* i386 dec %esi */
5120 case 0x4f: /* i386 dec %edi */
5121 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5124 rex_w = (opcode8 >> 3) & 1;
5125 rex_r = (opcode8 & 0x4) << 1;
5126 ir.rex_x = (opcode8 & 0x2) << 2;
5127 ir.rex_b = (opcode8 & 0x1) << 3;
5129 else /* 32 bit target */
5138 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5144 if (prefixes & PREFIX_DATA)
5147 if (prefixes & PREFIX_ADDR)
5149 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5152 /* Now check op code. */
5153 opcode = (uint32_t) opcode8;
5158 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5161 opcode = (uint32_t) opcode8 | 0x0f00;
5165 case 0x00: /* arith & logic */
5213 if (((opcode >> 3) & 7) != OP_CMPL)
5215 if ((opcode & 1) == 0)
5218 ir.ot = ir.dflag + OT_WORD;
5220 switch ((opcode >> 1) & 3)
5222 case 0: /* OP Ev, Gv */
5223 if (i386_record_modrm (&ir))
5227 if (i386_record_lea_modrm (&ir))
5233 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5238 case 1: /* OP Gv, Ev */
5239 if (i386_record_modrm (&ir))
5242 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5246 case 2: /* OP A, Iv */
5247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5254 case 0x80: /* GRP1 */
5258 if (i386_record_modrm (&ir))
5261 if (ir.reg != OP_CMPL)
5263 if ((opcode & 1) == 0)
5266 ir.ot = ir.dflag + OT_WORD;
5273 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5274 if (i386_record_lea_modrm (&ir))
5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5283 case 0x40: /* inc */
5292 case 0x48: /* dec */
5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5305 case 0xf6: /* GRP3 */
5307 if ((opcode & 1) == 0)
5310 ir.ot = ir.dflag + OT_WORD;
5311 if (i386_record_modrm (&ir))
5314 if (ir.mod != 3 && ir.reg == 0)
5315 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5326 if (i386_record_lea_modrm (&ir))
5332 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5336 if (ir.reg == 3) /* neg */
5337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5344 if (ir.ot != OT_BYTE)
5345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5350 opcode = opcode << 8 | ir.modrm;
5356 case 0xfe: /* GRP4 */
5357 case 0xff: /* GRP5 */
5358 if (i386_record_modrm (&ir))
5360 if (ir.reg >= 2 && opcode == 0xfe)
5363 opcode = opcode << 8 | ir.modrm;
5370 if ((opcode & 1) == 0)
5373 ir.ot = ir.dflag + OT_WORD;
5376 if (i386_record_lea_modrm (&ir))
5382 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5389 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5391 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5397 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5406 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5408 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5413 opcode = opcode << 8 | ir.modrm;
5419 case 0x84: /* test */
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5426 case 0x98: /* CWDE/CBW */
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5430 case 0x99: /* CDQ/CWD */
5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5435 case 0x0faf: /* imul */
5438 ir.ot = ir.dflag + OT_WORD;
5439 if (i386_record_modrm (&ir))
5442 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5443 else if (opcode == 0x6b)
5446 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5452 case 0x0fc0: /* xadd */
5454 if ((opcode & 1) == 0)
5457 ir.ot = ir.dflag + OT_WORD;
5458 if (i386_record_modrm (&ir))
5463 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5466 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5472 if (i386_record_lea_modrm (&ir))
5474 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5478 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5481 case 0x0fb0: /* cmpxchg */
5483 if ((opcode & 1) == 0)
5486 ir.ot = ir.dflag + OT_WORD;
5487 if (i386_record_modrm (&ir))
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5493 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5500 if (i386_record_lea_modrm (&ir))
5503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5506 case 0x0fc7: /* cmpxchg8b */
5507 if (i386_record_modrm (&ir))
5512 opcode = opcode << 8 | ir.modrm;
5515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5517 if (i386_record_lea_modrm (&ir))
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5522 case 0x50: /* push */
5532 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5534 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5538 case 0x06: /* push es */
5539 case 0x0e: /* push cs */
5540 case 0x16: /* push ss */
5541 case 0x1e: /* push ds */
5542 if (ir.regmap[X86_RECORD_R8_REGNUM])
5547 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5551 case 0x0fa0: /* push fs */
5552 case 0x0fa8: /* push gs */
5553 if (ir.regmap[X86_RECORD_R8_REGNUM])
5558 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5562 case 0x60: /* pusha */
5563 if (ir.regmap[X86_RECORD_R8_REGNUM])
5568 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5572 case 0x58: /* pop */
5580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5581 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5584 case 0x61: /* popa */
5585 if (ir.regmap[X86_RECORD_R8_REGNUM])
5590 for (regnum = X86_RECORD_REAX_REGNUM;
5591 regnum <= X86_RECORD_REDI_REGNUM;
5593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5596 case 0x8f: /* pop */
5597 if (ir.regmap[X86_RECORD_R8_REGNUM])
5598 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5600 ir.ot = ir.dflag + OT_WORD;
5601 if (i386_record_modrm (&ir))
5604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5607 ir.popl_esp_hack = 1 << ir.ot;
5608 if (i386_record_lea_modrm (&ir))
5611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5614 case 0xc8: /* enter */
5615 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5616 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5618 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5622 case 0xc9: /* leave */
5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5624 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5627 case 0x07: /* pop es */
5628 if (ir.regmap[X86_RECORD_R8_REGNUM])
5633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5638 case 0x17: /* pop ss */
5639 if (ir.regmap[X86_RECORD_R8_REGNUM])
5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5645 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5649 case 0x1f: /* pop ds */
5650 if (ir.regmap[X86_RECORD_R8_REGNUM])
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5660 case 0x0fa1: /* pop fs */
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5666 case 0x0fa9: /* pop gs */
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5672 case 0x88: /* mov */
5676 if ((opcode & 1) == 0)
5679 ir.ot = ir.dflag + OT_WORD;
5681 if (i386_record_modrm (&ir))
5686 if (opcode == 0xc6 || opcode == 0xc7)
5687 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5688 if (i386_record_lea_modrm (&ir))
5693 if (opcode == 0xc6 || opcode == 0xc7)
5695 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5701 case 0x8a: /* mov */
5703 if ((opcode & 1) == 0)
5706 ir.ot = ir.dflag + OT_WORD;
5707 if (i386_record_modrm (&ir))
5710 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5715 case 0x8c: /* mov seg */
5716 if (i386_record_modrm (&ir))
5721 opcode = opcode << 8 | ir.modrm;
5726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5730 if (i386_record_lea_modrm (&ir))
5735 case 0x8e: /* mov seg */
5736 if (i386_record_modrm (&ir))
5741 regnum = X86_RECORD_ES_REGNUM;
5744 regnum = X86_RECORD_SS_REGNUM;
5747 regnum = X86_RECORD_DS_REGNUM;
5750 regnum = X86_RECORD_FS_REGNUM;
5753 regnum = X86_RECORD_GS_REGNUM;
5757 opcode = opcode << 8 | ir.modrm;
5761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5765 case 0x0fb6: /* movzbS */
5766 case 0x0fb7: /* movzwS */
5767 case 0x0fbe: /* movsbS */
5768 case 0x0fbf: /* movswS */
5769 if (i386_record_modrm (&ir))
5771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5774 case 0x8d: /* lea */
5775 if (i386_record_modrm (&ir))
5780 opcode = opcode << 8 | ir.modrm;
5785 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5790 case 0xa0: /* mov EAX */
5793 case 0xd7: /* xlat */
5794 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5797 case 0xa2: /* mov EAX */
5799 if (ir.override >= 0)
5801 if (record_full_memory_query)
5804 Process record ignores the memory change of instruction at address %s\n\
5805 because it can't get the value of the segment register.\n\
5806 Do you want to stop the program?"),
5807 paddress (gdbarch, ir.orig_addr)))
5813 if ((opcode & 1) == 0)
5816 ir.ot = ir.dflag + OT_WORD;
5819 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5822 addr = extract_unsigned_integer (buf, 8, byte_order);
5826 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5829 addr = extract_unsigned_integer (buf, 4, byte_order);
5833 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5836 addr = extract_unsigned_integer (buf, 2, byte_order);
5838 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5843 case 0xb0: /* mov R, Ib */
5851 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5852 ? ((opcode & 0x7) | ir.rex_b)
5853 : ((opcode & 0x7) & 0x3));
5856 case 0xb8: /* mov R, Iv */
5864 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5867 case 0x91: /* xchg R, EAX */
5874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5878 case 0x86: /* xchg Ev, Gv */
5880 if ((opcode & 1) == 0)
5883 ir.ot = ir.dflag + OT_WORD;
5884 if (i386_record_modrm (&ir))
5889 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5895 if (i386_record_lea_modrm (&ir))
5899 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5904 case 0xc4: /* les Gv */
5905 case 0xc5: /* lds Gv */
5906 if (ir.regmap[X86_RECORD_R8_REGNUM])
5912 case 0x0fb2: /* lss Gv */
5913 case 0x0fb4: /* lfs Gv */
5914 case 0x0fb5: /* lgs Gv */
5915 if (i386_record_modrm (&ir))
5923 opcode = opcode << 8 | ir.modrm;
5928 case 0xc4: /* les Gv */
5929 regnum = X86_RECORD_ES_REGNUM;
5931 case 0xc5: /* lds Gv */
5932 regnum = X86_RECORD_DS_REGNUM;
5934 case 0x0fb2: /* lss Gv */
5935 regnum = X86_RECORD_SS_REGNUM;
5937 case 0x0fb4: /* lfs Gv */
5938 regnum = X86_RECORD_FS_REGNUM;
5940 case 0x0fb5: /* lgs Gv */
5941 regnum = X86_RECORD_GS_REGNUM;
5944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5945 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5949 case 0xc0: /* shifts */
5955 if ((opcode & 1) == 0)
5958 ir.ot = ir.dflag + OT_WORD;
5959 if (i386_record_modrm (&ir))
5961 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5963 if (i386_record_lea_modrm (&ir))
5969 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5980 if (i386_record_modrm (&ir))
5984 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5989 if (i386_record_lea_modrm (&ir))
5994 case 0xd8: /* Floats. */
6002 if (i386_record_modrm (&ir))
6004 ir.reg |= ((opcode & 7) << 3);
6010 if (i386_record_lea_modrm_addr (&ir, &addr64))
6018 /* For fcom, ficom nothing to do. */
6024 /* For fcomp, ficomp pop FPU stack, store all. */
6025 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6052 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6053 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6054 of code, always affects st(0) register. */
6055 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6079 /* Handling fld, fild. */
6080 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6084 switch (ir.reg >> 4)
6087 if (record_full_arch_list_add_mem (addr64, 4))
6091 if (record_full_arch_list_add_mem (addr64, 8))
6097 if (record_full_arch_list_add_mem (addr64, 2))
6103 switch (ir.reg >> 4)
6106 if (record_full_arch_list_add_mem (addr64, 4))
6108 if (3 == (ir.reg & 7))
6110 /* For fstp m32fp. */
6111 if (i386_record_floats (gdbarch, &ir,
6112 I386_SAVE_FPU_REGS))
6117 if (record_full_arch_list_add_mem (addr64, 4))
6119 if ((3 == (ir.reg & 7))
6120 || (5 == (ir.reg & 7))
6121 || (7 == (ir.reg & 7)))
6123 /* For fstp insn. */
6124 if (i386_record_floats (gdbarch, &ir,
6125 I386_SAVE_FPU_REGS))
6130 if (record_full_arch_list_add_mem (addr64, 8))
6132 if (3 == (ir.reg & 7))
6134 /* For fstp m64fp. */
6135 if (i386_record_floats (gdbarch, &ir,
6136 I386_SAVE_FPU_REGS))
6141 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6143 /* For fistp, fbld, fild, fbstp. */
6144 if (i386_record_floats (gdbarch, &ir,
6145 I386_SAVE_FPU_REGS))
6150 if (record_full_arch_list_add_mem (addr64, 2))
6159 if (i386_record_floats (gdbarch, &ir,
6160 I386_SAVE_FPU_ENV_REG_STACK))
6165 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6170 if (i386_record_floats (gdbarch, &ir,
6171 I386_SAVE_FPU_ENV_REG_STACK))
6177 if (record_full_arch_list_add_mem (addr64, 28))
6182 if (record_full_arch_list_add_mem (addr64, 14))
6188 if (record_full_arch_list_add_mem (addr64, 2))
6190 /* Insn fstp, fbstp. */
6191 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6196 if (record_full_arch_list_add_mem (addr64, 10))
6202 if (record_full_arch_list_add_mem (addr64, 28))
6208 if (record_full_arch_list_add_mem (addr64, 14))
6212 if (record_full_arch_list_add_mem (addr64, 80))
6215 if (i386_record_floats (gdbarch, &ir,
6216 I386_SAVE_FPU_ENV_REG_STACK))
6220 if (record_full_arch_list_add_mem (addr64, 8))
6223 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6228 opcode = opcode << 8 | ir.modrm;
6233 /* Opcode is an extension of modR/M byte. */
6239 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6243 if (0x0c == (ir.modrm >> 4))
6245 if ((ir.modrm & 0x0f) <= 7)
6247 if (i386_record_floats (gdbarch, &ir,
6248 I386_SAVE_FPU_REGS))
6253 if (i386_record_floats (gdbarch, &ir,
6254 I387_ST0_REGNUM (tdep)))
6256 /* If only st(0) is changing, then we have already
6258 if ((ir.modrm & 0x0f) - 0x08)
6260 if (i386_record_floats (gdbarch, &ir,
6261 I387_ST0_REGNUM (tdep) +
6262 ((ir.modrm & 0x0f) - 0x08)))
6280 if (i386_record_floats (gdbarch, &ir,
6281 I387_ST0_REGNUM (tdep)))
6299 if (i386_record_floats (gdbarch, &ir,
6300 I386_SAVE_FPU_REGS))
6304 if (i386_record_floats (gdbarch, &ir,
6305 I387_ST0_REGNUM (tdep)))
6307 if (i386_record_floats (gdbarch, &ir,
6308 I387_ST0_REGNUM (tdep) + 1))
6315 if (0xe9 == ir.modrm)
6317 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6320 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6322 if (i386_record_floats (gdbarch, &ir,
6323 I387_ST0_REGNUM (tdep)))
6325 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6327 if (i386_record_floats (gdbarch, &ir,
6328 I387_ST0_REGNUM (tdep) +
6332 else if ((ir.modrm & 0x0f) - 0x08)
6334 if (i386_record_floats (gdbarch, &ir,
6335 I387_ST0_REGNUM (tdep) +
6336 ((ir.modrm & 0x0f) - 0x08)))
6342 if (0xe3 == ir.modrm)
6344 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6347 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6349 if (i386_record_floats (gdbarch, &ir,
6350 I387_ST0_REGNUM (tdep)))
6352 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep) +
6359 else if ((ir.modrm & 0x0f) - 0x08)
6361 if (i386_record_floats (gdbarch, &ir,
6362 I387_ST0_REGNUM (tdep) +
6363 ((ir.modrm & 0x0f) - 0x08)))
6369 if ((0x0c == ir.modrm >> 4)
6370 || (0x0d == ir.modrm >> 4)
6371 || (0x0f == ir.modrm >> 4))
6373 if ((ir.modrm & 0x0f) <= 7)
6375 if (i386_record_floats (gdbarch, &ir,
6376 I387_ST0_REGNUM (tdep) +
6382 if (i386_record_floats (gdbarch, &ir,
6383 I387_ST0_REGNUM (tdep) +
6384 ((ir.modrm & 0x0f) - 0x08)))
6390 if (0x0c == ir.modrm >> 4)
6392 if (i386_record_floats (gdbarch, &ir,
6393 I387_FTAG_REGNUM (tdep)))
6396 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6398 if ((ir.modrm & 0x0f) <= 7)
6400 if (i386_record_floats (gdbarch, &ir,
6401 I387_ST0_REGNUM (tdep) +
6407 if (i386_record_floats (gdbarch, &ir,
6408 I386_SAVE_FPU_REGS))
6414 if ((0x0c == ir.modrm >> 4)
6415 || (0x0e == ir.modrm >> 4)
6416 || (0x0f == ir.modrm >> 4)
6417 || (0xd9 == ir.modrm))
6419 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6424 if (0xe0 == ir.modrm)
6426 if (record_full_arch_list_add_reg (ir.regcache,
6430 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6432 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6440 case 0xa4: /* movsS */
6442 case 0xaa: /* stosS */
6444 case 0x6c: /* insS */
6446 regcache_raw_read_unsigned (ir.regcache,
6447 ir.regmap[X86_RECORD_RECX_REGNUM],
6453 if ((opcode & 1) == 0)
6456 ir.ot = ir.dflag + OT_WORD;
6457 regcache_raw_read_unsigned (ir.regcache,
6458 ir.regmap[X86_RECORD_REDI_REGNUM],
6461 regcache_raw_read_unsigned (ir.regcache,
6462 ir.regmap[X86_RECORD_ES_REGNUM],
6464 regcache_raw_read_unsigned (ir.regcache,
6465 ir.regmap[X86_RECORD_DS_REGNUM],
6467 if (ir.aflag && (es != ds))
6469 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6470 if (record_full_memory_query)
6473 Process record ignores the memory change of instruction at address %s\n\
6474 because it can't get the value of the segment register.\n\
6475 Do you want to stop the program?"),
6476 paddress (gdbarch, ir.orig_addr)))
6482 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6486 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6487 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6488 if (opcode == 0xa4 || opcode == 0xa5)
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6495 case 0xa6: /* cmpsS */
6497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6499 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 case 0xac: /* lodsS */
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6508 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6513 case 0xae: /* scasS */
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6516 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6521 case 0x6e: /* outsS */
6523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6524 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6529 case 0xe4: /* port I/O */
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6544 case 0xc2: /* ret im */
6545 case 0xc3: /* ret */
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6550 case 0xca: /* lret im */
6551 case 0xcb: /* lret */
6552 case 0xcf: /* iret */
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6558 case 0xe8: /* call im */
6559 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6561 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6565 case 0x9a: /* lcall im */
6566 if (ir.regmap[X86_RECORD_R8_REGNUM])
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6572 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6576 case 0xe9: /* jmp im */
6577 case 0xea: /* ljmp im */
6578 case 0xeb: /* jmp Jb */
6579 case 0x70: /* jcc Jb */
6595 case 0x0f80: /* jcc Jv */
6613 case 0x0f90: /* setcc Gv */
6629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6631 if (i386_record_modrm (&ir))
6634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6638 if (i386_record_lea_modrm (&ir))
6643 case 0x0f40: /* cmov Gv, Ev */
6659 if (i386_record_modrm (&ir))
6662 if (ir.dflag == OT_BYTE)
6664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6668 case 0x9c: /* pushf */
6669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6670 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6672 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6676 case 0x9d: /* popf */
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6681 case 0x9e: /* sahf */
6682 if (ir.regmap[X86_RECORD_R8_REGNUM])
6688 case 0xf5: /* cmc */
6689 case 0xf8: /* clc */
6690 case 0xf9: /* stc */
6691 case 0xfc: /* cld */
6692 case 0xfd: /* std */
6693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6696 case 0x9f: /* lahf */
6697 if (ir.regmap[X86_RECORD_R8_REGNUM])
6702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6706 /* bit operations */
6707 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6708 ir.ot = ir.dflag + OT_WORD;
6709 if (i386_record_modrm (&ir))
6714 opcode = opcode << 8 | ir.modrm;
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6723 if (i386_record_lea_modrm (&ir))
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6730 case 0x0fa3: /* bt Gv, Ev */
6731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6734 case 0x0fab: /* bts */
6735 case 0x0fb3: /* btr */
6736 case 0x0fbb: /* btc */
6737 ir.ot = ir.dflag + OT_WORD;
6738 if (i386_record_modrm (&ir))
6741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6745 if (i386_record_lea_modrm_addr (&ir, &addr64))
6747 regcache_raw_read_unsigned (ir.regcache,
6748 ir.regmap[ir.reg | rex_r],
6753 addr64 += ((int16_t) addr >> 4) << 4;
6756 addr64 += ((int32_t) addr >> 5) << 5;
6759 addr64 += ((int64_t) addr >> 6) << 6;
6762 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6764 if (i386_record_lea_modrm (&ir))
6767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6770 case 0x0fbc: /* bsf */
6771 case 0x0fbd: /* bsr */
6772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6777 case 0x27: /* daa */
6778 case 0x2f: /* das */
6779 case 0x37: /* aaa */
6780 case 0x3f: /* aas */
6781 case 0xd4: /* aam */
6782 case 0xd5: /* aad */
6783 if (ir.regmap[X86_RECORD_R8_REGNUM])
6788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6793 case 0x90: /* nop */
6794 if (prefixes & PREFIX_LOCK)
6801 case 0x9b: /* fwait */
6802 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6804 opcode = (uint32_t) opcode8;
6810 case 0xcc: /* int3 */
6811 printf_unfiltered (_("Process record does not support instruction "
6818 case 0xcd: /* int */
6822 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6825 if (interrupt != 0x80
6826 || tdep->i386_intx80_record == NULL)
6828 printf_unfiltered (_("Process record does not support "
6829 "instruction int 0x%02x.\n"),
6834 ret = tdep->i386_intx80_record (ir.regcache);
6841 case 0xce: /* into */
6842 printf_unfiltered (_("Process record does not support "
6843 "instruction into.\n"));
6848 case 0xfa: /* cli */
6849 case 0xfb: /* sti */
6852 case 0x62: /* bound */
6853 printf_unfiltered (_("Process record does not support "
6854 "instruction bound.\n"));
6859 case 0x0fc8: /* bswap reg */
6867 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6870 case 0xd6: /* salc */
6871 if (ir.regmap[X86_RECORD_R8_REGNUM])
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6880 case 0xe0: /* loopnz */
6881 case 0xe1: /* loopz */
6882 case 0xe2: /* loop */
6883 case 0xe3: /* jecxz */
6884 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6888 case 0x0f30: /* wrmsr */
6889 printf_unfiltered (_("Process record does not support "
6890 "instruction wrmsr.\n"));
6895 case 0x0f32: /* rdmsr */
6896 printf_unfiltered (_("Process record does not support "
6897 "instruction rdmsr.\n"));
6902 case 0x0f31: /* rdtsc */
6903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6907 case 0x0f34: /* sysenter */
6910 if (ir.regmap[X86_RECORD_R8_REGNUM])
6915 if (tdep->i386_sysenter_record == NULL)
6917 printf_unfiltered (_("Process record does not support "
6918 "instruction sysenter.\n"));
6922 ret = tdep->i386_sysenter_record (ir.regcache);
6928 case 0x0f35: /* sysexit */
6929 printf_unfiltered (_("Process record does not support "
6930 "instruction sysexit.\n"));
6935 case 0x0f05: /* syscall */
6938 if (tdep->i386_syscall_record == NULL)
6940 printf_unfiltered (_("Process record does not support "
6941 "instruction syscall.\n"));
6945 ret = tdep->i386_syscall_record (ir.regcache);
6951 case 0x0f07: /* sysret */
6952 printf_unfiltered (_("Process record does not support "
6953 "instruction sysret.\n"));
6958 case 0x0fa2: /* cpuid */
6959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6960 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6965 case 0xf4: /* hlt */
6966 printf_unfiltered (_("Process record does not support "
6967 "instruction hlt.\n"));
6973 if (i386_record_modrm (&ir))
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6984 if (i386_record_lea_modrm (&ir))
6993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6997 opcode = opcode << 8 | ir.modrm;
7004 if (i386_record_modrm (&ir))
7015 opcode = opcode << 8 | ir.modrm;
7018 if (ir.override >= 0)
7020 if (record_full_memory_query)
7023 Process record ignores the memory change of instruction at address %s\n\
7024 because it can't get the value of the segment register.\n\
7025 Do you want to stop the program?"),
7026 paddress (gdbarch, ir.orig_addr)))
7032 if (i386_record_lea_modrm_addr (&ir, &addr64))
7034 if (record_full_arch_list_add_mem (addr64, 2))
7037 if (ir.regmap[X86_RECORD_R8_REGNUM])
7039 if (record_full_arch_list_add_mem (addr64, 8))
7044 if (record_full_arch_list_add_mem (addr64, 4))
7055 case 0: /* monitor */
7058 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7062 opcode = opcode << 8 | ir.modrm;
7070 if (ir.override >= 0)
7072 if (record_full_memory_query)
7075 Process record ignores the memory change of instruction at address %s\n\
7076 because it can't get the value of the segment register.\n\
7077 Do you want to stop the program?"),
7078 paddress (gdbarch, ir.orig_addr)))
7086 if (i386_record_lea_modrm_addr (&ir, &addr64))
7088 if (record_full_arch_list_add_mem (addr64, 2))
7091 if (ir.regmap[X86_RECORD_R8_REGNUM])
7093 if (record_full_arch_list_add_mem (addr64, 8))
7098 if (record_full_arch_list_add_mem (addr64, 4))
7110 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7111 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7115 else if (ir.rm == 1)
7122 opcode = opcode << 8 | ir.modrm;
7129 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7135 if (i386_record_lea_modrm (&ir))
7138 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7141 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7143 case 7: /* invlpg */
7146 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7147 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7151 opcode = opcode << 8 | ir.modrm;
7156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7160 opcode = opcode << 8 | ir.modrm;
7166 case 0x0f08: /* invd */
7167 case 0x0f09: /* wbinvd */
7170 case 0x63: /* arpl */
7171 if (i386_record_modrm (&ir))
7173 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7175 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7176 ? (ir.reg | rex_r) : ir.rm);
7180 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7181 if (i386_record_lea_modrm (&ir))
7184 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7188 case 0x0f02: /* lar */
7189 case 0x0f03: /* lsl */
7190 if (i386_record_modrm (&ir))
7192 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7197 if (i386_record_modrm (&ir))
7199 if (ir.mod == 3 && ir.reg == 3)
7202 opcode = opcode << 8 | ir.modrm;
7214 /* nop (multi byte) */
7217 case 0x0f20: /* mov reg, crN */
7218 case 0x0f22: /* mov crN, reg */
7219 if (i386_record_modrm (&ir))
7221 if ((ir.modrm & 0xc0) != 0xc0)
7224 opcode = opcode << 8 | ir.modrm;
7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7241 opcode = opcode << 8 | ir.modrm;
7247 case 0x0f21: /* mov reg, drN */
7248 case 0x0f23: /* mov drN, reg */
7249 if (i386_record_modrm (&ir))
7251 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7252 || ir.reg == 5 || ir.reg >= 8)
7255 opcode = opcode << 8 | ir.modrm;
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7264 case 0x0f06: /* clts */
7265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7268 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7270 case 0x0f0d: /* 3DNow! prefetch */
7273 case 0x0f0e: /* 3DNow! femms */
7274 case 0x0f77: /* emms */
7275 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7277 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7280 case 0x0f0f: /* 3DNow! data */
7281 if (i386_record_modrm (&ir))
7283 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7288 case 0x0c: /* 3DNow! pi2fw */
7289 case 0x0d: /* 3DNow! pi2fd */
7290 case 0x1c: /* 3DNow! pf2iw */
7291 case 0x1d: /* 3DNow! pf2id */
7292 case 0x8a: /* 3DNow! pfnacc */
7293 case 0x8e: /* 3DNow! pfpnacc */
7294 case 0x90: /* 3DNow! pfcmpge */
7295 case 0x94: /* 3DNow! pfmin */
7296 case 0x96: /* 3DNow! pfrcp */
7297 case 0x97: /* 3DNow! pfrsqrt */
7298 case 0x9a: /* 3DNow! pfsub */
7299 case 0x9e: /* 3DNow! pfadd */
7300 case 0xa0: /* 3DNow! pfcmpgt */
7301 case 0xa4: /* 3DNow! pfmax */
7302 case 0xa6: /* 3DNow! pfrcpit1 */
7303 case 0xa7: /* 3DNow! pfrsqit1 */
7304 case 0xaa: /* 3DNow! pfsubr */
7305 case 0xae: /* 3DNow! pfacc */
7306 case 0xb0: /* 3DNow! pfcmpeq */
7307 case 0xb4: /* 3DNow! pfmul */
7308 case 0xb6: /* 3DNow! pfrcpit2 */
7309 case 0xb7: /* 3DNow! pmulhrw */
7310 case 0xbb: /* 3DNow! pswapd */
7311 case 0xbf: /* 3DNow! pavgusb */
7312 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7313 goto no_support_3dnow_data;
7314 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7318 no_support_3dnow_data:
7319 opcode = (opcode << 8) | opcode8;
7325 case 0x0faa: /* rsm */
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7338 if (i386_record_modrm (&ir))
7342 case 0: /* fxsave */
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7347 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7349 if (record_full_arch_list_add_mem (tmpu64, 512))
7354 case 1: /* fxrstor */
7358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7360 for (i = I387_MM0_REGNUM (tdep);
7361 i386_mmx_regnum_p (gdbarch, i); i++)
7362 record_full_arch_list_add_reg (ir.regcache, i);
7364 for (i = I387_XMM0_REGNUM (tdep);
7365 i386_xmm_regnum_p (gdbarch, i); i++)
7366 record_full_arch_list_add_reg (ir.regcache, i);
7368 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7369 record_full_arch_list_add_reg (ir.regcache,
7370 I387_MXCSR_REGNUM(tdep));
7372 for (i = I387_ST0_REGNUM (tdep);
7373 i386_fp_regnum_p (gdbarch, i); i++)
7374 record_full_arch_list_add_reg (ir.regcache, i);
7376 for (i = I387_FCTRL_REGNUM (tdep);
7377 i386_fpc_regnum_p (gdbarch, i); i++)
7378 record_full_arch_list_add_reg (ir.regcache, i);
7382 case 2: /* ldmxcsr */
7383 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7385 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7388 case 3: /* stmxcsr */
7390 if (i386_record_lea_modrm (&ir))
7394 case 5: /* lfence */
7395 case 6: /* mfence */
7396 case 7: /* sfence clflush */
7400 opcode = (opcode << 8) | ir.modrm;
7406 case 0x0fc3: /* movnti */
7407 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7408 if (i386_record_modrm (&ir))
7413 if (i386_record_lea_modrm (&ir))
7417 /* Add prefix to opcode. */
7532 /* Mask out PREFIX_ADDR. */
7533 switch ((prefixes & ~PREFIX_ADDR))
7545 reswitch_prefix_add:
7553 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7556 opcode = (uint32_t) opcode8 | opcode << 8;
7557 goto reswitch_prefix_add;
7560 case 0x0f10: /* movups */
7561 case 0x660f10: /* movupd */
7562 case 0xf30f10: /* movss */
7563 case 0xf20f10: /* movsd */
7564 case 0x0f12: /* movlps */
7565 case 0x660f12: /* movlpd */
7566 case 0xf30f12: /* movsldup */
7567 case 0xf20f12: /* movddup */
7568 case 0x0f14: /* unpcklps */
7569 case 0x660f14: /* unpcklpd */
7570 case 0x0f15: /* unpckhps */
7571 case 0x660f15: /* unpckhpd */
7572 case 0x0f16: /* movhps */
7573 case 0x660f16: /* movhpd */
7574 case 0xf30f16: /* movshdup */
7575 case 0x0f28: /* movaps */
7576 case 0x660f28: /* movapd */
7577 case 0x0f2a: /* cvtpi2ps */
7578 case 0x660f2a: /* cvtpi2pd */
7579 case 0xf30f2a: /* cvtsi2ss */
7580 case 0xf20f2a: /* cvtsi2sd */
7581 case 0x0f2c: /* cvttps2pi */
7582 case 0x660f2c: /* cvttpd2pi */
7583 case 0x0f2d: /* cvtps2pi */
7584 case 0x660f2d: /* cvtpd2pi */
7585 case 0x660f3800: /* pshufb */
7586 case 0x660f3801: /* phaddw */
7587 case 0x660f3802: /* phaddd */
7588 case 0x660f3803: /* phaddsw */
7589 case 0x660f3804: /* pmaddubsw */
7590 case 0x660f3805: /* phsubw */
7591 case 0x660f3806: /* phsubd */
7592 case 0x660f3807: /* phsubsw */
7593 case 0x660f3808: /* psignb */
7594 case 0x660f3809: /* psignw */
7595 case 0x660f380a: /* psignd */
7596 case 0x660f380b: /* pmulhrsw */
7597 case 0x660f3810: /* pblendvb */
7598 case 0x660f3814: /* blendvps */
7599 case 0x660f3815: /* blendvpd */
7600 case 0x660f381c: /* pabsb */
7601 case 0x660f381d: /* pabsw */
7602 case 0x660f381e: /* pabsd */
7603 case 0x660f3820: /* pmovsxbw */
7604 case 0x660f3821: /* pmovsxbd */
7605 case 0x660f3822: /* pmovsxbq */
7606 case 0x660f3823: /* pmovsxwd */
7607 case 0x660f3824: /* pmovsxwq */
7608 case 0x660f3825: /* pmovsxdq */
7609 case 0x660f3828: /* pmuldq */
7610 case 0x660f3829: /* pcmpeqq */
7611 case 0x660f382a: /* movntdqa */
7612 case 0x660f3a08: /* roundps */
7613 case 0x660f3a09: /* roundpd */
7614 case 0x660f3a0a: /* roundss */
7615 case 0x660f3a0b: /* roundsd */
7616 case 0x660f3a0c: /* blendps */
7617 case 0x660f3a0d: /* blendpd */
7618 case 0x660f3a0e: /* pblendw */
7619 case 0x660f3a0f: /* palignr */
7620 case 0x660f3a20: /* pinsrb */
7621 case 0x660f3a21: /* insertps */
7622 case 0x660f3a22: /* pinsrd pinsrq */
7623 case 0x660f3a40: /* dpps */
7624 case 0x660f3a41: /* dppd */
7625 case 0x660f3a42: /* mpsadbw */
7626 case 0x660f3a60: /* pcmpestrm */
7627 case 0x660f3a61: /* pcmpestri */
7628 case 0x660f3a62: /* pcmpistrm */
7629 case 0x660f3a63: /* pcmpistri */
7630 case 0x0f51: /* sqrtps */
7631 case 0x660f51: /* sqrtpd */
7632 case 0xf20f51: /* sqrtsd */
7633 case 0xf30f51: /* sqrtss */
7634 case 0x0f52: /* rsqrtps */
7635 case 0xf30f52: /* rsqrtss */
7636 case 0x0f53: /* rcpps */
7637 case 0xf30f53: /* rcpss */
7638 case 0x0f54: /* andps */
7639 case 0x660f54: /* andpd */
7640 case 0x0f55: /* andnps */
7641 case 0x660f55: /* andnpd */
7642 case 0x0f56: /* orps */
7643 case 0x660f56: /* orpd */
7644 case 0x0f57: /* xorps */
7645 case 0x660f57: /* xorpd */
7646 case 0x0f58: /* addps */
7647 case 0x660f58: /* addpd */
7648 case 0xf20f58: /* addsd */
7649 case 0xf30f58: /* addss */
7650 case 0x0f59: /* mulps */
7651 case 0x660f59: /* mulpd */
7652 case 0xf20f59: /* mulsd */
7653 case 0xf30f59: /* mulss */
7654 case 0x0f5a: /* cvtps2pd */
7655 case 0x660f5a: /* cvtpd2ps */
7656 case 0xf20f5a: /* cvtsd2ss */
7657 case 0xf30f5a: /* cvtss2sd */
7658 case 0x0f5b: /* cvtdq2ps */
7659 case 0x660f5b: /* cvtps2dq */
7660 case 0xf30f5b: /* cvttps2dq */
7661 case 0x0f5c: /* subps */
7662 case 0x660f5c: /* subpd */
7663 case 0xf20f5c: /* subsd */
7664 case 0xf30f5c: /* subss */
7665 case 0x0f5d: /* minps */
7666 case 0x660f5d: /* minpd */
7667 case 0xf20f5d: /* minsd */
7668 case 0xf30f5d: /* minss */
7669 case 0x0f5e: /* divps */
7670 case 0x660f5e: /* divpd */
7671 case 0xf20f5e: /* divsd */
7672 case 0xf30f5e: /* divss */
7673 case 0x0f5f: /* maxps */
7674 case 0x660f5f: /* maxpd */
7675 case 0xf20f5f: /* maxsd */
7676 case 0xf30f5f: /* maxss */
7677 case 0x660f60: /* punpcklbw */
7678 case 0x660f61: /* punpcklwd */
7679 case 0x660f62: /* punpckldq */
7680 case 0x660f63: /* packsswb */
7681 case 0x660f64: /* pcmpgtb */
7682 case 0x660f65: /* pcmpgtw */
7683 case 0x660f66: /* pcmpgtd */
7684 case 0x660f67: /* packuswb */
7685 case 0x660f68: /* punpckhbw */
7686 case 0x660f69: /* punpckhwd */
7687 case 0x660f6a: /* punpckhdq */
7688 case 0x660f6b: /* packssdw */
7689 case 0x660f6c: /* punpcklqdq */
7690 case 0x660f6d: /* punpckhqdq */
7691 case 0x660f6e: /* movd */
7692 case 0x660f6f: /* movdqa */
7693 case 0xf30f6f: /* movdqu */
7694 case 0x660f70: /* pshufd */
7695 case 0xf20f70: /* pshuflw */
7696 case 0xf30f70: /* pshufhw */
7697 case 0x660f74: /* pcmpeqb */
7698 case 0x660f75: /* pcmpeqw */
7699 case 0x660f76: /* pcmpeqd */
7700 case 0x660f7c: /* haddpd */
7701 case 0xf20f7c: /* haddps */
7702 case 0x660f7d: /* hsubpd */
7703 case 0xf20f7d: /* hsubps */
7704 case 0xf30f7e: /* movq */
7705 case 0x0fc2: /* cmpps */
7706 case 0x660fc2: /* cmppd */
7707 case 0xf20fc2: /* cmpsd */
7708 case 0xf30fc2: /* cmpss */
7709 case 0x660fc4: /* pinsrw */
7710 case 0x0fc6: /* shufps */
7711 case 0x660fc6: /* shufpd */
7712 case 0x660fd0: /* addsubpd */
7713 case 0xf20fd0: /* addsubps */
7714 case 0x660fd1: /* psrlw */
7715 case 0x660fd2: /* psrld */
7716 case 0x660fd3: /* psrlq */
7717 case 0x660fd4: /* paddq */
7718 case 0x660fd5: /* pmullw */
7719 case 0xf30fd6: /* movq2dq */
7720 case 0x660fd8: /* psubusb */
7721 case 0x660fd9: /* psubusw */
7722 case 0x660fda: /* pminub */
7723 case 0x660fdb: /* pand */
7724 case 0x660fdc: /* paddusb */
7725 case 0x660fdd: /* paddusw */
7726 case 0x660fde: /* pmaxub */
7727 case 0x660fdf: /* pandn */
7728 case 0x660fe0: /* pavgb */
7729 case 0x660fe1: /* psraw */
7730 case 0x660fe2: /* psrad */
7731 case 0x660fe3: /* pavgw */
7732 case 0x660fe4: /* pmulhuw */
7733 case 0x660fe5: /* pmulhw */
7734 case 0x660fe6: /* cvttpd2dq */
7735 case 0xf20fe6: /* cvtpd2dq */
7736 case 0xf30fe6: /* cvtdq2pd */
7737 case 0x660fe8: /* psubsb */
7738 case 0x660fe9: /* psubsw */
7739 case 0x660fea: /* pminsw */
7740 case 0x660feb: /* por */
7741 case 0x660fec: /* paddsb */
7742 case 0x660fed: /* paddsw */
7743 case 0x660fee: /* pmaxsw */
7744 case 0x660fef: /* pxor */
7745 case 0xf20ff0: /* lddqu */
7746 case 0x660ff1: /* psllw */
7747 case 0x660ff2: /* pslld */
7748 case 0x660ff3: /* psllq */
7749 case 0x660ff4: /* pmuludq */
7750 case 0x660ff5: /* pmaddwd */
7751 case 0x660ff6: /* psadbw */
7752 case 0x660ff8: /* psubb */
7753 case 0x660ff9: /* psubw */
7754 case 0x660ffa: /* psubd */
7755 case 0x660ffb: /* psubq */
7756 case 0x660ffc: /* paddb */
7757 case 0x660ffd: /* paddw */
7758 case 0x660ffe: /* paddd */
7759 if (i386_record_modrm (&ir))
7762 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7764 record_full_arch_list_add_reg (ir.regcache,
7765 I387_XMM0_REGNUM (tdep) + ir.reg);
7766 if ((opcode & 0xfffffffc) == 0x660f3a60)
7767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7770 case 0x0f11: /* movups */
7771 case 0x660f11: /* movupd */
7772 case 0xf30f11: /* movss */
7773 case 0xf20f11: /* movsd */
7774 case 0x0f13: /* movlps */
7775 case 0x660f13: /* movlpd */
7776 case 0x0f17: /* movhps */
7777 case 0x660f17: /* movhpd */
7778 case 0x0f29: /* movaps */
7779 case 0x660f29: /* movapd */
7780 case 0x660f3a14: /* pextrb */
7781 case 0x660f3a15: /* pextrw */
7782 case 0x660f3a16: /* pextrd pextrq */
7783 case 0x660f3a17: /* extractps */
7784 case 0x660f7f: /* movdqa */
7785 case 0xf30f7f: /* movdqu */
7786 if (i386_record_modrm (&ir))
7790 if (opcode == 0x0f13 || opcode == 0x660f13
7791 || opcode == 0x0f17 || opcode == 0x660f17)
7794 if (!i386_xmm_regnum_p (gdbarch,
7795 I387_XMM0_REGNUM (tdep) + ir.rm))
7797 record_full_arch_list_add_reg (ir.regcache,
7798 I387_XMM0_REGNUM (tdep) + ir.rm);
7820 if (i386_record_lea_modrm (&ir))
7825 case 0x0f2b: /* movntps */
7826 case 0x660f2b: /* movntpd */
7827 case 0x0fe7: /* movntq */
7828 case 0x660fe7: /* movntdq */
7831 if (opcode == 0x0fe7)
7835 if (i386_record_lea_modrm (&ir))
7839 case 0xf30f2c: /* cvttss2si */
7840 case 0xf20f2c: /* cvttsd2si */
7841 case 0xf30f2d: /* cvtss2si */
7842 case 0xf20f2d: /* cvtsd2si */
7843 case 0xf20f38f0: /* crc32 */
7844 case 0xf20f38f1: /* crc32 */
7845 case 0x0f50: /* movmskps */
7846 case 0x660f50: /* movmskpd */
7847 case 0x0fc5: /* pextrw */
7848 case 0x660fc5: /* pextrw */
7849 case 0x0fd7: /* pmovmskb */
7850 case 0x660fd7: /* pmovmskb */
7851 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7854 case 0x0f3800: /* pshufb */
7855 case 0x0f3801: /* phaddw */
7856 case 0x0f3802: /* phaddd */
7857 case 0x0f3803: /* phaddsw */
7858 case 0x0f3804: /* pmaddubsw */
7859 case 0x0f3805: /* phsubw */
7860 case 0x0f3806: /* phsubd */
7861 case 0x0f3807: /* phsubsw */
7862 case 0x0f3808: /* psignb */
7863 case 0x0f3809: /* psignw */
7864 case 0x0f380a: /* psignd */
7865 case 0x0f380b: /* pmulhrsw */
7866 case 0x0f381c: /* pabsb */
7867 case 0x0f381d: /* pabsw */
7868 case 0x0f381e: /* pabsd */
7869 case 0x0f382b: /* packusdw */
7870 case 0x0f3830: /* pmovzxbw */
7871 case 0x0f3831: /* pmovzxbd */
7872 case 0x0f3832: /* pmovzxbq */
7873 case 0x0f3833: /* pmovzxwd */
7874 case 0x0f3834: /* pmovzxwq */
7875 case 0x0f3835: /* pmovzxdq */
7876 case 0x0f3837: /* pcmpgtq */
7877 case 0x0f3838: /* pminsb */
7878 case 0x0f3839: /* pminsd */
7879 case 0x0f383a: /* pminuw */
7880 case 0x0f383b: /* pminud */
7881 case 0x0f383c: /* pmaxsb */
7882 case 0x0f383d: /* pmaxsd */
7883 case 0x0f383e: /* pmaxuw */
7884 case 0x0f383f: /* pmaxud */
7885 case 0x0f3840: /* pmulld */
7886 case 0x0f3841: /* phminposuw */
7887 case 0x0f3a0f: /* palignr */
7888 case 0x0f60: /* punpcklbw */
7889 case 0x0f61: /* punpcklwd */
7890 case 0x0f62: /* punpckldq */
7891 case 0x0f63: /* packsswb */
7892 case 0x0f64: /* pcmpgtb */
7893 case 0x0f65: /* pcmpgtw */
7894 case 0x0f66: /* pcmpgtd */
7895 case 0x0f67: /* packuswb */
7896 case 0x0f68: /* punpckhbw */
7897 case 0x0f69: /* punpckhwd */
7898 case 0x0f6a: /* punpckhdq */
7899 case 0x0f6b: /* packssdw */
7900 case 0x0f6e: /* movd */
7901 case 0x0f6f: /* movq */
7902 case 0x0f70: /* pshufw */
7903 case 0x0f74: /* pcmpeqb */
7904 case 0x0f75: /* pcmpeqw */
7905 case 0x0f76: /* pcmpeqd */
7906 case 0x0fc4: /* pinsrw */
7907 case 0x0fd1: /* psrlw */
7908 case 0x0fd2: /* psrld */
7909 case 0x0fd3: /* psrlq */
7910 case 0x0fd4: /* paddq */
7911 case 0x0fd5: /* pmullw */
7912 case 0xf20fd6: /* movdq2q */
7913 case 0x0fd8: /* psubusb */
7914 case 0x0fd9: /* psubusw */
7915 case 0x0fda: /* pminub */
7916 case 0x0fdb: /* pand */
7917 case 0x0fdc: /* paddusb */
7918 case 0x0fdd: /* paddusw */
7919 case 0x0fde: /* pmaxub */
7920 case 0x0fdf: /* pandn */
7921 case 0x0fe0: /* pavgb */
7922 case 0x0fe1: /* psraw */
7923 case 0x0fe2: /* psrad */
7924 case 0x0fe3: /* pavgw */
7925 case 0x0fe4: /* pmulhuw */
7926 case 0x0fe5: /* pmulhw */
7927 case 0x0fe8: /* psubsb */
7928 case 0x0fe9: /* psubsw */
7929 case 0x0fea: /* pminsw */
7930 case 0x0feb: /* por */
7931 case 0x0fec: /* paddsb */
7932 case 0x0fed: /* paddsw */
7933 case 0x0fee: /* pmaxsw */
7934 case 0x0fef: /* pxor */
7935 case 0x0ff1: /* psllw */
7936 case 0x0ff2: /* pslld */
7937 case 0x0ff3: /* psllq */
7938 case 0x0ff4: /* pmuludq */
7939 case 0x0ff5: /* pmaddwd */
7940 case 0x0ff6: /* psadbw */
7941 case 0x0ff8: /* psubb */
7942 case 0x0ff9: /* psubw */
7943 case 0x0ffa: /* psubd */
7944 case 0x0ffb: /* psubq */
7945 case 0x0ffc: /* paddb */
7946 case 0x0ffd: /* paddw */
7947 case 0x0ffe: /* paddd */
7948 if (i386_record_modrm (&ir))
7950 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7952 record_full_arch_list_add_reg (ir.regcache,
7953 I387_MM0_REGNUM (tdep) + ir.reg);
7956 case 0x0f71: /* psllw */
7957 case 0x0f72: /* pslld */
7958 case 0x0f73: /* psllq */
7959 if (i386_record_modrm (&ir))
7961 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7963 record_full_arch_list_add_reg (ir.regcache,
7964 I387_MM0_REGNUM (tdep) + ir.rm);
7967 case 0x660f71: /* psllw */
7968 case 0x660f72: /* pslld */
7969 case 0x660f73: /* psllq */
7970 if (i386_record_modrm (&ir))
7973 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7975 record_full_arch_list_add_reg (ir.regcache,
7976 I387_XMM0_REGNUM (tdep) + ir.rm);
7979 case 0x0f7e: /* movd */
7980 case 0x660f7e: /* movd */
7981 if (i386_record_modrm (&ir))
7984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7991 if (i386_record_lea_modrm (&ir))
7996 case 0x0f7f: /* movq */
7997 if (i386_record_modrm (&ir))
8001 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8003 record_full_arch_list_add_reg (ir.regcache,
8004 I387_MM0_REGNUM (tdep) + ir.rm);
8009 if (i386_record_lea_modrm (&ir))
8014 case 0xf30fb8: /* popcnt */
8015 if (i386_record_modrm (&ir))
8017 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8021 case 0x660fd6: /* movq */
8022 if (i386_record_modrm (&ir))
8027 if (!i386_xmm_regnum_p (gdbarch,
8028 I387_XMM0_REGNUM (tdep) + ir.rm))
8030 record_full_arch_list_add_reg (ir.regcache,
8031 I387_XMM0_REGNUM (tdep) + ir.rm);
8036 if (i386_record_lea_modrm (&ir))
8041 case 0x660f3817: /* ptest */
8042 case 0x0f2e: /* ucomiss */
8043 case 0x660f2e: /* ucomisd */
8044 case 0x0f2f: /* comiss */
8045 case 0x660f2f: /* comisd */
8046 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8049 case 0x0ff7: /* maskmovq */
8050 regcache_raw_read_unsigned (ir.regcache,
8051 ir.regmap[X86_RECORD_REDI_REGNUM],
8053 if (record_full_arch_list_add_mem (addr, 64))
8057 case 0x660ff7: /* maskmovdqu */
8058 regcache_raw_read_unsigned (ir.regcache,
8059 ir.regmap[X86_RECORD_REDI_REGNUM],
8061 if (record_full_arch_list_add_mem (addr, 128))
8076 /* In the future, maybe still need to deal with need_dasm. */
8077 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8078 if (record_full_arch_list_add_end ())
8084 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8085 "at address %s.\n"),
8086 (unsigned int) (opcode),
8087 paddress (gdbarch, ir.orig_addr));
8091 static const int i386_record_regmap[] =
8093 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8094 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8095 0, 0, 0, 0, 0, 0, 0, 0,
8096 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8097 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8100 /* Check that the given address appears suitable for a fast
8101 tracepoint, which on x86-64 means that we need an instruction of at
8102 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8103 jump and not have to worry about program jumps to an address in the
8104 middle of the tracepoint jump. On x86, it may be possible to use
8105 4-byte jumps with a 2-byte offset to a trampoline located in the
8106 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8107 of instruction to replace, and 0 if not, plus an explanatory
8111 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8115 static struct ui_file *gdb_null = NULL;
8117 /* Ask the target for the minimum instruction length supported. */
8118 jumplen = target_get_min_fast_tracepoint_insn_len ();
8122 /* If the target does not support the get_min_fast_tracepoint_insn_len
8123 operation, assume that fast tracepoints will always be implemented
8124 using 4-byte relative jumps on both x86 and x86-64. */
8127 else if (jumplen == 0)
8129 /* If the target does support get_min_fast_tracepoint_insn_len but
8130 returns zero, then the IPA has not loaded yet. In this case,
8131 we optimistically assume that truncated 2-byte relative jumps
8132 will be available on x86, and compensate later if this assumption
8133 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8134 jumps will always be used. */
8135 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8138 /* Dummy file descriptor for the disassembler. */
8140 gdb_null = ui_file_new ();
8142 /* Check for fit. */
8143 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8147 /* Return a bit of target-specific detail to add to the caller's
8148 generic failure message. */
8150 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8151 "need at least %d bytes for the jump"),
8164 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8165 struct tdesc_arch_data *tdesc_data)
8167 const struct target_desc *tdesc = tdep->tdesc;
8168 const struct tdesc_feature *feature_core;
8170 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8172 int i, num_regs, valid_p;
8174 if (! tdesc_has_registers (tdesc))
8177 /* Get core registers. */
8178 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8179 if (feature_core == NULL)
8182 /* Get SSE registers. */
8183 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8185 /* Try AVX registers. */
8186 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8188 /* Try MPX registers. */
8189 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8191 /* Try AVX512 registers. */
8192 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8196 /* The XCR0 bits. */
8199 /* AVX512 register description requires AVX register description. */
8203 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8205 /* It may have been set by OSABI initialization function. */
8206 if (tdep->k0_regnum < 0)
8208 tdep->k_register_names = i386_k_names;
8209 tdep->k0_regnum = I386_K0_REGNUM;
8212 for (i = 0; i < I387_NUM_K_REGS; i++)
8213 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8214 tdep->k0_regnum + i,
8217 if (tdep->num_zmm_regs == 0)
8219 tdep->zmmh_register_names = i386_zmmh_names;
8220 tdep->num_zmm_regs = 8;
8221 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8224 for (i = 0; i < tdep->num_zmm_regs; i++)
8225 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8226 tdep->zmm0h_regnum + i,
8227 tdep->zmmh_register_names[i]);
8229 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8230 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8231 tdep->xmm16_regnum + i,
8232 tdep->xmm_avx512_register_names[i]);
8234 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8235 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8236 tdep->ymm16h_regnum + i,
8237 tdep->ymm16h_register_names[i]);
8241 /* AVX register description requires SSE register description. */
8245 if (!feature_avx512)
8246 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8248 /* It may have been set by OSABI initialization function. */
8249 if (tdep->num_ymm_regs == 0)
8251 tdep->ymmh_register_names = i386_ymmh_names;
8252 tdep->num_ymm_regs = 8;
8253 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8256 for (i = 0; i < tdep->num_ymm_regs; i++)
8257 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8258 tdep->ymm0h_regnum + i,
8259 tdep->ymmh_register_names[i]);
8261 else if (feature_sse)
8262 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8265 tdep->xcr0 = X86_XSTATE_X87_MASK;
8266 tdep->num_xmm_regs = 0;
8269 num_regs = tdep->num_core_regs;
8270 for (i = 0; i < num_regs; i++)
8271 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8272 tdep->register_names[i]);
8276 /* Need to include %mxcsr, so add one. */
8277 num_regs += tdep->num_xmm_regs + 1;
8278 for (; i < num_regs; i++)
8279 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8280 tdep->register_names[i]);
8285 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8287 if (tdep->bnd0r_regnum < 0)
8289 tdep->mpx_register_names = i386_mpx_names;
8290 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8291 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8294 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8295 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8296 I387_BND0R_REGNUM (tdep) + i,
8297 tdep->mpx_register_names[i]);
8304 static struct gdbarch *
8305 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8307 struct gdbarch_tdep *tdep;
8308 struct gdbarch *gdbarch;
8309 struct tdesc_arch_data *tdesc_data;
8310 const struct target_desc *tdesc;
8318 /* If there is already a candidate, use it. */
8319 arches = gdbarch_list_lookup_by_info (arches, &info);
8321 return arches->gdbarch;
8323 /* Allocate space for the new architecture. */
8324 tdep = XCNEW (struct gdbarch_tdep);
8325 gdbarch = gdbarch_alloc (&info, tdep);
8327 /* General-purpose registers. */
8328 tdep->gregset_reg_offset = NULL;
8329 tdep->gregset_num_regs = I386_NUM_GREGS;
8330 tdep->sizeof_gregset = 0;
8332 /* Floating-point registers. */
8333 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8334 tdep->fpregset = &i386_fpregset;
8336 /* The default settings include the FPU registers, the MMX registers
8337 and the SSE registers. This can be overridden for a specific ABI
8338 by adjusting the members `st0_regnum', `mm0_regnum' and
8339 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8340 will show up in the output of "info all-registers". */
8342 tdep->st0_regnum = I386_ST0_REGNUM;
8344 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8345 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8347 tdep->jb_pc_offset = -1;
8348 tdep->struct_return = pcc_struct_return;
8349 tdep->sigtramp_start = 0;
8350 tdep->sigtramp_end = 0;
8351 tdep->sigtramp_p = i386_sigtramp_p;
8352 tdep->sigcontext_addr = NULL;
8353 tdep->sc_reg_offset = NULL;
8354 tdep->sc_pc_offset = -1;
8355 tdep->sc_sp_offset = -1;
8357 tdep->xsave_xcr0_offset = -1;
8359 tdep->record_regmap = i386_record_regmap;
8361 set_gdbarch_long_long_align_bit (gdbarch, 32);
8363 /* The format used for `long double' on almost all i386 targets is
8364 the i387 extended floating-point format. In fact, of all targets
8365 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8366 on having a `long double' that's not `long' at all. */
8367 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8369 /* Although the i387 extended floating-point has only 80 significant
8370 bits, a `long double' actually takes up 96, probably to enforce
8372 set_gdbarch_long_double_bit (gdbarch, 96);
8374 /* Register numbers of various important registers. */
8375 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8376 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8377 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8378 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8380 /* NOTE: kettenis/20040418: GCC does have two possible register
8381 numbering schemes on the i386: dbx and SVR4. These schemes
8382 differ in how they number %ebp, %esp, %eflags, and the
8383 floating-point registers, and are implemented by the arrays
8384 dbx_register_map[] and svr4_dbx_register_map in
8385 gcc/config/i386.c. GCC also defines a third numbering scheme in
8386 gcc/config/i386.c, which it designates as the "default" register
8387 map used in 64bit mode. This last register numbering scheme is
8388 implemented in dbx64_register_map, and is used for AMD64; see
8391 Currently, each GCC i386 target always uses the same register
8392 numbering scheme across all its supported debugging formats
8393 i.e. SDB (COFF), stabs and DWARF 2. This is because
8394 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8395 DBX_REGISTER_NUMBER macro which is defined by each target's
8396 respective config header in a manner independent of the requested
8397 output debugging format.
8399 This does not match the arrangement below, which presumes that
8400 the SDB and stabs numbering schemes differ from the DWARF and
8401 DWARF 2 ones. The reason for this arrangement is that it is
8402 likely to get the numbering scheme for the target's
8403 default/native debug format right. For targets where GCC is the
8404 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8405 targets where the native toolchain uses a different numbering
8406 scheme for a particular debug format (stabs-in-ELF on Solaris)
8407 the defaults below will have to be overridden, like
8408 i386_elf_init_abi() does. */
8410 /* Use the dbx register numbering scheme for stabs and COFF. */
8411 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8412 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8414 /* Use the SVR4 register numbering scheme for DWARF 2. */
8415 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8417 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8418 be in use on any of the supported i386 targets. */
8420 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8422 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8424 /* Call dummy code. */
8425 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8426 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8427 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8428 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8430 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8431 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8432 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8434 set_gdbarch_return_value (gdbarch, i386_return_value);
8436 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8438 /* Stack grows downward. */
8439 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8441 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8442 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8443 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8445 set_gdbarch_frame_args_skip (gdbarch, 8);
8447 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8449 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8451 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8453 /* Add the i386 register groups. */
8454 i386_add_reggroups (gdbarch);
8455 tdep->register_reggroup_p = i386_register_reggroup_p;
8457 /* Helper for function argument information. */
8458 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8460 /* Hook the function epilogue frame unwinder. This unwinder is
8461 appended to the list first, so that it supercedes the DWARF
8462 unwinder in function epilogues (where the DWARF unwinder
8463 currently fails). */
8464 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8466 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8467 to the list before the prologue-based unwinders, so that DWARF
8468 CFI info will be used if it is available. */
8469 dwarf2_append_unwinders (gdbarch);
8471 frame_base_set_default (gdbarch, &i386_frame_base);
8473 /* Pseudo registers may be changed by amd64_init_abi. */
8474 set_gdbarch_pseudo_register_read_value (gdbarch,
8475 i386_pseudo_register_read_value);
8476 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8477 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8478 i386_ax_pseudo_register_collect);
8480 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8481 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8483 /* Override the normal target description method to make the AVX
8484 upper halves anonymous. */
8485 set_gdbarch_register_name (gdbarch, i386_register_name);
8487 /* Even though the default ABI only includes general-purpose registers,
8488 floating-point registers and the SSE registers, we have to leave a
8489 gap for the upper AVX, MPX and AVX512 registers. */
8490 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8492 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8494 /* Get the x86 target description from INFO. */
8495 tdesc = info.target_desc;
8496 if (! tdesc_has_registers (tdesc))
8498 tdep->tdesc = tdesc;
8500 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8501 tdep->register_names = i386_register_names;
8503 /* No upper YMM registers. */
8504 tdep->ymmh_register_names = NULL;
8505 tdep->ymm0h_regnum = -1;
8507 /* No upper ZMM registers. */
8508 tdep->zmmh_register_names = NULL;
8509 tdep->zmm0h_regnum = -1;
8511 /* No high XMM registers. */
8512 tdep->xmm_avx512_register_names = NULL;
8513 tdep->xmm16_regnum = -1;
8515 /* No upper YMM16-31 registers. */
8516 tdep->ymm16h_register_names = NULL;
8517 tdep->ymm16h_regnum = -1;
8519 tdep->num_byte_regs = 8;
8520 tdep->num_word_regs = 8;
8521 tdep->num_dword_regs = 0;
8522 tdep->num_mmx_regs = 8;
8523 tdep->num_ymm_regs = 0;
8525 /* No MPX registers. */
8526 tdep->bnd0r_regnum = -1;
8527 tdep->bndcfgu_regnum = -1;
8529 /* No AVX512 registers. */
8530 tdep->k0_regnum = -1;
8531 tdep->num_zmm_regs = 0;
8532 tdep->num_ymm_avx512_regs = 0;
8533 tdep->num_xmm_avx512_regs = 0;
8535 tdesc_data = tdesc_data_alloc ();
8537 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8539 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8541 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8542 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8543 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8545 /* Hook in ABI-specific overrides, if they have been registered. */
8546 info.tdep_info = tdesc_data;
8547 gdbarch_init_osabi (info, gdbarch);
8549 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8551 tdesc_data_cleanup (tdesc_data);
8553 gdbarch_free (gdbarch);
8557 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8559 /* Wire in pseudo registers. Number of pseudo registers may be
8561 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8562 + tdep->num_word_regs
8563 + tdep->num_dword_regs
8564 + tdep->num_mmx_regs
8565 + tdep->num_ymm_regs
8567 + tdep->num_ymm_avx512_regs
8568 + tdep->num_zmm_regs));
8570 /* Target description may be changed. */
8571 tdesc = tdep->tdesc;
8573 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8575 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8576 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8578 /* Make %al the first pseudo-register. */
8579 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8580 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8582 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8583 if (tdep->num_dword_regs)
8585 /* Support dword pseudo-register if it hasn't been disabled. */
8586 tdep->eax_regnum = ymm0_regnum;
8587 ymm0_regnum += tdep->num_dword_regs;
8590 tdep->eax_regnum = -1;
8592 mm0_regnum = ymm0_regnum;
8593 if (tdep->num_ymm_regs)
8595 /* Support YMM pseudo-register if it is available. */
8596 tdep->ymm0_regnum = ymm0_regnum;
8597 mm0_regnum += tdep->num_ymm_regs;
8600 tdep->ymm0_regnum = -1;
8602 if (tdep->num_ymm_avx512_regs)
8604 /* Support YMM16-31 pseudo registers if available. */
8605 tdep->ymm16_regnum = mm0_regnum;
8606 mm0_regnum += tdep->num_ymm_avx512_regs;
8609 tdep->ymm16_regnum = -1;
8611 if (tdep->num_zmm_regs)
8613 /* Support ZMM pseudo-register if it is available. */
8614 tdep->zmm0_regnum = mm0_regnum;
8615 mm0_regnum += tdep->num_zmm_regs;
8618 tdep->zmm0_regnum = -1;
8620 bnd0_regnum = mm0_regnum;
8621 if (tdep->num_mmx_regs != 0)
8623 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8624 tdep->mm0_regnum = mm0_regnum;
8625 bnd0_regnum += tdep->num_mmx_regs;
8628 tdep->mm0_regnum = -1;
8630 if (tdep->bnd0r_regnum > 0)
8631 tdep->bnd0_regnum = bnd0_regnum;
8633 tdep-> bnd0_regnum = -1;
8635 /* Hook in the legacy prologue-based unwinders last (fallback). */
8636 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8637 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8638 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8640 /* If we have a register mapping, enable the generic core file
8641 support, unless it has already been enabled. */
8642 if (tdep->gregset_reg_offset
8643 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8644 set_gdbarch_iterate_over_regset_sections
8645 (gdbarch, i386_iterate_over_regset_sections);
8647 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8648 i386_fast_tracepoint_valid_at);
8653 static enum gdb_osabi
8654 i386_coff_osabi_sniffer (bfd *abfd)
8656 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8657 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8658 return GDB_OSABI_GO32;
8660 return GDB_OSABI_UNKNOWN;
8664 /* Return the target description for a specified XSAVE feature mask. */
8666 const struct target_desc *
8667 i386_target_description (uint64_t xcr0)
8669 switch (xcr0 & X86_XSTATE_ALL_MASK)
8671 case X86_XSTATE_MPX_AVX512_MASK:
8672 case X86_XSTATE_AVX512_MASK:
8673 return tdesc_i386_avx512;
8674 case X86_XSTATE_MPX_MASK:
8675 return tdesc_i386_mpx;
8676 case X86_XSTATE_AVX_MASK:
8677 return tdesc_i386_avx;
8683 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8685 /* Find the bound directory base address. */
8687 static unsigned long
8688 i386_mpx_bd_base (void)
8690 struct regcache *rcache;
8691 struct gdbarch_tdep *tdep;
8693 enum register_status regstatus;
8694 struct gdb_exception except;
8696 rcache = get_current_regcache ();
8697 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8699 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8701 if (regstatus != REG_VALID)
8702 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8704 return ret & MPX_BASE_MASK;
8708 i386_mpx_enabled (void)
8710 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8711 const struct target_desc *tdesc = tdep->tdesc;
8713 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8716 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8717 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8718 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8719 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8721 /* Find the bound table entry given the pointer location and the base
8722 address of the table. */
8725 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8729 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8730 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8731 CORE_ADDR bd_entry_addr;
8734 struct gdbarch *gdbarch = get_current_arch ();
8735 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8738 if (gdbarch_ptr_bit (gdbarch) == 64)
8740 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8741 bd_ptr_r_shift = 20;
8743 bt_select_r_shift = 3;
8744 bt_select_l_shift = 5;
8745 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8747 if ( sizeof (CORE_ADDR) == 4)
8748 error (_("bound table examination not supported\
8749 for 64-bit process with 32-bit GDB"));
8753 mpx_bd_mask = MPX_BD_MASK_32;
8754 bd_ptr_r_shift = 12;
8756 bt_select_r_shift = 2;
8757 bt_select_l_shift = 4;
8758 bt_mask = MPX_BT_MASK_32;
8761 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8762 bd_entry_addr = bd_base + offset1;
8763 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8765 if ((bd_entry & 0x1) == 0)
8766 error (_("Invalid bounds directory entry at %s."),
8767 paddress (get_current_arch (), bd_entry_addr));
8769 /* Clearing status bit. */
8771 bt_addr = bd_entry & ~bt_select_r_shift;
8772 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8774 return bt_addr + offset2;
8777 /* Print routine for the mpx bounds. */
8780 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8782 struct ui_out *uiout = current_uiout;
8784 struct gdbarch *gdbarch = get_current_arch ();
8785 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8786 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8788 if (bounds_in_map == 1)
8790 ui_out_text (uiout, "Null bounds on map:");
8791 ui_out_text (uiout, " pointer value = ");
8792 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8793 ui_out_text (uiout, ".");
8794 ui_out_text (uiout, "\n");
8798 ui_out_text (uiout, "{lbound = ");
8799 ui_out_field_core_addr (uiout, "lower-bound", gdbarch, bt_entry[0]);
8800 ui_out_text (uiout, ", ubound = ");
8802 /* The upper bound is stored in 1's complement. */
8803 ui_out_field_core_addr (uiout, "upper-bound", gdbarch, ~bt_entry[1]);
8804 ui_out_text (uiout, "}: pointer value = ");
8805 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8807 if (gdbarch_ptr_bit (gdbarch) == 64)
8808 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8810 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8812 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8813 -1 represents in this sense full memory access, and there is no need
8816 size = (size > -1 ? size + 1 : size);
8817 ui_out_text (uiout, ", size = ");
8818 ui_out_field_fmt (uiout, "size", "%s", plongest (size));
8820 ui_out_text (uiout, ", metadata = ");
8821 ui_out_field_core_addr (uiout, "metadata", gdbarch, bt_entry[3]);
8822 ui_out_text (uiout, "\n");
8826 /* Implement the command "show mpx bound". */
8829 i386_mpx_info_bounds (char *args, int from_tty)
8831 CORE_ADDR bd_base = 0;
8833 CORE_ADDR bt_entry_addr = 0;
8834 CORE_ADDR bt_entry[4];
8836 struct gdbarch *gdbarch = get_current_arch ();
8837 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8839 if (!i386_mpx_enabled ())
8841 printf_unfiltered (_("Intel Memory Protection Extensions not "
8842 "supported on this target.\n"));
8848 printf_unfiltered (_("Address of pointer variable expected.\n"));
8852 addr = parse_and_eval_address (args);
8854 bd_base = i386_mpx_bd_base ();
8855 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8857 memset (bt_entry, 0, sizeof (bt_entry));
8859 for (i = 0; i < 4; i++)
8860 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8861 + i * TYPE_LENGTH (data_ptr_type),
8864 i386_mpx_print_bounds (bt_entry);
8867 /* Implement the command "set mpx bound". */
8870 i386_mpx_set_bounds (char *args, int from_tty)
8872 CORE_ADDR bd_base = 0;
8873 CORE_ADDR addr, lower, upper;
8874 CORE_ADDR bt_entry_addr = 0;
8875 CORE_ADDR bt_entry[2];
8876 const char *input = args;
8878 struct gdbarch *gdbarch = get_current_arch ();
8879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8880 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8882 if (!i386_mpx_enabled ())
8883 error (_("Intel Memory Protection Extensions not supported\
8887 error (_("Pointer value expected."));
8889 addr = value_as_address (parse_to_comma_and_eval (&input));
8891 if (input[0] == ',')
8893 if (input[0] == '\0')
8894 error (_("wrong number of arguments: missing lower and upper bound."));
8895 lower = value_as_address (parse_to_comma_and_eval (&input));
8897 if (input[0] == ',')
8899 if (input[0] == '\0')
8900 error (_("Wrong number of arguments; Missing upper bound."));
8901 upper = value_as_address (parse_to_comma_and_eval (&input));
8903 bd_base = i386_mpx_bd_base ();
8904 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8905 for (i = 0; i < 2; i++)
8906 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8907 + i * TYPE_LENGTH (data_ptr_type),
8909 bt_entry[0] = (uint64_t) lower;
8910 bt_entry[1] = ~(uint64_t) upper;
8912 for (i = 0; i < 2; i++)
8913 write_memory_unsigned_integer (bt_entry_addr
8914 + i * TYPE_LENGTH (data_ptr_type),
8915 TYPE_LENGTH (data_ptr_type), byte_order,
8919 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8921 /* Helper function for the CLI commands. */
8924 set_mpx_cmd (char *args, int from_tty)
8926 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8929 /* Helper function for the CLI commands. */
8932 show_mpx_cmd (char *args, int from_tty)
8934 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8937 /* Provide a prototype to silence -Wmissing-prototypes. */
8938 void _initialize_i386_tdep (void);
8941 _initialize_i386_tdep (void)
8943 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8945 /* Add the variable that controls the disassembly flavor. */
8946 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8947 &disassembly_flavor, _("\
8948 Set the disassembly flavor."), _("\
8949 Show the disassembly flavor."), _("\
8950 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8952 NULL, /* FIXME: i18n: */
8953 &setlist, &showlist);
8955 /* Add the variable that controls the convention for returning
8957 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8958 &struct_convention, _("\
8959 Set the convention for returning small structs."), _("\
8960 Show the convention for returning small structs."), _("\
8961 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8964 NULL, /* FIXME: i18n: */
8965 &setlist, &showlist);
8967 /* Add "mpx" prefix for the set commands. */
8969 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
8970 Set Intel Memory Protection Extensions specific variables."),
8971 &mpx_set_cmdlist, "set mpx ",
8972 0 /* allow-unknown */, &setlist);
8974 /* Add "mpx" prefix for the show commands. */
8976 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
8977 Show Intel Memory Protection Extensions specific variables."),
8978 &mpx_show_cmdlist, "show mpx ",
8979 0 /* allow-unknown */, &showlist);
8981 /* Add "bound" command for the show mpx commands list. */
8983 add_cmd ("bound", no_class, i386_mpx_info_bounds,
8984 "Show the memory bounds for a given array/pointer storage\
8985 in the bound table.",
8988 /* Add "bound" command for the set mpx commands list. */
8990 add_cmd ("bound", no_class, i386_mpx_set_bounds,
8991 "Set the memory bounds for a given array/pointer storage\
8992 in the bound table.",
8995 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8996 i386_coff_osabi_sniffer);
8998 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8999 i386_svr4_init_abi);
9000 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9001 i386_go32_init_abi);
9003 /* Initialize the i386-specific register groups. */
9004 i386_init_reggroups ();
9006 /* Initialize the standard target descriptions. */
9007 initialize_tdesc_i386 ();
9008 initialize_tdesc_i386_mmx ();
9009 initialize_tdesc_i386_avx ();
9010 initialize_tdesc_i386_mpx ();
9011 initialize_tdesc_i386_avx512 ();
9013 /* Tell remote stub that we support XML target description. */
9014 register_remote_support_xml ("i386");