1 /* Target-dependent code for GNU/Linux running on i386's, for GDB.
3 Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
29 #include "reggroups.h"
30 #include "solib-svr4.h"
32 #include "gdb_string.h"
34 #include "i386-tdep.h"
35 #include "i386-linux-tdep.h"
36 #include "glibc-tdep.h"
38 /* Return the name of register REG. */
41 i386_linux_register_name (int reg)
43 /* Deal with the extra "orig_eax" pseudo register. */
44 if (reg == I386_LINUX_ORIG_EAX_REGNUM)
47 return i386_register_name (reg);
50 /* Return non-zero, when the register is in the corresponding register
51 group. Put the LINUX_ORIG_EAX register in the system group. */
53 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
54 struct reggroup *group)
56 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
57 return (group == system_reggroup
58 || group == save_reggroup
59 || group == restore_reggroup);
60 return i386_register_reggroup_p (gdbarch, regnum, group);
64 /* Recognizing signal handler frames. */
66 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
67 "realtime" (RT) signals. The RT signals can provide additional
68 information to the signal handler if the SA_SIGINFO flag is set
69 when establishing a signal handler using `sigaction'. It is not
70 unlikely that future versions of GNU/Linux will support SA_SIGINFO
71 for normal signals too. */
73 /* When the i386 Linux kernel calls a signal handler and the
74 SA_RESTORER flag isn't set, the return address points to a bit of
75 code on the stack. This function returns whether the PC appears to
76 be within this bit of code.
78 The instruction sequence for normal signals is
82 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
84 Checking for the code sequence should be somewhat reliable, because
85 the effect is to call the system call sigreturn. This is unlikely
86 to occur anywhere other than a signal trampoline.
88 It kind of sucks that we have to read memory from the process in
89 order to identify a signal trampoline, but there doesn't seem to be
90 any other way. The PC_IN_SIGTRAMP macro in tm-linux.h arranges to
91 only call us if no function name could be identified, which should
92 be the case since the code is on the stack.
94 Detection of signal trampolines for handlers that set the
95 SA_RESTORER flag is in general not possible. Unfortunately this is
96 what the GNU C Library has been doing for quite some time now.
97 However, as of version 2.1.2, the GNU C Library uses signal
98 trampolines (named __restore and __restore_rt) that are identical
99 to the ones used by the kernel. Therefore, these trampolines are
102 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
103 #define LINUX_SIGTRAMP_OFFSET0 0
104 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
105 #define LINUX_SIGTRAMP_OFFSET1 1
106 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
107 #define LINUX_SIGTRAMP_OFFSET2 6
109 static const unsigned char linux_sigtramp_code[] =
111 LINUX_SIGTRAMP_INSN0, /* pop %eax */
112 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
113 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
116 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
118 /* If PC is in a sigtramp routine, return the address of the start of
119 the routine. Otherwise, return 0. */
122 i386_linux_sigtramp_start (CORE_ADDR pc)
124 unsigned char buf[LINUX_SIGTRAMP_LEN];
126 /* We only recognize a signal trampoline if PC is at the start of
127 one of the three instructions. We optimize for finding the PC at
128 the start, as will be the case when the trampoline is not the
129 first frame on the stack. We assume that in the case where the
130 PC is not at the start of the instruction sequence, there will be
131 a few trailing readable bytes on the stack. */
133 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
136 if (buf[0] != LINUX_SIGTRAMP_INSN0)
142 case LINUX_SIGTRAMP_INSN1:
143 adjust = LINUX_SIGTRAMP_OFFSET1;
145 case LINUX_SIGTRAMP_INSN2:
146 adjust = LINUX_SIGTRAMP_OFFSET2;
154 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
158 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
164 /* This function does the same for RT signals. Here the instruction
168 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
170 The effect is to call the system call rt_sigreturn. */
172 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
173 #define LINUX_RT_SIGTRAMP_OFFSET0 0
174 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
175 #define LINUX_RT_SIGTRAMP_OFFSET1 5
177 static const unsigned char linux_rt_sigtramp_code[] =
179 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
180 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
183 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
185 /* If PC is in a RT sigtramp routine, return the address of the start
186 of the routine. Otherwise, return 0. */
189 i386_linux_rt_sigtramp_start (CORE_ADDR pc)
191 unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
193 /* We only recognize a signal trampoline if PC is at the start of
194 one of the two instructions. We optimize for finding the PC at
195 the start, as will be the case when the trampoline is not the
196 first frame on the stack. We assume that in the case where the
197 PC is not at the start of the instruction sequence, there will be
198 a few trailing readable bytes on the stack. */
200 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
203 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
205 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
208 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
210 if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
214 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
220 /* Return whether PC is in a GNU/Linux sigtramp routine. */
223 i386_linux_pc_in_sigtramp (CORE_ADDR pc, char *name)
225 /* If we have NAME, we can optimize the search. The trampolines are
226 named __restore and __restore_rt. However, they aren't dynamically
227 exported from the shared C library, so the trampoline may appear to
228 be part of the preceding function. This should always be sigaction,
229 __sigaction, or __libc_sigaction (all aliases to the same function). */
230 if (name == NULL || strstr (name, "sigaction") != NULL)
231 return (i386_linux_sigtramp_start (pc) != 0
232 || i386_linux_rt_sigtramp_start (pc) != 0);
234 return (strcmp ("__restore", name) == 0
235 || strcmp ("__restore_rt", name) == 0);
238 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
239 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
241 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
242 routine, return the address of the associated sigcontext structure. */
245 i386_linux_sigcontext_addr (struct frame_info *next_frame)
251 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
252 sp = extract_unsigned_integer (buf, 4);
254 pc = i386_linux_sigtramp_start (frame_pc_unwind (next_frame));
257 /* The sigcontext structure lives on the stack, right after
258 the signum argument. We determine the address of the
259 sigcontext structure by looking at the frame's stack
260 pointer. Keep in mind that the first instruction of the
261 sigtramp code is "pop %eax". If the PC is after this
262 instruction, adjust the returned value accordingly. */
263 if (pc == frame_pc_unwind (next_frame))
268 pc = i386_linux_rt_sigtramp_start (frame_pc_unwind (next_frame));
271 CORE_ADDR ucontext_addr;
273 /* The sigcontext structure is part of the user context. A
274 pointer to the user context is passed as the third argument
275 to the signal handler. */
276 read_memory (sp + 8, buf, 4);
277 ucontext_addr = extract_unsigned_integer (buf, 4);
278 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
281 error ("Couldn't recognize signal trampoline.");
285 /* Set the program counter for process PTID to PC. */
288 i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
290 write_register_pid (I386_EIP_REGNUM, pc, ptid);
292 /* We must be careful with modifying the program counter. If we
293 just interrupted a system call, the kernel might try to restart
294 it when we resume the inferior. On restarting the system call,
295 the kernel will try backing up the program counter even though it
296 no longer points at the system call. This typically results in a
297 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
298 "orig_eax" pseudo-register.
300 Note that "orig_eax" is saved when setting up a dummy call frame.
301 This means that it is properly restored when that frame is
302 popped, and that the interrupted system call will be restarted
303 when we resume the inferior on return from a function call from
304 within GDB. In all other cases the system call will not be
306 write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
309 /* Fetch (and possibly build) an appropriate link_map_offsets
310 structure for native GNU/Linux x86 targets using the struct offsets
311 defined in link.h (but without actual reference to that file).
313 This makes it possible to access GNU/Linux x86 shared libraries
314 from a GDB that was not built on an GNU/Linux x86 host (for cross
317 static struct link_map_offsets *
318 i386_linux_svr4_fetch_link_map_offsets (void)
320 static struct link_map_offsets lmo;
321 static struct link_map_offsets *lmp = NULL;
327 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
328 this is all we need. */
329 lmo.r_map_offset = 4;
332 lmo.link_map_size = 20; /* The actual size is 552 bytes, but
333 this is all we need. */
334 lmo.l_addr_offset = 0;
337 lmo.l_name_offset = 4;
340 lmo.l_next_offset = 12;
343 lmo.l_prev_offset = 16;
351 /* The register sets used in GNU/Linux ELF core-dumps are identical to
352 the register sets in `struct user' that are used for a.out
353 core-dumps. These are also used by ptrace(2). The corresponding
354 types are `elf_gregset_t' for the general-purpose registers (with
355 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
356 for the floating-point registers.
358 Those types used to be available under the names `gregset_t' and
359 `fpregset_t' too, and GDB used those names in the past. But those
360 names are now used for the register sets used in the `mcontext_t'
361 type, which have a different size and layout. */
363 /* Mapping between the general-purpose registers in `struct user'
364 format and GDB's register cache layout. */
366 /* From <sys/reg.h>. */
367 static int i386_linux_gregset_reg_offset[] =
378 14 * 4, /* %eflags */
385 -1, -1, -1, -1, -1, -1, -1, -1,
386 -1, -1, -1, -1, -1, -1, -1, -1,
387 -1, -1, -1, -1, -1, -1, -1, -1,
389 11 * 4 /* "orig_eax" */
392 /* Mapping between the general-purpose registers in `struct
393 sigcontext' format and GDB's register cache layout. */
395 /* From <asm/sigcontext.h>. */
396 static int i386_linux_sc_reg_offset[] =
407 16 * 4, /* %eflags */
417 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 /* GNU/Linux uses ELF. */
422 i386_elf_init_abi (info, gdbarch);
424 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
425 to adjust a few things. */
427 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
428 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
429 set_gdbarch_register_name (gdbarch, i386_linux_register_name);
430 set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
432 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
433 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
434 tdep->sizeof_gregset = 17 * 4;
436 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
438 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
439 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
440 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
442 /* When the i386 Linux kernel calls a signal handler, the return
443 address points to a bit of code on the stack. This function is
444 used to identify this bit of code as a signal trampoline in order
445 to support backtracing through calls to signal handlers. */
446 set_gdbarch_pc_in_sigtramp (gdbarch, i386_linux_pc_in_sigtramp);
448 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
449 set_solib_svr4_fetch_link_map_offsets (gdbarch,
450 i386_linux_svr4_fetch_link_map_offsets);
453 /* Provide a prototype to silence -Wmissing-prototypes. */
454 extern void _initialize_i386_linux_tdep (void);
457 _initialize_i386_linux_tdep (void)
459 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
460 i386_linux_init_abi);