1 /* Target-dependent code for GNU/Linux i386.
3 Copyright (C) 2000-2015 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28 #include "reggroups.h"
29 #include "dwarf2-frame.h"
30 #include "i386-tdep.h"
31 #include "i386-linux-tdep.h"
32 #include "linux-tdep.h"
33 #include "glibc-tdep.h"
34 #include "solib-svr4.h"
36 #include "arch-utils.h"
37 #include "xml-syscall.h"
39 #include "i387-tdep.h"
40 #include "x86-xstate.h"
42 /* The syscall's XML filename for i386. */
43 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
45 #include "record-full.h"
46 #include "linux-record.h"
47 #include "features/i386/i386-linux.c"
48 #include "features/i386/i386-mmx-linux.c"
49 #include "features/i386/i386-mpx-linux.c"
50 #include "features/i386/i386-avx-linux.c"
51 #include "features/i386/i386-avx512-linux.c"
53 /* Return non-zero, when the register is in the corresponding register
54 group. Put the LINUX_ORIG_EAX register in the system group. */
56 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
57 struct reggroup *group)
59 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
60 return (group == system_reggroup
61 || group == save_reggroup
62 || group == restore_reggroup);
63 return i386_register_reggroup_p (gdbarch, regnum, group);
67 /* Recognizing signal handler frames. */
69 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
70 "realtime" (RT) signals. The RT signals can provide additional
71 information to the signal handler if the SA_SIGINFO flag is set
72 when establishing a signal handler using `sigaction'. It is not
73 unlikely that future versions of GNU/Linux will support SA_SIGINFO
74 for normal signals too. */
76 /* When the i386 Linux kernel calls a signal handler and the
77 SA_RESTORER flag isn't set, the return address points to a bit of
78 code on the stack. This function returns whether the PC appears to
79 be within this bit of code.
81 The instruction sequence for normal signals is
85 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
87 Checking for the code sequence should be somewhat reliable, because
88 the effect is to call the system call sigreturn. This is unlikely
89 to occur anywhere other than in a signal trampoline.
91 It kind of sucks that we have to read memory from the process in
92 order to identify a signal trampoline, but there doesn't seem to be
93 any other way. Therefore we only do the memory reads if no
94 function name could be identified, which should be the case since
95 the code is on the stack.
97 Detection of signal trampolines for handlers that set the
98 SA_RESTORER flag is in general not possible. Unfortunately this is
99 what the GNU C Library has been doing for quite some time now.
100 However, as of version 2.1.2, the GNU C Library uses signal
101 trampolines (named __restore and __restore_rt) that are identical
102 to the ones used by the kernel. Therefore, these trampolines are
105 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
106 #define LINUX_SIGTRAMP_OFFSET0 0
107 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
108 #define LINUX_SIGTRAMP_OFFSET1 1
109 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
110 #define LINUX_SIGTRAMP_OFFSET2 6
112 static const gdb_byte linux_sigtramp_code[] =
114 LINUX_SIGTRAMP_INSN0, /* pop %eax */
115 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
116 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
119 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
121 /* If THIS_FRAME is a sigtramp routine, return the address of the
122 start of the routine. Otherwise, return 0. */
125 i386_linux_sigtramp_start (struct frame_info *this_frame)
127 CORE_ADDR pc = get_frame_pc (this_frame);
128 gdb_byte buf[LINUX_SIGTRAMP_LEN];
130 /* We only recognize a signal trampoline if PC is at the start of
131 one of the three instructions. We optimize for finding the PC at
132 the start, as will be the case when the trampoline is not the
133 first frame on the stack. We assume that in the case where the
134 PC is not at the start of the instruction sequence, there will be
135 a few trailing readable bytes on the stack. */
137 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
140 if (buf[0] != LINUX_SIGTRAMP_INSN0)
146 case LINUX_SIGTRAMP_INSN1:
147 adjust = LINUX_SIGTRAMP_OFFSET1;
149 case LINUX_SIGTRAMP_INSN2:
150 adjust = LINUX_SIGTRAMP_OFFSET2;
158 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
162 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
168 /* This function does the same for RT signals. Here the instruction
172 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
174 The effect is to call the system call rt_sigreturn. */
176 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
177 #define LINUX_RT_SIGTRAMP_OFFSET0 0
178 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
179 #define LINUX_RT_SIGTRAMP_OFFSET1 5
181 static const gdb_byte linux_rt_sigtramp_code[] =
183 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
184 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
187 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
189 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
190 start of the routine. Otherwise, return 0. */
193 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
195 CORE_ADDR pc = get_frame_pc (this_frame);
196 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
198 /* We only recognize a signal trampoline if PC is at the start of
199 one of the two instructions. We optimize for finding the PC at
200 the start, as will be the case when the trampoline is not the
201 first frame on the stack. We assume that in the case where the
202 PC is not at the start of the instruction sequence, there will be
203 a few trailing readable bytes on the stack. */
205 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
208 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
210 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
213 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
215 if (!safe_frame_unwind_memory (this_frame, pc, buf,
216 LINUX_RT_SIGTRAMP_LEN))
220 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
226 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
230 i386_linux_sigtramp_p (struct frame_info *this_frame)
232 CORE_ADDR pc = get_frame_pc (this_frame);
235 find_pc_partial_function (pc, &name, NULL, NULL);
237 /* If we have NAME, we can optimize the search. The trampolines are
238 named __restore and __restore_rt. However, they aren't dynamically
239 exported from the shared C library, so the trampoline may appear to
240 be part of the preceding function. This should always be sigaction,
241 __sigaction, or __libc_sigaction (all aliases to the same function). */
242 if (name == NULL || strstr (name, "sigaction") != NULL)
243 return (i386_linux_sigtramp_start (this_frame) != 0
244 || i386_linux_rt_sigtramp_start (this_frame) != 0);
246 return (strcmp ("__restore", name) == 0
247 || strcmp ("__restore_rt", name) == 0);
250 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
251 may have DWARF-2 CFI. */
254 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
255 struct frame_info *this_frame)
257 CORE_ADDR pc = get_frame_pc (this_frame);
260 find_pc_partial_function (pc, &name, NULL, NULL);
262 /* If a vsyscall DSO is in use, the signal trampolines may have these
264 if (name && (strcmp (name, "__kernel_sigreturn") == 0
265 || strcmp (name, "__kernel_rt_sigreturn") == 0))
271 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
272 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
274 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
275 address of the associated sigcontext structure. */
278 i386_linux_sigcontext_addr (struct frame_info *this_frame)
280 struct gdbarch *gdbarch = get_frame_arch (this_frame);
281 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
287 sp = extract_unsigned_integer (buf, 4, byte_order);
289 pc = i386_linux_sigtramp_start (this_frame);
292 /* The sigcontext structure lives on the stack, right after
293 the signum argument. We determine the address of the
294 sigcontext structure by looking at the frame's stack
295 pointer. Keep in mind that the first instruction of the
296 sigtramp code is "pop %eax". If the PC is after this
297 instruction, adjust the returned value accordingly. */
298 if (pc == get_frame_pc (this_frame))
303 pc = i386_linux_rt_sigtramp_start (this_frame);
306 CORE_ADDR ucontext_addr;
308 /* The sigcontext structure is part of the user context. A
309 pointer to the user context is passed as the third argument
310 to the signal handler. */
311 read_memory (sp + 8, buf, 4);
312 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
313 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
316 error (_("Couldn't recognize signal trampoline."));
320 /* Set the program counter for process PTID to PC. */
323 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
325 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
327 /* We must be careful with modifying the program counter. If we
328 just interrupted a system call, the kernel might try to restart
329 it when we resume the inferior. On restarting the system call,
330 the kernel will try backing up the program counter even though it
331 no longer points at the system call. This typically results in a
332 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
333 "orig_eax" pseudo-register.
335 Note that "orig_eax" is saved when setting up a dummy call frame.
336 This means that it is properly restored when that frame is
337 popped, and that the interrupted system call will be restarted
338 when we resume the inferior on return from a function call from
339 within GDB. In all other cases the system call will not be
341 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
344 /* Record all registers but IP register for process-record. */
347 i386_all_but_ip_registers_record (struct regcache *regcache)
349 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
351 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
353 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
355 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
357 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
359 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
361 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
363 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
365 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
371 /* i386_canonicalize_syscall maps from the native i386 Linux set
372 of syscall ids into a canonical set of syscall ids used by
373 process record (a mostly trivial mapping, since the canonical
374 set was originally taken from the i386 set). */
376 static enum gdb_syscall
377 i386_canonicalize_syscall (int syscall)
379 enum { i386_syscall_max = 499 };
381 if (syscall <= i386_syscall_max)
384 return gdb_sys_no_syscall;
387 /* Parse the arguments of current system call instruction and record
388 the values of the registers and memory that will be changed into
389 "record_arch_list". This instruction is "int 0x80" (Linux
390 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
392 Return -1 if something wrong. */
394 static struct linux_record_tdep i386_linux_record_tdep;
397 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
400 LONGEST syscall_native;
401 enum gdb_syscall syscall_gdb;
403 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
405 syscall_gdb = i386_canonicalize_syscall (syscall_native);
409 printf_unfiltered (_("Process record and replay target doesn't "
410 "support syscall number %s\n"),
411 plongest (syscall_native));
415 if (syscall_gdb == gdb_sys_sigreturn
416 || syscall_gdb == gdb_sys_rt_sigreturn)
418 if (i386_all_but_ip_registers_record (regcache))
423 ret = record_linux_system_call (syscall_gdb, regcache,
424 &i386_linux_record_tdep);
428 /* Record the return value of the system call. */
429 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
435 #define I386_LINUX_xstate 270
436 #define I386_LINUX_frame_size 732
439 i386_linux_record_signal (struct gdbarch *gdbarch,
440 struct regcache *regcache,
441 enum gdb_signal signal)
445 if (i386_all_but_ip_registers_record (regcache))
448 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
451 /* Record the change in the stack. */
452 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
453 /* This is for xstate.
454 sp -= sizeof (struct _fpstate); */
455 esp -= I386_LINUX_xstate;
456 /* This is for frame_size.
457 sp -= sizeof (struct rt_sigframe); */
458 esp -= I386_LINUX_frame_size;
459 if (record_full_arch_list_add_mem (esp,
460 I386_LINUX_xstate + I386_LINUX_frame_size))
463 if (record_full_arch_list_add_end ())
470 /* Core of the implementation for gdbarch get_syscall_number. Get pending
471 syscall number from REGCACHE. If there is no pending syscall -1 will be
472 returned. Pending syscall means ptrace has stepped into the syscall but
473 another ptrace call will step out. PC is right after the int $0x80
474 / syscall / sysenter instruction in both cases, PC does not change during
475 the second ptrace step. */
478 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
480 struct gdbarch *gdbarch = get_regcache_arch (regcache);
481 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
482 /* The content of a register. */
487 /* Getting the system call number from the register.
488 When dealing with x86 architecture, this information
489 is stored at %eax register. */
490 regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
492 ret = extract_signed_integer (buf, 4, byte_order);
497 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
498 compatible with gdbarch get_syscall_number method prototype. */
501 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
504 struct regcache *regcache = get_thread_regcache (ptid);
506 return i386_linux_get_syscall_number_from_regcache (regcache);
509 /* The register sets used in GNU/Linux ELF core-dumps are identical to
510 the register sets in `struct user' that are used for a.out
511 core-dumps. These are also used by ptrace(2). The corresponding
512 types are `elf_gregset_t' for the general-purpose registers (with
513 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
514 for the floating-point registers.
516 Those types used to be available under the names `gregset_t' and
517 `fpregset_t' too, and GDB used those names in the past. But those
518 names are now used for the register sets used in the `mcontext_t'
519 type, which have a different size and layout. */
521 /* Mapping between the general-purpose registers in `struct user'
522 format and GDB's register cache layout. */
524 /* From <sys/reg.h>. */
525 int i386_linux_gregset_reg_offset[] =
536 14 * 4, /* %eflags */
543 -1, -1, -1, -1, -1, -1, -1, -1,
544 -1, -1, -1, -1, -1, -1, -1, -1,
545 -1, -1, -1, -1, -1, -1, -1, -1,
547 -1, -1, -1, -1, -1, -1, -1, -1,
548 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
549 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
550 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
551 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
552 11 * 4, /* "orig_eax" */
555 /* Mapping between the general-purpose registers in `struct
556 sigcontext' format and GDB's register cache layout. */
558 /* From <asm/sigcontext.h>. */
559 static int i386_linux_sc_reg_offset[] =
570 16 * 4, /* %eflags */
579 /* Get XSAVE extended state xcr0 from core dump. */
582 i386_linux_core_read_xcr0 (bfd *abfd)
584 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
589 size_t size = bfd_section_size (abfd, xstate);
591 /* Check extended state size. */
592 if (size < X86_XSTATE_AVX_SIZE)
593 xcr0 = X86_XSTATE_SSE_MASK;
598 if (! bfd_get_section_contents (abfd, xstate, contents,
599 I386_LINUX_XSAVE_XCR0_OFFSET,
602 warning (_("Couldn't read `xcr0' bytes from "
603 "`.reg-xstate' section in core file."));
607 xcr0 = bfd_get_64 (abfd, contents);
616 /* Get Linux/x86 target description from core dump. */
618 static const struct target_desc *
619 i386_linux_core_read_description (struct gdbarch *gdbarch,
620 struct target_ops *target,
624 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
626 switch ((xcr0 & X86_XSTATE_ALL_MASK))
628 case X86_XSTATE_MPX_AVX512_MASK:
629 case X86_XSTATE_AVX512_MASK:
630 return tdesc_i386_avx512_linux;
631 case X86_XSTATE_MPX_MASK:
632 return tdesc_i386_mpx_linux;
633 case X86_XSTATE_AVX_MASK:
634 return tdesc_i386_avx_linux;
635 case X86_XSTATE_SSE_MASK:
636 return tdesc_i386_linux;
637 case X86_XSTATE_X87_MASK:
638 return tdesc_i386_mmx_linux;
643 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
644 return tdesc_i386_linux;
646 return tdesc_i386_mmx_linux;
649 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
652 i386_linux_supply_xstateregset (const struct regset *regset,
653 struct regcache *regcache, int regnum,
654 const void *xstateregs, size_t len)
656 i387_supply_xsave (regcache, regnum, xstateregs);
659 /* Similar to i386_collect_fpregset, but use XSAVE extended state. */
662 i386_linux_collect_xstateregset (const struct regset *regset,
663 const struct regcache *regcache,
664 int regnum, void *xstateregs, size_t len)
666 i387_collect_xsave (regcache, regnum, xstateregs, 1);
669 /* Register set definitions. */
671 static const struct regset i386_linux_xstateregset =
674 i386_linux_supply_xstateregset,
675 i386_linux_collect_xstateregset
678 /* Iterate over core file register note sections. */
681 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
682 iterate_over_regset_sections_cb *cb,
684 const struct regcache *regcache)
686 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
688 cb (".reg", 68, &i386_gregset, NULL, cb_data);
690 if (tdep->xcr0 & X86_XSTATE_AVX)
691 cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
692 &i386_linux_xstateregset, "XSAVE extended state", cb_data);
693 else if (tdep->xcr0 & X86_XSTATE_SSE)
694 cb (".reg-xfp", 512, &i386_fpregset, "extended floating-point",
697 cb (".reg2", 108, &i386_fpregset, NULL, cb_data);
700 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
701 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
702 finish the syscall but PC will not change.
704 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
705 i386_displaced_step_fixup would keep PC at the displaced pad location.
706 As PC is pointing to the 'ret' instruction before the step
707 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
708 and PC should not be adjusted. In reality it finished syscall instead and
709 PC should get relocated back to its vDSO address. Hide the 'ret'
710 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
712 It is not fully correct as the bytes in struct displaced_step_closure will
713 not match the inferior code. But we would need some new flag in
714 displaced_step_closure otherwise to keep the state that syscall is finishing
715 for the later i386_displaced_step_fixup execution as the syscall execution
716 is already no longer detectable there. The new flag field would mean
717 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
718 which does not seem worth it. The same effect is achieved by patching that
719 'nop' instruction there instead. */
721 static struct displaced_step_closure *
722 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
723 CORE_ADDR from, CORE_ADDR to,
724 struct regcache *regs)
726 struct displaced_step_closure *closure;
728 closure = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
730 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
732 /* Since we use simple_displaced_step_copy_insn, our closure is a
733 copy of the instruction. */
734 gdb_byte *insn = (gdb_byte *) closure;
744 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
747 const struct target_desc *tdesc = info.target_desc;
748 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
749 const struct tdesc_feature *feature;
752 gdb_assert (tdesc_data);
754 linux_init_abi (info, gdbarch);
756 /* GNU/Linux uses ELF. */
757 i386_elf_init_abi (info, gdbarch);
759 /* Reserve a number for orig_eax. */
760 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
762 if (! tdesc_has_registers (tdesc))
763 tdesc = tdesc_i386_linux;
766 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
770 valid_p = tdesc_numbered_register (feature, tdesc_data,
771 I386_LINUX_ORIG_EAX_REGNUM,
776 /* Add the %orig_eax register used for syscall restarting. */
777 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
779 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
781 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
782 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
783 tdep->sizeof_gregset = 17 * 4;
785 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
787 tdep->sigtramp_p = i386_linux_sigtramp_p;
788 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
789 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
790 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
792 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
794 set_gdbarch_process_record (gdbarch, i386_process_record);
795 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
797 /* Initialize the i386_linux_record_tdep. */
798 /* These values are the size of the type that will be used in a system
799 call. They are obtained from Linux Kernel source. */
800 i386_linux_record_tdep.size_pointer
801 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
802 i386_linux_record_tdep.size__old_kernel_stat = 32;
803 i386_linux_record_tdep.size_tms = 16;
804 i386_linux_record_tdep.size_loff_t = 8;
805 i386_linux_record_tdep.size_flock = 16;
806 i386_linux_record_tdep.size_oldold_utsname = 45;
807 i386_linux_record_tdep.size_ustat = 20;
808 i386_linux_record_tdep.size_old_sigaction = 140;
809 i386_linux_record_tdep.size_old_sigset_t = 128;
810 i386_linux_record_tdep.size_rlimit = 8;
811 i386_linux_record_tdep.size_rusage = 72;
812 i386_linux_record_tdep.size_timeval = 8;
813 i386_linux_record_tdep.size_timezone = 8;
814 i386_linux_record_tdep.size_old_gid_t = 2;
815 i386_linux_record_tdep.size_old_uid_t = 2;
816 i386_linux_record_tdep.size_fd_set = 128;
817 i386_linux_record_tdep.size_dirent = 268;
818 i386_linux_record_tdep.size_dirent64 = 276;
819 i386_linux_record_tdep.size_statfs = 64;
820 i386_linux_record_tdep.size_statfs64 = 84;
821 i386_linux_record_tdep.size_sockaddr = 16;
822 i386_linux_record_tdep.size_int
823 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
824 i386_linux_record_tdep.size_long
825 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
826 i386_linux_record_tdep.size_ulong
827 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
828 i386_linux_record_tdep.size_msghdr = 28;
829 i386_linux_record_tdep.size_itimerval = 16;
830 i386_linux_record_tdep.size_stat = 88;
831 i386_linux_record_tdep.size_old_utsname = 325;
832 i386_linux_record_tdep.size_sysinfo = 64;
833 i386_linux_record_tdep.size_msqid_ds = 88;
834 i386_linux_record_tdep.size_shmid_ds = 84;
835 i386_linux_record_tdep.size_new_utsname = 390;
836 i386_linux_record_tdep.size_timex = 128;
837 i386_linux_record_tdep.size_mem_dqinfo = 24;
838 i386_linux_record_tdep.size_if_dqblk = 68;
839 i386_linux_record_tdep.size_fs_quota_stat = 68;
840 i386_linux_record_tdep.size_timespec = 8;
841 i386_linux_record_tdep.size_pollfd = 8;
842 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
843 i386_linux_record_tdep.size_knfsd_fh = 132;
844 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
845 i386_linux_record_tdep.size_sigaction = 140;
846 i386_linux_record_tdep.size_sigset_t = 8;
847 i386_linux_record_tdep.size_siginfo_t = 128;
848 i386_linux_record_tdep.size_cap_user_data_t = 12;
849 i386_linux_record_tdep.size_stack_t = 12;
850 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
851 i386_linux_record_tdep.size_stat64 = 96;
852 i386_linux_record_tdep.size_gid_t = 2;
853 i386_linux_record_tdep.size_uid_t = 2;
854 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
855 i386_linux_record_tdep.size_flock64 = 24;
856 i386_linux_record_tdep.size_user_desc = 16;
857 i386_linux_record_tdep.size_io_event = 32;
858 i386_linux_record_tdep.size_iocb = 64;
859 i386_linux_record_tdep.size_epoll_event = 12;
860 i386_linux_record_tdep.size_itimerspec
861 = i386_linux_record_tdep.size_timespec * 2;
862 i386_linux_record_tdep.size_mq_attr = 32;
863 i386_linux_record_tdep.size_siginfo = 128;
864 i386_linux_record_tdep.size_termios = 36;
865 i386_linux_record_tdep.size_termios2 = 44;
866 i386_linux_record_tdep.size_pid_t = 4;
867 i386_linux_record_tdep.size_winsize = 8;
868 i386_linux_record_tdep.size_serial_struct = 60;
869 i386_linux_record_tdep.size_serial_icounter_struct = 80;
870 i386_linux_record_tdep.size_hayes_esp_config = 12;
871 i386_linux_record_tdep.size_size_t = 4;
872 i386_linux_record_tdep.size_iovec = 8;
874 /* These values are the second argument of system call "sys_ioctl".
875 They are obtained from Linux Kernel source. */
876 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
877 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
878 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
879 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
880 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
881 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
882 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
883 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
884 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
885 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
886 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
887 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
888 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
889 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
890 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
891 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
892 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
893 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
894 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
895 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
896 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
897 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
898 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
899 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
900 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
901 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
902 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
903 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
904 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
905 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
906 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
907 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
908 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
909 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
910 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
911 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
912 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
913 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
914 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
915 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
916 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
917 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
918 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
919 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
920 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
921 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
922 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
923 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
924 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
925 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
926 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
927 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
928 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
929 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
930 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
931 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
932 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
933 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
934 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
935 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
936 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
937 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
938 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
939 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
940 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
942 /* These values are the second argument of system call "sys_fcntl"
943 and "sys_fcntl64". They are obtained from Linux Kernel source. */
944 i386_linux_record_tdep.fcntl_F_GETLK = 5;
945 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
946 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
947 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
949 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
950 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
951 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
952 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
953 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
954 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
956 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
957 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
958 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
960 /* N_FUN symbols in shared libaries have 0 for their values and need
962 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
964 /* GNU/Linux uses SVR4-style shared libraries. */
965 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
966 set_solib_svr4_fetch_link_map_offsets
967 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
969 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
970 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
972 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
974 /* Enable TLS support. */
975 set_gdbarch_fetch_tls_load_module_address (gdbarch,
976 svr4_fetch_objfile_link_map);
978 /* Core file support. */
979 set_gdbarch_iterate_over_regset_sections
980 (gdbarch, i386_linux_iterate_over_regset_sections);
981 set_gdbarch_core_read_description (gdbarch,
982 i386_linux_core_read_description);
984 /* Displaced stepping. */
985 set_gdbarch_displaced_step_copy_insn (gdbarch,
986 i386_linux_displaced_step_copy_insn);
987 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
988 set_gdbarch_displaced_step_free_closure (gdbarch,
989 simple_displaced_step_free_closure);
990 set_gdbarch_displaced_step_location (gdbarch,
991 linux_displaced_step_location);
993 /* Functions for 'catch syscall'. */
994 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
995 set_gdbarch_get_syscall_number (gdbarch,
996 i386_linux_get_syscall_number);
999 /* Provide a prototype to silence -Wmissing-prototypes. */
1000 extern void _initialize_i386_linux_tdep (void);
1003 _initialize_i386_linux_tdep (void)
1005 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1006 i386_linux_init_abi);
1008 /* Initialize the Linux target description. */
1009 initialize_tdesc_i386_linux ();
1010 initialize_tdesc_i386_mmx_linux ();
1011 initialize_tdesc_i386_avx_linux ();
1012 initialize_tdesc_i386_mpx_linux ();
1013 initialize_tdesc_i386_avx512_linux ();