1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
39 #include "reggroups.h"
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
65 static const char *i386_register_names[] =
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
80 static const char *i386_ymm_names[] =
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
86 static const char *i386_ymmh_names[] =
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
92 /* Register names for MMX pseudo-registers. */
94 static const char *i386_mmx_names[] =
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
100 /* Register names for byte pseudo-registers. */
102 static const char *i386_byte_names[] =
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
108 /* Register names for word pseudo-registers. */
110 static const char *i386_word_names[] =
112 "ax", "cx", "dx", "bx",
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
153 /* Dword register? */
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
174 if (ymm0h_regnum < 0)
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
204 if (num_xmm_regs == 0)
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
216 if (I387_NUM_XMM_REGS (tdep) == 0)
219 return (regnum == I387_MXCSR_REGNUM (tdep));
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
229 if (I387_ST0_REGNUM (tdep) < 0)
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
241 if (I387_ST0_REGNUM (tdep) < 0)
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
258 return tdesc_register_name (gdbarch, regnum);
261 /* Return the name of register REGNUM. */
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
290 if (reg >= 0 && reg <= 7)
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
300 else if (reg >= 12 && reg <= 19)
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
305 else if (reg >= 21 && reg <= 28)
308 int ymm0_regnum = tdep->ymm0_regnum;
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
316 else if (reg >= 29 && reg <= 36)
319 return reg - 29 + I387_MM0_REGNUM (tdep);
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
326 /* Convert SVR4 register number REG to the appropriate register number
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
341 /* General-purpose registers. */
344 else if (reg >= 11 && reg <= 18)
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
349 else if (reg >= 21 && reg <= 36)
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
384 static const char *disassembly_flavor = att_flavor;
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
396 This function is 64-bit safe. */
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
403 *len = sizeof (break_insn);
407 /* Displaced instruction handling. */
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
418 gdb_byte *end = insn + max_len;
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
446 i386_absolute_jmp_p (const gdb_byte *insn)
448 /* jmp far (absolute address in operand). */
454 /* jump near, absolute indirect (/4). */
455 if ((insn[1] & 0x38) == 0x20)
458 /* jump far, absolute indirect (/5). */
459 if ((insn[1] & 0x38) == 0x28)
467 i386_absolute_call_p (const gdb_byte *insn)
469 /* call far, absolute. */
475 /* Call near, absolute indirect (/2). */
476 if ((insn[1] & 0x38) == 0x10)
479 /* Call far, absolute indirect (/3). */
480 if ((insn[1] & 0x38) == 0x18)
488 i386_ret_p (const gdb_byte *insn)
492 case 0xc2: /* ret near, pop N bytes. */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes. */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
505 i386_call_p (const gdb_byte *insn)
507 if (i386_absolute_call_p (insn))
510 /* call near, relative. */
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
543 read_memory (from, buf, len);
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
557 write_memory (to, buf, len);
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
566 return (struct displaced_step_closure *) buf;
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
584 ULONGEST insn_offset = to - from;
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
603 /* Relocate the %eip, if necessary. */
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
636 But most system calls don't, and we do need to relocate %eip.
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
669 fprintf_unfiltered (gdb_stdlog,
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
689 const ULONGEST retaddr_len = 4;
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
707 target_write_memory (*to, buf, len);
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
719 gdb_byte *insn = buf;
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
742 append_insns (to, 5, push_buf);
744 /* Convert the relative call to a relative jump. */
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
776 store_signed_integer (insn + offset, 4, byte_order, newrel);
778 fprintf_unfiltered (gdb_stdlog,
779 "Adjusted insn rel32=%s at %s to"
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
785 /* Write the adjusted instructions into their displaced
787 append_insns (to, insn_length, buf);
791 #ifdef I386_REGNO_TO_SYMMETRY
792 #error "The Sequent Symmetry is no longer supported."
795 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
799 /* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
801 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
803 struct i386_frame_cache
810 /* Saved registers. */
811 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
816 /* Stack space reserved for local variables. */
820 /* Allocate and initialize a frame cache. */
822 static struct i386_frame_cache *
823 i386_alloc_frame_cache (void)
825 struct i386_frame_cache *cache;
828 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
832 cache->sp_offset = -4;
835 /* Saved registers. We initialize these to -1 since zero is a valid
836 offset (that's where %ebp is supposed to be stored). */
837 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
838 cache->saved_regs[i] = -1;
840 cache->saved_sp_reg = -1;
841 cache->pc_in_eax = 0;
843 /* Frameless until proven otherwise. */
849 /* If the instruction at PC is a jump, return the address of its
850 target. Otherwise, return PC. */
853 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
860 if (target_read_memory (pc, &op, 1))
866 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
872 /* Relative jump: if data16 == 0, disp32, else disp16. */
875 delta = read_memory_integer (pc + 2, 2, byte_order);
877 /* Include the size of the jmp instruction (including the
883 delta = read_memory_integer (pc + 1, 4, byte_order);
885 /* Include the size of the jmp instruction. */
890 /* Relative jump, disp8 (ignore data16). */
891 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
900 /* Check whether PC points at a prologue for a function returning a
901 structure or union. If so, it updates CACHE and returns the
902 address of the first instruction after the code sequence that
903 removes the "hidden" argument from the stack or CURRENT_PC,
904 whichever is smaller. Otherwise, return PC. */
907 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
908 struct i386_frame_cache *cache)
910 /* Functions that return a structure or union start with:
913 xchgl %eax, (%esp) 0x87 0x04 0x24
914 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
916 (the System V compiler puts out the second `xchg' instruction,
917 and the assembler doesn't try to optimize it, so the 'sib' form
918 gets generated). This sequence is used to get the address of the
919 return buffer for a function that returns a structure. */
920 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
921 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
925 if (current_pc <= pc)
928 if (target_read_memory (pc, &op, 1))
931 if (op != 0x58) /* popl %eax */
934 if (target_read_memory (pc + 1, buf, 4))
937 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
940 if (current_pc == pc)
942 cache->sp_offset += 4;
946 if (current_pc == pc + 1)
948 cache->pc_in_eax = 1;
952 if (buf[1] == proto1[1])
959 i386_skip_probe (CORE_ADDR pc)
961 /* A function may start with
975 if (target_read_memory (pc, &op, 1))
978 if (op == 0x68 || op == 0x6a)
982 /* Skip past the `pushl' instruction; it has either a one-byte or a
983 four-byte operand, depending on the opcode. */
989 /* Read the following 8 bytes, which should be `call _probe' (6
990 bytes) followed by `addl $4,%esp' (2 bytes). */
991 read_memory (pc + delta, buf, sizeof (buf));
992 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
993 pc += delta + sizeof (buf);
999 /* GCC 4.1 and later, can put code in the prologue to realign the
1000 stack pointer. Check whether PC points to such code, and update
1001 CACHE accordingly. Return the first instruction after the code
1002 sequence or CURRENT_PC, whichever is smaller. If we don't
1003 recognize the code, return PC. */
1006 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1007 struct i386_frame_cache *cache)
1009 /* There are 2 code sequences to re-align stack before the frame
1012 1. Use a caller-saved saved register:
1018 2. Use a callee-saved saved register:
1025 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1027 0x83 0xe4 0xf0 andl $-16, %esp
1028 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1033 int offset, offset_and;
1034 static int regnums[8] = {
1035 I386_EAX_REGNUM, /* %eax */
1036 I386_ECX_REGNUM, /* %ecx */
1037 I386_EDX_REGNUM, /* %edx */
1038 I386_EBX_REGNUM, /* %ebx */
1039 I386_ESP_REGNUM, /* %esp */
1040 I386_EBP_REGNUM, /* %ebp */
1041 I386_ESI_REGNUM, /* %esi */
1042 I386_EDI_REGNUM /* %edi */
1045 if (target_read_memory (pc, buf, sizeof buf))
1048 /* Check caller-saved saved register. The first instruction has
1049 to be "leal 4(%esp), %reg". */
1050 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1052 /* MOD must be binary 10 and R/M must be binary 100. */
1053 if ((buf[1] & 0xc7) != 0x44)
1056 /* REG has register number. */
1057 reg = (buf[1] >> 3) & 7;
1062 /* Check callee-saved saved register. The first instruction
1063 has to be "pushl %reg". */
1064 if ((buf[0] & 0xf8) != 0x50)
1070 /* The next instruction has to be "leal 8(%esp), %reg". */
1071 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1074 /* MOD must be binary 10 and R/M must be binary 100. */
1075 if ((buf[2] & 0xc7) != 0x44)
1078 /* REG has register number. Registers in pushl and leal have to
1080 if (reg != ((buf[2] >> 3) & 7))
1086 /* Rigister can't be %esp nor %ebp. */
1087 if (reg == 4 || reg == 5)
1090 /* The next instruction has to be "andl $-XXX, %esp". */
1091 if (buf[offset + 1] != 0xe4
1092 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1095 offset_and = offset;
1096 offset += buf[offset] == 0x81 ? 6 : 3;
1098 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1099 0xfc. REG must be binary 110 and MOD must be binary 01. */
1100 if (buf[offset] != 0xff
1101 || buf[offset + 2] != 0xfc
1102 || (buf[offset + 1] & 0xf8) != 0x70)
1105 /* R/M has register. Registers in leal and pushl have to be the
1107 if (reg != (buf[offset + 1] & 7))
1110 if (current_pc > pc + offset_and)
1111 cache->saved_sp_reg = regnums[reg];
1113 return min (pc + offset + 3, current_pc);
1116 /* Maximum instruction length we need to handle. */
1117 #define I386_MAX_MATCHED_INSN_LEN 6
1119 /* Instruction description. */
1123 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1124 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1127 /* Search for the instruction at PC in the list SKIP_INSNS. Return
1128 the first instruction description that matches. Otherwise, return
1131 static struct i386_insn *
1132 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1134 struct i386_insn *insn;
1137 if (target_read_memory (pc, &op, 1))
1140 for (insn = skip_insns; insn->len > 0; insn++)
1142 if ((op & insn->mask[0]) == insn->insn[0])
1144 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1145 int insn_matched = 1;
1148 gdb_assert (insn->len > 1);
1149 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
1151 if (target_read_memory (pc + 1, buf, insn->len - 1))
1154 for (i = 1; i < insn->len; i++)
1156 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
1168 /* Some special instructions that might be migrated by GCC into the
1169 part of the prologue that sets up the new stack frame. Because the
1170 stack frame hasn't been setup yet, no registers have been saved
1171 yet, and only the scratch registers %eax, %ecx and %edx can be
1174 struct i386_insn i386_frame_setup_skip_insns[] =
1176 /* Check for `movb imm8, r' and `movl imm32, r'.
1178 ??? Should we handle 16-bit operand-sizes here? */
1180 /* `movb imm8, %al' and `movb imm8, %ah' */
1181 /* `movb imm8, %cl' and `movb imm8, %ch' */
1182 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1183 /* `movb imm8, %dl' and `movb imm8, %dh' */
1184 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1185 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1186 { 5, { 0xb8 }, { 0xfe } },
1187 /* `movl imm32, %edx' */
1188 { 5, { 0xba }, { 0xff } },
1190 /* Check for `mov imm32, r32'. Note that there is an alternative
1191 encoding for `mov m32, %eax'.
1193 ??? Should we handle SIB adressing here?
1194 ??? Should we handle 16-bit operand-sizes here? */
1196 /* `movl m32, %eax' */
1197 { 5, { 0xa1 }, { 0xff } },
1198 /* `movl m32, %eax' and `mov; m32, %ecx' */
1199 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1200 /* `movl m32, %edx' */
1201 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1203 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1204 Because of the symmetry, there are actually two ways to encode
1205 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1206 opcode bytes 0x31 and 0x33 for `xorl'. */
1208 /* `subl %eax, %eax' */
1209 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1210 /* `subl %ecx, %ecx' */
1211 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1212 /* `subl %edx, %edx' */
1213 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1214 /* `xorl %eax, %eax' */
1215 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1216 /* `xorl %ecx, %ecx' */
1217 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1218 /* `xorl %edx, %edx' */
1219 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1224 /* Check whether PC points to a no-op instruction. */
1226 i386_skip_noop (CORE_ADDR pc)
1231 if (target_read_memory (pc, &op, 1))
1237 /* Ignore `nop' instruction. */
1241 if (target_read_memory (pc, &op, 1))
1245 /* Ignore no-op instruction `mov %edi, %edi'.
1246 Microsoft system dlls often start with
1247 a `mov %edi,%edi' instruction.
1248 The 5 bytes before the function start are
1249 filled with `nop' instructions.
1250 This pattern can be used for hot-patching:
1251 The `mov %edi, %edi' instruction can be replaced by a
1252 near jump to the location of the 5 `nop' instructions
1253 which can be replaced by a 32-bit jump to anywhere
1254 in the 32-bit address space. */
1256 else if (op == 0x8b)
1258 if (target_read_memory (pc + 1, &op, 1))
1264 if (target_read_memory (pc, &op, 1))
1274 /* Check whether PC points at a code that sets up a new stack frame.
1275 If so, it updates CACHE and returns the address of the first
1276 instruction after the sequence that sets up the frame or LIMIT,
1277 whichever is smaller. If we don't recognize the code, return PC. */
1280 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1281 CORE_ADDR pc, CORE_ADDR limit,
1282 struct i386_frame_cache *cache)
1284 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1285 struct i386_insn *insn;
1292 if (target_read_memory (pc, &op, 1))
1295 if (op == 0x55) /* pushl %ebp */
1297 /* Take into account that we've executed the `pushl %ebp' that
1298 starts this instruction sequence. */
1299 cache->saved_regs[I386_EBP_REGNUM] = 0;
1300 cache->sp_offset += 4;
1303 /* If that's all, return now. */
1307 /* Check for some special instructions that might be migrated by
1308 GCC into the prologue and skip them. At this point in the
1309 prologue, code should only touch the scratch registers %eax,
1310 %ecx and %edx, so while the number of posibilities is sheer,
1313 Make sure we only skip these instructions if we later see the
1314 `movl %esp, %ebp' that actually sets up the frame. */
1315 while (pc + skip < limit)
1317 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1324 /* If that's all, return now. */
1325 if (limit <= pc + skip)
1328 if (target_read_memory (pc + skip, &op, 1))
1331 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1335 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1340 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1348 /* OK, we actually have a frame. We just don't know how large
1349 it is yet. Set its size to zero. We'll adjust it if
1350 necessary. We also now commit to skipping the special
1351 instructions mentioned before. */
1355 /* If that's all, return now. */
1359 /* Check for stack adjustment
1363 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1364 reg, so we don't have to worry about a data16 prefix. */
1365 if (target_read_memory (pc, &op, 1))
1369 /* `subl' with 8-bit immediate. */
1370 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1371 /* Some instruction starting with 0x83 other than `subl'. */
1374 /* `subl' with signed 8-bit immediate (though it wouldn't
1375 make sense to be negative). */
1376 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1379 else if (op == 0x81)
1381 /* Maybe it is `subl' with a 32-bit immediate. */
1382 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1383 /* Some instruction starting with 0x81 other than `subl'. */
1386 /* It is `subl' with a 32-bit immediate. */
1387 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1392 /* Some instruction other than `subl'. */
1396 else if (op == 0xc8) /* enter */
1398 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1405 /* Check whether PC points at code that saves registers on the stack.
1406 If so, it updates CACHE and returns the address of the first
1407 instruction after the register saves or CURRENT_PC, whichever is
1408 smaller. Otherwise, return PC. */
1411 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1412 struct i386_frame_cache *cache)
1414 CORE_ADDR offset = 0;
1418 if (cache->locals > 0)
1419 offset -= cache->locals;
1420 for (i = 0; i < 8 && pc < current_pc; i++)
1422 if (target_read_memory (pc, &op, 1))
1424 if (op < 0x50 || op > 0x57)
1428 cache->saved_regs[op - 0x50] = offset;
1429 cache->sp_offset += 4;
1436 /* Do a full analysis of the prologue at PC and update CACHE
1437 accordingly. Bail out early if CURRENT_PC is reached. Return the
1438 address where the analysis stopped.
1440 We handle these cases:
1442 The startup sequence can be at the start of the function, or the
1443 function can start with a branch to startup code at the end.
1445 %ebp can be set up with either the 'enter' instruction, or "pushl
1446 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1447 once used in the System V compiler).
1449 Local space is allocated just below the saved %ebp by either the
1450 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1451 16-bit unsigned argument for space to allocate, and the 'addl'
1452 instruction could have either a signed byte, or 32-bit immediate.
1454 Next, the registers used by this function are pushed. With the
1455 System V compiler they will always be in the order: %edi, %esi,
1456 %ebx (and sometimes a harmless bug causes it to also save but not
1457 restore %eax); however, the code below is willing to see the pushes
1458 in any order, and will handle up to 8 of them.
1460 If the setup sequence is at the end of the function, then the next
1461 instruction will be a branch back to the start. */
1464 i386_analyze_prologue (struct gdbarch *gdbarch,
1465 CORE_ADDR pc, CORE_ADDR current_pc,
1466 struct i386_frame_cache *cache)
1468 pc = i386_skip_noop (pc);
1469 pc = i386_follow_jump (gdbarch, pc);
1470 pc = i386_analyze_struct_return (pc, current_pc, cache);
1471 pc = i386_skip_probe (pc);
1472 pc = i386_analyze_stack_align (pc, current_pc, cache);
1473 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1474 return i386_analyze_register_saves (pc, current_pc, cache);
1477 /* Return PC of first real instruction. */
1480 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1484 static gdb_byte pic_pat[6] =
1486 0xe8, 0, 0, 0, 0, /* call 0x0 */
1487 0x5b, /* popl %ebx */
1489 struct i386_frame_cache cache;
1495 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1496 if (cache.locals < 0)
1499 /* Found valid frame setup. */
1501 /* The native cc on SVR4 in -K PIC mode inserts the following code
1502 to get the address of the global offset table (GOT) into register
1507 movl %ebx,x(%ebp) (optional)
1510 This code is with the rest of the prologue (at the end of the
1511 function), so we have to skip it to get to the first real
1512 instruction at the start of the function. */
1514 for (i = 0; i < 6; i++)
1516 if (target_read_memory (pc + i, &op, 1))
1519 if (pic_pat[i] != op)
1526 if (target_read_memory (pc + delta, &op, 1))
1529 if (op == 0x89) /* movl %ebx, x(%ebp) */
1531 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1533 if (op == 0x5d) /* One byte offset from %ebp. */
1535 else if (op == 0x9d) /* Four byte offset from %ebp. */
1537 else /* Unexpected instruction. */
1540 if (target_read_memory (pc + delta, &op, 1))
1545 if (delta > 0 && op == 0x81
1546 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1553 /* If the function starts with a branch (to startup code at the end)
1554 the last instruction should bring us back to the first
1555 instruction of the real code. */
1556 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1557 pc = i386_follow_jump (gdbarch, pc);
1562 /* Check that the code pointed to by PC corresponds to a call to
1563 __main, skip it if so. Return PC otherwise. */
1566 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1571 if (target_read_memory (pc, &op, 1))
1577 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1579 /* Make sure address is computed correctly as a 32bit
1580 integer even if CORE_ADDR is 64 bit wide. */
1581 struct minimal_symbol *s;
1582 CORE_ADDR call_dest;
1584 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1585 call_dest = call_dest & 0xffffffffU;
1586 s = lookup_minimal_symbol_by_pc (call_dest);
1588 && SYMBOL_LINKAGE_NAME (s) != NULL
1589 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1597 /* This function is 64-bit safe. */
1600 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1604 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1605 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1609 /* Normal frames. */
1611 static struct i386_frame_cache *
1612 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1614 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1615 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1616 struct i386_frame_cache *cache;
1623 cache = i386_alloc_frame_cache ();
1624 *this_cache = cache;
1626 /* In principle, for normal frames, %ebp holds the frame pointer,
1627 which holds the base address for the current stack frame.
1628 However, for functions that don't need it, the frame pointer is
1629 optional. For these "frameless" functions the frame pointer is
1630 actually the frame pointer of the calling frame. Signal
1631 trampolines are just a special case of a "frameless" function.
1632 They (usually) share their frame pointer with the frame that was
1633 in progress when the signal occurred. */
1635 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1636 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1637 if (cache->base == 0)
1640 /* For normal frames, %eip is stored at 4(%ebp). */
1641 cache->saved_regs[I386_EIP_REGNUM] = 4;
1643 cache->pc = get_frame_func (this_frame);
1645 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1648 if (cache->saved_sp_reg != -1)
1650 /* Saved stack pointer has been saved. */
1651 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1652 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1655 if (cache->locals < 0)
1657 /* We didn't find a valid frame, which means that CACHE->base
1658 currently holds the frame pointer for our calling frame. If
1659 we're at the start of a function, or somewhere half-way its
1660 prologue, the function's frame probably hasn't been fully
1661 setup yet. Try to reconstruct the base address for the stack
1662 frame by looking at the stack pointer. For truly "frameless"
1663 functions this might work too. */
1665 if (cache->saved_sp_reg != -1)
1667 /* We're halfway aligning the stack. */
1668 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1669 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1671 /* This will be added back below. */
1672 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1674 else if (cache->pc != 0
1675 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1677 /* We're in a known function, but did not find a frame
1678 setup. Assume that the function does not use %ebp.
1679 Alternatively, we may have jumped to an invalid
1680 address; in that case there is definitely no new
1682 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1683 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1687 /* We're in an unknown function. We could not find the start
1688 of the function to analyze the prologue; our best option is
1689 to assume a typical frame layout with the caller's %ebp
1691 cache->saved_regs[I386_EBP_REGNUM] = 0;
1694 /* Now that we have the base address for the stack frame we can
1695 calculate the value of %esp in the calling frame. */
1696 if (cache->saved_sp == 0)
1697 cache->saved_sp = cache->base + 8;
1699 /* Adjust all the saved registers such that they contain addresses
1700 instead of offsets. */
1701 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1702 if (cache->saved_regs[i] != -1)
1703 cache->saved_regs[i] += cache->base;
1709 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1710 struct frame_id *this_id)
1712 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1714 /* This marks the outermost frame. */
1715 if (cache->base == 0)
1718 /* See the end of i386_push_dummy_call. */
1719 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1722 static struct value *
1723 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1726 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1728 gdb_assert (regnum >= 0);
1730 /* The System V ABI says that:
1732 "The flags register contains the system flags, such as the
1733 direction flag and the carry flag. The direction flag must be
1734 set to the forward (that is, zero) direction before entry and
1735 upon exit from a function. Other user flags have no specified
1736 role in the standard calling sequence and are not preserved."
1738 To guarantee the "upon exit" part of that statement we fake a
1739 saved flags register that has its direction flag cleared.
1741 Note that GCC doesn't seem to rely on the fact that the direction
1742 flag is cleared after a function return; it always explicitly
1743 clears the flag before operations where it matters.
1745 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1746 right thing to do. The way we fake the flags register here makes
1747 it impossible to change it. */
1749 if (regnum == I386_EFLAGS_REGNUM)
1753 val = get_frame_register_unsigned (this_frame, regnum);
1755 return frame_unwind_got_constant (this_frame, regnum, val);
1758 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1759 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1761 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1762 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1764 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1765 return frame_unwind_got_memory (this_frame, regnum,
1766 cache->saved_regs[regnum]);
1768 return frame_unwind_got_register (this_frame, regnum, regnum);
1771 static const struct frame_unwind i386_frame_unwind =
1775 i386_frame_prev_register,
1777 default_frame_sniffer
1780 /* Normal frames, but in a function epilogue. */
1782 /* The epilogue is defined here as the 'ret' instruction, which will
1783 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1784 the function's stack frame. */
1787 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1791 if (target_read_memory (pc, &insn, 1))
1792 return 0; /* Can't read memory at pc. */
1794 if (insn != 0xc3) /* 'ret' instruction. */
1801 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1802 struct frame_info *this_frame,
1803 void **this_prologue_cache)
1805 if (frame_relative_level (this_frame) == 0)
1806 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1807 get_frame_pc (this_frame));
1812 static struct i386_frame_cache *
1813 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1815 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1816 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1817 struct i386_frame_cache *cache;
1823 cache = i386_alloc_frame_cache ();
1824 *this_cache = cache;
1826 /* Cache base will be %esp plus cache->sp_offset (-4). */
1827 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1828 cache->base = extract_unsigned_integer (buf, 4,
1829 byte_order) + cache->sp_offset;
1831 /* Cache pc will be the frame func. */
1832 cache->pc = get_frame_pc (this_frame);
1834 /* The saved %esp will be at cache->base plus 8. */
1835 cache->saved_sp = cache->base + 8;
1837 /* The saved %eip will be at cache->base plus 4. */
1838 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1844 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1846 struct frame_id *this_id)
1848 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1851 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1854 static const struct frame_unwind i386_epilogue_frame_unwind =
1857 i386_epilogue_frame_this_id,
1858 i386_frame_prev_register,
1860 i386_epilogue_frame_sniffer
1864 /* Signal trampolines. */
1866 static struct i386_frame_cache *
1867 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1869 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1870 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1872 struct i386_frame_cache *cache;
1879 cache = i386_alloc_frame_cache ();
1881 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1882 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1884 addr = tdep->sigcontext_addr (this_frame);
1885 if (tdep->sc_reg_offset)
1889 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1891 for (i = 0; i < tdep->sc_num_regs; i++)
1892 if (tdep->sc_reg_offset[i] != -1)
1893 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1897 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1898 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1901 *this_cache = cache;
1906 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1907 struct frame_id *this_id)
1909 struct i386_frame_cache *cache =
1910 i386_sigtramp_frame_cache (this_frame, this_cache);
1912 /* See the end of i386_push_dummy_call. */
1913 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1916 static struct value *
1917 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1918 void **this_cache, int regnum)
1920 /* Make sure we've initialized the cache. */
1921 i386_sigtramp_frame_cache (this_frame, this_cache);
1923 return i386_frame_prev_register (this_frame, this_cache, regnum);
1927 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1928 struct frame_info *this_frame,
1929 void **this_prologue_cache)
1931 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1933 /* We shouldn't even bother if we don't have a sigcontext_addr
1935 if (tdep->sigcontext_addr == NULL)
1938 if (tdep->sigtramp_p != NULL)
1940 if (tdep->sigtramp_p (this_frame))
1944 if (tdep->sigtramp_start != 0)
1946 CORE_ADDR pc = get_frame_pc (this_frame);
1948 gdb_assert (tdep->sigtramp_end != 0);
1949 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1956 static const struct frame_unwind i386_sigtramp_frame_unwind =
1959 i386_sigtramp_frame_this_id,
1960 i386_sigtramp_frame_prev_register,
1962 i386_sigtramp_frame_sniffer
1967 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1969 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1974 static const struct frame_base i386_frame_base =
1977 i386_frame_base_address,
1978 i386_frame_base_address,
1979 i386_frame_base_address
1982 static struct frame_id
1983 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1987 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1989 /* See the end of i386_push_dummy_call. */
1990 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1994 /* Figure out where the longjmp will land. Slurp the args out of the
1995 stack. We expect the first arg to be a pointer to the jmp_buf
1996 structure from which we extract the address that we will land at.
1997 This address is copied into PC. This routine returns non-zero on
2001 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2004 CORE_ADDR sp, jb_addr;
2005 struct gdbarch *gdbarch = get_frame_arch (frame);
2006 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2007 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2009 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2010 longjmp will land. */
2011 if (jb_pc_offset == -1)
2014 get_frame_register (frame, I386_ESP_REGNUM, buf);
2015 sp = extract_unsigned_integer (buf, 4, byte_order);
2016 if (target_read_memory (sp + 4, buf, 4))
2019 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2020 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2023 *pc = extract_unsigned_integer (buf, 4, byte_order);
2028 /* Check whether TYPE must be 16-byte-aligned when passed as a
2029 function argument. 16-byte vectors, _Decimal128 and structures or
2030 unions containing such types must be 16-byte-aligned; other
2031 arguments are 4-byte-aligned. */
2034 i386_16_byte_align_p (struct type *type)
2036 type = check_typedef (type);
2037 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2038 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2039 && TYPE_LENGTH (type) == 16)
2041 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2042 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2043 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2044 || TYPE_CODE (type) == TYPE_CODE_UNION)
2047 for (i = 0; i < TYPE_NFIELDS (type); i++)
2049 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2057 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2058 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2059 struct value **args, CORE_ADDR sp, int struct_return,
2060 CORE_ADDR struct_addr)
2062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2068 /* Determine the total space required for arguments and struct
2069 return address in a first pass (allowing for 16-byte-aligned
2070 arguments), then push arguments in a second pass. */
2072 for (write_pass = 0; write_pass < 2; write_pass++)
2074 int args_space_used = 0;
2075 int have_16_byte_aligned_arg = 0;
2081 /* Push value address. */
2082 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2083 write_memory (sp, buf, 4);
2084 args_space_used += 4;
2090 for (i = 0; i < nargs; i++)
2092 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2096 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2097 args_space_used = align_up (args_space_used, 16);
2099 write_memory (sp + args_space_used,
2100 value_contents_all (args[i]), len);
2101 /* The System V ABI says that:
2103 "An argument's size is increased, if necessary, to make it a
2104 multiple of [32-bit] words. This may require tail padding,
2105 depending on the size of the argument."
2107 This makes sure the stack stays word-aligned. */
2108 args_space_used += align_up (len, 4);
2112 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2114 args_space = align_up (args_space, 16);
2115 have_16_byte_aligned_arg = 1;
2117 args_space += align_up (len, 4);
2123 if (have_16_byte_aligned_arg)
2124 args_space = align_up (args_space, 16);
2129 /* Store return address. */
2131 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2132 write_memory (sp, buf, 4);
2134 /* Finally, update the stack pointer... */
2135 store_unsigned_integer (buf, 4, byte_order, sp);
2136 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2138 /* ...and fake a frame pointer. */
2139 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2141 /* MarkK wrote: This "+ 8" is all over the place:
2142 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2143 i386_dummy_id). It's there, since all frame unwinders for
2144 a given target have to agree (within a certain margin) on the
2145 definition of the stack address of a frame. Otherwise frame id
2146 comparison might not work correctly. Since DWARF2/GCC uses the
2147 stack address *before* the function call as a frame's CFA. On
2148 the i386, when %ebp is used as a frame pointer, the offset
2149 between the contents %ebp and the CFA as defined by GCC. */
2153 /* These registers are used for returning integers (and on some
2154 targets also for returning `struct' and `union' values when their
2155 size and alignment match an integer type). */
2156 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2157 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2159 /* Read, for architecture GDBARCH, a function return value of TYPE
2160 from REGCACHE, and copy that into VALBUF. */
2163 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2164 struct regcache *regcache, gdb_byte *valbuf)
2166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2167 int len = TYPE_LENGTH (type);
2168 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2170 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2172 if (tdep->st0_regnum < 0)
2174 warning (_("Cannot find floating-point return value."));
2175 memset (valbuf, 0, len);
2179 /* Floating-point return values can be found in %st(0). Convert
2180 its contents to the desired type. This is probably not
2181 exactly how it would happen on the target itself, but it is
2182 the best we can do. */
2183 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2184 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2188 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2189 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2191 if (len <= low_size)
2193 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2194 memcpy (valbuf, buf, len);
2196 else if (len <= (low_size + high_size))
2198 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2199 memcpy (valbuf, buf, low_size);
2200 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2201 memcpy (valbuf + low_size, buf, len - low_size);
2204 internal_error (__FILE__, __LINE__,
2205 _("Cannot extract return value of %d bytes long."),
2210 /* Write, for architecture GDBARCH, a function return value of TYPE
2211 from VALBUF into REGCACHE. */
2214 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2215 struct regcache *regcache, const gdb_byte *valbuf)
2217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2218 int len = TYPE_LENGTH (type);
2220 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2223 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2225 if (tdep->st0_regnum < 0)
2227 warning (_("Cannot set floating-point return value."));
2231 /* Returning floating-point values is a bit tricky. Apart from
2232 storing the return value in %st(0), we have to simulate the
2233 state of the FPU at function return point. */
2235 /* Convert the value found in VALBUF to the extended
2236 floating-point format used by the FPU. This is probably
2237 not exactly how it would happen on the target itself, but
2238 it is the best we can do. */
2239 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2240 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2242 /* Set the top of the floating-point register stack to 7. The
2243 actual value doesn't really matter, but 7 is what a normal
2244 function return would end up with if the program started out
2245 with a freshly initialized FPU. */
2246 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2248 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2250 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2251 the floating-point register stack to 7, the appropriate value
2252 for the tag word is 0x3fff. */
2253 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2257 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2258 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2260 if (len <= low_size)
2261 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2262 else if (len <= (low_size + high_size))
2264 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2265 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2266 len - low_size, valbuf + low_size);
2269 internal_error (__FILE__, __LINE__,
2270 _("Cannot store return value of %d bytes long."), len);
2275 /* This is the variable that is set with "set struct-convention", and
2276 its legitimate values. */
2277 static const char default_struct_convention[] = "default";
2278 static const char pcc_struct_convention[] = "pcc";
2279 static const char reg_struct_convention[] = "reg";
2280 static const char *valid_conventions[] =
2282 default_struct_convention,
2283 pcc_struct_convention,
2284 reg_struct_convention,
2287 static const char *struct_convention = default_struct_convention;
2289 /* Return non-zero if TYPE, which is assumed to be a structure,
2290 a union type, or an array type, should be returned in registers
2291 for architecture GDBARCH. */
2294 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2297 enum type_code code = TYPE_CODE (type);
2298 int len = TYPE_LENGTH (type);
2300 gdb_assert (code == TYPE_CODE_STRUCT
2301 || code == TYPE_CODE_UNION
2302 || code == TYPE_CODE_ARRAY);
2304 if (struct_convention == pcc_struct_convention
2305 || (struct_convention == default_struct_convention
2306 && tdep->struct_return == pcc_struct_return))
2309 /* Structures consisting of a single `float', `double' or 'long
2310 double' member are returned in %st(0). */
2311 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2313 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2314 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2315 return (len == 4 || len == 8 || len == 12);
2318 return (len == 1 || len == 2 || len == 4 || len == 8);
2321 /* Determine, for architecture GDBARCH, how a return value of TYPE
2322 should be returned. If it is supposed to be returned in registers,
2323 and READBUF is non-zero, read the appropriate value from REGCACHE,
2324 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2325 from WRITEBUF into REGCACHE. */
2327 static enum return_value_convention
2328 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2329 struct type *type, struct regcache *regcache,
2330 gdb_byte *readbuf, const gdb_byte *writebuf)
2332 enum type_code code = TYPE_CODE (type);
2334 if (((code == TYPE_CODE_STRUCT
2335 || code == TYPE_CODE_UNION
2336 || code == TYPE_CODE_ARRAY)
2337 && !i386_reg_struct_return_p (gdbarch, type))
2338 /* 128-bit decimal float uses the struct return convention. */
2339 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2341 /* The System V ABI says that:
2343 "A function that returns a structure or union also sets %eax
2344 to the value of the original address of the caller's area
2345 before it returns. Thus when the caller receives control
2346 again, the address of the returned object resides in register
2347 %eax and can be used to access the object."
2349 So the ABI guarantees that we can always find the return
2350 value just after the function has returned. */
2352 /* Note that the ABI doesn't mention functions returning arrays,
2353 which is something possible in certain languages such as Ada.
2354 In this case, the value is returned as if it was wrapped in
2355 a record, so the convention applied to records also applies
2362 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2363 read_memory (addr, readbuf, TYPE_LENGTH (type));
2366 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2369 /* This special case is for structures consisting of a single
2370 `float', `double' or 'long double' member. These structures are
2371 returned in %st(0). For these structures, we call ourselves
2372 recursively, changing TYPE into the type of the first member of
2373 the structure. Since that should work for all structures that
2374 have only one member, we don't bother to check the member's type
2376 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2378 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2379 return i386_return_value (gdbarch, func_type, type, regcache,
2384 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2386 i386_store_return_value (gdbarch, type, regcache, writebuf);
2388 return RETURN_VALUE_REGISTER_CONVENTION;
2393 i387_ext_type (struct gdbarch *gdbarch)
2395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2397 if (!tdep->i387_ext_type)
2399 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2400 gdb_assert (tdep->i387_ext_type != NULL);
2403 return tdep->i387_ext_type;
2406 /* Construct vector type for pseudo YMM registers. We can't use
2407 tdesc_find_type since YMM isn't described in target description. */
2409 static struct type *
2410 i386_ymm_type (struct gdbarch *gdbarch)
2412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2414 if (!tdep->i386_ymm_type)
2416 const struct builtin_type *bt = builtin_type (gdbarch);
2418 /* The type we're building is this: */
2420 union __gdb_builtin_type_vec256i
2422 int128_t uint128[2];
2423 int64_t v2_int64[4];
2424 int32_t v4_int32[8];
2425 int16_t v8_int16[16];
2426 int8_t v16_int8[32];
2427 double v2_double[4];
2434 t = arch_composite_type (gdbarch,
2435 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2436 append_composite_type_field (t, "v8_float",
2437 init_vector_type (bt->builtin_float, 8));
2438 append_composite_type_field (t, "v4_double",
2439 init_vector_type (bt->builtin_double, 4));
2440 append_composite_type_field (t, "v32_int8",
2441 init_vector_type (bt->builtin_int8, 32));
2442 append_composite_type_field (t, "v16_int16",
2443 init_vector_type (bt->builtin_int16, 16));
2444 append_composite_type_field (t, "v8_int32",
2445 init_vector_type (bt->builtin_int32, 8));
2446 append_composite_type_field (t, "v4_int64",
2447 init_vector_type (bt->builtin_int64, 4));
2448 append_composite_type_field (t, "v2_int128",
2449 init_vector_type (bt->builtin_int128, 2));
2451 TYPE_VECTOR (t) = 1;
2452 TYPE_NAME (t) = "builtin_type_vec256i";
2453 tdep->i386_ymm_type = t;
2456 return tdep->i386_ymm_type;
2459 /* Construct vector type for MMX registers. */
2460 static struct type *
2461 i386_mmx_type (struct gdbarch *gdbarch)
2463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2465 if (!tdep->i386_mmx_type)
2467 const struct builtin_type *bt = builtin_type (gdbarch);
2469 /* The type we're building is this: */
2471 union __gdb_builtin_type_vec64i
2474 int32_t v2_int32[2];
2475 int16_t v4_int16[4];
2482 t = arch_composite_type (gdbarch,
2483 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2485 append_composite_type_field (t, "uint64", bt->builtin_int64);
2486 append_composite_type_field (t, "v2_int32",
2487 init_vector_type (bt->builtin_int32, 2));
2488 append_composite_type_field (t, "v4_int16",
2489 init_vector_type (bt->builtin_int16, 4));
2490 append_composite_type_field (t, "v8_int8",
2491 init_vector_type (bt->builtin_int8, 8));
2493 TYPE_VECTOR (t) = 1;
2494 TYPE_NAME (t) = "builtin_type_vec64i";
2495 tdep->i386_mmx_type = t;
2498 return tdep->i386_mmx_type;
2501 /* Return the GDB type object for the "standard" data type of data in
2504 static struct type *
2505 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2507 if (i386_mmx_regnum_p (gdbarch, regnum))
2508 return i386_mmx_type (gdbarch);
2509 else if (i386_ymm_regnum_p (gdbarch, regnum))
2510 return i386_ymm_type (gdbarch);
2513 const struct builtin_type *bt = builtin_type (gdbarch);
2514 if (i386_byte_regnum_p (gdbarch, regnum))
2515 return bt->builtin_int8;
2516 else if (i386_word_regnum_p (gdbarch, regnum))
2517 return bt->builtin_int16;
2518 else if (i386_dword_regnum_p (gdbarch, regnum))
2519 return bt->builtin_int32;
2522 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2525 /* Map a cooked register onto a raw register or memory. For the i386,
2526 the MMX registers need to be mapped onto floating point registers. */
2529 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2531 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2536 mmxreg = regnum - tdep->mm0_regnum;
2537 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2538 tos = (fstat >> 11) & 0x7;
2539 fpreg = (mmxreg + tos) % 8;
2541 return (I387_ST0_REGNUM (tdep) + fpreg);
2544 enum register_status
2545 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2546 int regnum, gdb_byte *buf)
2548 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2549 enum register_status status;
2551 if (i386_mmx_regnum_p (gdbarch, regnum))
2553 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2555 /* Extract (always little endian). */
2556 status = regcache_raw_read (regcache, fpnum, raw_buf);
2557 if (status != REG_VALID)
2559 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2563 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2565 if (i386_ymm_regnum_p (gdbarch, regnum))
2567 regnum -= tdep->ymm0_regnum;
2569 /* Extract (always little endian). Read lower 128bits. */
2570 status = regcache_raw_read (regcache,
2571 I387_XMM0_REGNUM (tdep) + regnum,
2573 if (status != REG_VALID)
2575 memcpy (buf, raw_buf, 16);
2576 /* Read upper 128bits. */
2577 status = regcache_raw_read (regcache,
2578 tdep->ymm0h_regnum + regnum,
2580 if (status != REG_VALID)
2582 memcpy (buf + 16, raw_buf, 16);
2584 else if (i386_word_regnum_p (gdbarch, regnum))
2586 int gpnum = regnum - tdep->ax_regnum;
2588 /* Extract (always little endian). */
2589 status = regcache_raw_read (regcache, gpnum, raw_buf);
2590 if (status != REG_VALID)
2592 memcpy (buf, raw_buf, 2);
2594 else if (i386_byte_regnum_p (gdbarch, regnum))
2596 /* Check byte pseudo registers last since this function will
2597 be called from amd64_pseudo_register_read, which handles
2598 byte pseudo registers differently. */
2599 int gpnum = regnum - tdep->al_regnum;
2601 /* Extract (always little endian). We read both lower and
2603 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2604 if (status != REG_VALID)
2607 memcpy (buf, raw_buf + 1, 1);
2609 memcpy (buf, raw_buf, 1);
2612 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2619 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2620 int regnum, const gdb_byte *buf)
2622 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2624 if (i386_mmx_regnum_p (gdbarch, regnum))
2626 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2629 regcache_raw_read (regcache, fpnum, raw_buf);
2630 /* ... Modify ... (always little endian). */
2631 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2633 regcache_raw_write (regcache, fpnum, raw_buf);
2637 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2639 if (i386_ymm_regnum_p (gdbarch, regnum))
2641 regnum -= tdep->ymm0_regnum;
2643 /* ... Write lower 128bits. */
2644 regcache_raw_write (regcache,
2645 I387_XMM0_REGNUM (tdep) + regnum,
2647 /* ... Write upper 128bits. */
2648 regcache_raw_write (regcache,
2649 tdep->ymm0h_regnum + regnum,
2652 else if (i386_word_regnum_p (gdbarch, regnum))
2654 int gpnum = regnum - tdep->ax_regnum;
2657 regcache_raw_read (regcache, gpnum, raw_buf);
2658 /* ... Modify ... (always little endian). */
2659 memcpy (raw_buf, buf, 2);
2661 regcache_raw_write (regcache, gpnum, raw_buf);
2663 else if (i386_byte_regnum_p (gdbarch, regnum))
2665 /* Check byte pseudo registers last since this function will
2666 be called from amd64_pseudo_register_read, which handles
2667 byte pseudo registers differently. */
2668 int gpnum = regnum - tdep->al_regnum;
2670 /* Read ... We read both lower and upper registers. */
2671 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2672 /* ... Modify ... (always little endian). */
2674 memcpy (raw_buf + 1, buf, 1);
2676 memcpy (raw_buf, buf, 1);
2678 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2681 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2686 /* Return the register number of the register allocated by GCC after
2687 REGNUM, or -1 if there is no such register. */
2690 i386_next_regnum (int regnum)
2692 /* GCC allocates the registers in the order:
2694 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2696 Since storing a variable in %esp doesn't make any sense we return
2697 -1 for %ebp and for %esp itself. */
2698 static int next_regnum[] =
2700 I386_EDX_REGNUM, /* Slot for %eax. */
2701 I386_EBX_REGNUM, /* Slot for %ecx. */
2702 I386_ECX_REGNUM, /* Slot for %edx. */
2703 I386_ESI_REGNUM, /* Slot for %ebx. */
2704 -1, -1, /* Slots for %esp and %ebp. */
2705 I386_EDI_REGNUM, /* Slot for %esi. */
2706 I386_EBP_REGNUM /* Slot for %edi. */
2709 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2710 return next_regnum[regnum];
2715 /* Return nonzero if a value of type TYPE stored in register REGNUM
2716 needs any special handling. */
2719 i386_convert_register_p (struct gdbarch *gdbarch,
2720 int regnum, struct type *type)
2722 int len = TYPE_LENGTH (type);
2724 /* Values may be spread across multiple registers. Most debugging
2725 formats aren't expressive enough to specify the locations, so
2726 some heuristics is involved. Right now we only handle types that
2727 have a length that is a multiple of the word size, since GCC
2728 doesn't seem to put any other types into registers. */
2729 if (len > 4 && len % 4 == 0)
2731 int last_regnum = regnum;
2735 last_regnum = i386_next_regnum (last_regnum);
2739 if (last_regnum != -1)
2743 return i387_convert_register_p (gdbarch, regnum, type);
2746 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2747 return its contents in TO. */
2750 i386_register_to_value (struct frame_info *frame, int regnum,
2751 struct type *type, gdb_byte *to,
2752 int *optimizedp, int *unavailablep)
2754 struct gdbarch *gdbarch = get_frame_arch (frame);
2755 int len = TYPE_LENGTH (type);
2757 if (i386_fp_regnum_p (gdbarch, regnum))
2758 return i387_register_to_value (frame, regnum, type, to,
2759 optimizedp, unavailablep);
2761 /* Read a value spread across multiple registers. */
2763 gdb_assert (len > 4 && len % 4 == 0);
2767 gdb_assert (regnum != -1);
2768 gdb_assert (register_size (gdbarch, regnum) == 4);
2770 if (!get_frame_register_bytes (frame, regnum, 0,
2771 register_size (gdbarch, regnum),
2772 to, optimizedp, unavailablep))
2775 regnum = i386_next_regnum (regnum);
2780 *optimizedp = *unavailablep = 0;
2784 /* Write the contents FROM of a value of type TYPE into register
2785 REGNUM in frame FRAME. */
2788 i386_value_to_register (struct frame_info *frame, int regnum,
2789 struct type *type, const gdb_byte *from)
2791 int len = TYPE_LENGTH (type);
2793 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2795 i387_value_to_register (frame, regnum, type, from);
2799 /* Write a value spread across multiple registers. */
2801 gdb_assert (len > 4 && len % 4 == 0);
2805 gdb_assert (regnum != -1);
2806 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2808 put_frame_register (frame, regnum, from);
2809 regnum = i386_next_regnum (regnum);
2815 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2816 in the general-purpose register set REGSET to register cache
2817 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2820 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2821 int regnum, const void *gregs, size_t len)
2823 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2824 const gdb_byte *regs = gregs;
2827 gdb_assert (len == tdep->sizeof_gregset);
2829 for (i = 0; i < tdep->gregset_num_regs; i++)
2831 if ((regnum == i || regnum == -1)
2832 && tdep->gregset_reg_offset[i] != -1)
2833 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2837 /* Collect register REGNUM from the register cache REGCACHE and store
2838 it in the buffer specified by GREGS and LEN as described by the
2839 general-purpose register set REGSET. If REGNUM is -1, do this for
2840 all registers in REGSET. */
2843 i386_collect_gregset (const struct regset *regset,
2844 const struct regcache *regcache,
2845 int regnum, void *gregs, size_t len)
2847 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2848 gdb_byte *regs = gregs;
2851 gdb_assert (len == tdep->sizeof_gregset);
2853 for (i = 0; i < tdep->gregset_num_regs; i++)
2855 if ((regnum == i || regnum == -1)
2856 && tdep->gregset_reg_offset[i] != -1)
2857 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2861 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2862 in the floating-point register set REGSET to register cache
2863 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2866 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2867 int regnum, const void *fpregs, size_t len)
2869 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2871 if (len == I387_SIZEOF_FXSAVE)
2873 i387_supply_fxsave (regcache, regnum, fpregs);
2877 gdb_assert (len == tdep->sizeof_fpregset);
2878 i387_supply_fsave (regcache, regnum, fpregs);
2881 /* Collect register REGNUM from the register cache REGCACHE and store
2882 it in the buffer specified by FPREGS and LEN as described by the
2883 floating-point register set REGSET. If REGNUM is -1, do this for
2884 all registers in REGSET. */
2887 i386_collect_fpregset (const struct regset *regset,
2888 const struct regcache *regcache,
2889 int regnum, void *fpregs, size_t len)
2891 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2893 if (len == I387_SIZEOF_FXSAVE)
2895 i387_collect_fxsave (regcache, regnum, fpregs);
2899 gdb_assert (len == tdep->sizeof_fpregset);
2900 i387_collect_fsave (regcache, regnum, fpregs);
2903 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
2906 i386_supply_xstateregset (const struct regset *regset,
2907 struct regcache *regcache, int regnum,
2908 const void *xstateregs, size_t len)
2910 i387_supply_xsave (regcache, regnum, xstateregs);
2913 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
2916 i386_collect_xstateregset (const struct regset *regset,
2917 const struct regcache *regcache,
2918 int regnum, void *xstateregs, size_t len)
2920 i387_collect_xsave (regcache, regnum, xstateregs, 1);
2923 /* Return the appropriate register set for the core section identified
2924 by SECT_NAME and SECT_SIZE. */
2926 const struct regset *
2927 i386_regset_from_core_section (struct gdbarch *gdbarch,
2928 const char *sect_name, size_t sect_size)
2930 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2932 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2934 if (tdep->gregset == NULL)
2935 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2936 i386_collect_gregset);
2937 return tdep->gregset;
2940 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2941 || (strcmp (sect_name, ".reg-xfp") == 0
2942 && sect_size == I387_SIZEOF_FXSAVE))
2944 if (tdep->fpregset == NULL)
2945 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2946 i386_collect_fpregset);
2947 return tdep->fpregset;
2950 if (strcmp (sect_name, ".reg-xstate") == 0)
2952 if (tdep->xstateregset == NULL)
2953 tdep->xstateregset = regset_alloc (gdbarch,
2954 i386_supply_xstateregset,
2955 i386_collect_xstateregset);
2957 return tdep->xstateregset;
2964 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2967 i386_pe_skip_trampoline_code (struct frame_info *frame,
2968 CORE_ADDR pc, char *name)
2970 struct gdbarch *gdbarch = get_frame_arch (frame);
2971 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2974 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
2976 unsigned long indirect =
2977 read_memory_unsigned_integer (pc + 2, 4, byte_order);
2978 struct minimal_symbol *indsym =
2979 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2980 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2984 if (strncmp (symname, "__imp_", 6) == 0
2985 || strncmp (symname, "_imp_", 5) == 0)
2987 read_memory_unsigned_integer (indirect, 4, byte_order);
2990 return 0; /* Not a trampoline. */
2994 /* Return whether the THIS_FRAME corresponds to a sigtramp
2998 i386_sigtramp_p (struct frame_info *this_frame)
3000 CORE_ADDR pc = get_frame_pc (this_frame);
3003 find_pc_partial_function (pc, &name, NULL, NULL);
3004 return (name && strcmp ("_sigtramp", name) == 0);
3008 /* We have two flavours of disassembly. The machinery on this page
3009 deals with switching between those. */
3012 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3014 gdb_assert (disassembly_flavor == att_flavor
3015 || disassembly_flavor == intel_flavor);
3017 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3018 constified, cast to prevent a compiler warning. */
3019 info->disassembler_options = (char *) disassembly_flavor;
3021 return print_insn_i386 (pc, info);
3025 /* There are a few i386 architecture variants that differ only
3026 slightly from the generic i386 target. For now, we don't give them
3027 their own source file, but include them here. As a consequence,
3028 they'll always be included. */
3030 /* System V Release 4 (SVR4). */
3032 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3036 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3038 CORE_ADDR pc = get_frame_pc (this_frame);
3041 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3042 currently unknown. */
3043 find_pc_partial_function (pc, &name, NULL, NULL);
3044 return (name && (strcmp ("_sigreturn", name) == 0
3045 || strcmp ("_sigacthandler", name) == 0
3046 || strcmp ("sigvechandler", name) == 0));
3049 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3050 address of the associated sigcontext (ucontext) structure. */
3053 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3055 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3056 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3060 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3061 sp = extract_unsigned_integer (buf, 4, byte_order);
3063 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3070 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3072 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3073 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3076 /* System V Release 4 (SVR4). */
3079 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3081 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3083 /* System V Release 4 uses ELF. */
3084 i386_elf_init_abi (info, gdbarch);
3086 /* System V Release 4 has shared libraries. */
3087 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3089 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3090 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3091 tdep->sc_pc_offset = 36 + 14 * 4;
3092 tdep->sc_sp_offset = 36 + 17 * 4;
3094 tdep->jb_pc_offset = 20;
3100 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3102 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3104 /* DJGPP doesn't have any special frames for signal handlers. */
3105 tdep->sigtramp_p = NULL;
3107 tdep->jb_pc_offset = 36;
3109 /* DJGPP does not support the SSE registers. */
3110 if (! tdesc_has_registers (info.target_desc))
3111 tdep->tdesc = tdesc_i386_mmx;
3113 /* Native compiler is GCC, which uses the SVR4 register numbering
3114 even in COFF and STABS. See the comment in i386_gdbarch_init,
3115 before the calls to set_gdbarch_stab_reg_to_regnum and
3116 set_gdbarch_sdb_reg_to_regnum. */
3117 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3118 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3120 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3124 /* i386 register groups. In addition to the normal groups, add "mmx"
3127 static struct reggroup *i386_sse_reggroup;
3128 static struct reggroup *i386_mmx_reggroup;
3131 i386_init_reggroups (void)
3133 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3134 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3138 i386_add_reggroups (struct gdbarch *gdbarch)
3140 reggroup_add (gdbarch, i386_sse_reggroup);
3141 reggroup_add (gdbarch, i386_mmx_reggroup);
3142 reggroup_add (gdbarch, general_reggroup);
3143 reggroup_add (gdbarch, float_reggroup);
3144 reggroup_add (gdbarch, all_reggroup);
3145 reggroup_add (gdbarch, save_reggroup);
3146 reggroup_add (gdbarch, restore_reggroup);
3147 reggroup_add (gdbarch, vector_reggroup);
3148 reggroup_add (gdbarch, system_reggroup);
3152 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3153 struct reggroup *group)
3155 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3156 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3157 ymm_regnum_p, ymmh_regnum_p;
3159 /* Don't include pseudo registers, except for MMX, in any register
3161 if (i386_byte_regnum_p (gdbarch, regnum))
3164 if (i386_word_regnum_p (gdbarch, regnum))
3167 if (i386_dword_regnum_p (gdbarch, regnum))
3170 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3171 if (group == i386_mmx_reggroup)
3172 return mmx_regnum_p;
3174 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3175 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3176 if (group == i386_sse_reggroup)
3177 return xmm_regnum_p || mxcsr_regnum_p;
3179 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3180 if (group == vector_reggroup)
3181 return (mmx_regnum_p
3185 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3186 == I386_XSTATE_SSE_MASK)));
3188 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3189 || i386_fpc_regnum_p (gdbarch, regnum));
3190 if (group == float_reggroup)
3193 /* For "info reg all", don't include upper YMM registers nor XMM
3194 registers when AVX is supported. */
3195 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3196 if (group == all_reggroup
3198 && (tdep->xcr0 & I386_XSTATE_AVX))
3202 if (group == general_reggroup)
3203 return (!fp_regnum_p
3210 return default_register_reggroup_p (gdbarch, regnum, group);
3214 /* Get the ARGIth function argument for the current function. */
3217 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3220 struct gdbarch *gdbarch = get_frame_arch (frame);
3221 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3222 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3223 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3227 i386_skip_permanent_breakpoint (struct regcache *regcache)
3229 CORE_ADDR current_pc = regcache_read_pc (regcache);
3231 /* On i386, breakpoint is exactly 1 byte long, so we just
3232 adjust the PC in the regcache. */
3234 regcache_write_pc (regcache, current_pc);
3238 #define PREFIX_REPZ 0x01
3239 #define PREFIX_REPNZ 0x02
3240 #define PREFIX_LOCK 0x04
3241 #define PREFIX_DATA 0x08
3242 #define PREFIX_ADDR 0x10
3254 /* i386 arith/logic operations */
3267 struct i386_record_s
3269 struct gdbarch *gdbarch;
3270 struct regcache *regcache;
3271 CORE_ADDR orig_addr;
3277 uint8_t mod, reg, rm;
3286 /* Parse "modrm" part in current memory address that irp->addr point to
3287 Return -1 if something wrong. */
3290 i386_record_modrm (struct i386_record_s *irp)
3292 struct gdbarch *gdbarch = irp->gdbarch;
3294 if (target_read_memory (irp->addr, &irp->modrm, 1))
3297 printf_unfiltered (_("Process record: error reading memory at "
3298 "addr %s len = 1.\n"),
3299 paddress (gdbarch, irp->addr));
3303 irp->mod = (irp->modrm >> 6) & 3;
3304 irp->reg = (irp->modrm >> 3) & 7;
3305 irp->rm = irp->modrm & 7;
3310 /* Get the memory address that current instruction write to and set it to
3311 the argument "addr".
3312 Return -1 if something wrong. */
3315 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3317 struct gdbarch *gdbarch = irp->gdbarch;
3318 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3330 uint8_t base = irp->rm;
3335 if (target_read_memory (irp->addr, &byte, 1))
3338 printf_unfiltered (_("Process record: error reading memory "
3339 "at addr %s len = 1.\n"),
3340 paddress (gdbarch, irp->addr));
3344 scale = (byte >> 6) & 3;
3345 index = ((byte >> 3) & 7) | irp->rex_x;
3353 if ((base & 7) == 5)
3356 if (target_read_memory (irp->addr, buf, 4))
3359 printf_unfiltered (_("Process record: error reading "
3360 "memory at addr %s len = 4.\n"),
3361 paddress (gdbarch, irp->addr));
3365 *addr = extract_signed_integer (buf, 4, byte_order);
3366 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3367 *addr += irp->addr + irp->rip_offset;
3371 if (target_read_memory (irp->addr, buf, 1))
3374 printf_unfiltered (_("Process record: error reading memory "
3375 "at addr %s len = 1.\n"),
3376 paddress (gdbarch, irp->addr));
3380 *addr = (int8_t) buf[0];
3383 if (target_read_memory (irp->addr, buf, 4))
3386 printf_unfiltered (_("Process record: error reading memory "
3387 "at addr %s len = 4.\n"),
3388 paddress (gdbarch, irp->addr));
3391 *addr = extract_signed_integer (buf, 4, byte_order);
3399 if (base == 4 && irp->popl_esp_hack)
3400 *addr += irp->popl_esp_hack;
3401 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3404 if (irp->aflag == 2)
3409 *addr = (uint32_t) (offset64 + *addr);
3411 if (havesib && (index != 4 || scale != 0))
3413 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3415 if (irp->aflag == 2)
3416 *addr += offset64 << scale;
3418 *addr = (uint32_t) (*addr + (offset64 << scale));
3429 if (target_read_memory (irp->addr, buf, 2))
3432 printf_unfiltered (_("Process record: error reading "
3433 "memory at addr %s len = 2.\n"),
3434 paddress (gdbarch, irp->addr));
3438 *addr = extract_signed_integer (buf, 2, byte_order);
3444 if (target_read_memory (irp->addr, buf, 1))
3447 printf_unfiltered (_("Process record: error reading memory "
3448 "at addr %s len = 1.\n"),
3449 paddress (gdbarch, irp->addr));
3453 *addr = (int8_t) buf[0];
3456 if (target_read_memory (irp->addr, buf, 2))
3459 printf_unfiltered (_("Process record: error reading memory "
3460 "at addr %s len = 2.\n"),
3461 paddress (gdbarch, irp->addr));
3465 *addr = extract_signed_integer (buf, 2, byte_order);
3472 regcache_raw_read_unsigned (irp->regcache,
3473 irp->regmap[X86_RECORD_REBX_REGNUM],
3475 *addr = (uint32_t) (*addr + offset64);
3476 regcache_raw_read_unsigned (irp->regcache,
3477 irp->regmap[X86_RECORD_RESI_REGNUM],
3479 *addr = (uint32_t) (*addr + offset64);
3482 regcache_raw_read_unsigned (irp->regcache,
3483 irp->regmap[X86_RECORD_REBX_REGNUM],
3485 *addr = (uint32_t) (*addr + offset64);
3486 regcache_raw_read_unsigned (irp->regcache,
3487 irp->regmap[X86_RECORD_REDI_REGNUM],
3489 *addr = (uint32_t) (*addr + offset64);
3492 regcache_raw_read_unsigned (irp->regcache,
3493 irp->regmap[X86_RECORD_REBP_REGNUM],
3495 *addr = (uint32_t) (*addr + offset64);
3496 regcache_raw_read_unsigned (irp->regcache,
3497 irp->regmap[X86_RECORD_RESI_REGNUM],
3499 *addr = (uint32_t) (*addr + offset64);
3502 regcache_raw_read_unsigned (irp->regcache,
3503 irp->regmap[X86_RECORD_REBP_REGNUM],
3505 *addr = (uint32_t) (*addr + offset64);
3506 regcache_raw_read_unsigned (irp->regcache,
3507 irp->regmap[X86_RECORD_REDI_REGNUM],
3509 *addr = (uint32_t) (*addr + offset64);
3512 regcache_raw_read_unsigned (irp->regcache,
3513 irp->regmap[X86_RECORD_RESI_REGNUM],
3515 *addr = (uint32_t) (*addr + offset64);
3518 regcache_raw_read_unsigned (irp->regcache,
3519 irp->regmap[X86_RECORD_REDI_REGNUM],
3521 *addr = (uint32_t) (*addr + offset64);
3524 regcache_raw_read_unsigned (irp->regcache,
3525 irp->regmap[X86_RECORD_REBP_REGNUM],
3527 *addr = (uint32_t) (*addr + offset64);
3530 regcache_raw_read_unsigned (irp->regcache,
3531 irp->regmap[X86_RECORD_REBX_REGNUM],
3533 *addr = (uint32_t) (*addr + offset64);
3543 /* Record the value of the memory that willbe changed in current instruction
3544 to "record_arch_list".
3545 Return -1 if something wrong. */
3548 i386_record_lea_modrm (struct i386_record_s *irp)
3550 struct gdbarch *gdbarch = irp->gdbarch;
3553 if (irp->override >= 0)
3555 if (record_memory_query)
3559 target_terminal_ours ();
3561 Process record ignores the memory change of instruction at address %s\n\
3562 because it can't get the value of the segment register.\n\
3563 Do you want to stop the program?"),
3564 paddress (gdbarch, irp->orig_addr));
3565 target_terminal_inferior ();
3573 if (i386_record_lea_modrm_addr (irp, &addr))
3576 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3582 /* Record the push operation to "record_arch_list".
3583 Return -1 if something wrong. */
3586 i386_record_push (struct i386_record_s *irp, int size)
3590 if (record_arch_list_add_reg (irp->regcache,
3591 irp->regmap[X86_RECORD_RESP_REGNUM]))
3593 regcache_raw_read_unsigned (irp->regcache,
3594 irp->regmap[X86_RECORD_RESP_REGNUM],
3596 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3603 /* Defines contents to record. */
3604 #define I386_SAVE_FPU_REGS 0xfffd
3605 #define I386_SAVE_FPU_ENV 0xfffe
3606 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3608 /* Record the value of floating point registers which will be changed
3609 by the current instruction to "record_arch_list". Return -1 if
3610 something is wrong. */
3612 static int i386_record_floats (struct gdbarch *gdbarch,
3613 struct i386_record_s *ir,
3616 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3619 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3620 happen. Currently we store st0-st7 registers, but we need not store all
3621 registers all the time, in future we use ftag register and record only
3622 those who are not marked as an empty. */
3624 if (I386_SAVE_FPU_REGS == iregnum)
3626 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3628 if (record_arch_list_add_reg (ir->regcache, i))
3632 else if (I386_SAVE_FPU_ENV == iregnum)
3634 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3636 if (record_arch_list_add_reg (ir->regcache, i))
3640 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3642 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3644 if (record_arch_list_add_reg (ir->regcache, i))
3648 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3649 (iregnum <= I387_FOP_REGNUM (tdep)))
3651 if (record_arch_list_add_reg (ir->regcache,iregnum))
3656 /* Parameter error. */
3659 if(I386_SAVE_FPU_ENV != iregnum)
3661 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3663 if (record_arch_list_add_reg (ir->regcache, i))
3670 /* Parse the current instruction and record the values of the registers and
3671 memory that will be changed in current instruction to "record_arch_list".
3672 Return -1 if something wrong. */
3674 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3675 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3678 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3679 CORE_ADDR input_addr)
3681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3687 gdb_byte buf[MAX_REGISTER_SIZE];
3688 struct i386_record_s ir;
3689 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3694 memset (&ir, 0, sizeof (struct i386_record_s));
3695 ir.regcache = regcache;
3696 ir.addr = input_addr;
3697 ir.orig_addr = input_addr;
3701 ir.popl_esp_hack = 0;
3702 ir.regmap = tdep->record_regmap;
3703 ir.gdbarch = gdbarch;
3705 if (record_debug > 1)
3706 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3708 paddress (gdbarch, ir.addr));
3713 if (target_read_memory (ir.addr, &opcode8, 1))
3716 printf_unfiltered (_("Process record: error reading memory at "
3717 "addr %s len = 1.\n"),
3718 paddress (gdbarch, ir.addr));
3722 switch (opcode8) /* Instruction prefixes */
3724 case REPE_PREFIX_OPCODE:
3725 prefixes |= PREFIX_REPZ;
3727 case REPNE_PREFIX_OPCODE:
3728 prefixes |= PREFIX_REPNZ;
3730 case LOCK_PREFIX_OPCODE:
3731 prefixes |= PREFIX_LOCK;
3733 case CS_PREFIX_OPCODE:
3734 ir.override = X86_RECORD_CS_REGNUM;
3736 case SS_PREFIX_OPCODE:
3737 ir.override = X86_RECORD_SS_REGNUM;
3739 case DS_PREFIX_OPCODE:
3740 ir.override = X86_RECORD_DS_REGNUM;
3742 case ES_PREFIX_OPCODE:
3743 ir.override = X86_RECORD_ES_REGNUM;
3745 case FS_PREFIX_OPCODE:
3746 ir.override = X86_RECORD_FS_REGNUM;
3748 case GS_PREFIX_OPCODE:
3749 ir.override = X86_RECORD_GS_REGNUM;
3751 case DATA_PREFIX_OPCODE:
3752 prefixes |= PREFIX_DATA;
3754 case ADDR_PREFIX_OPCODE:
3755 prefixes |= PREFIX_ADDR;
3757 case 0x40: /* i386 inc %eax */
3758 case 0x41: /* i386 inc %ecx */
3759 case 0x42: /* i386 inc %edx */
3760 case 0x43: /* i386 inc %ebx */
3761 case 0x44: /* i386 inc %esp */
3762 case 0x45: /* i386 inc %ebp */
3763 case 0x46: /* i386 inc %esi */
3764 case 0x47: /* i386 inc %edi */
3765 case 0x48: /* i386 dec %eax */
3766 case 0x49: /* i386 dec %ecx */
3767 case 0x4a: /* i386 dec %edx */
3768 case 0x4b: /* i386 dec %ebx */
3769 case 0x4c: /* i386 dec %esp */
3770 case 0x4d: /* i386 dec %ebp */
3771 case 0x4e: /* i386 dec %esi */
3772 case 0x4f: /* i386 dec %edi */
3773 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
3777 rex_w = (opcode8 >> 3) & 1;
3778 rex_r = (opcode8 & 0x4) << 1;
3779 ir.rex_x = (opcode8 & 0x2) << 2;
3780 ir.rex_b = (opcode8 & 0x1) << 3;
3782 else /* 32 bit target */
3791 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3797 if (prefixes & PREFIX_DATA)
3800 if (prefixes & PREFIX_ADDR)
3802 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3805 /* Now check op code. */
3806 opcode = (uint32_t) opcode8;
3811 if (target_read_memory (ir.addr, &opcode8, 1))
3814 printf_unfiltered (_("Process record: error reading memory at "
3815 "addr %s len = 1.\n"),
3816 paddress (gdbarch, ir.addr));
3820 opcode = (uint32_t) opcode8 | 0x0f00;
3824 case 0x00: /* arith & logic */
3872 if (((opcode >> 3) & 7) != OP_CMPL)
3874 if ((opcode & 1) == 0)
3877 ir.ot = ir.dflag + OT_WORD;
3879 switch ((opcode >> 1) & 3)
3881 case 0: /* OP Ev, Gv */
3882 if (i386_record_modrm (&ir))
3886 if (i386_record_lea_modrm (&ir))
3892 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3894 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3897 case 1: /* OP Gv, Ev */
3898 if (i386_record_modrm (&ir))
3901 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3903 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3905 case 2: /* OP A, Iv */
3906 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3910 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3913 case 0x80: /* GRP1 */
3917 if (i386_record_modrm (&ir))
3920 if (ir.reg != OP_CMPL)
3922 if ((opcode & 1) == 0)
3925 ir.ot = ir.dflag + OT_WORD;
3932 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3933 if (i386_record_lea_modrm (&ir))
3937 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3939 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3942 case 0x40: /* inc */
3951 case 0x48: /* dec */
3960 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3961 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3964 case 0xf6: /* GRP3 */
3966 if ((opcode & 1) == 0)
3969 ir.ot = ir.dflag + OT_WORD;
3970 if (i386_record_modrm (&ir))
3973 if (ir.mod != 3 && ir.reg == 0)
3974 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3979 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3985 if (i386_record_lea_modrm (&ir))
3991 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3993 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3995 if (ir.reg == 3) /* neg */
3996 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4002 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4003 if (ir.ot != OT_BYTE)
4004 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4005 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4009 opcode = opcode << 8 | ir.modrm;
4015 case 0xfe: /* GRP4 */
4016 case 0xff: /* GRP5 */
4017 if (i386_record_modrm (&ir))
4019 if (ir.reg >= 2 && opcode == 0xfe)
4022 opcode = opcode << 8 | ir.modrm;
4029 if ((opcode & 1) == 0)
4032 ir.ot = ir.dflag + OT_WORD;
4035 if (i386_record_lea_modrm (&ir))
4041 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4043 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4045 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4048 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4050 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4052 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4055 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4056 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4058 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4062 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4065 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4067 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4072 opcode = opcode << 8 | ir.modrm;
4078 case 0x84: /* test */
4082 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4085 case 0x98: /* CWDE/CBW */
4086 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4089 case 0x99: /* CDQ/CWD */
4090 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4091 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4094 case 0x0faf: /* imul */
4097 ir.ot = ir.dflag + OT_WORD;
4098 if (i386_record_modrm (&ir))
4101 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4102 else if (opcode == 0x6b)
4105 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4107 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4108 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4111 case 0x0fc0: /* xadd */
4113 if ((opcode & 1) == 0)
4116 ir.ot = ir.dflag + OT_WORD;
4117 if (i386_record_modrm (&ir))
4122 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4124 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4125 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4127 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4131 if (i386_record_lea_modrm (&ir))
4133 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4135 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4137 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4140 case 0x0fb0: /* cmpxchg */
4142 if ((opcode & 1) == 0)
4145 ir.ot = ir.dflag + OT_WORD;
4146 if (i386_record_modrm (&ir))
4151 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4152 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4154 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4158 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4159 if (i386_record_lea_modrm (&ir))
4162 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4165 case 0x0fc7: /* cmpxchg8b */
4166 if (i386_record_modrm (&ir))
4171 opcode = opcode << 8 | ir.modrm;
4174 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4175 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4176 if (i386_record_lea_modrm (&ir))
4178 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4181 case 0x50: /* push */
4191 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4193 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4197 case 0x06: /* push es */
4198 case 0x0e: /* push cs */
4199 case 0x16: /* push ss */
4200 case 0x1e: /* push ds */
4201 if (ir.regmap[X86_RECORD_R8_REGNUM])
4206 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4210 case 0x0fa0: /* push fs */
4211 case 0x0fa8: /* push gs */
4212 if (ir.regmap[X86_RECORD_R8_REGNUM])
4217 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4221 case 0x60: /* pusha */
4222 if (ir.regmap[X86_RECORD_R8_REGNUM])
4227 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4231 case 0x58: /* pop */
4239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4240 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4243 case 0x61: /* popa */
4244 if (ir.regmap[X86_RECORD_R8_REGNUM])
4249 for (regnum = X86_RECORD_REAX_REGNUM;
4250 regnum <= X86_RECORD_REDI_REGNUM;
4252 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4255 case 0x8f: /* pop */
4256 if (ir.regmap[X86_RECORD_R8_REGNUM])
4257 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4259 ir.ot = ir.dflag + OT_WORD;
4260 if (i386_record_modrm (&ir))
4263 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4266 ir.popl_esp_hack = 1 << ir.ot;
4267 if (i386_record_lea_modrm (&ir))
4270 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4273 case 0xc8: /* enter */
4274 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4275 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4277 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4281 case 0xc9: /* leave */
4282 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4283 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4286 case 0x07: /* pop es */
4287 if (ir.regmap[X86_RECORD_R8_REGNUM])
4292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4293 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4297 case 0x17: /* pop ss */
4298 if (ir.regmap[X86_RECORD_R8_REGNUM])
4303 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4304 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4308 case 0x1f: /* pop ds */
4309 if (ir.regmap[X86_RECORD_R8_REGNUM])
4314 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4315 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4316 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4319 case 0x0fa1: /* pop fs */
4320 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4322 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4325 case 0x0fa9: /* pop gs */
4326 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4327 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4328 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4331 case 0x88: /* mov */
4335 if ((opcode & 1) == 0)
4338 ir.ot = ir.dflag + OT_WORD;
4340 if (i386_record_modrm (&ir))
4345 if (opcode == 0xc6 || opcode == 0xc7)
4346 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4347 if (i386_record_lea_modrm (&ir))
4352 if (opcode == 0xc6 || opcode == 0xc7)
4354 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4356 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4360 case 0x8a: /* mov */
4362 if ((opcode & 1) == 0)
4365 ir.ot = ir.dflag + OT_WORD;
4366 if (i386_record_modrm (&ir))
4369 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4371 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4374 case 0x8c: /* mov seg */
4375 if (i386_record_modrm (&ir))
4380 opcode = opcode << 8 | ir.modrm;
4385 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4389 if (i386_record_lea_modrm (&ir))
4394 case 0x8e: /* mov seg */
4395 if (i386_record_modrm (&ir))
4400 regnum = X86_RECORD_ES_REGNUM;
4403 regnum = X86_RECORD_SS_REGNUM;
4406 regnum = X86_RECORD_DS_REGNUM;
4409 regnum = X86_RECORD_FS_REGNUM;
4412 regnum = X86_RECORD_GS_REGNUM;
4416 opcode = opcode << 8 | ir.modrm;
4420 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4421 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4424 case 0x0fb6: /* movzbS */
4425 case 0x0fb7: /* movzwS */
4426 case 0x0fbe: /* movsbS */
4427 case 0x0fbf: /* movswS */
4428 if (i386_record_modrm (&ir))
4430 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4433 case 0x8d: /* lea */
4434 if (i386_record_modrm (&ir))
4439 opcode = opcode << 8 | ir.modrm;
4444 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4446 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4449 case 0xa0: /* mov EAX */
4452 case 0xd7: /* xlat */
4453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4456 case 0xa2: /* mov EAX */
4458 if (ir.override >= 0)
4460 if (record_memory_query)
4464 target_terminal_ours ();
4466 Process record ignores the memory change of instruction at address %s\n\
4467 because it can't get the value of the segment register.\n\
4468 Do you want to stop the program?"),
4469 paddress (gdbarch, ir.orig_addr));
4470 target_terminal_inferior ();
4477 if ((opcode & 1) == 0)
4480 ir.ot = ir.dflag + OT_WORD;
4483 if (target_read_memory (ir.addr, buf, 8))
4486 printf_unfiltered (_("Process record: error reading "
4487 "memory at addr 0x%s len = 8.\n"),
4488 paddress (gdbarch, ir.addr));
4492 addr = extract_unsigned_integer (buf, 8, byte_order);
4496 if (target_read_memory (ir.addr, buf, 4))
4499 printf_unfiltered (_("Process record: error reading "
4500 "memory at addr 0x%s len = 4.\n"),
4501 paddress (gdbarch, ir.addr));
4505 addr = extract_unsigned_integer (buf, 4, byte_order);
4509 if (target_read_memory (ir.addr, buf, 2))
4512 printf_unfiltered (_("Process record: error reading "
4513 "memory at addr 0x%s len = 2.\n"),
4514 paddress (gdbarch, ir.addr));
4518 addr = extract_unsigned_integer (buf, 2, byte_order);
4520 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4525 case 0xb0: /* mov R, Ib */
4533 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4534 ? ((opcode & 0x7) | ir.rex_b)
4535 : ((opcode & 0x7) & 0x3));
4538 case 0xb8: /* mov R, Iv */
4546 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4549 case 0x91: /* xchg R, EAX */
4556 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4557 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4560 case 0x86: /* xchg Ev, Gv */
4562 if ((opcode & 1) == 0)
4565 ir.ot = ir.dflag + OT_WORD;
4566 if (i386_record_modrm (&ir))
4571 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4573 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4577 if (i386_record_lea_modrm (&ir))
4581 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4583 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4586 case 0xc4: /* les Gv */
4587 case 0xc5: /* lds Gv */
4588 if (ir.regmap[X86_RECORD_R8_REGNUM])
4594 case 0x0fb2: /* lss Gv */
4595 case 0x0fb4: /* lfs Gv */
4596 case 0x0fb5: /* lgs Gv */
4597 if (i386_record_modrm (&ir))
4605 opcode = opcode << 8 | ir.modrm;
4610 case 0xc4: /* les Gv */
4611 regnum = X86_RECORD_ES_REGNUM;
4613 case 0xc5: /* lds Gv */
4614 regnum = X86_RECORD_DS_REGNUM;
4616 case 0x0fb2: /* lss Gv */
4617 regnum = X86_RECORD_SS_REGNUM;
4619 case 0x0fb4: /* lfs Gv */
4620 regnum = X86_RECORD_FS_REGNUM;
4622 case 0x0fb5: /* lgs Gv */
4623 regnum = X86_RECORD_GS_REGNUM;
4626 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4627 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4628 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4631 case 0xc0: /* shifts */
4637 if ((opcode & 1) == 0)
4640 ir.ot = ir.dflag + OT_WORD;
4641 if (i386_record_modrm (&ir))
4643 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4645 if (i386_record_lea_modrm (&ir))
4651 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4653 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4655 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4662 if (i386_record_modrm (&ir))
4666 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4671 if (i386_record_lea_modrm (&ir))
4676 case 0xd8: /* Floats. */
4684 if (i386_record_modrm (&ir))
4686 ir.reg |= ((opcode & 7) << 3);
4692 if (i386_record_lea_modrm_addr (&ir, &addr64))
4700 /* For fcom, ficom nothing to do. */
4706 /* For fcomp, ficomp pop FPU stack, store all. */
4707 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4734 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4735 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4736 of code, always affects st(0) register. */
4737 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4761 /* Handling fld, fild. */
4762 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4766 switch (ir.reg >> 4)
4769 if (record_arch_list_add_mem (addr64, 4))
4773 if (record_arch_list_add_mem (addr64, 8))
4779 if (record_arch_list_add_mem (addr64, 2))
4785 switch (ir.reg >> 4)
4788 if (record_arch_list_add_mem (addr64, 4))
4790 if (3 == (ir.reg & 7))
4792 /* For fstp m32fp. */
4793 if (i386_record_floats (gdbarch, &ir,
4794 I386_SAVE_FPU_REGS))
4799 if (record_arch_list_add_mem (addr64, 4))
4801 if ((3 == (ir.reg & 7))
4802 || (5 == (ir.reg & 7))
4803 || (7 == (ir.reg & 7)))
4805 /* For fstp insn. */
4806 if (i386_record_floats (gdbarch, &ir,
4807 I386_SAVE_FPU_REGS))
4812 if (record_arch_list_add_mem (addr64, 8))
4814 if (3 == (ir.reg & 7))
4816 /* For fstp m64fp. */
4817 if (i386_record_floats (gdbarch, &ir,
4818 I386_SAVE_FPU_REGS))
4823 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4825 /* For fistp, fbld, fild, fbstp. */
4826 if (i386_record_floats (gdbarch, &ir,
4827 I386_SAVE_FPU_REGS))
4832 if (record_arch_list_add_mem (addr64, 2))
4841 if (i386_record_floats (gdbarch, &ir,
4842 I386_SAVE_FPU_ENV_REG_STACK))
4847 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4852 if (i386_record_floats (gdbarch, &ir,
4853 I386_SAVE_FPU_ENV_REG_STACK))
4859 if (record_arch_list_add_mem (addr64, 28))
4864 if (record_arch_list_add_mem (addr64, 14))
4870 if (record_arch_list_add_mem (addr64, 2))
4872 /* Insn fstp, fbstp. */
4873 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4878 if (record_arch_list_add_mem (addr64, 10))
4884 if (record_arch_list_add_mem (addr64, 28))
4890 if (record_arch_list_add_mem (addr64, 14))
4894 if (record_arch_list_add_mem (addr64, 80))
4897 if (i386_record_floats (gdbarch, &ir,
4898 I386_SAVE_FPU_ENV_REG_STACK))
4902 if (record_arch_list_add_mem (addr64, 8))
4905 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4910 opcode = opcode << 8 | ir.modrm;
4915 /* Opcode is an extension of modR/M byte. */
4921 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4925 if (0x0c == (ir.modrm >> 4))
4927 if ((ir.modrm & 0x0f) <= 7)
4929 if (i386_record_floats (gdbarch, &ir,
4930 I386_SAVE_FPU_REGS))
4935 if (i386_record_floats (gdbarch, &ir,
4936 I387_ST0_REGNUM (tdep)))
4938 /* If only st(0) is changing, then we have already
4940 if ((ir.modrm & 0x0f) - 0x08)
4942 if (i386_record_floats (gdbarch, &ir,
4943 I387_ST0_REGNUM (tdep) +
4944 ((ir.modrm & 0x0f) - 0x08)))
4962 if (i386_record_floats (gdbarch, &ir,
4963 I387_ST0_REGNUM (tdep)))
4981 if (i386_record_floats (gdbarch, &ir,
4982 I386_SAVE_FPU_REGS))
4986 if (i386_record_floats (gdbarch, &ir,
4987 I387_ST0_REGNUM (tdep)))
4989 if (i386_record_floats (gdbarch, &ir,
4990 I387_ST0_REGNUM (tdep) + 1))
4997 if (0xe9 == ir.modrm)
4999 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5002 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5004 if (i386_record_floats (gdbarch, &ir,
5005 I387_ST0_REGNUM (tdep)))
5007 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5009 if (i386_record_floats (gdbarch, &ir,
5010 I387_ST0_REGNUM (tdep) +
5014 else if ((ir.modrm & 0x0f) - 0x08)
5016 if (i386_record_floats (gdbarch, &ir,
5017 I387_ST0_REGNUM (tdep) +
5018 ((ir.modrm & 0x0f) - 0x08)))
5024 if (0xe3 == ir.modrm)
5026 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5029 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5031 if (i386_record_floats (gdbarch, &ir,
5032 I387_ST0_REGNUM (tdep)))
5034 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5036 if (i386_record_floats (gdbarch, &ir,
5037 I387_ST0_REGNUM (tdep) +
5041 else if ((ir.modrm & 0x0f) - 0x08)
5043 if (i386_record_floats (gdbarch, &ir,
5044 I387_ST0_REGNUM (tdep) +
5045 ((ir.modrm & 0x0f) - 0x08)))
5051 if ((0x0c == ir.modrm >> 4)
5052 || (0x0d == ir.modrm >> 4)
5053 || (0x0f == ir.modrm >> 4))
5055 if ((ir.modrm & 0x0f) <= 7)
5057 if (i386_record_floats (gdbarch, &ir,
5058 I387_ST0_REGNUM (tdep) +
5064 if (i386_record_floats (gdbarch, &ir,
5065 I387_ST0_REGNUM (tdep) +
5066 ((ir.modrm & 0x0f) - 0x08)))
5072 if (0x0c == ir.modrm >> 4)
5074 if (i386_record_floats (gdbarch, &ir,
5075 I387_FTAG_REGNUM (tdep)))
5078 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5080 if ((ir.modrm & 0x0f) <= 7)
5082 if (i386_record_floats (gdbarch, &ir,
5083 I387_ST0_REGNUM (tdep) +
5089 if (i386_record_floats (gdbarch, &ir,
5090 I386_SAVE_FPU_REGS))
5096 if ((0x0c == ir.modrm >> 4)
5097 || (0x0e == ir.modrm >> 4)
5098 || (0x0f == ir.modrm >> 4)
5099 || (0xd9 == ir.modrm))
5101 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5106 if (0xe0 == ir.modrm)
5108 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5111 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5113 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5121 case 0xa4: /* movsS */
5123 case 0xaa: /* stosS */
5125 case 0x6c: /* insS */
5127 regcache_raw_read_unsigned (ir.regcache,
5128 ir.regmap[X86_RECORD_RECX_REGNUM],
5134 if ((opcode & 1) == 0)
5137 ir.ot = ir.dflag + OT_WORD;
5138 regcache_raw_read_unsigned (ir.regcache,
5139 ir.regmap[X86_RECORD_REDI_REGNUM],
5142 regcache_raw_read_unsigned (ir.regcache,
5143 ir.regmap[X86_RECORD_ES_REGNUM],
5145 regcache_raw_read_unsigned (ir.regcache,
5146 ir.regmap[X86_RECORD_DS_REGNUM],
5148 if (ir.aflag && (es != ds))
5150 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5151 if (record_memory_query)
5155 target_terminal_ours ();
5157 Process record ignores the memory change of instruction at address %s\n\
5158 because it can't get the value of the segment register.\n\
5159 Do you want to stop the program?"),
5160 paddress (gdbarch, ir.orig_addr));
5161 target_terminal_inferior ();
5168 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5172 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5173 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5174 if (opcode == 0xa4 || opcode == 0xa5)
5175 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5176 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5177 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5181 case 0xa6: /* cmpsS */
5183 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5184 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5185 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5186 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5187 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5190 case 0xac: /* lodsS */
5192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5194 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5195 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5196 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5199 case 0xae: /* scasS */
5201 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5202 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5203 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5204 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5207 case 0x6e: /* outsS */
5209 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5210 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5211 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5212 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5215 case 0xe4: /* port I/O */
5219 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5220 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5230 case 0xc2: /* ret im */
5231 case 0xc3: /* ret */
5232 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5233 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5236 case 0xca: /* lret im */
5237 case 0xcb: /* lret */
5238 case 0xcf: /* iret */
5239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5240 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5241 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5244 case 0xe8: /* call im */
5245 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5247 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5251 case 0x9a: /* lcall im */
5252 if (ir.regmap[X86_RECORD_R8_REGNUM])
5257 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5258 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5262 case 0xe9: /* jmp im */
5263 case 0xea: /* ljmp im */
5264 case 0xeb: /* jmp Jb */
5265 case 0x70: /* jcc Jb */
5281 case 0x0f80: /* jcc Jv */
5299 case 0x0f90: /* setcc Gv */
5315 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5317 if (i386_record_modrm (&ir))
5320 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5324 if (i386_record_lea_modrm (&ir))
5329 case 0x0f40: /* cmov Gv, Ev */
5345 if (i386_record_modrm (&ir))
5348 if (ir.dflag == OT_BYTE)
5350 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5354 case 0x9c: /* pushf */
5355 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5356 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5358 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5362 case 0x9d: /* popf */
5363 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5364 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5367 case 0x9e: /* sahf */
5368 if (ir.regmap[X86_RECORD_R8_REGNUM])
5374 case 0xf5: /* cmc */
5375 case 0xf8: /* clc */
5376 case 0xf9: /* stc */
5377 case 0xfc: /* cld */
5378 case 0xfd: /* std */
5379 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5382 case 0x9f: /* lahf */
5383 if (ir.regmap[X86_RECORD_R8_REGNUM])
5388 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5389 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5392 /* bit operations */
5393 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5394 ir.ot = ir.dflag + OT_WORD;
5395 if (i386_record_modrm (&ir))
5400 opcode = opcode << 8 | ir.modrm;
5406 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5409 if (i386_record_lea_modrm (&ir))
5413 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5416 case 0x0fa3: /* bt Gv, Ev */
5417 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5420 case 0x0fab: /* bts */
5421 case 0x0fb3: /* btr */
5422 case 0x0fbb: /* btc */
5423 ir.ot = ir.dflag + OT_WORD;
5424 if (i386_record_modrm (&ir))
5427 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5431 if (i386_record_lea_modrm_addr (&ir, &addr64))
5433 regcache_raw_read_unsigned (ir.regcache,
5434 ir.regmap[ir.reg | rex_r],
5439 addr64 += ((int16_t) addr >> 4) << 4;
5442 addr64 += ((int32_t) addr >> 5) << 5;
5445 addr64 += ((int64_t) addr >> 6) << 6;
5448 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5450 if (i386_record_lea_modrm (&ir))
5453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5456 case 0x0fbc: /* bsf */
5457 case 0x0fbd: /* bsr */
5458 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5459 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5463 case 0x27: /* daa */
5464 case 0x2f: /* das */
5465 case 0x37: /* aaa */
5466 case 0x3f: /* aas */
5467 case 0xd4: /* aam */
5468 case 0xd5: /* aad */
5469 if (ir.regmap[X86_RECORD_R8_REGNUM])
5474 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5475 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5479 case 0x90: /* nop */
5480 if (prefixes & PREFIX_LOCK)
5487 case 0x9b: /* fwait */
5488 if (target_read_memory (ir.addr, &opcode8, 1))
5491 printf_unfiltered (_("Process record: error reading memory at "
5492 "addr 0x%s len = 1.\n"),
5493 paddress (gdbarch, ir.addr));
5496 opcode = (uint32_t) opcode8;
5502 case 0xcc: /* int3 */
5503 printf_unfiltered (_("Process record does not support instruction "
5510 case 0xcd: /* int */
5514 if (target_read_memory (ir.addr, &interrupt, 1))
5517 printf_unfiltered (_("Process record: error reading memory "
5518 "at addr %s len = 1.\n"),
5519 paddress (gdbarch, ir.addr));
5523 if (interrupt != 0x80
5524 || tdep->i386_intx80_record == NULL)
5526 printf_unfiltered (_("Process record does not support "
5527 "instruction int 0x%02x.\n"),
5532 ret = tdep->i386_intx80_record (ir.regcache);
5539 case 0xce: /* into */
5540 printf_unfiltered (_("Process record does not support "
5541 "instruction into.\n"));
5546 case 0xfa: /* cli */
5547 case 0xfb: /* sti */
5550 case 0x62: /* bound */
5551 printf_unfiltered (_("Process record does not support "
5552 "instruction bound.\n"));
5557 case 0x0fc8: /* bswap reg */
5565 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5568 case 0xd6: /* salc */
5569 if (ir.regmap[X86_RECORD_R8_REGNUM])
5574 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5575 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5578 case 0xe0: /* loopnz */
5579 case 0xe1: /* loopz */
5580 case 0xe2: /* loop */
5581 case 0xe3: /* jecxz */
5582 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5583 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5586 case 0x0f30: /* wrmsr */
5587 printf_unfiltered (_("Process record does not support "
5588 "instruction wrmsr.\n"));
5593 case 0x0f32: /* rdmsr */
5594 printf_unfiltered (_("Process record does not support "
5595 "instruction rdmsr.\n"));
5600 case 0x0f31: /* rdtsc */
5601 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5605 case 0x0f34: /* sysenter */
5608 if (ir.regmap[X86_RECORD_R8_REGNUM])
5613 if (tdep->i386_sysenter_record == NULL)
5615 printf_unfiltered (_("Process record does not support "
5616 "instruction sysenter.\n"));
5620 ret = tdep->i386_sysenter_record (ir.regcache);
5626 case 0x0f35: /* sysexit */
5627 printf_unfiltered (_("Process record does not support "
5628 "instruction sysexit.\n"));
5633 case 0x0f05: /* syscall */
5636 if (tdep->i386_syscall_record == NULL)
5638 printf_unfiltered (_("Process record does not support "
5639 "instruction syscall.\n"));
5643 ret = tdep->i386_syscall_record (ir.regcache);
5649 case 0x0f07: /* sysret */
5650 printf_unfiltered (_("Process record does not support "
5651 "instruction sysret.\n"));
5656 case 0x0fa2: /* cpuid */
5657 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5658 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5659 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5660 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5663 case 0xf4: /* hlt */
5664 printf_unfiltered (_("Process record does not support "
5665 "instruction hlt.\n"));
5671 if (i386_record_modrm (&ir))
5678 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5682 if (i386_record_lea_modrm (&ir))
5691 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5695 opcode = opcode << 8 | ir.modrm;
5702 if (i386_record_modrm (&ir))
5713 opcode = opcode << 8 | ir.modrm;
5716 if (ir.override >= 0)
5718 if (record_memory_query)
5722 target_terminal_ours ();
5724 Process record ignores the memory change of instruction at address %s\n\
5725 because it can't get the value of the segment register.\n\
5726 Do you want to stop the program?"),
5727 paddress (gdbarch, ir.orig_addr));
5728 target_terminal_inferior ();
5735 if (i386_record_lea_modrm_addr (&ir, &addr64))
5737 if (record_arch_list_add_mem (addr64, 2))
5740 if (ir.regmap[X86_RECORD_R8_REGNUM])
5742 if (record_arch_list_add_mem (addr64, 8))
5747 if (record_arch_list_add_mem (addr64, 4))
5758 case 0: /* monitor */
5761 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5765 opcode = opcode << 8 | ir.modrm;
5773 if (ir.override >= 0)
5775 if (record_memory_query)
5779 target_terminal_ours ();
5781 Process record ignores the memory change of instruction at address %s\n\
5782 because it can't get the value of the segment register.\n\
5783 Do you want to stop the program?"),
5784 paddress (gdbarch, ir.orig_addr));
5785 target_terminal_inferior ();
5794 if (i386_record_lea_modrm_addr (&ir, &addr64))
5796 if (record_arch_list_add_mem (addr64, 2))
5799 if (ir.regmap[X86_RECORD_R8_REGNUM])
5801 if (record_arch_list_add_mem (addr64, 8))
5806 if (record_arch_list_add_mem (addr64, 4))
5818 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5819 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5823 else if (ir.rm == 1)
5830 opcode = opcode << 8 | ir.modrm;
5837 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5843 if (i386_record_lea_modrm (&ir))
5846 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5849 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5851 case 7: /* invlpg */
5854 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5855 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5859 opcode = opcode << 8 | ir.modrm;
5864 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5868 opcode = opcode << 8 | ir.modrm;
5874 case 0x0f08: /* invd */
5875 case 0x0f09: /* wbinvd */
5878 case 0x63: /* arpl */
5879 if (i386_record_modrm (&ir))
5881 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5883 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5884 ? (ir.reg | rex_r) : ir.rm);
5888 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5889 if (i386_record_lea_modrm (&ir))
5892 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5893 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5896 case 0x0f02: /* lar */
5897 case 0x0f03: /* lsl */
5898 if (i386_record_modrm (&ir))
5900 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5901 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5905 if (i386_record_modrm (&ir))
5907 if (ir.mod == 3 && ir.reg == 3)
5910 opcode = opcode << 8 | ir.modrm;
5922 /* nop (multi byte) */
5925 case 0x0f20: /* mov reg, crN */
5926 case 0x0f22: /* mov crN, reg */
5927 if (i386_record_modrm (&ir))
5929 if ((ir.modrm & 0xc0) != 0xc0)
5932 opcode = opcode << 8 | ir.modrm;
5943 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5945 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5949 opcode = opcode << 8 | ir.modrm;
5955 case 0x0f21: /* mov reg, drN */
5956 case 0x0f23: /* mov drN, reg */
5957 if (i386_record_modrm (&ir))
5959 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5960 || ir.reg == 5 || ir.reg >= 8)
5963 opcode = opcode << 8 | ir.modrm;
5967 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5969 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5972 case 0x0f06: /* clts */
5973 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5976 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5978 case 0x0f0d: /* 3DNow! prefetch */
5981 case 0x0f0e: /* 3DNow! femms */
5982 case 0x0f77: /* emms */
5983 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5985 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5988 case 0x0f0f: /* 3DNow! data */
5989 if (i386_record_modrm (&ir))
5991 if (target_read_memory (ir.addr, &opcode8, 1))
5993 printf_unfiltered (_("Process record: error reading memory at "
5994 "addr %s len = 1.\n"),
5995 paddress (gdbarch, ir.addr));
6001 case 0x0c: /* 3DNow! pi2fw */
6002 case 0x0d: /* 3DNow! pi2fd */
6003 case 0x1c: /* 3DNow! pf2iw */
6004 case 0x1d: /* 3DNow! pf2id */
6005 case 0x8a: /* 3DNow! pfnacc */
6006 case 0x8e: /* 3DNow! pfpnacc */
6007 case 0x90: /* 3DNow! pfcmpge */
6008 case 0x94: /* 3DNow! pfmin */
6009 case 0x96: /* 3DNow! pfrcp */
6010 case 0x97: /* 3DNow! pfrsqrt */
6011 case 0x9a: /* 3DNow! pfsub */
6012 case 0x9e: /* 3DNow! pfadd */
6013 case 0xa0: /* 3DNow! pfcmpgt */
6014 case 0xa4: /* 3DNow! pfmax */
6015 case 0xa6: /* 3DNow! pfrcpit1 */
6016 case 0xa7: /* 3DNow! pfrsqit1 */
6017 case 0xaa: /* 3DNow! pfsubr */
6018 case 0xae: /* 3DNow! pfacc */
6019 case 0xb0: /* 3DNow! pfcmpeq */
6020 case 0xb4: /* 3DNow! pfmul */
6021 case 0xb6: /* 3DNow! pfrcpit2 */
6022 case 0xb7: /* 3DNow! pmulhrw */
6023 case 0xbb: /* 3DNow! pswapd */
6024 case 0xbf: /* 3DNow! pavgusb */
6025 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6026 goto no_support_3dnow_data;
6027 record_arch_list_add_reg (ir.regcache, ir.reg);
6031 no_support_3dnow_data:
6032 opcode = (opcode << 8) | opcode8;
6038 case 0x0faa: /* rsm */
6039 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6040 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6041 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6042 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6043 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6044 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6045 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6046 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6047 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6051 if (i386_record_modrm (&ir))
6055 case 0: /* fxsave */
6059 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6060 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6062 if (record_arch_list_add_mem (tmpu64, 512))
6067 case 1: /* fxrstor */
6071 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6073 for (i = I387_MM0_REGNUM (tdep);
6074 i386_mmx_regnum_p (gdbarch, i); i++)
6075 record_arch_list_add_reg (ir.regcache, i);
6077 for (i = I387_XMM0_REGNUM (tdep);
6078 i386_xmm_regnum_p (gdbarch, i); i++)
6079 record_arch_list_add_reg (ir.regcache, i);
6081 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6082 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6084 for (i = I387_ST0_REGNUM (tdep);
6085 i386_fp_regnum_p (gdbarch, i); i++)
6086 record_arch_list_add_reg (ir.regcache, i);
6088 for (i = I387_FCTRL_REGNUM (tdep);
6089 i386_fpc_regnum_p (gdbarch, i); i++)
6090 record_arch_list_add_reg (ir.regcache, i);
6094 case 2: /* ldmxcsr */
6095 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6097 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6100 case 3: /* stmxcsr */
6102 if (i386_record_lea_modrm (&ir))
6106 case 5: /* lfence */
6107 case 6: /* mfence */
6108 case 7: /* sfence clflush */
6112 opcode = (opcode << 8) | ir.modrm;
6118 case 0x0fc3: /* movnti */
6119 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6120 if (i386_record_modrm (&ir))
6125 if (i386_record_lea_modrm (&ir))
6129 /* Add prefix to opcode. */
6256 reswitch_prefix_add:
6264 if (target_read_memory (ir.addr, &opcode8, 1))
6266 printf_unfiltered (_("Process record: error reading memory at "
6267 "addr %s len = 1.\n"),
6268 paddress (gdbarch, ir.addr));
6272 opcode = (uint32_t) opcode8 | opcode << 8;
6273 goto reswitch_prefix_add;
6276 case 0x0f10: /* movups */
6277 case 0x660f10: /* movupd */
6278 case 0xf30f10: /* movss */
6279 case 0xf20f10: /* movsd */
6280 case 0x0f12: /* movlps */
6281 case 0x660f12: /* movlpd */
6282 case 0xf30f12: /* movsldup */
6283 case 0xf20f12: /* movddup */
6284 case 0x0f14: /* unpcklps */
6285 case 0x660f14: /* unpcklpd */
6286 case 0x0f15: /* unpckhps */
6287 case 0x660f15: /* unpckhpd */
6288 case 0x0f16: /* movhps */
6289 case 0x660f16: /* movhpd */
6290 case 0xf30f16: /* movshdup */
6291 case 0x0f28: /* movaps */
6292 case 0x660f28: /* movapd */
6293 case 0x0f2a: /* cvtpi2ps */
6294 case 0x660f2a: /* cvtpi2pd */
6295 case 0xf30f2a: /* cvtsi2ss */
6296 case 0xf20f2a: /* cvtsi2sd */
6297 case 0x0f2c: /* cvttps2pi */
6298 case 0x660f2c: /* cvttpd2pi */
6299 case 0x0f2d: /* cvtps2pi */
6300 case 0x660f2d: /* cvtpd2pi */
6301 case 0x660f3800: /* pshufb */
6302 case 0x660f3801: /* phaddw */
6303 case 0x660f3802: /* phaddd */
6304 case 0x660f3803: /* phaddsw */
6305 case 0x660f3804: /* pmaddubsw */
6306 case 0x660f3805: /* phsubw */
6307 case 0x660f3806: /* phsubd */
6308 case 0x660f3807: /* phsubsw */
6309 case 0x660f3808: /* psignb */
6310 case 0x660f3809: /* psignw */
6311 case 0x660f380a: /* psignd */
6312 case 0x660f380b: /* pmulhrsw */
6313 case 0x660f3810: /* pblendvb */
6314 case 0x660f3814: /* blendvps */
6315 case 0x660f3815: /* blendvpd */
6316 case 0x660f381c: /* pabsb */
6317 case 0x660f381d: /* pabsw */
6318 case 0x660f381e: /* pabsd */
6319 case 0x660f3820: /* pmovsxbw */
6320 case 0x660f3821: /* pmovsxbd */
6321 case 0x660f3822: /* pmovsxbq */
6322 case 0x660f3823: /* pmovsxwd */
6323 case 0x660f3824: /* pmovsxwq */
6324 case 0x660f3825: /* pmovsxdq */
6325 case 0x660f3828: /* pmuldq */
6326 case 0x660f3829: /* pcmpeqq */
6327 case 0x660f382a: /* movntdqa */
6328 case 0x660f3a08: /* roundps */
6329 case 0x660f3a09: /* roundpd */
6330 case 0x660f3a0a: /* roundss */
6331 case 0x660f3a0b: /* roundsd */
6332 case 0x660f3a0c: /* blendps */
6333 case 0x660f3a0d: /* blendpd */
6334 case 0x660f3a0e: /* pblendw */
6335 case 0x660f3a0f: /* palignr */
6336 case 0x660f3a20: /* pinsrb */
6337 case 0x660f3a21: /* insertps */
6338 case 0x660f3a22: /* pinsrd pinsrq */
6339 case 0x660f3a40: /* dpps */
6340 case 0x660f3a41: /* dppd */
6341 case 0x660f3a42: /* mpsadbw */
6342 case 0x660f3a60: /* pcmpestrm */
6343 case 0x660f3a61: /* pcmpestri */
6344 case 0x660f3a62: /* pcmpistrm */
6345 case 0x660f3a63: /* pcmpistri */
6346 case 0x0f51: /* sqrtps */
6347 case 0x660f51: /* sqrtpd */
6348 case 0xf20f51: /* sqrtsd */
6349 case 0xf30f51: /* sqrtss */
6350 case 0x0f52: /* rsqrtps */
6351 case 0xf30f52: /* rsqrtss */
6352 case 0x0f53: /* rcpps */
6353 case 0xf30f53: /* rcpss */
6354 case 0x0f54: /* andps */
6355 case 0x660f54: /* andpd */
6356 case 0x0f55: /* andnps */
6357 case 0x660f55: /* andnpd */
6358 case 0x0f56: /* orps */
6359 case 0x660f56: /* orpd */
6360 case 0x0f57: /* xorps */
6361 case 0x660f57: /* xorpd */
6362 case 0x0f58: /* addps */
6363 case 0x660f58: /* addpd */
6364 case 0xf20f58: /* addsd */
6365 case 0xf30f58: /* addss */
6366 case 0x0f59: /* mulps */
6367 case 0x660f59: /* mulpd */
6368 case 0xf20f59: /* mulsd */
6369 case 0xf30f59: /* mulss */
6370 case 0x0f5a: /* cvtps2pd */
6371 case 0x660f5a: /* cvtpd2ps */
6372 case 0xf20f5a: /* cvtsd2ss */
6373 case 0xf30f5a: /* cvtss2sd */
6374 case 0x0f5b: /* cvtdq2ps */
6375 case 0x660f5b: /* cvtps2dq */
6376 case 0xf30f5b: /* cvttps2dq */
6377 case 0x0f5c: /* subps */
6378 case 0x660f5c: /* subpd */
6379 case 0xf20f5c: /* subsd */
6380 case 0xf30f5c: /* subss */
6381 case 0x0f5d: /* minps */
6382 case 0x660f5d: /* minpd */
6383 case 0xf20f5d: /* minsd */
6384 case 0xf30f5d: /* minss */
6385 case 0x0f5e: /* divps */
6386 case 0x660f5e: /* divpd */
6387 case 0xf20f5e: /* divsd */
6388 case 0xf30f5e: /* divss */
6389 case 0x0f5f: /* maxps */
6390 case 0x660f5f: /* maxpd */
6391 case 0xf20f5f: /* maxsd */
6392 case 0xf30f5f: /* maxss */
6393 case 0x660f60: /* punpcklbw */
6394 case 0x660f61: /* punpcklwd */
6395 case 0x660f62: /* punpckldq */
6396 case 0x660f63: /* packsswb */
6397 case 0x660f64: /* pcmpgtb */
6398 case 0x660f65: /* pcmpgtw */
6399 case 0x660f66: /* pcmpgtd */
6400 case 0x660f67: /* packuswb */
6401 case 0x660f68: /* punpckhbw */
6402 case 0x660f69: /* punpckhwd */
6403 case 0x660f6a: /* punpckhdq */
6404 case 0x660f6b: /* packssdw */
6405 case 0x660f6c: /* punpcklqdq */
6406 case 0x660f6d: /* punpckhqdq */
6407 case 0x660f6e: /* movd */
6408 case 0x660f6f: /* movdqa */
6409 case 0xf30f6f: /* movdqu */
6410 case 0x660f70: /* pshufd */
6411 case 0xf20f70: /* pshuflw */
6412 case 0xf30f70: /* pshufhw */
6413 case 0x660f74: /* pcmpeqb */
6414 case 0x660f75: /* pcmpeqw */
6415 case 0x660f76: /* pcmpeqd */
6416 case 0x660f7c: /* haddpd */
6417 case 0xf20f7c: /* haddps */
6418 case 0x660f7d: /* hsubpd */
6419 case 0xf20f7d: /* hsubps */
6420 case 0xf30f7e: /* movq */
6421 case 0x0fc2: /* cmpps */
6422 case 0x660fc2: /* cmppd */
6423 case 0xf20fc2: /* cmpsd */
6424 case 0xf30fc2: /* cmpss */
6425 case 0x660fc4: /* pinsrw */
6426 case 0x0fc6: /* shufps */
6427 case 0x660fc6: /* shufpd */
6428 case 0x660fd0: /* addsubpd */
6429 case 0xf20fd0: /* addsubps */
6430 case 0x660fd1: /* psrlw */
6431 case 0x660fd2: /* psrld */
6432 case 0x660fd3: /* psrlq */
6433 case 0x660fd4: /* paddq */
6434 case 0x660fd5: /* pmullw */
6435 case 0xf30fd6: /* movq2dq */
6436 case 0x660fd8: /* psubusb */
6437 case 0x660fd9: /* psubusw */
6438 case 0x660fda: /* pminub */
6439 case 0x660fdb: /* pand */
6440 case 0x660fdc: /* paddusb */
6441 case 0x660fdd: /* paddusw */
6442 case 0x660fde: /* pmaxub */
6443 case 0x660fdf: /* pandn */
6444 case 0x660fe0: /* pavgb */
6445 case 0x660fe1: /* psraw */
6446 case 0x660fe2: /* psrad */
6447 case 0x660fe3: /* pavgw */
6448 case 0x660fe4: /* pmulhuw */
6449 case 0x660fe5: /* pmulhw */
6450 case 0x660fe6: /* cvttpd2dq */
6451 case 0xf20fe6: /* cvtpd2dq */
6452 case 0xf30fe6: /* cvtdq2pd */
6453 case 0x660fe8: /* psubsb */
6454 case 0x660fe9: /* psubsw */
6455 case 0x660fea: /* pminsw */
6456 case 0x660feb: /* por */
6457 case 0x660fec: /* paddsb */
6458 case 0x660fed: /* paddsw */
6459 case 0x660fee: /* pmaxsw */
6460 case 0x660fef: /* pxor */
6461 case 0xf20ff0: /* lddqu */
6462 case 0x660ff1: /* psllw */
6463 case 0x660ff2: /* pslld */
6464 case 0x660ff3: /* psllq */
6465 case 0x660ff4: /* pmuludq */
6466 case 0x660ff5: /* pmaddwd */
6467 case 0x660ff6: /* psadbw */
6468 case 0x660ff8: /* psubb */
6469 case 0x660ff9: /* psubw */
6470 case 0x660ffa: /* psubd */
6471 case 0x660ffb: /* psubq */
6472 case 0x660ffc: /* paddb */
6473 case 0x660ffd: /* paddw */
6474 case 0x660ffe: /* paddd */
6475 if (i386_record_modrm (&ir))
6478 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6480 record_arch_list_add_reg (ir.regcache,
6481 I387_XMM0_REGNUM (tdep) + ir.reg);
6482 if ((opcode & 0xfffffffc) == 0x660f3a60)
6483 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6486 case 0x0f11: /* movups */
6487 case 0x660f11: /* movupd */
6488 case 0xf30f11: /* movss */
6489 case 0xf20f11: /* movsd */
6490 case 0x0f13: /* movlps */
6491 case 0x660f13: /* movlpd */
6492 case 0x0f17: /* movhps */
6493 case 0x660f17: /* movhpd */
6494 case 0x0f29: /* movaps */
6495 case 0x660f29: /* movapd */
6496 case 0x660f3a14: /* pextrb */
6497 case 0x660f3a15: /* pextrw */
6498 case 0x660f3a16: /* pextrd pextrq */
6499 case 0x660f3a17: /* extractps */
6500 case 0x660f7f: /* movdqa */
6501 case 0xf30f7f: /* movdqu */
6502 if (i386_record_modrm (&ir))
6506 if (opcode == 0x0f13 || opcode == 0x660f13
6507 || opcode == 0x0f17 || opcode == 0x660f17)
6510 if (!i386_xmm_regnum_p (gdbarch,
6511 I387_XMM0_REGNUM (tdep) + ir.rm))
6513 record_arch_list_add_reg (ir.regcache,
6514 I387_XMM0_REGNUM (tdep) + ir.rm);
6536 if (i386_record_lea_modrm (&ir))
6541 case 0x0f2b: /* movntps */
6542 case 0x660f2b: /* movntpd */
6543 case 0x0fe7: /* movntq */
6544 case 0x660fe7: /* movntdq */
6547 if (opcode == 0x0fe7)
6551 if (i386_record_lea_modrm (&ir))
6555 case 0xf30f2c: /* cvttss2si */
6556 case 0xf20f2c: /* cvttsd2si */
6557 case 0xf30f2d: /* cvtss2si */
6558 case 0xf20f2d: /* cvtsd2si */
6559 case 0xf20f38f0: /* crc32 */
6560 case 0xf20f38f1: /* crc32 */
6561 case 0x0f50: /* movmskps */
6562 case 0x660f50: /* movmskpd */
6563 case 0x0fc5: /* pextrw */
6564 case 0x660fc5: /* pextrw */
6565 case 0x0fd7: /* pmovmskb */
6566 case 0x660fd7: /* pmovmskb */
6567 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6570 case 0x0f3800: /* pshufb */
6571 case 0x0f3801: /* phaddw */
6572 case 0x0f3802: /* phaddd */
6573 case 0x0f3803: /* phaddsw */
6574 case 0x0f3804: /* pmaddubsw */
6575 case 0x0f3805: /* phsubw */
6576 case 0x0f3806: /* phsubd */
6577 case 0x0f3807: /* phsubsw */
6578 case 0x0f3808: /* psignb */
6579 case 0x0f3809: /* psignw */
6580 case 0x0f380a: /* psignd */
6581 case 0x0f380b: /* pmulhrsw */
6582 case 0x0f381c: /* pabsb */
6583 case 0x0f381d: /* pabsw */
6584 case 0x0f381e: /* pabsd */
6585 case 0x0f382b: /* packusdw */
6586 case 0x0f3830: /* pmovzxbw */
6587 case 0x0f3831: /* pmovzxbd */
6588 case 0x0f3832: /* pmovzxbq */
6589 case 0x0f3833: /* pmovzxwd */
6590 case 0x0f3834: /* pmovzxwq */
6591 case 0x0f3835: /* pmovzxdq */
6592 case 0x0f3837: /* pcmpgtq */
6593 case 0x0f3838: /* pminsb */
6594 case 0x0f3839: /* pminsd */
6595 case 0x0f383a: /* pminuw */
6596 case 0x0f383b: /* pminud */
6597 case 0x0f383c: /* pmaxsb */
6598 case 0x0f383d: /* pmaxsd */
6599 case 0x0f383e: /* pmaxuw */
6600 case 0x0f383f: /* pmaxud */
6601 case 0x0f3840: /* pmulld */
6602 case 0x0f3841: /* phminposuw */
6603 case 0x0f3a0f: /* palignr */
6604 case 0x0f60: /* punpcklbw */
6605 case 0x0f61: /* punpcklwd */
6606 case 0x0f62: /* punpckldq */
6607 case 0x0f63: /* packsswb */
6608 case 0x0f64: /* pcmpgtb */
6609 case 0x0f65: /* pcmpgtw */
6610 case 0x0f66: /* pcmpgtd */
6611 case 0x0f67: /* packuswb */
6612 case 0x0f68: /* punpckhbw */
6613 case 0x0f69: /* punpckhwd */
6614 case 0x0f6a: /* punpckhdq */
6615 case 0x0f6b: /* packssdw */
6616 case 0x0f6e: /* movd */
6617 case 0x0f6f: /* movq */
6618 case 0x0f70: /* pshufw */
6619 case 0x0f74: /* pcmpeqb */
6620 case 0x0f75: /* pcmpeqw */
6621 case 0x0f76: /* pcmpeqd */
6622 case 0x0fc4: /* pinsrw */
6623 case 0x0fd1: /* psrlw */
6624 case 0x0fd2: /* psrld */
6625 case 0x0fd3: /* psrlq */
6626 case 0x0fd4: /* paddq */
6627 case 0x0fd5: /* pmullw */
6628 case 0xf20fd6: /* movdq2q */
6629 case 0x0fd8: /* psubusb */
6630 case 0x0fd9: /* psubusw */
6631 case 0x0fda: /* pminub */
6632 case 0x0fdb: /* pand */
6633 case 0x0fdc: /* paddusb */
6634 case 0x0fdd: /* paddusw */
6635 case 0x0fde: /* pmaxub */
6636 case 0x0fdf: /* pandn */
6637 case 0x0fe0: /* pavgb */
6638 case 0x0fe1: /* psraw */
6639 case 0x0fe2: /* psrad */
6640 case 0x0fe3: /* pavgw */
6641 case 0x0fe4: /* pmulhuw */
6642 case 0x0fe5: /* pmulhw */
6643 case 0x0fe8: /* psubsb */
6644 case 0x0fe9: /* psubsw */
6645 case 0x0fea: /* pminsw */
6646 case 0x0feb: /* por */
6647 case 0x0fec: /* paddsb */
6648 case 0x0fed: /* paddsw */
6649 case 0x0fee: /* pmaxsw */
6650 case 0x0fef: /* pxor */
6651 case 0x0ff1: /* psllw */
6652 case 0x0ff2: /* pslld */
6653 case 0x0ff3: /* psllq */
6654 case 0x0ff4: /* pmuludq */
6655 case 0x0ff5: /* pmaddwd */
6656 case 0x0ff6: /* psadbw */
6657 case 0x0ff8: /* psubb */
6658 case 0x0ff9: /* psubw */
6659 case 0x0ffa: /* psubd */
6660 case 0x0ffb: /* psubq */
6661 case 0x0ffc: /* paddb */
6662 case 0x0ffd: /* paddw */
6663 case 0x0ffe: /* paddd */
6664 if (i386_record_modrm (&ir))
6666 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6668 record_arch_list_add_reg (ir.regcache,
6669 I387_MM0_REGNUM (tdep) + ir.reg);
6672 case 0x0f71: /* psllw */
6673 case 0x0f72: /* pslld */
6674 case 0x0f73: /* psllq */
6675 if (i386_record_modrm (&ir))
6677 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6679 record_arch_list_add_reg (ir.regcache,
6680 I387_MM0_REGNUM (tdep) + ir.rm);
6683 case 0x660f71: /* psllw */
6684 case 0x660f72: /* pslld */
6685 case 0x660f73: /* psllq */
6686 if (i386_record_modrm (&ir))
6689 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6691 record_arch_list_add_reg (ir.regcache,
6692 I387_XMM0_REGNUM (tdep) + ir.rm);
6695 case 0x0f7e: /* movd */
6696 case 0x660f7e: /* movd */
6697 if (i386_record_modrm (&ir))
6700 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6707 if (i386_record_lea_modrm (&ir))
6712 case 0x0f7f: /* movq */
6713 if (i386_record_modrm (&ir))
6717 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6719 record_arch_list_add_reg (ir.regcache,
6720 I387_MM0_REGNUM (tdep) + ir.rm);
6725 if (i386_record_lea_modrm (&ir))
6730 case 0xf30fb8: /* popcnt */
6731 if (i386_record_modrm (&ir))
6733 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6734 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6737 case 0x660fd6: /* movq */
6738 if (i386_record_modrm (&ir))
6743 if (!i386_xmm_regnum_p (gdbarch,
6744 I387_XMM0_REGNUM (tdep) + ir.rm))
6746 record_arch_list_add_reg (ir.regcache,
6747 I387_XMM0_REGNUM (tdep) + ir.rm);
6752 if (i386_record_lea_modrm (&ir))
6757 case 0x660f3817: /* ptest */
6758 case 0x0f2e: /* ucomiss */
6759 case 0x660f2e: /* ucomisd */
6760 case 0x0f2f: /* comiss */
6761 case 0x660f2f: /* comisd */
6762 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6765 case 0x0ff7: /* maskmovq */
6766 regcache_raw_read_unsigned (ir.regcache,
6767 ir.regmap[X86_RECORD_REDI_REGNUM],
6769 if (record_arch_list_add_mem (addr, 64))
6773 case 0x660ff7: /* maskmovdqu */
6774 regcache_raw_read_unsigned (ir.regcache,
6775 ir.regmap[X86_RECORD_REDI_REGNUM],
6777 if (record_arch_list_add_mem (addr, 128))
6792 /* In the future, maybe still need to deal with need_dasm. */
6793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
6794 if (record_arch_list_add_end ())
6800 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6801 "at address %s.\n"),
6802 (unsigned int) (opcode),
6803 paddress (gdbarch, ir.orig_addr));
6807 static const int i386_record_regmap[] =
6809 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6810 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6811 0, 0, 0, 0, 0, 0, 0, 0,
6812 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6813 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6816 /* Check that the given address appears suitable for a fast
6817 tracepoint, which on x86 means that we need an instruction of at
6818 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6819 jump and not have to worry about program jumps to an address in the
6820 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6821 of instruction to replace, and 0 if not, plus an explanatory
6825 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6826 CORE_ADDR addr, int *isize, char **msg)
6829 static struct ui_file *gdb_null = NULL;
6831 /* This is based on the target agent using a 4-byte relative jump.
6832 Alternate future possibilities include 8-byte offset for x86-84,
6833 or 3-byte jumps if the program has trampoline space close by. */
6836 /* Dummy file descriptor for the disassembler. */
6838 gdb_null = ui_file_new ();
6840 /* Check for fit. */
6841 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6844 /* Return a bit of target-specific detail to add to the caller's
6845 generic failure message. */
6847 *msg = xstrprintf (_("; instruction is only %d bytes long, "
6848 "need at least %d bytes for the jump"),
6861 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6862 struct tdesc_arch_data *tdesc_data)
6864 const struct target_desc *tdesc = tdep->tdesc;
6865 const struct tdesc_feature *feature_core;
6866 const struct tdesc_feature *feature_sse, *feature_avx;
6867 int i, num_regs, valid_p;
6869 if (! tdesc_has_registers (tdesc))
6872 /* Get core registers. */
6873 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
6874 if (feature_core == NULL)
6877 /* Get SSE registers. */
6878 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
6880 /* Try AVX registers. */
6881 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6885 /* The XCR0 bits. */
6888 /* AVX register description requires SSE register description. */
6892 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6894 /* It may have been set by OSABI initialization function. */
6895 if (tdep->num_ymm_regs == 0)
6897 tdep->ymmh_register_names = i386_ymmh_names;
6898 tdep->num_ymm_regs = 8;
6899 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6902 for (i = 0; i < tdep->num_ymm_regs; i++)
6903 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6904 tdep->ymm0h_regnum + i,
6905 tdep->ymmh_register_names[i]);
6907 else if (feature_sse)
6908 tdep->xcr0 = I386_XSTATE_SSE_MASK;
6911 tdep->xcr0 = I386_XSTATE_X87_MASK;
6912 tdep->num_xmm_regs = 0;
6915 num_regs = tdep->num_core_regs;
6916 for (i = 0; i < num_regs; i++)
6917 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6918 tdep->register_names[i]);
6922 /* Need to include %mxcsr, so add one. */
6923 num_regs += tdep->num_xmm_regs + 1;
6924 for (; i < num_regs; i++)
6925 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6926 tdep->register_names[i]);
6933 static struct gdbarch *
6934 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6936 struct gdbarch_tdep *tdep;
6937 struct gdbarch *gdbarch;
6938 struct tdesc_arch_data *tdesc_data;
6939 const struct target_desc *tdesc;
6943 /* If there is already a candidate, use it. */
6944 arches = gdbarch_list_lookup_by_info (arches, &info);
6946 return arches->gdbarch;
6948 /* Allocate space for the new architecture. */
6949 tdep = XCALLOC (1, struct gdbarch_tdep);
6950 gdbarch = gdbarch_alloc (&info, tdep);
6952 /* General-purpose registers. */
6953 tdep->gregset = NULL;
6954 tdep->gregset_reg_offset = NULL;
6955 tdep->gregset_num_regs = I386_NUM_GREGS;
6956 tdep->sizeof_gregset = 0;
6958 /* Floating-point registers. */
6959 tdep->fpregset = NULL;
6960 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6962 tdep->xstateregset = NULL;
6964 /* The default settings include the FPU registers, the MMX registers
6965 and the SSE registers. This can be overridden for a specific ABI
6966 by adjusting the members `st0_regnum', `mm0_regnum' and
6967 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
6968 will show up in the output of "info all-registers". */
6970 tdep->st0_regnum = I386_ST0_REGNUM;
6972 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
6973 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6975 tdep->jb_pc_offset = -1;
6976 tdep->struct_return = pcc_struct_return;
6977 tdep->sigtramp_start = 0;
6978 tdep->sigtramp_end = 0;
6979 tdep->sigtramp_p = i386_sigtramp_p;
6980 tdep->sigcontext_addr = NULL;
6981 tdep->sc_reg_offset = NULL;
6982 tdep->sc_pc_offset = -1;
6983 tdep->sc_sp_offset = -1;
6985 tdep->xsave_xcr0_offset = -1;
6987 tdep->record_regmap = i386_record_regmap;
6989 /* The format used for `long double' on almost all i386 targets is
6990 the i387 extended floating-point format. In fact, of all targets
6991 in the GCC 2.95 tree, only OSF/1 does it different, and insists
6992 on having a `long double' that's not `long' at all. */
6993 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6995 /* Although the i387 extended floating-point has only 80 significant
6996 bits, a `long double' actually takes up 96, probably to enforce
6998 set_gdbarch_long_double_bit (gdbarch, 96);
7000 /* Register numbers of various important registers. */
7001 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7002 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7003 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7004 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7006 /* NOTE: kettenis/20040418: GCC does have two possible register
7007 numbering schemes on the i386: dbx and SVR4. These schemes
7008 differ in how they number %ebp, %esp, %eflags, and the
7009 floating-point registers, and are implemented by the arrays
7010 dbx_register_map[] and svr4_dbx_register_map in
7011 gcc/config/i386.c. GCC also defines a third numbering scheme in
7012 gcc/config/i386.c, which it designates as the "default" register
7013 map used in 64bit mode. This last register numbering scheme is
7014 implemented in dbx64_register_map, and is used for AMD64; see
7017 Currently, each GCC i386 target always uses the same register
7018 numbering scheme across all its supported debugging formats
7019 i.e. SDB (COFF), stabs and DWARF 2. This is because
7020 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7021 DBX_REGISTER_NUMBER macro which is defined by each target's
7022 respective config header in a manner independent of the requested
7023 output debugging format.
7025 This does not match the arrangement below, which presumes that
7026 the SDB and stabs numbering schemes differ from the DWARF and
7027 DWARF 2 ones. The reason for this arrangement is that it is
7028 likely to get the numbering scheme for the target's
7029 default/native debug format right. For targets where GCC is the
7030 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7031 targets where the native toolchain uses a different numbering
7032 scheme for a particular debug format (stabs-in-ELF on Solaris)
7033 the defaults below will have to be overridden, like
7034 i386_elf_init_abi() does. */
7036 /* Use the dbx register numbering scheme for stabs and COFF. */
7037 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7038 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7040 /* Use the SVR4 register numbering scheme for DWARF 2. */
7041 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7043 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7044 be in use on any of the supported i386 targets. */
7046 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7048 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7050 /* Call dummy code. */
7051 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7053 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7054 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7055 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7057 set_gdbarch_return_value (gdbarch, i386_return_value);
7059 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7061 /* Stack grows downward. */
7062 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7064 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7065 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7066 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7068 set_gdbarch_frame_args_skip (gdbarch, 8);
7070 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7072 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7074 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7076 /* Add the i386 register groups. */
7077 i386_add_reggroups (gdbarch);
7078 tdep->register_reggroup_p = i386_register_reggroup_p;
7080 /* Helper for function argument information. */
7081 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7083 /* Hook the function epilogue frame unwinder. This unwinder is
7084 appended to the list first, so that it supercedes the Dwarf
7085 unwinder in function epilogues (where the Dwarf unwinder
7086 currently fails). */
7087 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7089 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7090 to the list before the prologue-based unwinders, so that Dwarf
7091 CFI info will be used if it is available. */
7092 dwarf2_append_unwinders (gdbarch);
7094 frame_base_set_default (gdbarch, &i386_frame_base);
7096 /* Pseudo registers may be changed by amd64_init_abi. */
7097 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7098 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7100 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7101 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7103 /* Override the normal target description method to make the AVX
7104 upper halves anonymous. */
7105 set_gdbarch_register_name (gdbarch, i386_register_name);
7107 /* Even though the default ABI only includes general-purpose registers,
7108 floating-point registers and the SSE registers, we have to leave a
7109 gap for the upper AVX registers. */
7110 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7112 /* Get the x86 target description from INFO. */
7113 tdesc = info.target_desc;
7114 if (! tdesc_has_registers (tdesc))
7116 tdep->tdesc = tdesc;
7118 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7119 tdep->register_names = i386_register_names;
7121 /* No upper YMM registers. */
7122 tdep->ymmh_register_names = NULL;
7123 tdep->ymm0h_regnum = -1;
7125 tdep->num_byte_regs = 8;
7126 tdep->num_word_regs = 8;
7127 tdep->num_dword_regs = 0;
7128 tdep->num_mmx_regs = 8;
7129 tdep->num_ymm_regs = 0;
7131 tdesc_data = tdesc_data_alloc ();
7133 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7135 /* Hook in ABI-specific overrides, if they have been registered. */
7136 info.tdep_info = (void *) tdesc_data;
7137 gdbarch_init_osabi (info, gdbarch);
7139 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7141 tdesc_data_cleanup (tdesc_data);
7143 gdbarch_free (gdbarch);
7147 /* Wire in pseudo registers. Number of pseudo registers may be
7149 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7150 + tdep->num_word_regs
7151 + tdep->num_dword_regs
7152 + tdep->num_mmx_regs
7153 + tdep->num_ymm_regs));
7155 /* Target description may be changed. */
7156 tdesc = tdep->tdesc;
7158 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7160 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7161 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7163 /* Make %al the first pseudo-register. */
7164 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7165 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7167 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7168 if (tdep->num_dword_regs)
7170 /* Support dword pseudo-register if it hasn't been disabled. */
7171 tdep->eax_regnum = ymm0_regnum;
7172 ymm0_regnum += tdep->num_dword_regs;
7175 tdep->eax_regnum = -1;
7177 mm0_regnum = ymm0_regnum;
7178 if (tdep->num_ymm_regs)
7180 /* Support YMM pseudo-register if it is available. */
7181 tdep->ymm0_regnum = ymm0_regnum;
7182 mm0_regnum += tdep->num_ymm_regs;
7185 tdep->ymm0_regnum = -1;
7187 if (tdep->num_mmx_regs != 0)
7189 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7190 tdep->mm0_regnum = mm0_regnum;
7193 tdep->mm0_regnum = -1;
7195 /* Hook in the legacy prologue-based unwinders last (fallback). */
7196 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7197 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7199 /* If we have a register mapping, enable the generic core file
7200 support, unless it has already been enabled. */
7201 if (tdep->gregset_reg_offset
7202 && !gdbarch_regset_from_core_section_p (gdbarch))
7203 set_gdbarch_regset_from_core_section (gdbarch,
7204 i386_regset_from_core_section);
7206 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7207 i386_skip_permanent_breakpoint);
7209 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7210 i386_fast_tracepoint_valid_at);
7215 static enum gdb_osabi
7216 i386_coff_osabi_sniffer (bfd *abfd)
7218 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7219 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7220 return GDB_OSABI_GO32;
7222 return GDB_OSABI_UNKNOWN;
7226 /* Provide a prototype to silence -Wmissing-prototypes. */
7227 void _initialize_i386_tdep (void);
7230 _initialize_i386_tdep (void)
7232 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7234 /* Add the variable that controls the disassembly flavor. */
7235 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7236 &disassembly_flavor, _("\
7237 Set the disassembly flavor."), _("\
7238 Show the disassembly flavor."), _("\
7239 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7241 NULL, /* FIXME: i18n: */
7242 &setlist, &showlist);
7244 /* Add the variable that controls the convention for returning
7246 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7247 &struct_convention, _("\
7248 Set the convention for returning small structs."), _("\
7249 Show the convention for returning small structs."), _("\
7250 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7253 NULL, /* FIXME: i18n: */
7254 &setlist, &showlist);
7256 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7257 i386_coff_osabi_sniffer);
7259 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7260 i386_svr4_init_abi);
7261 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7262 i386_go32_init_abi);
7264 /* Initialize the i386-specific register groups. */
7265 i386_init_reggroups ();
7267 /* Initialize the standard target descriptions. */
7268 initialize_tdesc_i386 ();
7269 initialize_tdesc_i386_mmx ();
7270 initialize_tdesc_i386_avx ();
7272 /* Tell remote stub that we support XML target description. */
7273 register_remote_support_xml ("i386");