1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
37 #include "reggroups.h"
42 #include "target-float.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
70 static const char *i386_register_names[] =
72 "eax", "ecx", "edx", "ebx",
73 "esp", "ebp", "esi", "edi",
74 "eip", "eflags", "cs", "ss",
75 "ds", "es", "fs", "gs",
76 "st0", "st1", "st2", "st3",
77 "st4", "st5", "st6", "st7",
78 "fctrl", "fstat", "ftag", "fiseg",
79 "fioff", "foseg", "fooff", "fop",
80 "xmm0", "xmm1", "xmm2", "xmm3",
81 "xmm4", "xmm5", "xmm6", "xmm7",
85 static const char *i386_zmm_names[] =
87 "zmm0", "zmm1", "zmm2", "zmm3",
88 "zmm4", "zmm5", "zmm6", "zmm7"
91 static const char *i386_zmmh_names[] =
93 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
94 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97 static const char *i386_k_names[] =
99 "k0", "k1", "k2", "k3",
100 "k4", "k5", "k6", "k7"
103 static const char *i386_ymm_names[] =
105 "ymm0", "ymm1", "ymm2", "ymm3",
106 "ymm4", "ymm5", "ymm6", "ymm7",
109 static const char *i386_ymmh_names[] =
111 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
112 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115 static const char *i386_mpx_names[] =
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120 static const char* i386_pkeys_names[] =
125 /* Register names for MPX pseudo-registers. */
127 static const char *i386_bnd_names[] =
129 "bnd0", "bnd1", "bnd2", "bnd3"
132 /* Register names for MMX pseudo-registers. */
134 static const char *i386_mmx_names[] =
136 "mm0", "mm1", "mm2", "mm3",
137 "mm4", "mm5", "mm6", "mm7"
140 /* Register names for byte pseudo-registers. */
142 static const char *i386_byte_names[] =
144 "al", "cl", "dl", "bl",
145 "ah", "ch", "dh", "bh"
148 /* Register names for word pseudo-registers. */
150 static const char *i386_word_names[] =
152 "ax", "cx", "dx", "bx",
156 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
157 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
158 we have 16 upper ZMM regs that have to be handled differently. */
160 const int num_lower_zmm_regs = 16;
165 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int mm0_regnum = tdep->mm0_regnum;
173 regnum -= mm0_regnum;
174 return regnum >= 0 && regnum < tdep->num_mmx_regs;
180 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184 regnum -= tdep->al_regnum;
185 return regnum >= 0 && regnum < tdep->num_byte_regs;
191 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 regnum -= tdep->ax_regnum;
196 return regnum >= 0 && regnum < tdep->num_word_regs;
199 /* Dword register? */
202 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205 int eax_regnum = tdep->eax_regnum;
210 regnum -= eax_regnum;
211 return regnum >= 0 && regnum < tdep->num_dword_regs;
214 /* AVX512 register? */
217 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
220 int zmm0h_regnum = tdep->zmm0h_regnum;
222 if (zmm0h_regnum < 0)
225 regnum -= zmm0h_regnum;
226 return regnum >= 0 && regnum < tdep->num_zmm_regs;
230 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
233 int zmm0_regnum = tdep->zmm0_regnum;
238 regnum -= zmm0_regnum;
239 return regnum >= 0 && regnum < tdep->num_zmm_regs;
243 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246 int k0_regnum = tdep->k0_regnum;
252 return regnum >= 0 && regnum < I387_NUM_K_REGS;
256 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
259 int ymm0h_regnum = tdep->ymm0h_regnum;
261 if (ymm0h_regnum < 0)
264 regnum -= ymm0h_regnum;
265 return regnum >= 0 && regnum < tdep->num_ymm_regs;
271 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
274 int ymm0_regnum = tdep->ymm0_regnum;
279 regnum -= ymm0_regnum;
280 return regnum >= 0 && regnum < tdep->num_ymm_regs;
284 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 int ymm16h_regnum = tdep->ymm16h_regnum;
289 if (ymm16h_regnum < 0)
292 regnum -= ymm16h_regnum;
293 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
297 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300 int ymm16_regnum = tdep->ymm16_regnum;
302 if (ymm16_regnum < 0)
305 regnum -= ymm16_regnum;
306 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
312 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315 int bnd0_regnum = tdep->bnd0_regnum;
320 regnum -= bnd0_regnum;
321 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
327 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
332 if (num_xmm_regs == 0)
335 regnum -= I387_XMM0_REGNUM (tdep);
336 return regnum >= 0 && regnum < num_xmm_regs;
339 /* XMM_512 register? */
342 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347 if (num_xmm_avx512_regs == 0)
350 regnum -= I387_XMM16_REGNUM (tdep);
351 return regnum >= 0 && regnum < num_xmm_avx512_regs;
355 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359 if (I387_NUM_XMM_REGS (tdep) == 0)
362 return (regnum == I387_MXCSR_REGNUM (tdep));
368 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372 if (I387_ST0_REGNUM (tdep) < 0)
375 return (I387_ST0_REGNUM (tdep) <= regnum
376 && regnum < I387_FCTRL_REGNUM (tdep));
380 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384 if (I387_ST0_REGNUM (tdep) < 0)
387 return (I387_FCTRL_REGNUM (tdep) <= regnum
388 && regnum < I387_XMM0_REGNUM (tdep));
391 /* BNDr (raw) register? */
394 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398 if (I387_BND0R_REGNUM (tdep) < 0)
401 regnum -= tdep->bnd0r_regnum;
402 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405 /* BND control register? */
408 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 regnum -= I387_BNDCFGU_REGNUM (tdep);
416 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
422 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
424 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425 int pkru_regnum = tdep->pkru_regnum;
430 regnum -= pkru_regnum;
431 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434 /* Return the name of register REGNUM, or the empty string if it is
435 an anonymous register. */
438 i386_register_name (struct gdbarch *gdbarch, int regnum)
440 /* Hide the upper YMM registers. */
441 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 /* Hide the upper YMM16-31 registers. */
445 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 /* Hide the upper ZMM registers. */
449 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return tdesc_register_name (gdbarch, regnum);
455 /* Return the name of register REGNUM. */
458 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
461 if (i386_bnd_regnum_p (gdbarch, regnum))
462 return i386_bnd_names[regnum - tdep->bnd0_regnum];
463 if (i386_mmx_regnum_p (gdbarch, regnum))
464 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
465 else if (i386_ymm_regnum_p (gdbarch, regnum))
466 return i386_ymm_names[regnum - tdep->ymm0_regnum];
467 else if (i386_zmm_regnum_p (gdbarch, regnum))
468 return i386_zmm_names[regnum - tdep->zmm0_regnum];
469 else if (i386_byte_regnum_p (gdbarch, regnum))
470 return i386_byte_names[regnum - tdep->al_regnum];
471 else if (i386_word_regnum_p (gdbarch, regnum))
472 return i386_word_names[regnum - tdep->ax_regnum];
474 internal_error (__FILE__, __LINE__, _("invalid regnum"));
477 /* Convert a dbx register number REG to the appropriate register
478 number used by GDB. */
481 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485 /* This implements what GCC calls the "default" register map
486 (dbx_register_map[]). */
488 if (reg >= 0 && reg <= 7)
490 /* General-purpose registers. The debug info calls %ebp
491 register 4, and %esp register 5. */
498 else if (reg >= 12 && reg <= 19)
500 /* Floating-point registers. */
501 return reg - 12 + I387_ST0_REGNUM (tdep);
503 else if (reg >= 21 && reg <= 28)
506 int ymm0_regnum = tdep->ymm0_regnum;
509 && i386_xmm_regnum_p (gdbarch, reg))
510 return reg - 21 + ymm0_regnum;
512 return reg - 21 + I387_XMM0_REGNUM (tdep);
514 else if (reg >= 29 && reg <= 36)
517 return reg - 29 + I387_MM0_REGNUM (tdep);
520 /* This will hopefully provoke a warning. */
521 return gdbarch_num_cooked_regs (gdbarch);
524 /* Convert SVR4 DWARF register number REG to the appropriate register number
528 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
532 /* This implements the GCC register map that tries to be compatible
533 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
535 /* The SVR4 register numbering includes %eip and %eflags, and
536 numbers the floating point registers differently. */
537 if (reg >= 0 && reg <= 9)
539 /* General-purpose registers. */
542 else if (reg >= 11 && reg <= 18)
544 /* Floating-point registers. */
545 return reg - 11 + I387_ST0_REGNUM (tdep);
547 else if (reg >= 21 && reg <= 36)
549 /* The SSE and MMX registers have the same numbers as with dbx. */
550 return i386_dbx_reg_to_regnum (gdbarch, reg);
555 case 37: return I387_FCTRL_REGNUM (tdep);
556 case 38: return I387_FSTAT_REGNUM (tdep);
557 case 39: return I387_MXCSR_REGNUM (tdep);
558 case 40: return I386_ES_REGNUM;
559 case 41: return I386_CS_REGNUM;
560 case 42: return I386_SS_REGNUM;
561 case 43: return I386_DS_REGNUM;
562 case 44: return I386_FS_REGNUM;
563 case 45: return I386_GS_REGNUM;
569 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
570 num_regs + num_pseudo_regs for other debug formats. */
573 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
575 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578 return gdbarch_num_cooked_regs (gdbarch);
584 /* This is the variable that is set with "set disassembly-flavor", and
585 its legitimate values. */
586 static const char att_flavor[] = "att";
587 static const char intel_flavor[] = "intel";
588 static const char *const valid_flavors[] =
594 static const char *disassembly_flavor = att_flavor;
597 /* Use the program counter to determine the contents and size of a
598 breakpoint instruction. Return a pointer to a string of bytes that
599 encode a breakpoint instruction, store the length of the string in
600 *LEN and optionally adjust *PC to point to the correct memory
601 location for inserting the breakpoint.
603 On the i386 we have a single breakpoint that fits in a single byte
604 and can be inserted anywhere.
606 This function is 64-bit safe. */
608 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
610 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
613 /* Displaced instruction handling. */
615 /* Skip the legacy instruction prefixes in INSN.
616 Not all prefixes are valid for any particular insn
617 but we needn't care, the insn will fault if it's invalid.
618 The result is a pointer to the first opcode byte,
619 or NULL if we run off the end of the buffer. */
622 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
624 gdb_byte *end = insn + max_len;
630 case DATA_PREFIX_OPCODE:
631 case ADDR_PREFIX_OPCODE:
632 case CS_PREFIX_OPCODE:
633 case DS_PREFIX_OPCODE:
634 case ES_PREFIX_OPCODE:
635 case FS_PREFIX_OPCODE:
636 case GS_PREFIX_OPCODE:
637 case SS_PREFIX_OPCODE:
638 case LOCK_PREFIX_OPCODE:
639 case REPE_PREFIX_OPCODE:
640 case REPNE_PREFIX_OPCODE:
652 i386_absolute_jmp_p (const gdb_byte *insn)
654 /* jmp far (absolute address in operand). */
660 /* jump near, absolute indirect (/4). */
661 if ((insn[1] & 0x38) == 0x20)
664 /* jump far, absolute indirect (/5). */
665 if ((insn[1] & 0x38) == 0x28)
672 /* Return non-zero if INSN is a jump, zero otherwise. */
675 i386_jmp_p (const gdb_byte *insn)
677 /* jump short, relative. */
681 /* jump near, relative. */
685 return i386_absolute_jmp_p (insn);
689 i386_absolute_call_p (const gdb_byte *insn)
691 /* call far, absolute. */
697 /* Call near, absolute indirect (/2). */
698 if ((insn[1] & 0x38) == 0x10)
701 /* Call far, absolute indirect (/3). */
702 if ((insn[1] & 0x38) == 0x18)
710 i386_ret_p (const gdb_byte *insn)
714 case 0xc2: /* ret near, pop N bytes. */
715 case 0xc3: /* ret near */
716 case 0xca: /* ret far, pop N bytes. */
717 case 0xcb: /* ret far */
718 case 0xcf: /* iret */
727 i386_call_p (const gdb_byte *insn)
729 if (i386_absolute_call_p (insn))
732 /* call near, relative. */
739 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
740 length in bytes. Otherwise, return zero. */
743 i386_syscall_p (const gdb_byte *insn, int *lengthp)
745 /* Is it 'int $0x80'? */
746 if ((insn[0] == 0xcd && insn[1] == 0x80)
747 /* Or is it 'sysenter'? */
748 || (insn[0] == 0x0f && insn[1] == 0x34)
749 /* Or is it 'syscall'? */
750 || (insn[0] == 0x0f && insn[1] == 0x05))
759 /* The gdbarch insn_is_call method. */
762 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
764 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766 read_code (addr, buf, I386_MAX_INSN_LEN);
767 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769 return i386_call_p (insn);
772 /* The gdbarch insn_is_ret method. */
775 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
777 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
779 read_code (addr, buf, I386_MAX_INSN_LEN);
780 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
782 return i386_ret_p (insn);
785 /* The gdbarch insn_is_jump method. */
788 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
790 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
792 read_code (addr, buf, I386_MAX_INSN_LEN);
793 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
795 return i386_jmp_p (insn);
798 /* Some kernels may run one past a syscall insn, so we have to cope. */
800 struct displaced_step_closure *
801 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
802 CORE_ADDR from, CORE_ADDR to,
803 struct regcache *regs)
805 size_t len = gdbarch_max_insn_length (gdbarch);
806 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
807 gdb_byte *buf = closure->buf.data ();
809 read_memory (from, buf, len);
811 /* GDB may get control back after the insn after the syscall.
812 Presumably this is a kernel bug.
813 If this is a syscall, make sure there's a nop afterwards. */
818 insn = i386_skip_prefixes (buf, len);
819 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
820 insn[syscall_length] = NOP_OPCODE;
823 write_memory (to, buf, len);
827 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
828 paddress (gdbarch, from), paddress (gdbarch, to));
829 displaced_step_dump_bytes (gdb_stdlog, buf, len);
835 /* Fix up the state of registers and memory after having single-stepped
836 a displaced instruction. */
839 i386_displaced_step_fixup (struct gdbarch *gdbarch,
840 struct displaced_step_closure *closure_,
841 CORE_ADDR from, CORE_ADDR to,
842 struct regcache *regs)
844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
846 /* The offset we applied to the instruction's address.
847 This could well be negative (when viewed as a signed 32-bit
848 value), but ULONGEST won't reflect that, so take care when
850 ULONGEST insn_offset = to - from;
852 i386_displaced_step_closure *closure
853 = (i386_displaced_step_closure *) closure_;
854 gdb_byte *insn = closure->buf.data ();
855 /* The start of the insn, needed in case we see some prefixes. */
856 gdb_byte *insn_start = insn;
859 fprintf_unfiltered (gdb_stdlog,
860 "displaced: fixup (%s, %s), "
861 "insn = 0x%02x 0x%02x ...\n",
862 paddress (gdbarch, from), paddress (gdbarch, to),
865 /* The list of issues to contend with here is taken from
866 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
867 Yay for Free Software! */
869 /* Relocate the %eip, if necessary. */
871 /* The instruction recognizers we use assume any leading prefixes
872 have been skipped. */
874 /* This is the size of the buffer in closure. */
875 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
876 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
877 /* If there are too many prefixes, just ignore the insn.
878 It will fault when run. */
883 /* Except in the case of absolute or indirect jump or call
884 instructions, or a return instruction, the new eip is relative to
885 the displaced instruction; make it relative. Well, signal
886 handler returns don't need relocation either, but we use the
887 value of %eip to recognize those; see below. */
888 if (! i386_absolute_jmp_p (insn)
889 && ! i386_absolute_call_p (insn)
890 && ! i386_ret_p (insn))
895 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
897 /* A signal trampoline system call changes the %eip, resuming
898 execution of the main program after the signal handler has
899 returned. That makes them like 'return' instructions; we
900 shouldn't relocate %eip.
902 But most system calls don't, and we do need to relocate %eip.
904 Our heuristic for distinguishing these cases: if stepping
905 over the system call instruction left control directly after
906 the instruction, the we relocate --- control almost certainly
907 doesn't belong in the displaced copy. Otherwise, we assume
908 the instruction has put control where it belongs, and leave
909 it unrelocated. Goodness help us if there are PC-relative
911 if (i386_syscall_p (insn, &insn_len)
912 && orig_eip != to + (insn - insn_start) + insn_len
913 /* GDB can get control back after the insn after the syscall.
914 Presumably this is a kernel bug.
915 i386_displaced_step_copy_insn ensures its a nop,
916 we add one to the length for it. */
917 && orig_eip != to + (insn - insn_start) + insn_len + 1)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: syscall changed %%eip; "
926 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
928 /* If we just stepped over a breakpoint insn, we don't backup
929 the pc on purpose; this is to match behaviour without
932 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
935 fprintf_unfiltered (gdb_stdlog,
937 "relocated %%eip from %s to %s\n",
938 paddress (gdbarch, orig_eip),
939 paddress (gdbarch, eip));
943 /* If the instruction was PUSHFL, then the TF bit will be set in the
944 pushed value, and should be cleared. We'll leave this for later,
945 since GDB already messes up the TF flag when stepping over a
948 /* If the instruction was a call, the return address now atop the
949 stack is the address following the copied instruction. We need
950 to make it the address following the original instruction. */
951 if (i386_call_p (insn))
955 const ULONGEST retaddr_len = 4;
957 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
958 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
959 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
960 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
963 fprintf_unfiltered (gdb_stdlog,
964 "displaced: relocated return addr at %s to %s\n",
965 paddress (gdbarch, esp),
966 paddress (gdbarch, retaddr));
971 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
973 target_write_memory (*to, buf, len);
978 i386_relocate_instruction (struct gdbarch *gdbarch,
979 CORE_ADDR *to, CORE_ADDR oldloc)
981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
982 gdb_byte buf[I386_MAX_INSN_LEN];
983 int offset = 0, rel32, newrel;
985 gdb_byte *insn = buf;
987 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
989 insn_length = gdb_buffered_insn_length (gdbarch, insn,
990 I386_MAX_INSN_LEN, oldloc);
992 /* Get past the prefixes. */
993 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
995 /* Adjust calls with 32-bit relative addresses as push/jump, with
996 the address pushed being the location where the original call in
997 the user program would return to. */
1000 gdb_byte push_buf[16];
1001 unsigned int ret_addr;
1003 /* Where "ret" in the original code will return to. */
1004 ret_addr = oldloc + insn_length;
1005 push_buf[0] = 0x68; /* pushq $... */
1006 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1007 /* Push the push. */
1008 append_insns (to, 5, push_buf);
1010 /* Convert the relative call to a relative jump. */
1013 /* Adjust the destination offset. */
1014 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1015 newrel = (oldloc - *to) + rel32;
1016 store_signed_integer (insn + 1, 4, byte_order, newrel);
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1025 /* Write the adjusted jump into its displaced location. */
1026 append_insns (to, 5, insn);
1030 /* Adjust jumps with 32-bit relative addresses. Calls are already
1032 if (insn[0] == 0xe9)
1034 /* Adjust conditional jumps. */
1035 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1041 newrel = (oldloc - *to) + rel32;
1042 store_signed_integer (insn + offset, 4, byte_order, newrel);
1043 if (debug_displaced)
1044 fprintf_unfiltered (gdb_stdlog,
1045 "Adjusted insn rel32=%s at %s to"
1046 " rel32=%s at %s\n",
1047 hex_string (rel32), paddress (gdbarch, oldloc),
1048 hex_string (newrel), paddress (gdbarch, *to));
1051 /* Write the adjusted instructions into their displaced
1053 append_insns (to, insn_length, buf);
1057 #ifdef I386_REGNO_TO_SYMMETRY
1058 #error "The Sequent Symmetry is no longer supported."
1061 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1062 and %esp "belong" to the calling function. Therefore these
1063 registers should be saved if they're going to be modified. */
1065 /* The maximum number of saved registers. This should include all
1066 registers mentioned above, and %eip. */
1067 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1069 struct i386_frame_cache
1077 /* Saved registers. */
1078 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1083 /* Stack space reserved for local variables. */
1087 /* Allocate and initialize a frame cache. */
1089 static struct i386_frame_cache *
1090 i386_alloc_frame_cache (void)
1092 struct i386_frame_cache *cache;
1095 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100 cache->sp_offset = -4;
1103 /* Saved registers. We initialize these to -1 since zero is a valid
1104 offset (that's where %ebp is supposed to be stored). */
1105 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1106 cache->saved_regs[i] = -1;
1107 cache->saved_sp = 0;
1108 cache->saved_sp_reg = -1;
1109 cache->pc_in_eax = 0;
1111 /* Frameless until proven otherwise. */
1117 /* If the instruction at PC is a jump, return the address of its
1118 target. Otherwise, return PC. */
1121 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1123 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1128 if (target_read_code (pc, &op, 1))
1135 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1141 /* Relative jump: if data16 == 0, disp32, else disp16. */
1144 delta = read_memory_integer (pc + 2, 2, byte_order);
1146 /* Include the size of the jmp instruction (including the
1152 delta = read_memory_integer (pc + 1, 4, byte_order);
1154 /* Include the size of the jmp instruction. */
1159 /* Relative jump, disp8 (ignore data16). */
1160 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1162 delta += data16 + 2;
1169 /* Check whether PC points at a prologue for a function returning a
1170 structure or union. If so, it updates CACHE and returns the
1171 address of the first instruction after the code sequence that
1172 removes the "hidden" argument from the stack or CURRENT_PC,
1173 whichever is smaller. Otherwise, return PC. */
1176 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1177 struct i386_frame_cache *cache)
1179 /* Functions that return a structure or union start with:
1182 xchgl %eax, (%esp) 0x87 0x04 0x24
1183 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1185 (the System V compiler puts out the second `xchg' instruction,
1186 and the assembler doesn't try to optimize it, so the 'sib' form
1187 gets generated). This sequence is used to get the address of the
1188 return buffer for a function that returns a structure. */
1189 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1190 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1194 if (current_pc <= pc)
1197 if (target_read_code (pc, &op, 1))
1200 if (op != 0x58) /* popl %eax */
1203 if (target_read_code (pc + 1, buf, 4))
1206 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1209 if (current_pc == pc)
1211 cache->sp_offset += 4;
1215 if (current_pc == pc + 1)
1217 cache->pc_in_eax = 1;
1221 if (buf[1] == proto1[1])
1228 i386_skip_probe (CORE_ADDR pc)
1230 /* A function may start with
1244 if (target_read_code (pc, &op, 1))
1247 if (op == 0x68 || op == 0x6a)
1251 /* Skip past the `pushl' instruction; it has either a one-byte or a
1252 four-byte operand, depending on the opcode. */
1258 /* Read the following 8 bytes, which should be `call _probe' (6
1259 bytes) followed by `addl $4,%esp' (2 bytes). */
1260 read_memory (pc + delta, buf, sizeof (buf));
1261 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1262 pc += delta + sizeof (buf);
1268 /* GCC 4.1 and later, can put code in the prologue to realign the
1269 stack pointer. Check whether PC points to such code, and update
1270 CACHE accordingly. Return the first instruction after the code
1271 sequence or CURRENT_PC, whichever is smaller. If we don't
1272 recognize the code, return PC. */
1275 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1276 struct i386_frame_cache *cache)
1278 /* There are 2 code sequences to re-align stack before the frame
1281 1. Use a caller-saved saved register:
1287 2. Use a callee-saved saved register:
1294 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1296 0x83 0xe4 0xf0 andl $-16, %esp
1297 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 int offset, offset_and;
1303 static int regnums[8] = {
1304 I386_EAX_REGNUM, /* %eax */
1305 I386_ECX_REGNUM, /* %ecx */
1306 I386_EDX_REGNUM, /* %edx */
1307 I386_EBX_REGNUM, /* %ebx */
1308 I386_ESP_REGNUM, /* %esp */
1309 I386_EBP_REGNUM, /* %ebp */
1310 I386_ESI_REGNUM, /* %esi */
1311 I386_EDI_REGNUM /* %edi */
1314 if (target_read_code (pc, buf, sizeof buf))
1317 /* Check caller-saved saved register. The first instruction has
1318 to be "leal 4(%esp), %reg". */
1319 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1321 /* MOD must be binary 10 and R/M must be binary 100. */
1322 if ((buf[1] & 0xc7) != 0x44)
1325 /* REG has register number. */
1326 reg = (buf[1] >> 3) & 7;
1331 /* Check callee-saved saved register. The first instruction
1332 has to be "pushl %reg". */
1333 if ((buf[0] & 0xf8) != 0x50)
1339 /* The next instruction has to be "leal 8(%esp), %reg". */
1340 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1343 /* MOD must be binary 10 and R/M must be binary 100. */
1344 if ((buf[2] & 0xc7) != 0x44)
1347 /* REG has register number. Registers in pushl and leal have to
1349 if (reg != ((buf[2] >> 3) & 7))
1355 /* Rigister can't be %esp nor %ebp. */
1356 if (reg == 4 || reg == 5)
1359 /* The next instruction has to be "andl $-XXX, %esp". */
1360 if (buf[offset + 1] != 0xe4
1361 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1364 offset_and = offset;
1365 offset += buf[offset] == 0x81 ? 6 : 3;
1367 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1368 0xfc. REG must be binary 110 and MOD must be binary 01. */
1369 if (buf[offset] != 0xff
1370 || buf[offset + 2] != 0xfc
1371 || (buf[offset + 1] & 0xf8) != 0x70)
1374 /* R/M has register. Registers in leal and pushl have to be the
1376 if (reg != (buf[offset + 1] & 7))
1379 if (current_pc > pc + offset_and)
1380 cache->saved_sp_reg = regnums[reg];
1382 return std::min (pc + offset + 3, current_pc);
1385 /* Maximum instruction length we need to handle. */
1386 #define I386_MAX_MATCHED_INSN_LEN 6
1388 /* Instruction description. */
1392 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1393 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1396 /* Return whether instruction at PC matches PATTERN. */
1399 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1403 if (target_read_code (pc, &op, 1))
1406 if ((op & pattern.mask[0]) == pattern.insn[0])
1408 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1409 int insn_matched = 1;
1412 gdb_assert (pattern.len > 1);
1413 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1415 if (target_read_code (pc + 1, buf, pattern.len - 1))
1418 for (i = 1; i < pattern.len; i++)
1420 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1423 return insn_matched;
1428 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1429 the first instruction description that matches. Otherwise, return
1432 static struct i386_insn *
1433 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1435 struct i386_insn *pattern;
1437 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1439 if (i386_match_pattern (pc, *pattern))
1446 /* Return whether PC points inside a sequence of instructions that
1447 matches INSN_PATTERNS. */
1450 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1452 CORE_ADDR current_pc;
1454 struct i386_insn *insn;
1456 insn = i386_match_insn (pc, insn_patterns);
1461 ix = insn - insn_patterns;
1462 for (i = ix - 1; i >= 0; i--)
1464 current_pc -= insn_patterns[i].len;
1466 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1470 current_pc = pc + insn->len;
1471 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1473 if (!i386_match_pattern (current_pc, *insn))
1476 current_pc += insn->len;
1482 /* Some special instructions that might be migrated by GCC into the
1483 part of the prologue that sets up the new stack frame. Because the
1484 stack frame hasn't been setup yet, no registers have been saved
1485 yet, and only the scratch registers %eax, %ecx and %edx can be
1488 struct i386_insn i386_frame_setup_skip_insns[] =
1490 /* Check for `movb imm8, r' and `movl imm32, r'.
1492 ??? Should we handle 16-bit operand-sizes here? */
1494 /* `movb imm8, %al' and `movb imm8, %ah' */
1495 /* `movb imm8, %cl' and `movb imm8, %ch' */
1496 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1497 /* `movb imm8, %dl' and `movb imm8, %dh' */
1498 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1499 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1500 { 5, { 0xb8 }, { 0xfe } },
1501 /* `movl imm32, %edx' */
1502 { 5, { 0xba }, { 0xff } },
1504 /* Check for `mov imm32, r32'. Note that there is an alternative
1505 encoding for `mov m32, %eax'.
1507 ??? Should we handle SIB adressing here?
1508 ??? Should we handle 16-bit operand-sizes here? */
1510 /* `movl m32, %eax' */
1511 { 5, { 0xa1 }, { 0xff } },
1512 /* `movl m32, %eax' and `mov; m32, %ecx' */
1513 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1514 /* `movl m32, %edx' */
1515 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1517 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1518 Because of the symmetry, there are actually two ways to encode
1519 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1520 opcode bytes 0x31 and 0x33 for `xorl'. */
1522 /* `subl %eax, %eax' */
1523 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1524 /* `subl %ecx, %ecx' */
1525 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1526 /* `subl %edx, %edx' */
1527 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1528 /* `xorl %eax, %eax' */
1529 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1530 /* `xorl %ecx, %ecx' */
1531 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1532 /* `xorl %edx, %edx' */
1533 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 /* Check whether PC points to a no-op instruction. */
1540 i386_skip_noop (CORE_ADDR pc)
1545 if (target_read_code (pc, &op, 1))
1551 /* Ignore `nop' instruction. */
1555 if (target_read_code (pc, &op, 1))
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1570 else if (op == 0x8b)
1572 if (target_read_code (pc + 1, &op, 1))
1578 if (target_read_code (pc, &op, 1))
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
1596 struct i386_frame_cache *cache)
1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599 struct i386_insn *insn;
1606 if (target_read_code (pc, &op, 1))
1609 if (op == 0x55) /* pushl %ebp */
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
1614 cache->sp_offset += 4;
1617 /* If that's all, return now. */
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of posibilities is sheer,
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc + skip < limit)
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1642 if (target_read_code (pc + skip, &op, 1))
1645 /* The i386 prologue looks like
1651 and a different prologue can be generated for atom.
1655 lea -0x10(%esp),%esp
1657 We handle both of them here. */
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1690 /* If that's all, return now. */
1694 /* Check for stack adjustment
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc, &op, 1))
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1716 else if (op == 0x81)
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1727 else if (op == 0x8d)
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1732 /* 'lea' with 8-bit displacement. */
1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1738 /* Some instruction other than `subl' nor 'lea'. */
1742 else if (op == 0xc8) /* enter */
1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
1760 CORE_ADDR offset = 0;
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1768 if (target_read_code (pc, &op, 1))
1770 if (op < 0x50 || op > 0x57)
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1786 We handle these cases:
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
1812 struct i386_frame_cache *cache)
1814 pc = i386_skip_noop (pc);
1815 pc = i386_follow_jump (gdbarch, pc);
1816 pc = i386_analyze_struct_return (pc, current_pc, cache);
1817 pc = i386_skip_probe (pc);
1818 pc = i386_analyze_stack_align (pc, current_pc, cache);
1819 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1820 return i386_analyze_register_saves (pc, current_pc, cache);
1823 /* Return PC of first real instruction. */
1826 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830 static gdb_byte pic_pat[6] =
1832 0xe8, 0, 0, 0, 0, /* call 0x0 */
1833 0x5b, /* popl %ebx */
1835 struct i386_frame_cache cache;
1839 CORE_ADDR func_addr;
1841 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1843 CORE_ADDR post_prologue_pc
1844 = skip_prologue_using_sal (gdbarch, func_addr);
1845 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1847 /* Clang always emits a line note before the prologue and another
1848 one after. We trust clang to emit usable line notes. */
1849 if (post_prologue_pc
1851 && COMPUNIT_PRODUCER (cust) != NULL
1852 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1853 return std::max (start_pc, post_prologue_pc);
1857 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1858 if (cache.locals < 0)
1861 /* Found valid frame setup. */
1863 /* The native cc on SVR4 in -K PIC mode inserts the following code
1864 to get the address of the global offset table (GOT) into register
1869 movl %ebx,x(%ebp) (optional)
1872 This code is with the rest of the prologue (at the end of the
1873 function), so we have to skip it to get to the first real
1874 instruction at the start of the function. */
1876 for (i = 0; i < 6; i++)
1878 if (target_read_code (pc + i, &op, 1))
1881 if (pic_pat[i] != op)
1888 if (target_read_code (pc + delta, &op, 1))
1891 if (op == 0x89) /* movl %ebx, x(%ebp) */
1893 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1895 if (op == 0x5d) /* One byte offset from %ebp. */
1897 else if (op == 0x9d) /* Four byte offset from %ebp. */
1899 else /* Unexpected instruction. */
1902 if (target_read_code (pc + delta, &op, 1))
1907 if (delta > 0 && op == 0x81
1908 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1915 /* If the function starts with a branch (to startup code at the end)
1916 the last instruction should bring us back to the first
1917 instruction of the real code. */
1918 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1919 pc = i386_follow_jump (gdbarch, pc);
1924 /* Check that the code pointed to by PC corresponds to a call to
1925 __main, skip it if so. Return PC otherwise. */
1928 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1930 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1933 if (target_read_code (pc, &op, 1))
1939 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1941 /* Make sure address is computed correctly as a 32bit
1942 integer even if CORE_ADDR is 64 bit wide. */
1943 struct bound_minimal_symbol s;
1944 CORE_ADDR call_dest;
1946 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1947 call_dest = call_dest & 0xffffffffU;
1948 s = lookup_minimal_symbol_by_pc (call_dest);
1949 if (s.minsym != NULL
1950 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1951 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1959 /* This function is 64-bit safe. */
1962 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1966 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1967 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1971 /* Normal frames. */
1974 i386_frame_cache_1 (struct frame_info *this_frame,
1975 struct i386_frame_cache *cache)
1977 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1982 cache->pc = get_frame_func (this_frame);
1984 /* In principle, for normal frames, %ebp holds the frame pointer,
1985 which holds the base address for the current stack frame.
1986 However, for functions that don't need it, the frame pointer is
1987 optional. For these "frameless" functions the frame pointer is
1988 actually the frame pointer of the calling frame. Signal
1989 trampolines are just a special case of a "frameless" function.
1990 They (usually) share their frame pointer with the frame that was
1991 in progress when the signal occurred. */
1993 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1994 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1995 if (cache->base == 0)
2001 /* For normal frames, %eip is stored at 4(%ebp). */
2002 cache->saved_regs[I386_EIP_REGNUM] = 4;
2005 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2008 if (cache->locals < 0)
2010 /* We didn't find a valid frame, which means that CACHE->base
2011 currently holds the frame pointer for our calling frame. If
2012 we're at the start of a function, or somewhere half-way its
2013 prologue, the function's frame probably hasn't been fully
2014 setup yet. Try to reconstruct the base address for the stack
2015 frame by looking at the stack pointer. For truly "frameless"
2016 functions this might work too. */
2018 if (cache->saved_sp_reg != -1)
2020 /* Saved stack pointer has been saved. */
2021 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2022 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2024 /* We're halfway aligning the stack. */
2025 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2026 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2028 /* This will be added back below. */
2029 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2031 else if (cache->pc != 0
2032 || target_read_code (get_frame_pc (this_frame), buf, 1))
2034 /* We're in a known function, but did not find a frame
2035 setup. Assume that the function does not use %ebp.
2036 Alternatively, we may have jumped to an invalid
2037 address; in that case there is definitely no new
2039 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2040 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2044 /* We're in an unknown function. We could not find the start
2045 of the function to analyze the prologue; our best option is
2046 to assume a typical frame layout with the caller's %ebp
2048 cache->saved_regs[I386_EBP_REGNUM] = 0;
2051 if (cache->saved_sp_reg != -1)
2053 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2054 register may be unavailable). */
2055 if (cache->saved_sp == 0
2056 && deprecated_frame_register_read (this_frame,
2057 cache->saved_sp_reg, buf))
2058 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2060 /* Now that we have the base address for the stack frame we can
2061 calculate the value of %esp in the calling frame. */
2062 else if (cache->saved_sp == 0)
2063 cache->saved_sp = cache->base + 8;
2065 /* Adjust all the saved registers such that they contain addresses
2066 instead of offsets. */
2067 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2068 if (cache->saved_regs[i] != -1)
2069 cache->saved_regs[i] += cache->base;
2074 static struct i386_frame_cache *
2075 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2077 struct i386_frame_cache *cache;
2080 return (struct i386_frame_cache *) *this_cache;
2082 cache = i386_alloc_frame_cache ();
2083 *this_cache = cache;
2087 i386_frame_cache_1 (this_frame, cache);
2089 CATCH (ex, RETURN_MASK_ERROR)
2091 if (ex.error != NOT_AVAILABLE_ERROR)
2092 throw_exception (ex);
2100 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2101 struct frame_id *this_id)
2103 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2106 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2107 else if (cache->base == 0)
2109 /* This marks the outermost frame. */
2113 /* See the end of i386_push_dummy_call. */
2114 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2118 static enum unwind_stop_reason
2119 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2122 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2125 return UNWIND_UNAVAILABLE;
2127 /* This marks the outermost frame. */
2128 if (cache->base == 0)
2129 return UNWIND_OUTERMOST;
2131 return UNWIND_NO_REASON;
2134 static struct value *
2135 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2138 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2140 gdb_assert (regnum >= 0);
2142 /* The System V ABI says that:
2144 "The flags register contains the system flags, such as the
2145 direction flag and the carry flag. The direction flag must be
2146 set to the forward (that is, zero) direction before entry and
2147 upon exit from a function. Other user flags have no specified
2148 role in the standard calling sequence and are not preserved."
2150 To guarantee the "upon exit" part of that statement we fake a
2151 saved flags register that has its direction flag cleared.
2153 Note that GCC doesn't seem to rely on the fact that the direction
2154 flag is cleared after a function return; it always explicitly
2155 clears the flag before operations where it matters.
2157 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2158 right thing to do. The way we fake the flags register here makes
2159 it impossible to change it. */
2161 if (regnum == I386_EFLAGS_REGNUM)
2165 val = get_frame_register_unsigned (this_frame, regnum);
2167 return frame_unwind_got_constant (this_frame, regnum, val);
2170 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2171 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2173 if (regnum == I386_ESP_REGNUM
2174 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2176 /* If the SP has been saved, but we don't know where, then this
2177 means that SAVED_SP_REG register was found unavailable back
2178 when we built the cache. */
2179 if (cache->saved_sp == 0)
2180 return frame_unwind_got_register (this_frame, regnum,
2181 cache->saved_sp_reg);
2183 return frame_unwind_got_constant (this_frame, regnum,
2187 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2188 return frame_unwind_got_memory (this_frame, regnum,
2189 cache->saved_regs[regnum]);
2191 return frame_unwind_got_register (this_frame, regnum, regnum);
2194 static const struct frame_unwind i386_frame_unwind =
2197 i386_frame_unwind_stop_reason,
2199 i386_frame_prev_register,
2201 default_frame_sniffer
2204 /* Normal frames, but in a function epilogue. */
2206 /* Implement the stack_frame_destroyed_p gdbarch method.
2208 The epilogue is defined here as the 'ret' instruction, which will
2209 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2210 the function's stack frame. */
2213 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2216 struct compunit_symtab *cust;
2218 cust = find_pc_compunit_symtab (pc);
2219 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2222 if (target_read_memory (pc, &insn, 1))
2223 return 0; /* Can't read memory at pc. */
2225 if (insn != 0xc3) /* 'ret' instruction. */
2232 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2233 struct frame_info *this_frame,
2234 void **this_prologue_cache)
2236 if (frame_relative_level (this_frame) == 0)
2237 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2238 get_frame_pc (this_frame));
2243 static struct i386_frame_cache *
2244 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2246 struct i386_frame_cache *cache;
2250 return (struct i386_frame_cache *) *this_cache;
2252 cache = i386_alloc_frame_cache ();
2253 *this_cache = cache;
2257 cache->pc = get_frame_func (this_frame);
2259 /* At this point the stack looks as if we just entered the
2260 function, with the return address at the top of the
2262 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2263 cache->base = sp + cache->sp_offset;
2264 cache->saved_sp = cache->base + 8;
2265 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2269 CATCH (ex, RETURN_MASK_ERROR)
2271 if (ex.error != NOT_AVAILABLE_ERROR)
2272 throw_exception (ex);
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2287 return UNWIND_UNAVAILABLE;
2289 return UNWIND_NO_REASON;
2293 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2295 struct frame_id *this_id)
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2306 static struct value *
2307 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2316 static const struct frame_unwind i386_epilogue_frame_unwind =
2319 i386_epilogue_frame_unwind_stop_reason,
2320 i386_epilogue_frame_this_id,
2321 i386_epilogue_frame_prev_register,
2323 i386_epilogue_frame_sniffer
2327 /* Stack-based trampolines. */
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2334 /* Static chain passed in register. */
2336 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2342 { 5, { 0xe9 }, { 0xff } },
2347 /* Static chain passed on stack (when regparm=3). */
2349 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2352 { 5, { 0x68 }, { 0xff } },
2355 { 5, { 0xe9 }, { 0xff } },
2360 /* Return whether PC points inside a stack trampoline. */
2363 i386_in_stack_tramp_p (CORE_ADDR pc)
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2376 if (target_read_memory (pc, &insn, 1))
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2388 struct frame_info *this_frame,
2391 if (frame_relative_level (this_frame) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
2402 i386_epilogue_frame_prev_register,
2404 i386_stack_tramp_frame_sniffer
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2410 i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2414 /* The following sequence assumes the traditional use of the base
2416 ax_reg (ax, I386_EBP_REGNUM);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2424 /* Signal trampolines. */
2426 static struct i386_frame_cache *
2427 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432 struct i386_frame_cache *cache;
2437 return (struct i386_frame_cache *) *this_cache;
2439 cache = i386_alloc_frame_cache ();
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2465 CATCH (ex, RETURN_MASK_ERROR)
2467 if (ex.error != NOT_AVAILABLE_ERROR)
2468 throw_exception (ex);
2472 *this_cache = cache;
2476 static enum unwind_stop_reason
2477 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2484 return UNWIND_UNAVAILABLE;
2486 return UNWIND_NO_REASON;
2490 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2491 struct frame_id *this_id)
2493 struct i386_frame_cache *cache =
2494 i386_sigtramp_frame_cache (this_frame, this_cache);
2497 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2500 /* See the end of i386_push_dummy_call. */
2501 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2505 static struct value *
2506 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 void **this_cache, int regnum)
2509 /* Make sure we've initialized the cache. */
2510 i386_sigtramp_frame_cache (this_frame, this_cache);
2512 return i386_frame_prev_register (this_frame, this_cache, regnum);
2516 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 struct frame_info *this_frame,
2518 void **this_prologue_cache)
2520 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2522 /* We shouldn't even bother if we don't have a sigcontext_addr
2524 if (tdep->sigcontext_addr == NULL)
2527 if (tdep->sigtramp_p != NULL)
2529 if (tdep->sigtramp_p (this_frame))
2533 if (tdep->sigtramp_start != 0)
2535 CORE_ADDR pc = get_frame_pc (this_frame);
2537 gdb_assert (tdep->sigtramp_end != 0);
2538 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2545 static const struct frame_unwind i386_sigtramp_frame_unwind =
2548 i386_sigtramp_frame_unwind_stop_reason,
2549 i386_sigtramp_frame_this_id,
2550 i386_sigtramp_frame_prev_register,
2552 i386_sigtramp_frame_sniffer
2557 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2559 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2564 static const struct frame_base i386_frame_base =
2567 i386_frame_base_address,
2568 i386_frame_base_address,
2569 i386_frame_base_address
2572 static struct frame_id
2573 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2577 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2579 /* See the end of i386_push_dummy_call. */
2580 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2583 /* _Decimal128 function return values need 16-byte alignment on the
2587 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2589 return sp & -(CORE_ADDR)16;
2593 /* Figure out where the longjmp will land. Slurp the args out of the
2594 stack. We expect the first arg to be a pointer to the jmp_buf
2595 structure from which we extract the address that we will land at.
2596 This address is copied into PC. This routine returns non-zero on
2600 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2603 CORE_ADDR sp, jb_addr;
2604 struct gdbarch *gdbarch = get_frame_arch (frame);
2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2606 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2608 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609 longjmp will land. */
2610 if (jb_pc_offset == -1)
2613 get_frame_register (frame, I386_ESP_REGNUM, buf);
2614 sp = extract_unsigned_integer (buf, 4, byte_order);
2615 if (target_read_memory (sp + 4, buf, 4))
2618 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2622 *pc = extract_unsigned_integer (buf, 4, byte_order);
2627 /* Check whether TYPE must be 16-byte-aligned when passed as a
2628 function argument. 16-byte vectors, _Decimal128 and structures or
2629 unions containing such types must be 16-byte-aligned; other
2630 arguments are 4-byte-aligned. */
2633 i386_16_byte_align_p (struct type *type)
2635 type = check_typedef (type);
2636 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2637 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2638 && TYPE_LENGTH (type) == 16)
2640 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2641 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2642 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2643 || TYPE_CODE (type) == TYPE_CODE_UNION)
2646 for (i = 0; i < TYPE_NFIELDS (type); i++)
2648 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2655 /* Implementation for set_gdbarch_push_dummy_code. */
2658 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2659 struct value **args, int nargs, struct type *value_type,
2660 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2661 struct regcache *regcache)
2663 /* Use 0xcc breakpoint - 1 byte. */
2667 /* Keep the stack aligned. */
2672 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2673 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2674 struct value **args, CORE_ADDR sp,
2675 function_call_return_method return_method,
2676 CORE_ADDR struct_addr)
2678 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2684 /* BND registers can be in arbitrary values at the moment of the
2685 inferior call. This can cause boundary violations that are not
2686 due to a real bug or even desired by the user. The best to be done
2687 is set the BND registers to allow access to the whole memory, INIT
2688 state, before pushing the inferior call. */
2689 i387_reset_bnd_regs (gdbarch, regcache);
2691 /* Determine the total space required for arguments and struct
2692 return address in a first pass (allowing for 16-byte-aligned
2693 arguments), then push arguments in a second pass. */
2695 for (write_pass = 0; write_pass < 2; write_pass++)
2697 int args_space_used = 0;
2699 if (return_method == return_method_struct)
2703 /* Push value address. */
2704 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2705 write_memory (sp, buf, 4);
2706 args_space_used += 4;
2712 for (i = 0; i < nargs; i++)
2714 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2718 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2719 args_space_used = align_up (args_space_used, 16);
2721 write_memory (sp + args_space_used,
2722 value_contents_all (args[i]), len);
2723 /* The System V ABI says that:
2725 "An argument's size is increased, if necessary, to make it a
2726 multiple of [32-bit] words. This may require tail padding,
2727 depending on the size of the argument."
2729 This makes sure the stack stays word-aligned. */
2730 args_space_used += align_up (len, 4);
2734 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2735 args_space = align_up (args_space, 16);
2736 args_space += align_up (len, 4);
2744 /* The original System V ABI only requires word alignment,
2745 but modern incarnations need 16-byte alignment in order
2746 to support SSE. Since wasting a few bytes here isn't
2747 harmful we unconditionally enforce 16-byte alignment. */
2752 /* Store return address. */
2754 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2755 write_memory (sp, buf, 4);
2757 /* Finally, update the stack pointer... */
2758 store_unsigned_integer (buf, 4, byte_order, sp);
2759 regcache->cooked_write (I386_ESP_REGNUM, buf);
2761 /* ...and fake a frame pointer. */
2762 regcache->cooked_write (I386_EBP_REGNUM, buf);
2764 /* MarkK wrote: This "+ 8" is all over the place:
2765 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2766 i386_dummy_id). It's there, since all frame unwinders for
2767 a given target have to agree (within a certain margin) on the
2768 definition of the stack address of a frame. Otherwise frame id
2769 comparison might not work correctly. Since DWARF2/GCC uses the
2770 stack address *before* the function call as a frame's CFA. On
2771 the i386, when %ebp is used as a frame pointer, the offset
2772 between the contents %ebp and the CFA as defined by GCC. */
2776 /* These registers are used for returning integers (and on some
2777 targets also for returning `struct' and `union' values when their
2778 size and alignment match an integer type). */
2779 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2780 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2782 /* Read, for architecture GDBARCH, a function return value of TYPE
2783 from REGCACHE, and copy that into VALBUF. */
2786 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2787 struct regcache *regcache, gdb_byte *valbuf)
2789 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2790 int len = TYPE_LENGTH (type);
2791 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2793 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2795 if (tdep->st0_regnum < 0)
2797 warning (_("Cannot find floating-point return value."));
2798 memset (valbuf, 0, len);
2802 /* Floating-point return values can be found in %st(0). Convert
2803 its contents to the desired type. This is probably not
2804 exactly how it would happen on the target itself, but it is
2805 the best we can do. */
2806 regcache->raw_read (I386_ST0_REGNUM, buf);
2807 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2811 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2812 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2814 if (len <= low_size)
2816 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2817 memcpy (valbuf, buf, len);
2819 else if (len <= (low_size + high_size))
2821 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2822 memcpy (valbuf, buf, low_size);
2823 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2824 memcpy (valbuf + low_size, buf, len - low_size);
2827 internal_error (__FILE__, __LINE__,
2828 _("Cannot extract return value of %d bytes long."),
2833 /* Write, for architecture GDBARCH, a function return value of TYPE
2834 from VALBUF into REGCACHE. */
2837 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2838 struct regcache *regcache, const gdb_byte *valbuf)
2840 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2841 int len = TYPE_LENGTH (type);
2843 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2846 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2848 if (tdep->st0_regnum < 0)
2850 warning (_("Cannot set floating-point return value."));
2854 /* Returning floating-point values is a bit tricky. Apart from
2855 storing the return value in %st(0), we have to simulate the
2856 state of the FPU at function return point. */
2858 /* Convert the value found in VALBUF to the extended
2859 floating-point format used by the FPU. This is probably
2860 not exactly how it would happen on the target itself, but
2861 it is the best we can do. */
2862 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2863 regcache->raw_write (I386_ST0_REGNUM, buf);
2865 /* Set the top of the floating-point register stack to 7. The
2866 actual value doesn't really matter, but 7 is what a normal
2867 function return would end up with if the program started out
2868 with a freshly initialized FPU. */
2869 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2871 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2873 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2874 the floating-point register stack to 7, the appropriate value
2875 for the tag word is 0x3fff. */
2876 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2880 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2881 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2883 if (len <= low_size)
2884 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2885 else if (len <= (low_size + high_size))
2887 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2888 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2892 internal_error (__FILE__, __LINE__,
2893 _("Cannot store return value of %d bytes long."), len);
2898 /* This is the variable that is set with "set struct-convention", and
2899 its legitimate values. */
2900 static const char default_struct_convention[] = "default";
2901 static const char pcc_struct_convention[] = "pcc";
2902 static const char reg_struct_convention[] = "reg";
2903 static const char *const valid_conventions[] =
2905 default_struct_convention,
2906 pcc_struct_convention,
2907 reg_struct_convention,
2910 static const char *struct_convention = default_struct_convention;
2912 /* Return non-zero if TYPE, which is assumed to be a structure,
2913 a union type, or an array type, should be returned in registers
2914 for architecture GDBARCH. */
2917 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2920 enum type_code code = TYPE_CODE (type);
2921 int len = TYPE_LENGTH (type);
2923 gdb_assert (code == TYPE_CODE_STRUCT
2924 || code == TYPE_CODE_UNION
2925 || code == TYPE_CODE_ARRAY);
2927 if (struct_convention == pcc_struct_convention
2928 || (struct_convention == default_struct_convention
2929 && tdep->struct_return == pcc_struct_return))
2932 /* Structures consisting of a single `float', `double' or 'long
2933 double' member are returned in %st(0). */
2934 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2936 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2937 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2938 return (len == 4 || len == 8 || len == 12);
2941 return (len == 1 || len == 2 || len == 4 || len == 8);
2944 /* Determine, for architecture GDBARCH, how a return value of TYPE
2945 should be returned. If it is supposed to be returned in registers,
2946 and READBUF is non-zero, read the appropriate value from REGCACHE,
2947 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2948 from WRITEBUF into REGCACHE. */
2950 static enum return_value_convention
2951 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2952 struct type *type, struct regcache *regcache,
2953 gdb_byte *readbuf, const gdb_byte *writebuf)
2955 enum type_code code = TYPE_CODE (type);
2957 if (((code == TYPE_CODE_STRUCT
2958 || code == TYPE_CODE_UNION
2959 || code == TYPE_CODE_ARRAY)
2960 && !i386_reg_struct_return_p (gdbarch, type))
2961 /* Complex double and long double uses the struct return covention. */
2962 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2963 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2964 /* 128-bit decimal float uses the struct return convention. */
2965 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2967 /* The System V ABI says that:
2969 "A function that returns a structure or union also sets %eax
2970 to the value of the original address of the caller's area
2971 before it returns. Thus when the caller receives control
2972 again, the address of the returned object resides in register
2973 %eax and can be used to access the object."
2975 So the ABI guarantees that we can always find the return
2976 value just after the function has returned. */
2978 /* Note that the ABI doesn't mention functions returning arrays,
2979 which is something possible in certain languages such as Ada.
2980 In this case, the value is returned as if it was wrapped in
2981 a record, so the convention applied to records also applies
2988 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2989 read_memory (addr, readbuf, TYPE_LENGTH (type));
2992 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2995 /* This special case is for structures consisting of a single
2996 `float', `double' or 'long double' member. These structures are
2997 returned in %st(0). For these structures, we call ourselves
2998 recursively, changing TYPE into the type of the first member of
2999 the structure. Since that should work for all structures that
3000 have only one member, we don't bother to check the member's type
3002 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3004 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3005 return i386_return_value (gdbarch, function, type, regcache,
3010 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3012 i386_store_return_value (gdbarch, type, regcache, writebuf);
3014 return RETURN_VALUE_REGISTER_CONVENTION;
3019 i387_ext_type (struct gdbarch *gdbarch)
3021 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3023 if (!tdep->i387_ext_type)
3025 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3026 gdb_assert (tdep->i387_ext_type != NULL);
3029 return tdep->i387_ext_type;
3032 /* Construct type for pseudo BND registers. We can't use
3033 tdesc_find_type since a complement of one value has to be used
3034 to describe the upper bound. */
3036 static struct type *
3037 i386_bnd_type (struct gdbarch *gdbarch)
3039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3042 if (!tdep->i386_bnd_type)
3045 const struct builtin_type *bt = builtin_type (gdbarch);
3047 /* The type we're building is described bellow: */
3052 void *ubound; /* One complement of raw ubound field. */
3056 t = arch_composite_type (gdbarch,
3057 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3059 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3060 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3062 TYPE_NAME (t) = "builtin_type_bound128";
3063 tdep->i386_bnd_type = t;
3066 return tdep->i386_bnd_type;
3069 /* Construct vector type for pseudo ZMM registers. We can't use
3070 tdesc_find_type since ZMM isn't described in target description. */
3072 static struct type *
3073 i386_zmm_type (struct gdbarch *gdbarch)
3075 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3077 if (!tdep->i386_zmm_type)
3079 const struct builtin_type *bt = builtin_type (gdbarch);
3081 /* The type we're building is this: */
3083 union __gdb_builtin_type_vec512i
3085 int128_t uint128[4];
3086 int64_t v4_int64[8];
3087 int32_t v8_int32[16];
3088 int16_t v16_int16[32];
3089 int8_t v32_int8[64];
3090 double v4_double[8];
3097 t = arch_composite_type (gdbarch,
3098 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3099 append_composite_type_field (t, "v16_float",
3100 init_vector_type (bt->builtin_float, 16));
3101 append_composite_type_field (t, "v8_double",
3102 init_vector_type (bt->builtin_double, 8));
3103 append_composite_type_field (t, "v64_int8",
3104 init_vector_type (bt->builtin_int8, 64));
3105 append_composite_type_field (t, "v32_int16",
3106 init_vector_type (bt->builtin_int16, 32));
3107 append_composite_type_field (t, "v16_int32",
3108 init_vector_type (bt->builtin_int32, 16));
3109 append_composite_type_field (t, "v8_int64",
3110 init_vector_type (bt->builtin_int64, 8));
3111 append_composite_type_field (t, "v4_int128",
3112 init_vector_type (bt->builtin_int128, 4));
3114 TYPE_VECTOR (t) = 1;
3115 TYPE_NAME (t) = "builtin_type_vec512i";
3116 tdep->i386_zmm_type = t;
3119 return tdep->i386_zmm_type;
3122 /* Construct vector type for pseudo YMM registers. We can't use
3123 tdesc_find_type since YMM isn't described in target description. */
3125 static struct type *
3126 i386_ymm_type (struct gdbarch *gdbarch)
3128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3130 if (!tdep->i386_ymm_type)
3132 const struct builtin_type *bt = builtin_type (gdbarch);
3134 /* The type we're building is this: */
3136 union __gdb_builtin_type_vec256i
3138 int128_t uint128[2];
3139 int64_t v2_int64[4];
3140 int32_t v4_int32[8];
3141 int16_t v8_int16[16];
3142 int8_t v16_int8[32];
3143 double v2_double[4];
3150 t = arch_composite_type (gdbarch,
3151 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3152 append_composite_type_field (t, "v8_float",
3153 init_vector_type (bt->builtin_float, 8));
3154 append_composite_type_field (t, "v4_double",
3155 init_vector_type (bt->builtin_double, 4));
3156 append_composite_type_field (t, "v32_int8",
3157 init_vector_type (bt->builtin_int8, 32));
3158 append_composite_type_field (t, "v16_int16",
3159 init_vector_type (bt->builtin_int16, 16));
3160 append_composite_type_field (t, "v8_int32",
3161 init_vector_type (bt->builtin_int32, 8));
3162 append_composite_type_field (t, "v4_int64",
3163 init_vector_type (bt->builtin_int64, 4));
3164 append_composite_type_field (t, "v2_int128",
3165 init_vector_type (bt->builtin_int128, 2));
3167 TYPE_VECTOR (t) = 1;
3168 TYPE_NAME (t) = "builtin_type_vec256i";
3169 tdep->i386_ymm_type = t;
3172 return tdep->i386_ymm_type;
3175 /* Construct vector type for MMX registers. */
3176 static struct type *
3177 i386_mmx_type (struct gdbarch *gdbarch)
3179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3181 if (!tdep->i386_mmx_type)
3183 const struct builtin_type *bt = builtin_type (gdbarch);
3185 /* The type we're building is this: */
3187 union __gdb_builtin_type_vec64i
3190 int32_t v2_int32[2];
3191 int16_t v4_int16[4];
3198 t = arch_composite_type (gdbarch,
3199 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3201 append_composite_type_field (t, "uint64", bt->builtin_int64);
3202 append_composite_type_field (t, "v2_int32",
3203 init_vector_type (bt->builtin_int32, 2));
3204 append_composite_type_field (t, "v4_int16",
3205 init_vector_type (bt->builtin_int16, 4));
3206 append_composite_type_field (t, "v8_int8",
3207 init_vector_type (bt->builtin_int8, 8));
3209 TYPE_VECTOR (t) = 1;
3210 TYPE_NAME (t) = "builtin_type_vec64i";
3211 tdep->i386_mmx_type = t;
3214 return tdep->i386_mmx_type;
3217 /* Return the GDB type object for the "standard" data type of data in
3221 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3223 if (i386_bnd_regnum_p (gdbarch, regnum))
3224 return i386_bnd_type (gdbarch);
3225 if (i386_mmx_regnum_p (gdbarch, regnum))
3226 return i386_mmx_type (gdbarch);
3227 else if (i386_ymm_regnum_p (gdbarch, regnum))
3228 return i386_ymm_type (gdbarch);
3229 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3230 return i386_ymm_type (gdbarch);
3231 else if (i386_zmm_regnum_p (gdbarch, regnum))
3232 return i386_zmm_type (gdbarch);
3235 const struct builtin_type *bt = builtin_type (gdbarch);
3236 if (i386_byte_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int8;
3238 else if (i386_word_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int16;
3240 else if (i386_dword_regnum_p (gdbarch, regnum))
3241 return bt->builtin_int32;
3242 else if (i386_k_regnum_p (gdbarch, regnum))
3243 return bt->builtin_int64;
3246 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3249 /* Map a cooked register onto a raw register or memory. For the i386,
3250 the MMX registers need to be mapped onto floating point registers. */
3253 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3255 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3260 mmxreg = regnum - tdep->mm0_regnum;
3261 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3262 tos = (fstat >> 11) & 0x7;
3263 fpreg = (mmxreg + tos) % 8;
3265 return (I387_ST0_REGNUM (tdep) + fpreg);
3268 /* A helper function for us by i386_pseudo_register_read_value and
3269 amd64_pseudo_register_read_value. It does all the work but reads
3270 the data into an already-allocated value. */
3273 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3274 readable_regcache *regcache,
3276 struct value *result_value)
3278 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3279 enum register_status status;
3280 gdb_byte *buf = value_contents_raw (result_value);
3282 if (i386_mmx_regnum_p (gdbarch, regnum))
3284 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3286 /* Extract (always little endian). */
3287 status = regcache->raw_read (fpnum, raw_buf);
3288 if (status != REG_VALID)
3289 mark_value_bytes_unavailable (result_value, 0,
3290 TYPE_LENGTH (value_type (result_value)));
3292 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3297 if (i386_bnd_regnum_p (gdbarch, regnum))
3299 regnum -= tdep->bnd0_regnum;
3301 /* Extract (always little endian). Read lower 128bits. */
3302 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3304 if (status != REG_VALID)
3305 mark_value_bytes_unavailable (result_value, 0, 16);
3308 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3309 LONGEST upper, lower;
3310 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3312 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3313 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3316 memcpy (buf, &lower, size);
3317 memcpy (buf + size, &upper, size);
3320 else if (i386_k_regnum_p (gdbarch, regnum))
3322 regnum -= tdep->k0_regnum;
3324 /* Extract (always little endian). */
3325 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3326 if (status != REG_VALID)
3327 mark_value_bytes_unavailable (result_value, 0, 8);
3329 memcpy (buf, raw_buf, 8);
3331 else if (i386_zmm_regnum_p (gdbarch, regnum))
3333 regnum -= tdep->zmm0_regnum;
3335 if (regnum < num_lower_zmm_regs)
3337 /* Extract (always little endian). Read lower 128bits. */
3338 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 0, 16);
3343 memcpy (buf, raw_buf, 16);
3345 /* Extract (always little endian). Read upper 128bits. */
3346 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3348 if (status != REG_VALID)
3349 mark_value_bytes_unavailable (result_value, 16, 16);
3351 memcpy (buf + 16, raw_buf, 16);
3355 /* Extract (always little endian). Read lower 128bits. */
3356 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3357 - num_lower_zmm_regs,
3359 if (status != REG_VALID)
3360 mark_value_bytes_unavailable (result_value, 0, 16);
3362 memcpy (buf, raw_buf, 16);
3364 /* Extract (always little endian). Read upper 128bits. */
3365 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 16, 16);
3371 memcpy (buf + 16, raw_buf, 16);
3374 /* Read upper 256bits. */
3375 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 32, 32);
3380 memcpy (buf + 32, raw_buf, 32);
3382 else if (i386_ymm_regnum_p (gdbarch, regnum))
3384 regnum -= tdep->ymm0_regnum;
3386 /* Extract (always little endian). Read lower 128bits. */
3387 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3389 if (status != REG_VALID)
3390 mark_value_bytes_unavailable (result_value, 0, 16);
3392 memcpy (buf, raw_buf, 16);
3393 /* Read upper 128bits. */
3394 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3396 if (status != REG_VALID)
3397 mark_value_bytes_unavailable (result_value, 16, 32);
3399 memcpy (buf + 16, raw_buf, 16);
3401 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3403 regnum -= tdep->ymm16_regnum;
3404 /* Extract (always little endian). Read lower 128bits. */
3405 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3407 if (status != REG_VALID)
3408 mark_value_bytes_unavailable (result_value, 0, 16);
3410 memcpy (buf, raw_buf, 16);
3411 /* Read upper 128bits. */
3412 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3414 if (status != REG_VALID)
3415 mark_value_bytes_unavailable (result_value, 16, 16);
3417 memcpy (buf + 16, raw_buf, 16);
3419 else if (i386_word_regnum_p (gdbarch, regnum))
3421 int gpnum = regnum - tdep->ax_regnum;
3423 /* Extract (always little endian). */
3424 status = regcache->raw_read (gpnum, raw_buf);
3425 if (status != REG_VALID)
3426 mark_value_bytes_unavailable (result_value, 0,
3427 TYPE_LENGTH (value_type (result_value)));
3429 memcpy (buf, raw_buf, 2);
3431 else if (i386_byte_regnum_p (gdbarch, regnum))
3433 int gpnum = regnum - tdep->al_regnum;
3435 /* Extract (always little endian). We read both lower and
3437 status = regcache->raw_read (gpnum % 4, raw_buf);
3438 if (status != REG_VALID)
3439 mark_value_bytes_unavailable (result_value, 0,
3440 TYPE_LENGTH (value_type (result_value)));
3441 else if (gpnum >= 4)
3442 memcpy (buf, raw_buf + 1, 1);
3444 memcpy (buf, raw_buf, 1);
3447 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3451 static struct value *
3452 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3453 readable_regcache *regcache,
3456 struct value *result;
3458 result = allocate_value (register_type (gdbarch, regnum));
3459 VALUE_LVAL (result) = lval_register;
3460 VALUE_REGNUM (result) = regnum;
3462 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3468 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3469 int regnum, const gdb_byte *buf)
3471 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3473 if (i386_mmx_regnum_p (gdbarch, regnum))
3475 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3478 regcache->raw_read (fpnum, raw_buf);
3479 /* ... Modify ... (always little endian). */
3480 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3482 regcache->raw_write (fpnum, raw_buf);
3486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3488 if (i386_bnd_regnum_p (gdbarch, regnum))
3490 ULONGEST upper, lower;
3491 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3492 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3494 /* New values from input value. */
3495 regnum -= tdep->bnd0_regnum;
3496 lower = extract_unsigned_integer (buf, size, byte_order);
3497 upper = extract_unsigned_integer (buf + size, size, byte_order);
3499 /* Fetching register buffer. */
3500 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3505 /* Set register bits. */
3506 memcpy (raw_buf, &lower, 8);
3507 memcpy (raw_buf + 8, &upper, 8);
3509 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3511 else if (i386_k_regnum_p (gdbarch, regnum))
3513 regnum -= tdep->k0_regnum;
3515 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3517 else if (i386_zmm_regnum_p (gdbarch, regnum))
3519 regnum -= tdep->zmm0_regnum;
3521 if (regnum < num_lower_zmm_regs)
3523 /* Write lower 128bits. */
3524 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3525 /* Write upper 128bits. */
3526 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3530 /* Write lower 128bits. */
3531 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3532 - num_lower_zmm_regs, buf);
3533 /* Write upper 128bits. */
3534 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3535 - num_lower_zmm_regs, buf + 16);
3537 /* Write upper 256bits. */
3538 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3540 else if (i386_ymm_regnum_p (gdbarch, regnum))
3542 regnum -= tdep->ymm0_regnum;
3544 /* ... Write lower 128bits. */
3545 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3546 /* ... Write upper 128bits. */
3547 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3549 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3551 regnum -= tdep->ymm16_regnum;
3553 /* ... Write lower 128bits. */
3554 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3555 /* ... Write upper 128bits. */
3556 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3558 else if (i386_word_regnum_p (gdbarch, regnum))
3560 int gpnum = regnum - tdep->ax_regnum;
3563 regcache->raw_read (gpnum, raw_buf);
3564 /* ... Modify ... (always little endian). */
3565 memcpy (raw_buf, buf, 2);
3567 regcache->raw_write (gpnum, raw_buf);
3569 else if (i386_byte_regnum_p (gdbarch, regnum))
3571 int gpnum = regnum - tdep->al_regnum;
3573 /* Read ... We read both lower and upper registers. */
3574 regcache->raw_read (gpnum % 4, raw_buf);
3575 /* ... Modify ... (always little endian). */
3577 memcpy (raw_buf + 1, buf, 1);
3579 memcpy (raw_buf, buf, 1);
3581 regcache->raw_write (gpnum % 4, raw_buf);
3584 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3588 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3591 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3592 struct agent_expr *ax, int regnum)
3594 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3596 if (i386_mmx_regnum_p (gdbarch, regnum))
3598 /* MMX to FPU register mapping depends on current TOS. Let's just
3599 not care and collect everything... */
3602 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3603 for (i = 0; i < 8; i++)
3604 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3607 else if (i386_bnd_regnum_p (gdbarch, regnum))
3609 regnum -= tdep->bnd0_regnum;
3610 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3613 else if (i386_k_regnum_p (gdbarch, regnum))
3615 regnum -= tdep->k0_regnum;
3616 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3619 else if (i386_zmm_regnum_p (gdbarch, regnum))
3621 regnum -= tdep->zmm0_regnum;
3622 if (regnum < num_lower_zmm_regs)
3624 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3625 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3629 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3630 - num_lower_zmm_regs);
3631 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3632 - num_lower_zmm_regs);
3634 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3637 else if (i386_ymm_regnum_p (gdbarch, regnum))
3639 regnum -= tdep->ymm0_regnum;
3640 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3641 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3644 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3646 regnum -= tdep->ymm16_regnum;
3647 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3648 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3651 else if (i386_word_regnum_p (gdbarch, regnum))
3653 int gpnum = regnum - tdep->ax_regnum;
3655 ax_reg_mask (ax, gpnum);
3658 else if (i386_byte_regnum_p (gdbarch, regnum))
3660 int gpnum = regnum - tdep->al_regnum;
3662 ax_reg_mask (ax, gpnum % 4);
3666 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3671 /* Return the register number of the register allocated by GCC after
3672 REGNUM, or -1 if there is no such register. */
3675 i386_next_regnum (int regnum)
3677 /* GCC allocates the registers in the order:
3679 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3681 Since storing a variable in %esp doesn't make any sense we return
3682 -1 for %ebp and for %esp itself. */
3683 static int next_regnum[] =
3685 I386_EDX_REGNUM, /* Slot for %eax. */
3686 I386_EBX_REGNUM, /* Slot for %ecx. */
3687 I386_ECX_REGNUM, /* Slot for %edx. */
3688 I386_ESI_REGNUM, /* Slot for %ebx. */
3689 -1, -1, /* Slots for %esp and %ebp. */
3690 I386_EDI_REGNUM, /* Slot for %esi. */
3691 I386_EBP_REGNUM /* Slot for %edi. */
3694 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3695 return next_regnum[regnum];
3700 /* Return nonzero if a value of type TYPE stored in register REGNUM
3701 needs any special handling. */
3704 i386_convert_register_p (struct gdbarch *gdbarch,
3705 int regnum, struct type *type)
3707 int len = TYPE_LENGTH (type);
3709 /* Values may be spread across multiple registers. Most debugging
3710 formats aren't expressive enough to specify the locations, so
3711 some heuristics is involved. Right now we only handle types that
3712 have a length that is a multiple of the word size, since GCC
3713 doesn't seem to put any other types into registers. */
3714 if (len > 4 && len % 4 == 0)
3716 int last_regnum = regnum;
3720 last_regnum = i386_next_regnum (last_regnum);
3724 if (last_regnum != -1)
3728 return i387_convert_register_p (gdbarch, regnum, type);
3731 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3732 return its contents in TO. */
3735 i386_register_to_value (struct frame_info *frame, int regnum,
3736 struct type *type, gdb_byte *to,
3737 int *optimizedp, int *unavailablep)
3739 struct gdbarch *gdbarch = get_frame_arch (frame);
3740 int len = TYPE_LENGTH (type);
3742 if (i386_fp_regnum_p (gdbarch, regnum))
3743 return i387_register_to_value (frame, regnum, type, to,
3744 optimizedp, unavailablep);
3746 /* Read a value spread across multiple registers. */
3748 gdb_assert (len > 4 && len % 4 == 0);
3752 gdb_assert (regnum != -1);
3753 gdb_assert (register_size (gdbarch, regnum) == 4);
3755 if (!get_frame_register_bytes (frame, regnum, 0,
3756 register_size (gdbarch, regnum),
3757 to, optimizedp, unavailablep))
3760 regnum = i386_next_regnum (regnum);
3765 *optimizedp = *unavailablep = 0;
3769 /* Write the contents FROM of a value of type TYPE into register
3770 REGNUM in frame FRAME. */
3773 i386_value_to_register (struct frame_info *frame, int regnum,
3774 struct type *type, const gdb_byte *from)
3776 int len = TYPE_LENGTH (type);
3778 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3780 i387_value_to_register (frame, regnum, type, from);
3784 /* Write a value spread across multiple registers. */
3786 gdb_assert (len > 4 && len % 4 == 0);
3790 gdb_assert (regnum != -1);
3791 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3793 put_frame_register (frame, regnum, from);
3794 regnum = i386_next_regnum (regnum);
3800 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3801 in the general-purpose register set REGSET to register cache
3802 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3805 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3806 int regnum, const void *gregs, size_t len)
3808 struct gdbarch *gdbarch = regcache->arch ();
3809 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3810 const gdb_byte *regs = (const gdb_byte *) gregs;
3813 gdb_assert (len >= tdep->sizeof_gregset);
3815 for (i = 0; i < tdep->gregset_num_regs; i++)
3817 if ((regnum == i || regnum == -1)
3818 && tdep->gregset_reg_offset[i] != -1)
3819 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3823 /* Collect register REGNUM from the register cache REGCACHE and store
3824 it in the buffer specified by GREGS and LEN as described by the
3825 general-purpose register set REGSET. If REGNUM is -1, do this for
3826 all registers in REGSET. */
3829 i386_collect_gregset (const struct regset *regset,
3830 const struct regcache *regcache,
3831 int regnum, void *gregs, size_t len)
3833 struct gdbarch *gdbarch = regcache->arch ();
3834 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3835 gdb_byte *regs = (gdb_byte *) gregs;
3838 gdb_assert (len >= tdep->sizeof_gregset);
3840 for (i = 0; i < tdep->gregset_num_regs; i++)
3842 if ((regnum == i || regnum == -1)
3843 && tdep->gregset_reg_offset[i] != -1)
3844 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3848 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3849 in the floating-point register set REGSET to register cache
3850 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3853 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3854 int regnum, const void *fpregs, size_t len)
3856 struct gdbarch *gdbarch = regcache->arch ();
3857 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3859 if (len == I387_SIZEOF_FXSAVE)
3861 i387_supply_fxsave (regcache, regnum, fpregs);
3865 gdb_assert (len >= tdep->sizeof_fpregset);
3866 i387_supply_fsave (regcache, regnum, fpregs);
3869 /* Collect register REGNUM from the register cache REGCACHE and store
3870 it in the buffer specified by FPREGS and LEN as described by the
3871 floating-point register set REGSET. If REGNUM is -1, do this for
3872 all registers in REGSET. */
3875 i386_collect_fpregset (const struct regset *regset,
3876 const struct regcache *regcache,
3877 int regnum, void *fpregs, size_t len)
3879 struct gdbarch *gdbarch = regcache->arch ();
3880 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3882 if (len == I387_SIZEOF_FXSAVE)
3884 i387_collect_fxsave (regcache, regnum, fpregs);
3888 gdb_assert (len >= tdep->sizeof_fpregset);
3889 i387_collect_fsave (regcache, regnum, fpregs);
3892 /* Register set definitions. */
3894 const struct regset i386_gregset =
3896 NULL, i386_supply_gregset, i386_collect_gregset
3899 const struct regset i386_fpregset =
3901 NULL, i386_supply_fpregset, i386_collect_fpregset
3904 /* Default iterator over core file register note sections. */
3907 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3908 iterate_over_regset_sections_cb *cb,
3910 const struct regcache *regcache)
3912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3914 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3916 if (tdep->sizeof_fpregset)
3917 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3922 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3925 i386_pe_skip_trampoline_code (struct frame_info *frame,
3926 CORE_ADDR pc, char *name)
3928 struct gdbarch *gdbarch = get_frame_arch (frame);
3929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3932 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3934 unsigned long indirect =
3935 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3936 struct minimal_symbol *indsym =
3937 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3938 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3942 if (startswith (symname, "__imp_")
3943 || startswith (symname, "_imp_"))
3945 read_memory_unsigned_integer (indirect, 4, byte_order);
3948 return 0; /* Not a trampoline. */
3952 /* Return whether the THIS_FRAME corresponds to a sigtramp
3956 i386_sigtramp_p (struct frame_info *this_frame)
3958 CORE_ADDR pc = get_frame_pc (this_frame);
3961 find_pc_partial_function (pc, &name, NULL, NULL);
3962 return (name && strcmp ("_sigtramp", name) == 0);
3966 /* We have two flavours of disassembly. The machinery on this page
3967 deals with switching between those. */
3970 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3972 gdb_assert (disassembly_flavor == att_flavor
3973 || disassembly_flavor == intel_flavor);
3975 info->disassembler_options = disassembly_flavor;
3977 return default_print_insn (pc, info);
3981 /* There are a few i386 architecture variants that differ only
3982 slightly from the generic i386 target. For now, we don't give them
3983 their own source file, but include them here. As a consequence,
3984 they'll always be included. */
3986 /* System V Release 4 (SVR4). */
3988 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3992 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3994 CORE_ADDR pc = get_frame_pc (this_frame);
3997 /* The origin of these symbols is currently unknown. */
3998 find_pc_partial_function (pc, &name, NULL, NULL);
3999 return (name && (strcmp ("_sigreturn", name) == 0
4000 || strcmp ("sigvechandler", name) == 0));
4003 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4004 address of the associated sigcontext (ucontext) structure. */
4007 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4009 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4010 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4014 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4015 sp = extract_unsigned_integer (buf, 4, byte_order);
4017 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4022 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4026 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4028 return (*s == '$' /* Literal number. */
4029 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4030 || (*s == '(' && s[1] == '%') /* Register indirection. */
4031 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4034 /* Helper function for i386_stap_parse_special_token.
4036 This function parses operands of the form `-8+3+1(%rbp)', which
4037 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4039 Return 1 if the operand was parsed successfully, zero
4043 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4044 struct stap_parse_info *p)
4046 const char *s = p->arg;
4048 if (isdigit (*s) || *s == '-' || *s == '+')
4052 long displacements[3];
4068 if (!isdigit ((unsigned char) *s))
4071 displacements[0] = strtol (s, &endp, 10);
4074 if (*s != '+' && *s != '-')
4076 /* We are not dealing with a triplet. */
4089 if (!isdigit ((unsigned char) *s))
4092 displacements[1] = strtol (s, &endp, 10);
4095 if (*s != '+' && *s != '-')
4097 /* We are not dealing with a triplet. */
4110 if (!isdigit ((unsigned char) *s))
4113 displacements[2] = strtol (s, &endp, 10);
4116 if (*s != '(' || s[1] != '%')
4122 while (isalnum (*s))
4128 len = s - start - 1;
4129 regname = (char *) alloca (len + 1);
4131 strncpy (regname, start, len);
4132 regname[len] = '\0';
4134 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4135 error (_("Invalid register name `%s' on expression `%s'."),
4136 regname, p->saved_arg);
4138 for (i = 0; i < 3; i++)
4140 write_exp_elt_opcode (&p->pstate, OP_LONG);
4142 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4143 write_exp_elt_longcst (&p->pstate, displacements[i]);
4144 write_exp_elt_opcode (&p->pstate, OP_LONG);
4146 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4149 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4152 write_exp_string (&p->pstate, str);
4153 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4155 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4156 write_exp_elt_type (&p->pstate,
4157 builtin_type (gdbarch)->builtin_data_ptr);
4158 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4160 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4161 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4162 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4164 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4165 write_exp_elt_type (&p->pstate,
4166 lookup_pointer_type (p->arg_type));
4167 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4169 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4179 /* Helper function for i386_stap_parse_special_token.
4181 This function parses operands of the form `register base +
4182 (register index * size) + offset', as represented in
4183 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4185 Return 1 if the operand was parsed successfully, zero
4189 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4190 struct stap_parse_info *p)
4192 const char *s = p->arg;
4194 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4196 int offset_minus = 0;
4205 struct stoken base_token, index_token;
4215 if (offset_minus && !isdigit (*s))
4222 offset = strtol (s, &endp, 10);
4226 if (*s != '(' || s[1] != '%')
4232 while (isalnum (*s))
4235 if (*s != ',' || s[1] != '%')
4238 len_base = s - start;
4239 base = (char *) alloca (len_base + 1);
4240 strncpy (base, start, len_base);
4241 base[len_base] = '\0';
4243 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4244 error (_("Invalid register name `%s' on expression `%s'."),
4245 base, p->saved_arg);
4250 while (isalnum (*s))
4253 len_index = s - start;
4254 index = (char *) alloca (len_index + 1);
4255 strncpy (index, start, len_index);
4256 index[len_index] = '\0';
4258 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4259 error (_("Invalid register name `%s' on expression `%s'."),
4260 index, p->saved_arg);
4262 if (*s != ',' && *s != ')')
4278 size = strtol (s, &endp, 10);
4289 write_exp_elt_opcode (&p->pstate, OP_LONG);
4290 write_exp_elt_type (&p->pstate,
4291 builtin_type (gdbarch)->builtin_long);
4292 write_exp_elt_longcst (&p->pstate, offset);
4293 write_exp_elt_opcode (&p->pstate, OP_LONG);
4295 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4298 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4299 base_token.ptr = base;
4300 base_token.length = len_base;
4301 write_exp_string (&p->pstate, base_token);
4302 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4305 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4307 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4308 index_token.ptr = index;
4309 index_token.length = len_index;
4310 write_exp_string (&p->pstate, index_token);
4311 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4315 write_exp_elt_opcode (&p->pstate, OP_LONG);
4316 write_exp_elt_type (&p->pstate,
4317 builtin_type (gdbarch)->builtin_long);
4318 write_exp_elt_longcst (&p->pstate, size);
4319 write_exp_elt_opcode (&p->pstate, OP_LONG);
4321 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4322 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4325 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4327 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4328 write_exp_elt_type (&p->pstate,
4329 lookup_pointer_type (p->arg_type));
4330 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4332 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4342 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4346 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4347 struct stap_parse_info *p)
4349 /* In order to parse special tokens, we use a state-machine that go
4350 through every known token and try to get a match. */
4354 THREE_ARG_DISPLACEMENT,
4359 current_state = TRIPLET;
4361 /* The special tokens to be parsed here are:
4363 - `register base + (register index * size) + offset', as represented
4364 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4366 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4367 `*(-8 + 3 - 1 + (void *) $eax)'. */
4369 while (current_state != DONE)
4371 switch (current_state)
4374 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4378 case THREE_ARG_DISPLACEMENT:
4379 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4384 /* Advancing to the next state. */
4393 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4394 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4397 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4399 return "(x86_64|i.86)";
4404 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4407 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4409 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4410 I386_EAX_REGNUM, I386_EIP_REGNUM);
4416 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4418 static const char *const stap_integer_prefixes[] = { "$", NULL };
4419 static const char *const stap_register_prefixes[] = { "%", NULL };
4420 static const char *const stap_register_indirection_prefixes[] = { "(",
4422 static const char *const stap_register_indirection_suffixes[] = { ")",
4425 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4426 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4428 /* Registering SystemTap handlers. */
4429 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4430 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4431 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4432 stap_register_indirection_prefixes);
4433 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4434 stap_register_indirection_suffixes);
4435 set_gdbarch_stap_is_single_operand (gdbarch,
4436 i386_stap_is_single_operand);
4437 set_gdbarch_stap_parse_special_token (gdbarch,
4438 i386_stap_parse_special_token);
4440 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4441 i386_in_indirect_branch_thunk);
4444 /* System V Release 4 (SVR4). */
4447 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4449 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4451 /* System V Release 4 uses ELF. */
4452 i386_elf_init_abi (info, gdbarch);
4454 /* System V Release 4 has shared libraries. */
4455 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4457 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4458 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4459 tdep->sc_pc_offset = 36 + 14 * 4;
4460 tdep->sc_sp_offset = 36 + 17 * 4;
4462 tdep->jb_pc_offset = 20;
4467 /* i386 register groups. In addition to the normal groups, add "mmx"
4470 static struct reggroup *i386_sse_reggroup;
4471 static struct reggroup *i386_mmx_reggroup;
4474 i386_init_reggroups (void)
4476 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4477 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4481 i386_add_reggroups (struct gdbarch *gdbarch)
4483 reggroup_add (gdbarch, i386_sse_reggroup);
4484 reggroup_add (gdbarch, i386_mmx_reggroup);
4485 reggroup_add (gdbarch, general_reggroup);
4486 reggroup_add (gdbarch, float_reggroup);
4487 reggroup_add (gdbarch, all_reggroup);
4488 reggroup_add (gdbarch, save_reggroup);
4489 reggroup_add (gdbarch, restore_reggroup);
4490 reggroup_add (gdbarch, vector_reggroup);
4491 reggroup_add (gdbarch, system_reggroup);
4495 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4496 struct reggroup *group)
4498 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4499 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4500 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4501 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4502 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4503 avx512_p, avx_p, sse_p, pkru_regnum_p;
4505 /* Don't include pseudo registers, except for MMX, in any register
4507 if (i386_byte_regnum_p (gdbarch, regnum))
4510 if (i386_word_regnum_p (gdbarch, regnum))
4513 if (i386_dword_regnum_p (gdbarch, regnum))
4516 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4517 if (group == i386_mmx_reggroup)
4518 return mmx_regnum_p;
4520 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4521 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4522 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4523 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4524 if (group == i386_sse_reggroup)
4525 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4527 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4528 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4529 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4531 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4532 == X86_XSTATE_AVX_AVX512_MASK);
4533 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4534 == X86_XSTATE_AVX_MASK) && !avx512_p;
4535 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4536 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4538 if (group == vector_reggroup)
4539 return (mmx_regnum_p
4540 || (zmm_regnum_p && avx512_p)
4541 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4542 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4545 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4546 || i386_fpc_regnum_p (gdbarch, regnum));
4547 if (group == float_reggroup)
4550 /* For "info reg all", don't include upper YMM registers nor XMM
4551 registers when AVX is supported. */
4552 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4553 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4554 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4555 if (group == all_reggroup
4556 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4557 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4559 || ymmh_avx512_regnum_p
4563 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4564 if (group == all_reggroup
4565 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4566 return bnd_regnum_p;
4568 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4569 if (group == all_reggroup
4570 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4573 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4574 if (group == all_reggroup
4575 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4576 return mpx_ctrl_regnum_p;
4578 if (group == general_reggroup)
4579 return (!fp_regnum_p
4583 && !xmm_avx512_regnum_p
4586 && !ymm_avx512_regnum_p
4587 && !ymmh_avx512_regnum_p
4590 && !mpx_ctrl_regnum_p
4595 return default_register_reggroup_p (gdbarch, regnum, group);
4599 /* Get the ARGIth function argument for the current function. */
4602 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4605 struct gdbarch *gdbarch = get_frame_arch (frame);
4606 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4607 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4608 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4611 #define PREFIX_REPZ 0x01
4612 #define PREFIX_REPNZ 0x02
4613 #define PREFIX_LOCK 0x04
4614 #define PREFIX_DATA 0x08
4615 #define PREFIX_ADDR 0x10
4627 /* i386 arith/logic operations */
4640 struct i386_record_s
4642 struct gdbarch *gdbarch;
4643 struct regcache *regcache;
4644 CORE_ADDR orig_addr;
4650 uint8_t mod, reg, rm;
4659 /* Parse the "modrm" part of the memory address irp->addr points at.
4660 Returns -1 if something goes wrong, 0 otherwise. */
4663 i386_record_modrm (struct i386_record_s *irp)
4665 struct gdbarch *gdbarch = irp->gdbarch;
4667 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4671 irp->mod = (irp->modrm >> 6) & 3;
4672 irp->reg = (irp->modrm >> 3) & 7;
4673 irp->rm = irp->modrm & 7;
4678 /* Extract the memory address that the current instruction writes to,
4679 and return it in *ADDR. Return -1 if something goes wrong. */
4682 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4684 struct gdbarch *gdbarch = irp->gdbarch;
4685 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4690 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4697 uint8_t base = irp->rm;
4702 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4705 scale = (byte >> 6) & 3;
4706 index = ((byte >> 3) & 7) | irp->rex_x;
4714 if ((base & 7) == 5)
4717 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4720 *addr = extract_signed_integer (buf, 4, byte_order);
4721 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4722 *addr += irp->addr + irp->rip_offset;
4726 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4729 *addr = (int8_t) buf[0];
4732 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4734 *addr = extract_signed_integer (buf, 4, byte_order);
4742 if (base == 4 && irp->popl_esp_hack)
4743 *addr += irp->popl_esp_hack;
4744 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4747 if (irp->aflag == 2)
4752 *addr = (uint32_t) (offset64 + *addr);
4754 if (havesib && (index != 4 || scale != 0))
4756 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4758 if (irp->aflag == 2)
4759 *addr += offset64 << scale;
4761 *addr = (uint32_t) (*addr + (offset64 << scale));
4766 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4767 address from 32-bit to 64-bit. */
4768 *addr = (uint32_t) *addr;
4779 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4782 *addr = extract_signed_integer (buf, 2, byte_order);
4788 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4791 *addr = (int8_t) buf[0];
4794 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4797 *addr = extract_signed_integer (buf, 2, byte_order);
4804 regcache_raw_read_unsigned (irp->regcache,
4805 irp->regmap[X86_RECORD_REBX_REGNUM],
4807 *addr = (uint32_t) (*addr + offset64);
4808 regcache_raw_read_unsigned (irp->regcache,
4809 irp->regmap[X86_RECORD_RESI_REGNUM],
4811 *addr = (uint32_t) (*addr + offset64);
4814 regcache_raw_read_unsigned (irp->regcache,
4815 irp->regmap[X86_RECORD_REBX_REGNUM],
4817 *addr = (uint32_t) (*addr + offset64);
4818 regcache_raw_read_unsigned (irp->regcache,
4819 irp->regmap[X86_RECORD_REDI_REGNUM],
4821 *addr = (uint32_t) (*addr + offset64);
4824 regcache_raw_read_unsigned (irp->regcache,
4825 irp->regmap[X86_RECORD_REBP_REGNUM],
4827 *addr = (uint32_t) (*addr + offset64);
4828 regcache_raw_read_unsigned (irp->regcache,
4829 irp->regmap[X86_RECORD_RESI_REGNUM],
4831 *addr = (uint32_t) (*addr + offset64);
4834 regcache_raw_read_unsigned (irp->regcache,
4835 irp->regmap[X86_RECORD_REBP_REGNUM],
4837 *addr = (uint32_t) (*addr + offset64);
4838 regcache_raw_read_unsigned (irp->regcache,
4839 irp->regmap[X86_RECORD_REDI_REGNUM],
4841 *addr = (uint32_t) (*addr + offset64);
4844 regcache_raw_read_unsigned (irp->regcache,
4845 irp->regmap[X86_RECORD_RESI_REGNUM],
4847 *addr = (uint32_t) (*addr + offset64);
4850 regcache_raw_read_unsigned (irp->regcache,
4851 irp->regmap[X86_RECORD_REDI_REGNUM],
4853 *addr = (uint32_t) (*addr + offset64);
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_REBP_REGNUM],
4859 *addr = (uint32_t) (*addr + offset64);
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_REBX_REGNUM],
4865 *addr = (uint32_t) (*addr + offset64);
4875 /* Record the address and contents of the memory that will be changed
4876 by the current instruction. Return -1 if something goes wrong, 0
4880 i386_record_lea_modrm (struct i386_record_s *irp)
4882 struct gdbarch *gdbarch = irp->gdbarch;
4885 if (irp->override >= 0)
4887 if (record_full_memory_query)
4890 Process record ignores the memory change of instruction at address %s\n\
4891 because it can't get the value of the segment register.\n\
4892 Do you want to stop the program?"),
4893 paddress (gdbarch, irp->orig_addr)))
4900 if (i386_record_lea_modrm_addr (irp, &addr))
4903 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4909 /* Record the effects of a push operation. Return -1 if something
4910 goes wrong, 0 otherwise. */
4913 i386_record_push (struct i386_record_s *irp, int size)
4917 if (record_full_arch_list_add_reg (irp->regcache,
4918 irp->regmap[X86_RECORD_RESP_REGNUM]))
4920 regcache_raw_read_unsigned (irp->regcache,
4921 irp->regmap[X86_RECORD_RESP_REGNUM],
4923 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4930 /* Defines contents to record. */
4931 #define I386_SAVE_FPU_REGS 0xfffd
4932 #define I386_SAVE_FPU_ENV 0xfffe
4933 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4935 /* Record the values of the floating point registers which will be
4936 changed by the current instruction. Returns -1 if something is
4937 wrong, 0 otherwise. */
4939 static int i386_record_floats (struct gdbarch *gdbarch,
4940 struct i386_record_s *ir,
4943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4946 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4947 happen. Currently we store st0-st7 registers, but we need not store all
4948 registers all the time, in future we use ftag register and record only
4949 those who are not marked as an empty. */
4951 if (I386_SAVE_FPU_REGS == iregnum)
4953 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4955 if (record_full_arch_list_add_reg (ir->regcache, i))
4959 else if (I386_SAVE_FPU_ENV == iregnum)
4961 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4963 if (record_full_arch_list_add_reg (ir->regcache, i))
4967 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4969 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4971 if (record_full_arch_list_add_reg (ir->regcache, i))
4975 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4976 (iregnum <= I387_FOP_REGNUM (tdep)))
4978 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4983 /* Parameter error. */
4986 if(I386_SAVE_FPU_ENV != iregnum)
4988 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4990 if (record_full_arch_list_add_reg (ir->regcache, i))
4997 /* Parse the current instruction, and record the values of the
4998 registers and memory that will be changed by the current
4999 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5001 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5002 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5005 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5006 CORE_ADDR input_addr)
5008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5014 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5015 struct i386_record_s ir;
5016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5020 memset (&ir, 0, sizeof (struct i386_record_s));
5021 ir.regcache = regcache;
5022 ir.addr = input_addr;
5023 ir.orig_addr = input_addr;
5027 ir.popl_esp_hack = 0;
5028 ir.regmap = tdep->record_regmap;
5029 ir.gdbarch = gdbarch;
5031 if (record_debug > 1)
5032 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5034 paddress (gdbarch, ir.addr));
5039 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5042 switch (opcode8) /* Instruction prefixes */
5044 case REPE_PREFIX_OPCODE:
5045 prefixes |= PREFIX_REPZ;
5047 case REPNE_PREFIX_OPCODE:
5048 prefixes |= PREFIX_REPNZ;
5050 case LOCK_PREFIX_OPCODE:
5051 prefixes |= PREFIX_LOCK;
5053 case CS_PREFIX_OPCODE:
5054 ir.override = X86_RECORD_CS_REGNUM;
5056 case SS_PREFIX_OPCODE:
5057 ir.override = X86_RECORD_SS_REGNUM;
5059 case DS_PREFIX_OPCODE:
5060 ir.override = X86_RECORD_DS_REGNUM;
5062 case ES_PREFIX_OPCODE:
5063 ir.override = X86_RECORD_ES_REGNUM;
5065 case FS_PREFIX_OPCODE:
5066 ir.override = X86_RECORD_FS_REGNUM;
5068 case GS_PREFIX_OPCODE:
5069 ir.override = X86_RECORD_GS_REGNUM;
5071 case DATA_PREFIX_OPCODE:
5072 prefixes |= PREFIX_DATA;
5074 case ADDR_PREFIX_OPCODE:
5075 prefixes |= PREFIX_ADDR;
5077 case 0x40: /* i386 inc %eax */
5078 case 0x41: /* i386 inc %ecx */
5079 case 0x42: /* i386 inc %edx */
5080 case 0x43: /* i386 inc %ebx */
5081 case 0x44: /* i386 inc %esp */
5082 case 0x45: /* i386 inc %ebp */
5083 case 0x46: /* i386 inc %esi */
5084 case 0x47: /* i386 inc %edi */
5085 case 0x48: /* i386 dec %eax */
5086 case 0x49: /* i386 dec %ecx */
5087 case 0x4a: /* i386 dec %edx */
5088 case 0x4b: /* i386 dec %ebx */
5089 case 0x4c: /* i386 dec %esp */
5090 case 0x4d: /* i386 dec %ebp */
5091 case 0x4e: /* i386 dec %esi */
5092 case 0x4f: /* i386 dec %edi */
5093 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5096 rex_w = (opcode8 >> 3) & 1;
5097 rex_r = (opcode8 & 0x4) << 1;
5098 ir.rex_x = (opcode8 & 0x2) << 2;
5099 ir.rex_b = (opcode8 & 0x1) << 3;
5101 else /* 32 bit target */
5110 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5116 if (prefixes & PREFIX_DATA)
5119 if (prefixes & PREFIX_ADDR)
5121 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5124 /* Now check op code. */
5125 opcode = (uint32_t) opcode8;
5130 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5133 opcode = (uint32_t) opcode8 | 0x0f00;
5137 case 0x00: /* arith & logic */
5185 if (((opcode >> 3) & 7) != OP_CMPL)
5187 if ((opcode & 1) == 0)
5190 ir.ot = ir.dflag + OT_WORD;
5192 switch ((opcode >> 1) & 3)
5194 case 0: /* OP Ev, Gv */
5195 if (i386_record_modrm (&ir))
5199 if (i386_record_lea_modrm (&ir))
5205 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5210 case 1: /* OP Gv, Ev */
5211 if (i386_record_modrm (&ir))
5214 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5218 case 2: /* OP A, Iv */
5219 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5226 case 0x80: /* GRP1 */
5230 if (i386_record_modrm (&ir))
5233 if (ir.reg != OP_CMPL)
5235 if ((opcode & 1) == 0)
5238 ir.ot = ir.dflag + OT_WORD;
5245 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5246 if (i386_record_lea_modrm (&ir))
5250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5255 case 0x40: /* inc */
5264 case 0x48: /* dec */
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5277 case 0xf6: /* GRP3 */
5279 if ((opcode & 1) == 0)
5282 ir.ot = ir.dflag + OT_WORD;
5283 if (i386_record_modrm (&ir))
5286 if (ir.mod != 3 && ir.reg == 0)
5287 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5292 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5298 if (i386_record_lea_modrm (&ir))
5304 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5308 if (ir.reg == 3) /* neg */
5309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5316 if (ir.ot != OT_BYTE)
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5318 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5322 opcode = opcode << 8 | ir.modrm;
5328 case 0xfe: /* GRP4 */
5329 case 0xff: /* GRP5 */
5330 if (i386_record_modrm (&ir))
5332 if (ir.reg >= 2 && opcode == 0xfe)
5335 opcode = opcode << 8 | ir.modrm;
5342 if ((opcode & 1) == 0)
5345 ir.ot = ir.dflag + OT_WORD;
5348 if (i386_record_lea_modrm (&ir))
5354 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5361 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5363 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5369 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5378 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5380 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5385 opcode = opcode << 8 | ir.modrm;
5391 case 0x84: /* test */
5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5398 case 0x98: /* CWDE/CBW */
5399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5402 case 0x99: /* CDQ/CWD */
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5407 case 0x0faf: /* imul */
5410 ir.ot = ir.dflag + OT_WORD;
5411 if (i386_record_modrm (&ir))
5414 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5415 else if (opcode == 0x6b)
5418 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5424 case 0x0fc0: /* xadd */
5426 if ((opcode & 1) == 0)
5429 ir.ot = ir.dflag + OT_WORD;
5430 if (i386_record_modrm (&ir))
5435 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5438 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5444 if (i386_record_lea_modrm (&ir))
5446 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5453 case 0x0fb0: /* cmpxchg */
5455 if ((opcode & 1) == 0)
5458 ir.ot = ir.dflag + OT_WORD;
5459 if (i386_record_modrm (&ir))
5464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5465 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5472 if (i386_record_lea_modrm (&ir))
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5478 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5479 if (i386_record_modrm (&ir))
5483 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5484 an extended opcode. rdrand has bits 110 (/6) and rdseed
5485 has bits 111 (/7). */
5486 if (ir.reg == 6 || ir.reg == 7)
5488 /* The storage register is described by the 3 R/M bits, but the
5489 REX.B prefix may be used to give access to registers
5490 R8~R15. In this case ir.rex_b + R/M will give us the register
5491 in the range R8~R15.
5493 REX.W may also be used to access 64-bit registers, but we
5494 already record entire registers and not just partial bits
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5497 /* These instructions also set conditional bits. */
5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5503 /* We don't handle this particular instruction yet. */
5505 opcode = opcode << 8 | ir.modrm;
5509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5511 if (i386_record_lea_modrm (&ir))
5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5516 case 0x50: /* push */
5526 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5528 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5532 case 0x06: /* push es */
5533 case 0x0e: /* push cs */
5534 case 0x16: /* push ss */
5535 case 0x1e: /* push ds */
5536 if (ir.regmap[X86_RECORD_R8_REGNUM])
5541 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5545 case 0x0fa0: /* push fs */
5546 case 0x0fa8: /* push gs */
5547 if (ir.regmap[X86_RECORD_R8_REGNUM])
5552 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5556 case 0x60: /* pusha */
5557 if (ir.regmap[X86_RECORD_R8_REGNUM])
5562 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5566 case 0x58: /* pop */
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5575 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5578 case 0x61: /* popa */
5579 if (ir.regmap[X86_RECORD_R8_REGNUM])
5584 for (regnum = X86_RECORD_REAX_REGNUM;
5585 regnum <= X86_RECORD_REDI_REGNUM;
5587 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5590 case 0x8f: /* pop */
5591 if (ir.regmap[X86_RECORD_R8_REGNUM])
5592 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5594 ir.ot = ir.dflag + OT_WORD;
5595 if (i386_record_modrm (&ir))
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5601 ir.popl_esp_hack = 1 << ir.ot;
5602 if (i386_record_lea_modrm (&ir))
5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5608 case 0xc8: /* enter */
5609 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5610 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5612 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5616 case 0xc9: /* leave */
5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5621 case 0x07: /* pop es */
5622 if (ir.regmap[X86_RECORD_R8_REGNUM])
5627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5632 case 0x17: /* pop ss */
5633 if (ir.regmap[X86_RECORD_R8_REGNUM])
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5640 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5643 case 0x1f: /* pop ds */
5644 if (ir.regmap[X86_RECORD_R8_REGNUM])
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5654 case 0x0fa1: /* pop fs */
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5660 case 0x0fa9: /* pop gs */
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5666 case 0x88: /* mov */
5670 if ((opcode & 1) == 0)
5673 ir.ot = ir.dflag + OT_WORD;
5675 if (i386_record_modrm (&ir))
5680 if (opcode == 0xc6 || opcode == 0xc7)
5681 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5682 if (i386_record_lea_modrm (&ir))
5687 if (opcode == 0xc6 || opcode == 0xc7)
5689 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5695 case 0x8a: /* mov */
5697 if ((opcode & 1) == 0)
5700 ir.ot = ir.dflag + OT_WORD;
5701 if (i386_record_modrm (&ir))
5704 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5709 case 0x8c: /* mov seg */
5710 if (i386_record_modrm (&ir))
5715 opcode = opcode << 8 | ir.modrm;
5720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5724 if (i386_record_lea_modrm (&ir))
5729 case 0x8e: /* mov seg */
5730 if (i386_record_modrm (&ir))
5735 regnum = X86_RECORD_ES_REGNUM;
5738 regnum = X86_RECORD_SS_REGNUM;
5741 regnum = X86_RECORD_DS_REGNUM;
5744 regnum = X86_RECORD_FS_REGNUM;
5747 regnum = X86_RECORD_GS_REGNUM;
5751 opcode = opcode << 8 | ir.modrm;
5755 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5756 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5759 case 0x0fb6: /* movzbS */
5760 case 0x0fb7: /* movzwS */
5761 case 0x0fbe: /* movsbS */
5762 case 0x0fbf: /* movswS */
5763 if (i386_record_modrm (&ir))
5765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5768 case 0x8d: /* lea */
5769 if (i386_record_modrm (&ir))
5774 opcode = opcode << 8 | ir.modrm;
5779 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5784 case 0xa0: /* mov EAX */
5787 case 0xd7: /* xlat */
5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5791 case 0xa2: /* mov EAX */
5793 if (ir.override >= 0)
5795 if (record_full_memory_query)
5798 Process record ignores the memory change of instruction at address %s\n\
5799 because it can't get the value of the segment register.\n\
5800 Do you want to stop the program?"),
5801 paddress (gdbarch, ir.orig_addr)))
5807 if ((opcode & 1) == 0)
5810 ir.ot = ir.dflag + OT_WORD;
5813 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5816 addr = extract_unsigned_integer (buf, 8, byte_order);
5820 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5823 addr = extract_unsigned_integer (buf, 4, byte_order);
5827 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5830 addr = extract_unsigned_integer (buf, 2, byte_order);
5832 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5837 case 0xb0: /* mov R, Ib */
5845 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5846 ? ((opcode & 0x7) | ir.rex_b)
5847 : ((opcode & 0x7) & 0x3));
5850 case 0xb8: /* mov R, Iv */
5858 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5861 case 0x91: /* xchg R, EAX */
5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5872 case 0x86: /* xchg Ev, Gv */
5874 if ((opcode & 1) == 0)
5877 ir.ot = ir.dflag + OT_WORD;
5878 if (i386_record_modrm (&ir))
5883 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5889 if (i386_record_lea_modrm (&ir))
5893 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5898 case 0xc4: /* les Gv */
5899 case 0xc5: /* lds Gv */
5900 if (ir.regmap[X86_RECORD_R8_REGNUM])
5906 case 0x0fb2: /* lss Gv */
5907 case 0x0fb4: /* lfs Gv */
5908 case 0x0fb5: /* lgs Gv */
5909 if (i386_record_modrm (&ir))
5917 opcode = opcode << 8 | ir.modrm;
5922 case 0xc4: /* les Gv */
5923 regnum = X86_RECORD_ES_REGNUM;
5925 case 0xc5: /* lds Gv */
5926 regnum = X86_RECORD_DS_REGNUM;
5928 case 0x0fb2: /* lss Gv */
5929 regnum = X86_RECORD_SS_REGNUM;
5931 case 0x0fb4: /* lfs Gv */
5932 regnum = X86_RECORD_FS_REGNUM;
5934 case 0x0fb5: /* lgs Gv */
5935 regnum = X86_RECORD_GS_REGNUM;
5938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5940 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5943 case 0xc0: /* shifts */
5949 if ((opcode & 1) == 0)
5952 ir.ot = ir.dflag + OT_WORD;
5953 if (i386_record_modrm (&ir))
5955 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5957 if (i386_record_lea_modrm (&ir))
5963 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5974 if (i386_record_modrm (&ir))
5978 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5983 if (i386_record_lea_modrm (&ir))
5988 case 0xd8: /* Floats. */
5996 if (i386_record_modrm (&ir))
5998 ir.reg |= ((opcode & 7) << 3);
6004 if (i386_record_lea_modrm_addr (&ir, &addr64))
6012 /* For fcom, ficom nothing to do. */
6018 /* For fcomp, ficomp pop FPU stack, store all. */
6019 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6046 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6047 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6048 of code, always affects st(0) register. */
6049 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6073 /* Handling fld, fild. */
6074 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6078 switch (ir.reg >> 4)
6081 if (record_full_arch_list_add_mem (addr64, 4))
6085 if (record_full_arch_list_add_mem (addr64, 8))
6091 if (record_full_arch_list_add_mem (addr64, 2))
6097 switch (ir.reg >> 4)
6100 if (record_full_arch_list_add_mem (addr64, 4))
6102 if (3 == (ir.reg & 7))
6104 /* For fstp m32fp. */
6105 if (i386_record_floats (gdbarch, &ir,
6106 I386_SAVE_FPU_REGS))
6111 if (record_full_arch_list_add_mem (addr64, 4))
6113 if ((3 == (ir.reg & 7))
6114 || (5 == (ir.reg & 7))
6115 || (7 == (ir.reg & 7)))
6117 /* For fstp insn. */
6118 if (i386_record_floats (gdbarch, &ir,
6119 I386_SAVE_FPU_REGS))
6124 if (record_full_arch_list_add_mem (addr64, 8))
6126 if (3 == (ir.reg & 7))
6128 /* For fstp m64fp. */
6129 if (i386_record_floats (gdbarch, &ir,
6130 I386_SAVE_FPU_REGS))
6135 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6137 /* For fistp, fbld, fild, fbstp. */
6138 if (i386_record_floats (gdbarch, &ir,
6139 I386_SAVE_FPU_REGS))
6144 if (record_full_arch_list_add_mem (addr64, 2))
6153 if (i386_record_floats (gdbarch, &ir,
6154 I386_SAVE_FPU_ENV_REG_STACK))
6159 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6164 if (i386_record_floats (gdbarch, &ir,
6165 I386_SAVE_FPU_ENV_REG_STACK))
6171 if (record_full_arch_list_add_mem (addr64, 28))
6176 if (record_full_arch_list_add_mem (addr64, 14))
6182 if (record_full_arch_list_add_mem (addr64, 2))
6184 /* Insn fstp, fbstp. */
6185 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6190 if (record_full_arch_list_add_mem (addr64, 10))
6196 if (record_full_arch_list_add_mem (addr64, 28))
6202 if (record_full_arch_list_add_mem (addr64, 14))
6206 if (record_full_arch_list_add_mem (addr64, 80))
6209 if (i386_record_floats (gdbarch, &ir,
6210 I386_SAVE_FPU_ENV_REG_STACK))
6214 if (record_full_arch_list_add_mem (addr64, 8))
6217 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6222 opcode = opcode << 8 | ir.modrm;
6227 /* Opcode is an extension of modR/M byte. */
6233 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6237 if (0x0c == (ir.modrm >> 4))
6239 if ((ir.modrm & 0x0f) <= 7)
6241 if (i386_record_floats (gdbarch, &ir,
6242 I386_SAVE_FPU_REGS))
6247 if (i386_record_floats (gdbarch, &ir,
6248 I387_ST0_REGNUM (tdep)))
6250 /* If only st(0) is changing, then we have already
6252 if ((ir.modrm & 0x0f) - 0x08)
6254 if (i386_record_floats (gdbarch, &ir,
6255 I387_ST0_REGNUM (tdep) +
6256 ((ir.modrm & 0x0f) - 0x08)))
6274 if (i386_record_floats (gdbarch, &ir,
6275 I387_ST0_REGNUM (tdep)))
6293 if (i386_record_floats (gdbarch, &ir,
6294 I386_SAVE_FPU_REGS))
6298 if (i386_record_floats (gdbarch, &ir,
6299 I387_ST0_REGNUM (tdep)))
6301 if (i386_record_floats (gdbarch, &ir,
6302 I387_ST0_REGNUM (tdep) + 1))
6309 if (0xe9 == ir.modrm)
6311 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6314 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6316 if (i386_record_floats (gdbarch, &ir,
6317 I387_ST0_REGNUM (tdep)))
6319 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6321 if (i386_record_floats (gdbarch, &ir,
6322 I387_ST0_REGNUM (tdep) +
6326 else if ((ir.modrm & 0x0f) - 0x08)
6328 if (i386_record_floats (gdbarch, &ir,
6329 I387_ST0_REGNUM (tdep) +
6330 ((ir.modrm & 0x0f) - 0x08)))
6336 if (0xe3 == ir.modrm)
6338 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6341 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6343 if (i386_record_floats (gdbarch, &ir,
6344 I387_ST0_REGNUM (tdep)))
6346 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6348 if (i386_record_floats (gdbarch, &ir,
6349 I387_ST0_REGNUM (tdep) +
6353 else if ((ir.modrm & 0x0f) - 0x08)
6355 if (i386_record_floats (gdbarch, &ir,
6356 I387_ST0_REGNUM (tdep) +
6357 ((ir.modrm & 0x0f) - 0x08)))
6363 if ((0x0c == ir.modrm >> 4)
6364 || (0x0d == ir.modrm >> 4)
6365 || (0x0f == ir.modrm >> 4))
6367 if ((ir.modrm & 0x0f) <= 7)
6369 if (i386_record_floats (gdbarch, &ir,
6370 I387_ST0_REGNUM (tdep) +
6376 if (i386_record_floats (gdbarch, &ir,
6377 I387_ST0_REGNUM (tdep) +
6378 ((ir.modrm & 0x0f) - 0x08)))
6384 if (0x0c == ir.modrm >> 4)
6386 if (i386_record_floats (gdbarch, &ir,
6387 I387_FTAG_REGNUM (tdep)))
6390 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6392 if ((ir.modrm & 0x0f) <= 7)
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6401 if (i386_record_floats (gdbarch, &ir,
6402 I386_SAVE_FPU_REGS))
6408 if ((0x0c == ir.modrm >> 4)
6409 || (0x0e == ir.modrm >> 4)
6410 || (0x0f == ir.modrm >> 4)
6411 || (0xd9 == ir.modrm))
6413 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6418 if (0xe0 == ir.modrm)
6420 if (record_full_arch_list_add_reg (ir.regcache,
6424 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6426 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6434 case 0xa4: /* movsS */
6436 case 0xaa: /* stosS */
6438 case 0x6c: /* insS */
6440 regcache_raw_read_unsigned (ir.regcache,
6441 ir.regmap[X86_RECORD_RECX_REGNUM],
6447 if ((opcode & 1) == 0)
6450 ir.ot = ir.dflag + OT_WORD;
6451 regcache_raw_read_unsigned (ir.regcache,
6452 ir.regmap[X86_RECORD_REDI_REGNUM],
6455 regcache_raw_read_unsigned (ir.regcache,
6456 ir.regmap[X86_RECORD_ES_REGNUM],
6458 regcache_raw_read_unsigned (ir.regcache,
6459 ir.regmap[X86_RECORD_DS_REGNUM],
6461 if (ir.aflag && (es != ds))
6463 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6464 if (record_full_memory_query)
6467 Process record ignores the memory change of instruction at address %s\n\
6468 because it can't get the value of the segment register.\n\
6469 Do you want to stop the program?"),
6470 paddress (gdbarch, ir.orig_addr)))
6476 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6480 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6482 if (opcode == 0xa4 || opcode == 0xa5)
6483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6489 case 0xa6: /* cmpsS */
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6493 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6498 case 0xac: /* lodsS */
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6502 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6507 case 0xae: /* scasS */
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6510 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6515 case 0x6e: /* outsS */
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6523 case 0xe4: /* port I/O */
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6538 case 0xc2: /* ret im */
6539 case 0xc3: /* ret */
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6544 case 0xca: /* lret im */
6545 case 0xcb: /* lret */
6546 case 0xcf: /* iret */
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6552 case 0xe8: /* call im */
6553 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6555 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6559 case 0x9a: /* lcall im */
6560 if (ir.regmap[X86_RECORD_R8_REGNUM])
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6566 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6570 case 0xe9: /* jmp im */
6571 case 0xea: /* ljmp im */
6572 case 0xeb: /* jmp Jb */
6573 case 0x70: /* jcc Jb */
6589 case 0x0f80: /* jcc Jv */
6607 case 0x0f90: /* setcc Gv */
6623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6625 if (i386_record_modrm (&ir))
6628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6632 if (i386_record_lea_modrm (&ir))
6637 case 0x0f40: /* cmov Gv, Ev */
6653 if (i386_record_modrm (&ir))
6656 if (ir.dflag == OT_BYTE)
6658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6662 case 0x9c: /* pushf */
6663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6664 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6666 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6670 case 0x9d: /* popf */
6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6675 case 0x9e: /* sahf */
6676 if (ir.regmap[X86_RECORD_R8_REGNUM])
6682 case 0xf5: /* cmc */
6683 case 0xf8: /* clc */
6684 case 0xf9: /* stc */
6685 case 0xfc: /* cld */
6686 case 0xfd: /* std */
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6690 case 0x9f: /* lahf */
6691 if (ir.regmap[X86_RECORD_R8_REGNUM])
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6700 /* bit operations */
6701 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6702 ir.ot = ir.dflag + OT_WORD;
6703 if (i386_record_modrm (&ir))
6708 opcode = opcode << 8 | ir.modrm;
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6717 if (i386_record_lea_modrm (&ir))
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6724 case 0x0fa3: /* bt Gv, Ev */
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6728 case 0x0fab: /* bts */
6729 case 0x0fb3: /* btr */
6730 case 0x0fbb: /* btc */
6731 ir.ot = ir.dflag + OT_WORD;
6732 if (i386_record_modrm (&ir))
6735 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6739 if (i386_record_lea_modrm_addr (&ir, &addr64))
6741 regcache_raw_read_unsigned (ir.regcache,
6742 ir.regmap[ir.reg | rex_r],
6747 addr64 += ((int16_t) addr >> 4) << 4;
6750 addr64 += ((int32_t) addr >> 5) << 5;
6753 addr64 += ((int64_t) addr >> 6) << 6;
6756 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6758 if (i386_record_lea_modrm (&ir))
6761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6764 case 0x0fbc: /* bsf */
6765 case 0x0fbd: /* bsr */
6766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6771 case 0x27: /* daa */
6772 case 0x2f: /* das */
6773 case 0x37: /* aaa */
6774 case 0x3f: /* aas */
6775 case 0xd4: /* aam */
6776 case 0xd5: /* aad */
6777 if (ir.regmap[X86_RECORD_R8_REGNUM])
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6787 case 0x90: /* nop */
6788 if (prefixes & PREFIX_LOCK)
6795 case 0x9b: /* fwait */
6796 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6798 opcode = (uint32_t) opcode8;
6804 case 0xcc: /* int3 */
6805 printf_unfiltered (_("Process record does not support instruction "
6812 case 0xcd: /* int */
6816 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6819 if (interrupt != 0x80
6820 || tdep->i386_intx80_record == NULL)
6822 printf_unfiltered (_("Process record does not support "
6823 "instruction int 0x%02x.\n"),
6828 ret = tdep->i386_intx80_record (ir.regcache);
6835 case 0xce: /* into */
6836 printf_unfiltered (_("Process record does not support "
6837 "instruction into.\n"));
6842 case 0xfa: /* cli */
6843 case 0xfb: /* sti */
6846 case 0x62: /* bound */
6847 printf_unfiltered (_("Process record does not support "
6848 "instruction bound.\n"));
6853 case 0x0fc8: /* bswap reg */
6861 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6864 case 0xd6: /* salc */
6865 if (ir.regmap[X86_RECORD_R8_REGNUM])
6870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6874 case 0xe0: /* loopnz */
6875 case 0xe1: /* loopz */
6876 case 0xe2: /* loop */
6877 case 0xe3: /* jecxz */
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6882 case 0x0f30: /* wrmsr */
6883 printf_unfiltered (_("Process record does not support "
6884 "instruction wrmsr.\n"));
6889 case 0x0f32: /* rdmsr */
6890 printf_unfiltered (_("Process record does not support "
6891 "instruction rdmsr.\n"));
6896 case 0x0f31: /* rdtsc */
6897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6901 case 0x0f34: /* sysenter */
6904 if (ir.regmap[X86_RECORD_R8_REGNUM])
6909 if (tdep->i386_sysenter_record == NULL)
6911 printf_unfiltered (_("Process record does not support "
6912 "instruction sysenter.\n"));
6916 ret = tdep->i386_sysenter_record (ir.regcache);
6922 case 0x0f35: /* sysexit */
6923 printf_unfiltered (_("Process record does not support "
6924 "instruction sysexit.\n"));
6929 case 0x0f05: /* syscall */
6932 if (tdep->i386_syscall_record == NULL)
6934 printf_unfiltered (_("Process record does not support "
6935 "instruction syscall.\n"));
6939 ret = tdep->i386_syscall_record (ir.regcache);
6945 case 0x0f07: /* sysret */
6946 printf_unfiltered (_("Process record does not support "
6947 "instruction sysret.\n"));
6952 case 0x0fa2: /* cpuid */
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6959 case 0xf4: /* hlt */
6960 printf_unfiltered (_("Process record does not support "
6961 "instruction hlt.\n"));
6967 if (i386_record_modrm (&ir))
6974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6978 if (i386_record_lea_modrm (&ir))
6987 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6991 opcode = opcode << 8 | ir.modrm;
6998 if (i386_record_modrm (&ir))
7009 opcode = opcode << 8 | ir.modrm;
7012 if (ir.override >= 0)
7014 if (record_full_memory_query)
7017 Process record ignores the memory change of instruction at address %s\n\
7018 because it can't get the value of the segment register.\n\
7019 Do you want to stop the program?"),
7020 paddress (gdbarch, ir.orig_addr)))
7026 if (i386_record_lea_modrm_addr (&ir, &addr64))
7028 if (record_full_arch_list_add_mem (addr64, 2))
7031 if (ir.regmap[X86_RECORD_R8_REGNUM])
7033 if (record_full_arch_list_add_mem (addr64, 8))
7038 if (record_full_arch_list_add_mem (addr64, 4))
7049 case 0: /* monitor */
7052 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7056 opcode = opcode << 8 | ir.modrm;
7064 if (ir.override >= 0)
7066 if (record_full_memory_query)
7069 Process record ignores the memory change of instruction at address %s\n\
7070 because it can't get the value of the segment register.\n\
7071 Do you want to stop the program?"),
7072 paddress (gdbarch, ir.orig_addr)))
7080 if (i386_record_lea_modrm_addr (&ir, &addr64))
7082 if (record_full_arch_list_add_mem (addr64, 2))
7085 if (ir.regmap[X86_RECORD_R8_REGNUM])
7087 if (record_full_arch_list_add_mem (addr64, 8))
7092 if (record_full_arch_list_add_mem (addr64, 4))
7104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7109 else if (ir.rm == 1)
7117 opcode = opcode << 8 | ir.modrm;
7124 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7130 if (i386_record_lea_modrm (&ir))
7133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7136 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7138 case 7: /* invlpg */
7141 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7142 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7146 opcode = opcode << 8 | ir.modrm;
7151 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7155 opcode = opcode << 8 | ir.modrm;
7161 case 0x0f08: /* invd */
7162 case 0x0f09: /* wbinvd */
7165 case 0x63: /* arpl */
7166 if (i386_record_modrm (&ir))
7168 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7171 ? (ir.reg | rex_r) : ir.rm);
7175 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7176 if (i386_record_lea_modrm (&ir))
7179 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7183 case 0x0f02: /* lar */
7184 case 0x0f03: /* lsl */
7185 if (i386_record_modrm (&ir))
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7192 if (i386_record_modrm (&ir))
7194 if (ir.mod == 3 && ir.reg == 3)
7197 opcode = opcode << 8 | ir.modrm;
7209 /* nop (multi byte) */
7212 case 0x0f20: /* mov reg, crN */
7213 case 0x0f22: /* mov crN, reg */
7214 if (i386_record_modrm (&ir))
7216 if ((ir.modrm & 0xc0) != 0xc0)
7219 opcode = opcode << 8 | ir.modrm;
7230 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7236 opcode = opcode << 8 | ir.modrm;
7242 case 0x0f21: /* mov reg, drN */
7243 case 0x0f23: /* mov drN, reg */
7244 if (i386_record_modrm (&ir))
7246 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7247 || ir.reg == 5 || ir.reg >= 8)
7250 opcode = opcode << 8 | ir.modrm;
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7259 case 0x0f06: /* clts */
7260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7263 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7265 case 0x0f0d: /* 3DNow! prefetch */
7268 case 0x0f0e: /* 3DNow! femms */
7269 case 0x0f77: /* emms */
7270 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7272 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7275 case 0x0f0f: /* 3DNow! data */
7276 if (i386_record_modrm (&ir))
7278 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7283 case 0x0c: /* 3DNow! pi2fw */
7284 case 0x0d: /* 3DNow! pi2fd */
7285 case 0x1c: /* 3DNow! pf2iw */
7286 case 0x1d: /* 3DNow! pf2id */
7287 case 0x8a: /* 3DNow! pfnacc */
7288 case 0x8e: /* 3DNow! pfpnacc */
7289 case 0x90: /* 3DNow! pfcmpge */
7290 case 0x94: /* 3DNow! pfmin */
7291 case 0x96: /* 3DNow! pfrcp */
7292 case 0x97: /* 3DNow! pfrsqrt */
7293 case 0x9a: /* 3DNow! pfsub */
7294 case 0x9e: /* 3DNow! pfadd */
7295 case 0xa0: /* 3DNow! pfcmpgt */
7296 case 0xa4: /* 3DNow! pfmax */
7297 case 0xa6: /* 3DNow! pfrcpit1 */
7298 case 0xa7: /* 3DNow! pfrsqit1 */
7299 case 0xaa: /* 3DNow! pfsubr */
7300 case 0xae: /* 3DNow! pfacc */
7301 case 0xb0: /* 3DNow! pfcmpeq */
7302 case 0xb4: /* 3DNow! pfmul */
7303 case 0xb6: /* 3DNow! pfrcpit2 */
7304 case 0xb7: /* 3DNow! pmulhrw */
7305 case 0xbb: /* 3DNow! pswapd */
7306 case 0xbf: /* 3DNow! pavgusb */
7307 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7308 goto no_support_3dnow_data;
7309 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7313 no_support_3dnow_data:
7314 opcode = (opcode << 8) | opcode8;
7320 case 0x0faa: /* rsm */
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7333 if (i386_record_modrm (&ir))
7337 case 0: /* fxsave */
7341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7342 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7344 if (record_full_arch_list_add_mem (tmpu64, 512))
7349 case 1: /* fxrstor */
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7355 for (i = I387_MM0_REGNUM (tdep);
7356 i386_mmx_regnum_p (gdbarch, i); i++)
7357 record_full_arch_list_add_reg (ir.regcache, i);
7359 for (i = I387_XMM0_REGNUM (tdep);
7360 i386_xmm_regnum_p (gdbarch, i); i++)
7361 record_full_arch_list_add_reg (ir.regcache, i);
7363 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7364 record_full_arch_list_add_reg (ir.regcache,
7365 I387_MXCSR_REGNUM(tdep));
7367 for (i = I387_ST0_REGNUM (tdep);
7368 i386_fp_regnum_p (gdbarch, i); i++)
7369 record_full_arch_list_add_reg (ir.regcache, i);
7371 for (i = I387_FCTRL_REGNUM (tdep);
7372 i386_fpc_regnum_p (gdbarch, i); i++)
7373 record_full_arch_list_add_reg (ir.regcache, i);
7377 case 2: /* ldmxcsr */
7378 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7380 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7383 case 3: /* stmxcsr */
7385 if (i386_record_lea_modrm (&ir))
7389 case 5: /* lfence */
7390 case 6: /* mfence */
7391 case 7: /* sfence clflush */
7395 opcode = (opcode << 8) | ir.modrm;
7401 case 0x0fc3: /* movnti */
7402 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7403 if (i386_record_modrm (&ir))
7408 if (i386_record_lea_modrm (&ir))
7412 /* Add prefix to opcode. */
7527 /* Mask out PREFIX_ADDR. */
7528 switch ((prefixes & ~PREFIX_ADDR))
7540 reswitch_prefix_add:
7548 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7551 opcode = (uint32_t) opcode8 | opcode << 8;
7552 goto reswitch_prefix_add;
7555 case 0x0f10: /* movups */
7556 case 0x660f10: /* movupd */
7557 case 0xf30f10: /* movss */
7558 case 0xf20f10: /* movsd */
7559 case 0x0f12: /* movlps */
7560 case 0x660f12: /* movlpd */
7561 case 0xf30f12: /* movsldup */
7562 case 0xf20f12: /* movddup */
7563 case 0x0f14: /* unpcklps */
7564 case 0x660f14: /* unpcklpd */
7565 case 0x0f15: /* unpckhps */
7566 case 0x660f15: /* unpckhpd */
7567 case 0x0f16: /* movhps */
7568 case 0x660f16: /* movhpd */
7569 case 0xf30f16: /* movshdup */
7570 case 0x0f28: /* movaps */
7571 case 0x660f28: /* movapd */
7572 case 0x0f2a: /* cvtpi2ps */
7573 case 0x660f2a: /* cvtpi2pd */
7574 case 0xf30f2a: /* cvtsi2ss */
7575 case 0xf20f2a: /* cvtsi2sd */
7576 case 0x0f2c: /* cvttps2pi */
7577 case 0x660f2c: /* cvttpd2pi */
7578 case 0x0f2d: /* cvtps2pi */
7579 case 0x660f2d: /* cvtpd2pi */
7580 case 0x660f3800: /* pshufb */
7581 case 0x660f3801: /* phaddw */
7582 case 0x660f3802: /* phaddd */
7583 case 0x660f3803: /* phaddsw */
7584 case 0x660f3804: /* pmaddubsw */
7585 case 0x660f3805: /* phsubw */
7586 case 0x660f3806: /* phsubd */
7587 case 0x660f3807: /* phsubsw */
7588 case 0x660f3808: /* psignb */
7589 case 0x660f3809: /* psignw */
7590 case 0x660f380a: /* psignd */
7591 case 0x660f380b: /* pmulhrsw */
7592 case 0x660f3810: /* pblendvb */
7593 case 0x660f3814: /* blendvps */
7594 case 0x660f3815: /* blendvpd */
7595 case 0x660f381c: /* pabsb */
7596 case 0x660f381d: /* pabsw */
7597 case 0x660f381e: /* pabsd */
7598 case 0x660f3820: /* pmovsxbw */
7599 case 0x660f3821: /* pmovsxbd */
7600 case 0x660f3822: /* pmovsxbq */
7601 case 0x660f3823: /* pmovsxwd */
7602 case 0x660f3824: /* pmovsxwq */
7603 case 0x660f3825: /* pmovsxdq */
7604 case 0x660f3828: /* pmuldq */
7605 case 0x660f3829: /* pcmpeqq */
7606 case 0x660f382a: /* movntdqa */
7607 case 0x660f3a08: /* roundps */
7608 case 0x660f3a09: /* roundpd */
7609 case 0x660f3a0a: /* roundss */
7610 case 0x660f3a0b: /* roundsd */
7611 case 0x660f3a0c: /* blendps */
7612 case 0x660f3a0d: /* blendpd */
7613 case 0x660f3a0e: /* pblendw */
7614 case 0x660f3a0f: /* palignr */
7615 case 0x660f3a20: /* pinsrb */
7616 case 0x660f3a21: /* insertps */
7617 case 0x660f3a22: /* pinsrd pinsrq */
7618 case 0x660f3a40: /* dpps */
7619 case 0x660f3a41: /* dppd */
7620 case 0x660f3a42: /* mpsadbw */
7621 case 0x660f3a60: /* pcmpestrm */
7622 case 0x660f3a61: /* pcmpestri */
7623 case 0x660f3a62: /* pcmpistrm */
7624 case 0x660f3a63: /* pcmpistri */
7625 case 0x0f51: /* sqrtps */
7626 case 0x660f51: /* sqrtpd */
7627 case 0xf20f51: /* sqrtsd */
7628 case 0xf30f51: /* sqrtss */
7629 case 0x0f52: /* rsqrtps */
7630 case 0xf30f52: /* rsqrtss */
7631 case 0x0f53: /* rcpps */
7632 case 0xf30f53: /* rcpss */
7633 case 0x0f54: /* andps */
7634 case 0x660f54: /* andpd */
7635 case 0x0f55: /* andnps */
7636 case 0x660f55: /* andnpd */
7637 case 0x0f56: /* orps */
7638 case 0x660f56: /* orpd */
7639 case 0x0f57: /* xorps */
7640 case 0x660f57: /* xorpd */
7641 case 0x0f58: /* addps */
7642 case 0x660f58: /* addpd */
7643 case 0xf20f58: /* addsd */
7644 case 0xf30f58: /* addss */
7645 case 0x0f59: /* mulps */
7646 case 0x660f59: /* mulpd */
7647 case 0xf20f59: /* mulsd */
7648 case 0xf30f59: /* mulss */
7649 case 0x0f5a: /* cvtps2pd */
7650 case 0x660f5a: /* cvtpd2ps */
7651 case 0xf20f5a: /* cvtsd2ss */
7652 case 0xf30f5a: /* cvtss2sd */
7653 case 0x0f5b: /* cvtdq2ps */
7654 case 0x660f5b: /* cvtps2dq */
7655 case 0xf30f5b: /* cvttps2dq */
7656 case 0x0f5c: /* subps */
7657 case 0x660f5c: /* subpd */
7658 case 0xf20f5c: /* subsd */
7659 case 0xf30f5c: /* subss */
7660 case 0x0f5d: /* minps */
7661 case 0x660f5d: /* minpd */
7662 case 0xf20f5d: /* minsd */
7663 case 0xf30f5d: /* minss */
7664 case 0x0f5e: /* divps */
7665 case 0x660f5e: /* divpd */
7666 case 0xf20f5e: /* divsd */
7667 case 0xf30f5e: /* divss */
7668 case 0x0f5f: /* maxps */
7669 case 0x660f5f: /* maxpd */
7670 case 0xf20f5f: /* maxsd */
7671 case 0xf30f5f: /* maxss */
7672 case 0x660f60: /* punpcklbw */
7673 case 0x660f61: /* punpcklwd */
7674 case 0x660f62: /* punpckldq */
7675 case 0x660f63: /* packsswb */
7676 case 0x660f64: /* pcmpgtb */
7677 case 0x660f65: /* pcmpgtw */
7678 case 0x660f66: /* pcmpgtd */
7679 case 0x660f67: /* packuswb */
7680 case 0x660f68: /* punpckhbw */
7681 case 0x660f69: /* punpckhwd */
7682 case 0x660f6a: /* punpckhdq */
7683 case 0x660f6b: /* packssdw */
7684 case 0x660f6c: /* punpcklqdq */
7685 case 0x660f6d: /* punpckhqdq */
7686 case 0x660f6e: /* movd */
7687 case 0x660f6f: /* movdqa */
7688 case 0xf30f6f: /* movdqu */
7689 case 0x660f70: /* pshufd */
7690 case 0xf20f70: /* pshuflw */
7691 case 0xf30f70: /* pshufhw */
7692 case 0x660f74: /* pcmpeqb */
7693 case 0x660f75: /* pcmpeqw */
7694 case 0x660f76: /* pcmpeqd */
7695 case 0x660f7c: /* haddpd */
7696 case 0xf20f7c: /* haddps */
7697 case 0x660f7d: /* hsubpd */
7698 case 0xf20f7d: /* hsubps */
7699 case 0xf30f7e: /* movq */
7700 case 0x0fc2: /* cmpps */
7701 case 0x660fc2: /* cmppd */
7702 case 0xf20fc2: /* cmpsd */
7703 case 0xf30fc2: /* cmpss */
7704 case 0x660fc4: /* pinsrw */
7705 case 0x0fc6: /* shufps */
7706 case 0x660fc6: /* shufpd */
7707 case 0x660fd0: /* addsubpd */
7708 case 0xf20fd0: /* addsubps */
7709 case 0x660fd1: /* psrlw */
7710 case 0x660fd2: /* psrld */
7711 case 0x660fd3: /* psrlq */
7712 case 0x660fd4: /* paddq */
7713 case 0x660fd5: /* pmullw */
7714 case 0xf30fd6: /* movq2dq */
7715 case 0x660fd8: /* psubusb */
7716 case 0x660fd9: /* psubusw */
7717 case 0x660fda: /* pminub */
7718 case 0x660fdb: /* pand */
7719 case 0x660fdc: /* paddusb */
7720 case 0x660fdd: /* paddusw */
7721 case 0x660fde: /* pmaxub */
7722 case 0x660fdf: /* pandn */
7723 case 0x660fe0: /* pavgb */
7724 case 0x660fe1: /* psraw */
7725 case 0x660fe2: /* psrad */
7726 case 0x660fe3: /* pavgw */
7727 case 0x660fe4: /* pmulhuw */
7728 case 0x660fe5: /* pmulhw */
7729 case 0x660fe6: /* cvttpd2dq */
7730 case 0xf20fe6: /* cvtpd2dq */
7731 case 0xf30fe6: /* cvtdq2pd */
7732 case 0x660fe8: /* psubsb */
7733 case 0x660fe9: /* psubsw */
7734 case 0x660fea: /* pminsw */
7735 case 0x660feb: /* por */
7736 case 0x660fec: /* paddsb */
7737 case 0x660fed: /* paddsw */
7738 case 0x660fee: /* pmaxsw */
7739 case 0x660fef: /* pxor */
7740 case 0xf20ff0: /* lddqu */
7741 case 0x660ff1: /* psllw */
7742 case 0x660ff2: /* pslld */
7743 case 0x660ff3: /* psllq */
7744 case 0x660ff4: /* pmuludq */
7745 case 0x660ff5: /* pmaddwd */
7746 case 0x660ff6: /* psadbw */
7747 case 0x660ff8: /* psubb */
7748 case 0x660ff9: /* psubw */
7749 case 0x660ffa: /* psubd */
7750 case 0x660ffb: /* psubq */
7751 case 0x660ffc: /* paddb */
7752 case 0x660ffd: /* paddw */
7753 case 0x660ffe: /* paddd */
7754 if (i386_record_modrm (&ir))
7757 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7759 record_full_arch_list_add_reg (ir.regcache,
7760 I387_XMM0_REGNUM (tdep) + ir.reg);
7761 if ((opcode & 0xfffffffc) == 0x660f3a60)
7762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7765 case 0x0f11: /* movups */
7766 case 0x660f11: /* movupd */
7767 case 0xf30f11: /* movss */
7768 case 0xf20f11: /* movsd */
7769 case 0x0f13: /* movlps */
7770 case 0x660f13: /* movlpd */
7771 case 0x0f17: /* movhps */
7772 case 0x660f17: /* movhpd */
7773 case 0x0f29: /* movaps */
7774 case 0x660f29: /* movapd */
7775 case 0x660f3a14: /* pextrb */
7776 case 0x660f3a15: /* pextrw */
7777 case 0x660f3a16: /* pextrd pextrq */
7778 case 0x660f3a17: /* extractps */
7779 case 0x660f7f: /* movdqa */
7780 case 0xf30f7f: /* movdqu */
7781 if (i386_record_modrm (&ir))
7785 if (opcode == 0x0f13 || opcode == 0x660f13
7786 || opcode == 0x0f17 || opcode == 0x660f17)
7789 if (!i386_xmm_regnum_p (gdbarch,
7790 I387_XMM0_REGNUM (tdep) + ir.rm))
7792 record_full_arch_list_add_reg (ir.regcache,
7793 I387_XMM0_REGNUM (tdep) + ir.rm);
7815 if (i386_record_lea_modrm (&ir))
7820 case 0x0f2b: /* movntps */
7821 case 0x660f2b: /* movntpd */
7822 case 0x0fe7: /* movntq */
7823 case 0x660fe7: /* movntdq */
7826 if (opcode == 0x0fe7)
7830 if (i386_record_lea_modrm (&ir))
7834 case 0xf30f2c: /* cvttss2si */
7835 case 0xf20f2c: /* cvttsd2si */
7836 case 0xf30f2d: /* cvtss2si */
7837 case 0xf20f2d: /* cvtsd2si */
7838 case 0xf20f38f0: /* crc32 */
7839 case 0xf20f38f1: /* crc32 */
7840 case 0x0f50: /* movmskps */
7841 case 0x660f50: /* movmskpd */
7842 case 0x0fc5: /* pextrw */
7843 case 0x660fc5: /* pextrw */
7844 case 0x0fd7: /* pmovmskb */
7845 case 0x660fd7: /* pmovmskb */
7846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7849 case 0x0f3800: /* pshufb */
7850 case 0x0f3801: /* phaddw */
7851 case 0x0f3802: /* phaddd */
7852 case 0x0f3803: /* phaddsw */
7853 case 0x0f3804: /* pmaddubsw */
7854 case 0x0f3805: /* phsubw */
7855 case 0x0f3806: /* phsubd */
7856 case 0x0f3807: /* phsubsw */
7857 case 0x0f3808: /* psignb */
7858 case 0x0f3809: /* psignw */
7859 case 0x0f380a: /* psignd */
7860 case 0x0f380b: /* pmulhrsw */
7861 case 0x0f381c: /* pabsb */
7862 case 0x0f381d: /* pabsw */
7863 case 0x0f381e: /* pabsd */
7864 case 0x0f382b: /* packusdw */
7865 case 0x0f3830: /* pmovzxbw */
7866 case 0x0f3831: /* pmovzxbd */
7867 case 0x0f3832: /* pmovzxbq */
7868 case 0x0f3833: /* pmovzxwd */
7869 case 0x0f3834: /* pmovzxwq */
7870 case 0x0f3835: /* pmovzxdq */
7871 case 0x0f3837: /* pcmpgtq */
7872 case 0x0f3838: /* pminsb */
7873 case 0x0f3839: /* pminsd */
7874 case 0x0f383a: /* pminuw */
7875 case 0x0f383b: /* pminud */
7876 case 0x0f383c: /* pmaxsb */
7877 case 0x0f383d: /* pmaxsd */
7878 case 0x0f383e: /* pmaxuw */
7879 case 0x0f383f: /* pmaxud */
7880 case 0x0f3840: /* pmulld */
7881 case 0x0f3841: /* phminposuw */
7882 case 0x0f3a0f: /* palignr */
7883 case 0x0f60: /* punpcklbw */
7884 case 0x0f61: /* punpcklwd */
7885 case 0x0f62: /* punpckldq */
7886 case 0x0f63: /* packsswb */
7887 case 0x0f64: /* pcmpgtb */
7888 case 0x0f65: /* pcmpgtw */
7889 case 0x0f66: /* pcmpgtd */
7890 case 0x0f67: /* packuswb */
7891 case 0x0f68: /* punpckhbw */
7892 case 0x0f69: /* punpckhwd */
7893 case 0x0f6a: /* punpckhdq */
7894 case 0x0f6b: /* packssdw */
7895 case 0x0f6e: /* movd */
7896 case 0x0f6f: /* movq */
7897 case 0x0f70: /* pshufw */
7898 case 0x0f74: /* pcmpeqb */
7899 case 0x0f75: /* pcmpeqw */
7900 case 0x0f76: /* pcmpeqd */
7901 case 0x0fc4: /* pinsrw */
7902 case 0x0fd1: /* psrlw */
7903 case 0x0fd2: /* psrld */
7904 case 0x0fd3: /* psrlq */
7905 case 0x0fd4: /* paddq */
7906 case 0x0fd5: /* pmullw */
7907 case 0xf20fd6: /* movdq2q */
7908 case 0x0fd8: /* psubusb */
7909 case 0x0fd9: /* psubusw */
7910 case 0x0fda: /* pminub */
7911 case 0x0fdb: /* pand */
7912 case 0x0fdc: /* paddusb */
7913 case 0x0fdd: /* paddusw */
7914 case 0x0fde: /* pmaxub */
7915 case 0x0fdf: /* pandn */
7916 case 0x0fe0: /* pavgb */
7917 case 0x0fe1: /* psraw */
7918 case 0x0fe2: /* psrad */
7919 case 0x0fe3: /* pavgw */
7920 case 0x0fe4: /* pmulhuw */
7921 case 0x0fe5: /* pmulhw */
7922 case 0x0fe8: /* psubsb */
7923 case 0x0fe9: /* psubsw */
7924 case 0x0fea: /* pminsw */
7925 case 0x0feb: /* por */
7926 case 0x0fec: /* paddsb */
7927 case 0x0fed: /* paddsw */
7928 case 0x0fee: /* pmaxsw */
7929 case 0x0fef: /* pxor */
7930 case 0x0ff1: /* psllw */
7931 case 0x0ff2: /* pslld */
7932 case 0x0ff3: /* psllq */
7933 case 0x0ff4: /* pmuludq */
7934 case 0x0ff5: /* pmaddwd */
7935 case 0x0ff6: /* psadbw */
7936 case 0x0ff8: /* psubb */
7937 case 0x0ff9: /* psubw */
7938 case 0x0ffa: /* psubd */
7939 case 0x0ffb: /* psubq */
7940 case 0x0ffc: /* paddb */
7941 case 0x0ffd: /* paddw */
7942 case 0x0ffe: /* paddd */
7943 if (i386_record_modrm (&ir))
7945 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7947 record_full_arch_list_add_reg (ir.regcache,
7948 I387_MM0_REGNUM (tdep) + ir.reg);
7951 case 0x0f71: /* psllw */
7952 case 0x0f72: /* pslld */
7953 case 0x0f73: /* psllq */
7954 if (i386_record_modrm (&ir))
7956 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7958 record_full_arch_list_add_reg (ir.regcache,
7959 I387_MM0_REGNUM (tdep) + ir.rm);
7962 case 0x660f71: /* psllw */
7963 case 0x660f72: /* pslld */
7964 case 0x660f73: /* psllq */
7965 if (i386_record_modrm (&ir))
7968 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7970 record_full_arch_list_add_reg (ir.regcache,
7971 I387_XMM0_REGNUM (tdep) + ir.rm);
7974 case 0x0f7e: /* movd */
7975 case 0x660f7e: /* movd */
7976 if (i386_record_modrm (&ir))
7979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7986 if (i386_record_lea_modrm (&ir))
7991 case 0x0f7f: /* movq */
7992 if (i386_record_modrm (&ir))
7996 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7998 record_full_arch_list_add_reg (ir.regcache,
7999 I387_MM0_REGNUM (tdep) + ir.rm);
8004 if (i386_record_lea_modrm (&ir))
8009 case 0xf30fb8: /* popcnt */
8010 if (i386_record_modrm (&ir))
8012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8016 case 0x660fd6: /* movq */
8017 if (i386_record_modrm (&ir))
8022 if (!i386_xmm_regnum_p (gdbarch,
8023 I387_XMM0_REGNUM (tdep) + ir.rm))
8025 record_full_arch_list_add_reg (ir.regcache,
8026 I387_XMM0_REGNUM (tdep) + ir.rm);
8031 if (i386_record_lea_modrm (&ir))
8036 case 0x660f3817: /* ptest */
8037 case 0x0f2e: /* ucomiss */
8038 case 0x660f2e: /* ucomisd */
8039 case 0x0f2f: /* comiss */
8040 case 0x660f2f: /* comisd */
8041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8044 case 0x0ff7: /* maskmovq */
8045 regcache_raw_read_unsigned (ir.regcache,
8046 ir.regmap[X86_RECORD_REDI_REGNUM],
8048 if (record_full_arch_list_add_mem (addr, 64))
8052 case 0x660ff7: /* maskmovdqu */
8053 regcache_raw_read_unsigned (ir.regcache,
8054 ir.regmap[X86_RECORD_REDI_REGNUM],
8056 if (record_full_arch_list_add_mem (addr, 128))
8071 /* In the future, maybe still need to deal with need_dasm. */
8072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8073 if (record_full_arch_list_add_end ())
8079 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8080 "at address %s.\n"),
8081 (unsigned int) (opcode),
8082 paddress (gdbarch, ir.orig_addr));
8086 static const int i386_record_regmap[] =
8088 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8089 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8090 0, 0, 0, 0, 0, 0, 0, 0,
8091 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8092 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8095 /* Check that the given address appears suitable for a fast
8096 tracepoint, which on x86-64 means that we need an instruction of at
8097 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8098 jump and not have to worry about program jumps to an address in the
8099 middle of the tracepoint jump. On x86, it may be possible to use
8100 4-byte jumps with a 2-byte offset to a trampoline located in the
8101 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8102 of instruction to replace, and 0 if not, plus an explanatory
8106 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8111 /* Ask the target for the minimum instruction length supported. */
8112 jumplen = target_get_min_fast_tracepoint_insn_len ();
8116 /* If the target does not support the get_min_fast_tracepoint_insn_len
8117 operation, assume that fast tracepoints will always be implemented
8118 using 4-byte relative jumps on both x86 and x86-64. */
8121 else if (jumplen == 0)
8123 /* If the target does support get_min_fast_tracepoint_insn_len but
8124 returns zero, then the IPA has not loaded yet. In this case,
8125 we optimistically assume that truncated 2-byte relative jumps
8126 will be available on x86, and compensate later if this assumption
8127 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8128 jumps will always be used. */
8129 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8132 /* Check for fit. */
8133 len = gdb_insn_length (gdbarch, addr);
8137 /* Return a bit of target-specific detail to add to the caller's
8138 generic failure message. */
8140 *msg = string_printf (_("; instruction is only %d bytes long, "
8141 "need at least %d bytes for the jump"),
8153 /* Return a floating-point format for a floating-point variable of
8154 length LEN in bits. If non-NULL, NAME is the name of its type.
8155 If no suitable type is found, return NULL. */
8157 const struct floatformat **
8158 i386_floatformat_for_type (struct gdbarch *gdbarch,
8159 const char *name, int len)
8161 if (len == 128 && name)
8162 if (strcmp (name, "__float128") == 0
8163 || strcmp (name, "_Float128") == 0
8164 || strcmp (name, "complex _Float128") == 0)
8165 return floatformats_ia64_quad;
8167 return default_floatformat_for_type (gdbarch, name, len);
8171 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8172 struct tdesc_arch_data *tdesc_data)
8174 const struct target_desc *tdesc = tdep->tdesc;
8175 const struct tdesc_feature *feature_core;
8177 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8178 *feature_avx512, *feature_pkeys;
8179 int i, num_regs, valid_p;
8181 if (! tdesc_has_registers (tdesc))
8184 /* Get core registers. */
8185 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8186 if (feature_core == NULL)
8189 /* Get SSE registers. */
8190 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8192 /* Try AVX registers. */
8193 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8195 /* Try MPX registers. */
8196 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8198 /* Try AVX512 registers. */
8199 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8202 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8206 /* The XCR0 bits. */
8209 /* AVX512 register description requires AVX register description. */
8213 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8215 /* It may have been set by OSABI initialization function. */
8216 if (tdep->k0_regnum < 0)
8218 tdep->k_register_names = i386_k_names;
8219 tdep->k0_regnum = I386_K0_REGNUM;
8222 for (i = 0; i < I387_NUM_K_REGS; i++)
8223 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8224 tdep->k0_regnum + i,
8227 if (tdep->num_zmm_regs == 0)
8229 tdep->zmmh_register_names = i386_zmmh_names;
8230 tdep->num_zmm_regs = 8;
8231 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8234 for (i = 0; i < tdep->num_zmm_regs; i++)
8235 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8236 tdep->zmm0h_regnum + i,
8237 tdep->zmmh_register_names[i]);
8239 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8240 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8241 tdep->xmm16_regnum + i,
8242 tdep->xmm_avx512_register_names[i]);
8244 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8245 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8246 tdep->ymm16h_regnum + i,
8247 tdep->ymm16h_register_names[i]);
8251 /* AVX register description requires SSE register description. */
8255 if (!feature_avx512)
8256 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8258 /* It may have been set by OSABI initialization function. */
8259 if (tdep->num_ymm_regs == 0)
8261 tdep->ymmh_register_names = i386_ymmh_names;
8262 tdep->num_ymm_regs = 8;
8263 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8266 for (i = 0; i < tdep->num_ymm_regs; i++)
8267 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8268 tdep->ymm0h_regnum + i,
8269 tdep->ymmh_register_names[i]);
8271 else if (feature_sse)
8272 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8275 tdep->xcr0 = X86_XSTATE_X87_MASK;
8276 tdep->num_xmm_regs = 0;
8279 num_regs = tdep->num_core_regs;
8280 for (i = 0; i < num_regs; i++)
8281 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8282 tdep->register_names[i]);
8286 /* Need to include %mxcsr, so add one. */
8287 num_regs += tdep->num_xmm_regs + 1;
8288 for (; i < num_regs; i++)
8289 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8290 tdep->register_names[i]);
8295 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8297 if (tdep->bnd0r_regnum < 0)
8299 tdep->mpx_register_names = i386_mpx_names;
8300 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8301 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8304 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8305 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8306 I387_BND0R_REGNUM (tdep) + i,
8307 tdep->mpx_register_names[i]);
8312 tdep->xcr0 |= X86_XSTATE_PKRU;
8313 if (tdep->pkru_regnum < 0)
8315 tdep->pkeys_register_names = i386_pkeys_names;
8316 tdep->pkru_regnum = I386_PKRU_REGNUM;
8317 tdep->num_pkeys_regs = 1;
8320 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8321 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8322 I387_PKRU_REGNUM (tdep) + i,
8323 tdep->pkeys_register_names[i]);
8331 /* Implement the type_align gdbarch function. */
8334 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8336 type = check_typedef (type);
8338 if (gdbarch_ptr_bit (gdbarch) == 32)
8340 if ((TYPE_CODE (type) == TYPE_CODE_INT
8341 || TYPE_CODE (type) == TYPE_CODE_FLT)
8342 && TYPE_LENGTH (type) > 4)
8345 /* Handle x86's funny long double. */
8346 if (TYPE_CODE (type) == TYPE_CODE_FLT
8347 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8351 return TYPE_LENGTH (type);
8355 /* Note: This is called for both i386 and amd64. */
8357 static struct gdbarch *
8358 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8360 struct gdbarch_tdep *tdep;
8361 struct gdbarch *gdbarch;
8362 struct tdesc_arch_data *tdesc_data;
8363 const struct target_desc *tdesc;
8369 /* If there is already a candidate, use it. */
8370 arches = gdbarch_list_lookup_by_info (arches, &info);
8372 return arches->gdbarch;
8374 /* Allocate space for the new architecture. Assume i386 for now. */
8375 tdep = XCNEW (struct gdbarch_tdep);
8376 gdbarch = gdbarch_alloc (&info, tdep);
8378 /* General-purpose registers. */
8379 tdep->gregset_reg_offset = NULL;
8380 tdep->gregset_num_regs = I386_NUM_GREGS;
8381 tdep->sizeof_gregset = 0;
8383 /* Floating-point registers. */
8384 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8385 tdep->fpregset = &i386_fpregset;
8387 /* The default settings include the FPU registers, the MMX registers
8388 and the SSE registers. This can be overridden for a specific ABI
8389 by adjusting the members `st0_regnum', `mm0_regnum' and
8390 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8391 will show up in the output of "info all-registers". */
8393 tdep->st0_regnum = I386_ST0_REGNUM;
8395 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8396 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8398 tdep->jb_pc_offset = -1;
8399 tdep->struct_return = pcc_struct_return;
8400 tdep->sigtramp_start = 0;
8401 tdep->sigtramp_end = 0;
8402 tdep->sigtramp_p = i386_sigtramp_p;
8403 tdep->sigcontext_addr = NULL;
8404 tdep->sc_reg_offset = NULL;
8405 tdep->sc_pc_offset = -1;
8406 tdep->sc_sp_offset = -1;
8408 tdep->xsave_xcr0_offset = -1;
8410 tdep->record_regmap = i386_record_regmap;
8412 set_gdbarch_type_align (gdbarch, i386_type_align);
8414 /* The format used for `long double' on almost all i386 targets is
8415 the i387 extended floating-point format. In fact, of all targets
8416 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8417 on having a `long double' that's not `long' at all. */
8418 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8420 /* Although the i387 extended floating-point has only 80 significant
8421 bits, a `long double' actually takes up 96, probably to enforce
8423 set_gdbarch_long_double_bit (gdbarch, 96);
8425 /* Support for floating-point data type variants. */
8426 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8428 /* Register numbers of various important registers. */
8429 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8430 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8431 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8432 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8434 /* NOTE: kettenis/20040418: GCC does have two possible register
8435 numbering schemes on the i386: dbx and SVR4. These schemes
8436 differ in how they number %ebp, %esp, %eflags, and the
8437 floating-point registers, and are implemented by the arrays
8438 dbx_register_map[] and svr4_dbx_register_map in
8439 gcc/config/i386.c. GCC also defines a third numbering scheme in
8440 gcc/config/i386.c, which it designates as the "default" register
8441 map used in 64bit mode. This last register numbering scheme is
8442 implemented in dbx64_register_map, and is used for AMD64; see
8445 Currently, each GCC i386 target always uses the same register
8446 numbering scheme across all its supported debugging formats
8447 i.e. SDB (COFF), stabs and DWARF 2. This is because
8448 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8449 DBX_REGISTER_NUMBER macro which is defined by each target's
8450 respective config header in a manner independent of the requested
8451 output debugging format.
8453 This does not match the arrangement below, which presumes that
8454 the SDB and stabs numbering schemes differ from the DWARF and
8455 DWARF 2 ones. The reason for this arrangement is that it is
8456 likely to get the numbering scheme for the target's
8457 default/native debug format right. For targets where GCC is the
8458 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8459 targets where the native toolchain uses a different numbering
8460 scheme for a particular debug format (stabs-in-ELF on Solaris)
8461 the defaults below will have to be overridden, like
8462 i386_elf_init_abi() does. */
8464 /* Use the dbx register numbering scheme for stabs and COFF. */
8465 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8466 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8468 /* Use the SVR4 register numbering scheme for DWARF 2. */
8469 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8471 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8472 be in use on any of the supported i386 targets. */
8474 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8476 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8478 /* Call dummy code. */
8479 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8480 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8481 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8482 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8484 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8485 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8486 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8488 set_gdbarch_return_value (gdbarch, i386_return_value);
8490 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8492 /* Stack grows downward. */
8493 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8495 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8496 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8498 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8499 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8501 set_gdbarch_frame_args_skip (gdbarch, 8);
8503 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8505 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8507 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8509 /* Add the i386 register groups. */
8510 i386_add_reggroups (gdbarch);
8511 tdep->register_reggroup_p = i386_register_reggroup_p;
8513 /* Helper for function argument information. */
8514 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8516 /* Hook the function epilogue frame unwinder. This unwinder is
8517 appended to the list first, so that it supercedes the DWARF
8518 unwinder in function epilogues (where the DWARF unwinder
8519 currently fails). */
8520 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8522 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8523 to the list before the prologue-based unwinders, so that DWARF
8524 CFI info will be used if it is available. */
8525 dwarf2_append_unwinders (gdbarch);
8527 frame_base_set_default (gdbarch, &i386_frame_base);
8529 /* Pseudo registers may be changed by amd64_init_abi. */
8530 set_gdbarch_pseudo_register_read_value (gdbarch,
8531 i386_pseudo_register_read_value);
8532 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8533 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8534 i386_ax_pseudo_register_collect);
8536 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8537 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8539 /* Override the normal target description method to make the AVX
8540 upper halves anonymous. */
8541 set_gdbarch_register_name (gdbarch, i386_register_name);
8543 /* Even though the default ABI only includes general-purpose registers,
8544 floating-point registers and the SSE registers, we have to leave a
8545 gap for the upper AVX, MPX and AVX512 registers. */
8546 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
8548 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8550 /* Get the x86 target description from INFO. */
8551 tdesc = info.target_desc;
8552 if (! tdesc_has_registers (tdesc))
8553 tdesc = i386_target_description (X86_XSTATE_SSE_MASK);
8554 tdep->tdesc = tdesc;
8556 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8557 tdep->register_names = i386_register_names;
8559 /* No upper YMM registers. */
8560 tdep->ymmh_register_names = NULL;
8561 tdep->ymm0h_regnum = -1;
8563 /* No upper ZMM registers. */
8564 tdep->zmmh_register_names = NULL;
8565 tdep->zmm0h_regnum = -1;
8567 /* No high XMM registers. */
8568 tdep->xmm_avx512_register_names = NULL;
8569 tdep->xmm16_regnum = -1;
8571 /* No upper YMM16-31 registers. */
8572 tdep->ymm16h_register_names = NULL;
8573 tdep->ymm16h_regnum = -1;
8575 tdep->num_byte_regs = 8;
8576 tdep->num_word_regs = 8;
8577 tdep->num_dword_regs = 0;
8578 tdep->num_mmx_regs = 8;
8579 tdep->num_ymm_regs = 0;
8581 /* No MPX registers. */
8582 tdep->bnd0r_regnum = -1;
8583 tdep->bndcfgu_regnum = -1;
8585 /* No AVX512 registers. */
8586 tdep->k0_regnum = -1;
8587 tdep->num_zmm_regs = 0;
8588 tdep->num_ymm_avx512_regs = 0;
8589 tdep->num_xmm_avx512_regs = 0;
8591 /* No PKEYS registers */
8592 tdep->pkru_regnum = -1;
8593 tdep->num_pkeys_regs = 0;
8595 tdesc_data = tdesc_data_alloc ();
8597 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8599 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8601 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8602 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8603 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8605 /* Hook in ABI-specific overrides, if they have been registered.
8606 Note: If INFO specifies a 64 bit arch, this is where we turn
8607 a 32-bit i386 into a 64-bit amd64. */
8608 info.tdesc_data = tdesc_data;
8609 gdbarch_init_osabi (info, gdbarch);
8611 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8613 tdesc_data_cleanup (tdesc_data);
8615 gdbarch_free (gdbarch);
8619 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8621 /* Wire in pseudo registers. Number of pseudo registers may be
8623 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8624 + tdep->num_word_regs
8625 + tdep->num_dword_regs
8626 + tdep->num_mmx_regs
8627 + tdep->num_ymm_regs
8629 + tdep->num_ymm_avx512_regs
8630 + tdep->num_zmm_regs));
8632 /* Target description may be changed. */
8633 tdesc = tdep->tdesc;
8635 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8637 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8638 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8640 /* Make %al the first pseudo-register. */
8641 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8642 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8644 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8645 if (tdep->num_dword_regs)
8647 /* Support dword pseudo-register if it hasn't been disabled. */
8648 tdep->eax_regnum = ymm0_regnum;
8649 ymm0_regnum += tdep->num_dword_regs;
8652 tdep->eax_regnum = -1;
8654 mm0_regnum = ymm0_regnum;
8655 if (tdep->num_ymm_regs)
8657 /* Support YMM pseudo-register if it is available. */
8658 tdep->ymm0_regnum = ymm0_regnum;
8659 mm0_regnum += tdep->num_ymm_regs;
8662 tdep->ymm0_regnum = -1;
8664 if (tdep->num_ymm_avx512_regs)
8666 /* Support YMM16-31 pseudo registers if available. */
8667 tdep->ymm16_regnum = mm0_regnum;
8668 mm0_regnum += tdep->num_ymm_avx512_regs;
8671 tdep->ymm16_regnum = -1;
8673 if (tdep->num_zmm_regs)
8675 /* Support ZMM pseudo-register if it is available. */
8676 tdep->zmm0_regnum = mm0_regnum;
8677 mm0_regnum += tdep->num_zmm_regs;
8680 tdep->zmm0_regnum = -1;
8682 bnd0_regnum = mm0_regnum;
8683 if (tdep->num_mmx_regs != 0)
8685 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8686 tdep->mm0_regnum = mm0_regnum;
8687 bnd0_regnum += tdep->num_mmx_regs;
8690 tdep->mm0_regnum = -1;
8692 if (tdep->bnd0r_regnum > 0)
8693 tdep->bnd0_regnum = bnd0_regnum;
8695 tdep-> bnd0_regnum = -1;
8697 /* Hook in the legacy prologue-based unwinders last (fallback). */
8698 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8699 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8700 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8702 /* If we have a register mapping, enable the generic core file
8703 support, unless it has already been enabled. */
8704 if (tdep->gregset_reg_offset
8705 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8706 set_gdbarch_iterate_over_regset_sections
8707 (gdbarch, i386_iterate_over_regset_sections);
8709 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8710 i386_fast_tracepoint_valid_at);
8717 /* Return the target description for a specified XSAVE feature mask. */
8719 const struct target_desc *
8720 i386_target_description (uint64_t xcr0)
8722 static target_desc *i386_tdescs \
8723 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
8724 target_desc **tdesc;
8726 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8727 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8728 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8729 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8730 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
8733 *tdesc = i386_create_target_description (xcr0, false);
8738 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8740 /* Find the bound directory base address. */
8742 static unsigned long
8743 i386_mpx_bd_base (void)
8745 struct regcache *rcache;
8746 struct gdbarch_tdep *tdep;
8748 enum register_status regstatus;
8750 rcache = get_current_regcache ();
8751 tdep = gdbarch_tdep (rcache->arch ());
8753 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8755 if (regstatus != REG_VALID)
8756 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8758 return ret & MPX_BASE_MASK;
8762 i386_mpx_enabled (void)
8764 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8765 const struct target_desc *tdesc = tdep->tdesc;
8767 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8770 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8771 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8772 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8773 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8775 /* Find the bound table entry given the pointer location and the base
8776 address of the table. */
8779 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8783 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8784 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8785 CORE_ADDR bd_entry_addr;
8788 struct gdbarch *gdbarch = get_current_arch ();
8789 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8792 if (gdbarch_ptr_bit (gdbarch) == 64)
8794 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8795 bd_ptr_r_shift = 20;
8797 bt_select_r_shift = 3;
8798 bt_select_l_shift = 5;
8799 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8801 if ( sizeof (CORE_ADDR) == 4)
8802 error (_("bound table examination not supported\
8803 for 64-bit process with 32-bit GDB"));
8807 mpx_bd_mask = MPX_BD_MASK_32;
8808 bd_ptr_r_shift = 12;
8810 bt_select_r_shift = 2;
8811 bt_select_l_shift = 4;
8812 bt_mask = MPX_BT_MASK_32;
8815 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8816 bd_entry_addr = bd_base + offset1;
8817 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8819 if ((bd_entry & 0x1) == 0)
8820 error (_("Invalid bounds directory entry at %s."),
8821 paddress (get_current_arch (), bd_entry_addr));
8823 /* Clearing status bit. */
8825 bt_addr = bd_entry & ~bt_select_r_shift;
8826 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8828 return bt_addr + offset2;
8831 /* Print routine for the mpx bounds. */
8834 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8836 struct ui_out *uiout = current_uiout;
8838 struct gdbarch *gdbarch = get_current_arch ();
8839 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8840 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8842 if (bounds_in_map == 1)
8844 uiout->text ("Null bounds on map:");
8845 uiout->text (" pointer value = ");
8846 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8852 uiout->text ("{lbound = ");
8853 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8854 uiout->text (", ubound = ");
8856 /* The upper bound is stored in 1's complement. */
8857 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8858 uiout->text ("}: pointer value = ");
8859 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8861 if (gdbarch_ptr_bit (gdbarch) == 64)
8862 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8864 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8866 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8867 -1 represents in this sense full memory access, and there is no need
8870 size = (size > -1 ? size + 1 : size);
8871 uiout->text (", size = ");
8872 uiout->field_fmt ("size", "%s", plongest (size));
8874 uiout->text (", metadata = ");
8875 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8880 /* Implement the command "show mpx bound". */
8883 i386_mpx_info_bounds (const char *args, int from_tty)
8885 CORE_ADDR bd_base = 0;
8887 CORE_ADDR bt_entry_addr = 0;
8888 CORE_ADDR bt_entry[4];
8890 struct gdbarch *gdbarch = get_current_arch ();
8891 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8893 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8894 || !i386_mpx_enabled ())
8896 printf_unfiltered (_("Intel Memory Protection Extensions not "
8897 "supported on this target.\n"));
8903 printf_unfiltered (_("Address of pointer variable expected.\n"));
8907 addr = parse_and_eval_address (args);
8909 bd_base = i386_mpx_bd_base ();
8910 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8912 memset (bt_entry, 0, sizeof (bt_entry));
8914 for (i = 0; i < 4; i++)
8915 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8916 + i * TYPE_LENGTH (data_ptr_type),
8919 i386_mpx_print_bounds (bt_entry);
8922 /* Implement the command "set mpx bound". */
8925 i386_mpx_set_bounds (const char *args, int from_tty)
8927 CORE_ADDR bd_base = 0;
8928 CORE_ADDR addr, lower, upper;
8929 CORE_ADDR bt_entry_addr = 0;
8930 CORE_ADDR bt_entry[2];
8931 const char *input = args;
8933 struct gdbarch *gdbarch = get_current_arch ();
8934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8935 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8937 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8938 || !i386_mpx_enabled ())
8939 error (_("Intel Memory Protection Extensions not supported\
8943 error (_("Pointer value expected."));
8945 addr = value_as_address (parse_to_comma_and_eval (&input));
8947 if (input[0] == ',')
8949 if (input[0] == '\0')
8950 error (_("wrong number of arguments: missing lower and upper bound."));
8951 lower = value_as_address (parse_to_comma_and_eval (&input));
8953 if (input[0] == ',')
8955 if (input[0] == '\0')
8956 error (_("Wrong number of arguments; Missing upper bound."));
8957 upper = value_as_address (parse_to_comma_and_eval (&input));
8959 bd_base = i386_mpx_bd_base ();
8960 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8961 for (i = 0; i < 2; i++)
8962 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8963 + i * TYPE_LENGTH (data_ptr_type),
8965 bt_entry[0] = (uint64_t) lower;
8966 bt_entry[1] = ~(uint64_t) upper;
8968 for (i = 0; i < 2; i++)
8969 write_memory_unsigned_integer (bt_entry_addr
8970 + i * TYPE_LENGTH (data_ptr_type),
8971 TYPE_LENGTH (data_ptr_type), byte_order,
8975 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8977 /* Helper function for the CLI commands. */
8980 set_mpx_cmd (const char *args, int from_tty)
8982 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8985 /* Helper function for the CLI commands. */
8988 show_mpx_cmd (const char *args, int from_tty)
8990 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8994 _initialize_i386_tdep (void)
8996 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8998 /* Add the variable that controls the disassembly flavor. */
8999 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9000 &disassembly_flavor, _("\
9001 Set the disassembly flavor."), _("\
9002 Show the disassembly flavor."), _("\
9003 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9005 NULL, /* FIXME: i18n: */
9006 &setlist, &showlist);
9008 /* Add the variable that controls the convention for returning
9010 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9011 &struct_convention, _("\
9012 Set the convention for returning small structs."), _("\
9013 Show the convention for returning small structs."), _("\
9014 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9017 NULL, /* FIXME: i18n: */
9018 &setlist, &showlist);
9020 /* Add "mpx" prefix for the set commands. */
9022 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9023 Set Intel Memory Protection Extensions specific variables."),
9024 &mpx_set_cmdlist, "set mpx ",
9025 0 /* allow-unknown */, &setlist);
9027 /* Add "mpx" prefix for the show commands. */
9029 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9030 Show Intel Memory Protection Extensions specific variables."),
9031 &mpx_show_cmdlist, "show mpx ",
9032 0 /* allow-unknown */, &showlist);
9034 /* Add "bound" command for the show mpx commands list. */
9036 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9037 "Show the memory bounds for a given array/pointer storage\
9038 in the bound table.",
9041 /* Add "bound" command for the set mpx commands list. */
9043 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9044 "Set the memory bounds for a given array/pointer storage\
9045 in the bound table.",
9048 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9049 i386_svr4_init_abi);
9051 /* Initialize the i386-specific register groups. */
9052 i386_init_reggroups ();
9054 /* Tell remote stub that we support XML target description. */
9055 register_remote_support_xml ("i386");
9063 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9064 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9065 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9066 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9067 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9068 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9069 { "i386/i386-avx-mpx-avx512-pku.xml",
9070 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9073 for (auto &a : xml_masks)
9075 auto tdesc = i386_target_description (a.mask);
9077 selftests::record_xml_tdesc (a.xml, tdesc);
9079 #endif /* GDB_SELF_TEST */