1 /* Native-dependent code for Linux/x86.
2 Copyright 1999, 2000 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
25 #include <sys/ptrace.h>
27 #include <sys/procfs.h>
33 /* Prototypes for supply_gregset etc. */
36 /* Prototypes for i387_supply_fsave etc. */
39 /* Prototypes for local functions. */
40 static void dummy_sse_values (void);
42 /* On Linux, threads are implemented as pseudo-processes, in which
43 case we may be tracing more than one process at a time. In that
44 case, inferior_pid will contain the main process ID and the
45 individual thread (process) ID mashed together. These macros are
46 used to separate them out. These definitions should be overridden
47 if thread support is included. */
49 #if !defined (PIDGET) /* Default definition for PIDGET/TIDGET. */
50 #define PIDGET(PID) PID
55 /* The register sets used in Linux ELF core-dumps are identical to the
56 register sets in `struct user' that is used for a.out core-dumps,
57 and is also used by `ptrace'. The corresponding types are
58 `elf_gregset_t' for the general-purpose registers (with
59 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
60 for the floating-point registers.
62 Those types used to be available under the names `gregset_t' and
63 `fpregset_t' too, and this file used those names in the past. But
64 those names are now used for the register sets used in the
65 `mcontext_t' type, and have a different size and layout. */
67 /* Mapping between the general-purpose registers in `struct user'
68 format and GDB's register array layout. */
77 /* Which ptrace request retrieves which registers?
78 These apply to the corresponding SET requests as well. */
79 #define GETREGS_SUPPLIES(regno) \
80 (0 <= (regno) && (regno) <= 15)
81 #define GETFPREGS_SUPPLIES(regno) \
82 (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
83 #define GETFPXREGS_SUPPLIES(regno) \
84 (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
86 /* Does the current host support the GETREGS request? */
87 int have_ptrace_getregs =
88 #ifdef HAVE_PTRACE_GETREGS
95 /* Does the current host support the GETFPXREGS request? The header
96 file may or may not define it, and even if it is defined, the
97 kernel will return EIO if it's running on a pre-SSE processor.
99 My instinct is to attach this to some architecture- or
100 target-specific data structure, but really, a particular GDB
101 process can only run on top of one kernel at a time. So it's okay
102 for this to be a simple variable. */
103 int have_ptrace_getfpxregs =
104 #ifdef HAVE_PTRACE_GETFPXREGS
112 /* Fetching registers directly from the U area, one at a time. */
114 /* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
115 The problem is that we define FETCH_INFERIOR_REGISTERS since we
116 want to use our own versions of {fetch,store}_inferior_registers
117 that use the GETREGS request. This means that the code in
118 `infptrace.c' is #ifdef'd out. But we need to fall back on that
119 code when GDB is running on top of a kernel that doesn't support
120 the GETREGS request. I want to avoid changing `infptrace.c' right
124 #define PT_READ_U PTRACE_PEEKUSR
127 #define PT_WRITE_U PTRACE_POKEUSR
130 /* Default the type of the ptrace transfer to int. */
131 #ifndef PTRACE_XFER_TYPE
132 #define PTRACE_XFER_TYPE int
135 /* Registers we shouldn't try to fetch. */
136 #define OLD_CANNOT_FETCH_REGISTER(regno) ((regno) >= NUM_GREGS)
138 /* Fetch one register. */
141 fetch_register (int regno)
143 /* This isn't really an address. But ptrace thinks of it as one. */
145 char mess[128]; /* For messages */
147 unsigned int offset; /* Offset of registers within the u area. */
148 char buf[MAX_REGISTER_RAW_SIZE];
151 if (OLD_CANNOT_FETCH_REGISTER (regno))
153 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
154 supply_register (regno, buf);
158 /* Overload thread id onto process id */
159 if ((tid = TIDGET (inferior_pid)) == 0)
160 tid = inferior_pid; /* no thread id, just use process id */
162 offset = U_REGS_OFFSET;
164 regaddr = register_addr (regno, offset);
165 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
168 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
169 (PTRACE_ARG3_TYPE) regaddr, 0);
170 regaddr += sizeof (PTRACE_XFER_TYPE);
173 sprintf (mess, "reading register %s (#%d)",
174 REGISTER_NAME (regno), regno);
175 perror_with_name (mess);
178 supply_register (regno, buf);
181 /* Fetch register values from the inferior.
182 If REGNO is negative, do this for all registers.
183 Otherwise, REGNO specifies which register (so we can save time). */
186 old_fetch_inferior_registers (int regno)
190 fetch_register (regno);
194 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
196 fetch_register (regno);
201 /* Registers we shouldn't try to store. */
202 #define OLD_CANNOT_STORE_REGISTER(regno) ((regno) >= NUM_GREGS)
204 /* Store one register. */
207 store_register (int regno)
209 /* This isn't really an address. But ptrace thinks of it as one. */
211 char mess[128]; /* For messages */
213 unsigned int offset; /* Offset of registers within the u area. */
216 if (OLD_CANNOT_STORE_REGISTER (regno))
221 /* Overload thread id onto process id */
222 if ((tid = TIDGET (inferior_pid)) == 0)
223 tid = inferior_pid; /* no thread id, just use process id */
225 offset = U_REGS_OFFSET;
227 regaddr = register_addr (regno, offset);
228 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
231 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
232 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
233 regaddr += sizeof (PTRACE_XFER_TYPE);
236 sprintf (mess, "writing register %s (#%d)",
237 REGISTER_NAME (regno), regno);
238 perror_with_name (mess);
243 /* Store our register values back into the inferior.
244 If REGNO is negative, do this for all registers.
245 Otherwise, REGNO specifies which register (so we can save time). */
248 old_store_inferior_registers (int regno)
252 store_register (regno);
256 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
258 store_register (regno);
264 /* Transfering the general-purpose registers between GDB, inferiors
267 /* Fill GDB's register array with the general-purpose register values
271 supply_gregset (elf_gregset_t *gregsetp)
273 elf_greg_t *regp = (elf_greg_t *) gregsetp;
276 for (i = 0; i < NUM_GREGS; i++)
277 supply_register (i, (char *) (regp + regmap[i]));
280 /* Fill register REGNO (if it is a general-purpose register) in
281 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
282 do this for all registers. */
285 fill_gregset (elf_gregset_t *gregsetp, int regno)
287 elf_greg_t *regp = (elf_greg_t *) gregsetp;
290 for (i = 0; i < NUM_GREGS; i++)
291 if ((regno == -1 || regno == i))
292 *(regp + regmap[i]) = *(elf_greg_t *) ®isters[REGISTER_BYTE (i)];
295 #ifdef HAVE_PTRACE_GETREGS
297 /* Fetch all general-purpose registers from process/thread TID and
298 store their values in GDB's register array. */
305 if (ptrace (PTRACE_GETREGS, tid, 0, (int) ®s) < 0)
309 /* The kernel we're running on doesn't support the GETREGS
310 request. Reset `have_ptrace_getregs'. */
311 have_ptrace_getregs = 0;
315 perror_with_name ("Couldn't get registers");
318 supply_gregset (®s);
321 /* Store all valid general-purpose registers in GDB's register array
322 into the process/thread specified by TID. */
325 store_regs (int tid, int regno)
329 if (ptrace (PTRACE_GETREGS, tid, 0, (int) ®s) < 0)
330 perror_with_name ("Couldn't get registers");
332 fill_gregset (®s, regno);
334 if (ptrace (PTRACE_SETREGS, tid, 0, (int) ®s) < 0)
335 perror_with_name ("Couldn't write registers");
340 static void fetch_regs (int tid) {}
341 static void store_regs (int tid, int regno) {}
346 /* Transfering floating-point registers between GDB, inferiors and cores. */
348 /* Fill GDB's register array with the floating-point register values in
352 supply_fpregset (elf_fpregset_t *fpregsetp)
354 i387_supply_fsave ((char *) fpregsetp);
358 /* Fill register REGNO (if it is a floating-point register) in
359 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
360 do this for all registers. */
363 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
365 i387_fill_fsave ((char *) fpregsetp, regno);
368 #ifdef HAVE_PTRACE_GETREGS
370 /* Fetch all floating-point registers from process/thread TID and store
371 thier values in GDB's register array. */
374 fetch_fpregs (int tid)
376 elf_fpregset_t fpregs;
378 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
379 perror_with_name ("Couldn't get floating point status");
381 supply_fpregset (&fpregs);
384 /* Store all valid floating-point registers in GDB's register array
385 into the process/thread specified by TID. */
388 store_fpregs (int tid, int regno)
390 elf_fpregset_t fpregs;
392 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
393 perror_with_name ("Couldn't get floating point status");
395 fill_fpregset (&fpregs, regno);
397 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
398 perror_with_name ("Couldn't write floating point status");
403 static void fetch_fpregs (int tid) {}
404 static void store_fpregs (int tid, int regno) {}
409 /* Transfering floating-point and SSE registers to and from GDB. */
411 #ifdef HAVE_PTRACE_GETFPXREGS
413 /* Fill GDB's register array with the floating-point and SSE register
414 values in *FPXREGSETP. */
417 supply_fpxregset (elf_fpxregset_t *fpxregsetp)
419 i387_supply_fxsave ((char *) fpxregsetp);
422 /* Fill register REGNO (if it is a floating-point or SSE register) in
423 *FPXREGSETP with the value in GDB's register array. If REGNO is
424 -1, do this for all registers. */
427 fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
429 i387_fill_fxsave ((char *) fpxregsetp, regno);
432 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
433 process/thread TID and store their values in GDB's register array.
434 Return non-zero if successful, zero otherwise. */
437 fetch_fpxregs (int tid)
439 elf_fpxregset_t fpxregs;
441 if (! have_ptrace_getfpxregs)
444 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
448 have_ptrace_getfpxregs = 0;
452 perror_with_name ("Couldn't read floating-point and SSE registers");
455 supply_fpxregset (&fpxregs);
459 /* Store all valid registers in GDB's register array covered by the
460 PTRACE_SETFPXREGS request into the process/thread specified by TID.
461 Return non-zero if successful, zero otherwise. */
464 store_fpxregs (int tid, int regno)
466 elf_fpxregset_t fpxregs;
468 if (! have_ptrace_getfpxregs)
471 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
475 have_ptrace_getfpxregs = 0;
479 perror_with_name ("Couldn't read floating-point and SSE registers");
482 fill_fpxregset (&fpxregs, regno);
484 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
485 perror_with_name ("Couldn't write floating-point and SSE registers");
490 /* Fill the XMM registers in the register array with dummy values. For
491 cases where we don't have access to the XMM registers. I think
492 this is cleaner than printing a warning. For a cleaner solution,
493 we should gdbarchify the i386 family. */
496 dummy_sse_values (void)
498 /* C doesn't have a syntax for NaN's, so write it out as an array of
500 static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
501 static long mxcsr = 0x1f80;
504 for (reg = 0; reg < 8; reg++)
505 supply_register (XMM0_REGNUM + reg, (char *) dummy);
506 supply_register (MXCSR_REGNUM, (char *) &mxcsr);
511 static int fetch_fpxregs (int tid) { return 0; }
512 static int store_fpxregs (int tid, int regno) { return 0; }
513 static void dummy_sse_values (void) {}
515 #endif /* HAVE_PTRACE_GETFPXREGS */
518 /* Transferring arbitrary registers between GDB and inferior. */
520 /* Check if register REGNO in the child process is accessible.
521 If we are accessing registers directly via the U area, only the
522 general-purpose registers are available.
523 All registers should be accessible if we have GETREGS support. */
526 cannot_fetch_register (int regno)
528 if (! have_ptrace_getregs)
529 return OLD_CANNOT_FETCH_REGISTER (regno);
533 cannot_store_register (int regno)
535 if (! have_ptrace_getregs)
536 return OLD_CANNOT_STORE_REGISTER (regno);
540 /* Fetch register REGNO from the child process. If REGNO is -1, do
541 this for all registers (including the floating point and SSE
545 fetch_inferior_registers (int regno)
549 /* Use the old method of peeking around in `struct user' if the
550 GETREGS request isn't available. */
551 if (! have_ptrace_getregs)
553 old_fetch_inferior_registers (regno);
557 /* Linux LWP ID's are process ID's. */
558 if ((tid = TIDGET (inferior_pid)) == 0)
559 tid = inferior_pid; /* Not a threaded program. */
561 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
562 transfers more registers in one system call, and we'll cache the
563 results. But remember that fetch_fpxregs can fail, and return
569 /* The call above might reset `have_ptrace_getregs'. */
570 if (! have_ptrace_getregs)
572 old_fetch_inferior_registers (-1);
576 if (fetch_fpxregs (tid))
582 if (GETREGS_SUPPLIES (regno))
588 if (GETFPXREGS_SUPPLIES (regno))
590 if (fetch_fpxregs (tid))
593 /* Either our processor or our kernel doesn't support the SSE
594 registers, so read the FP registers in the traditional way,
595 and fill the SSE registers with dummy values. It would be
596 more graceful to handle differences in the register set using
597 gdbarch. Until then, this will at least make things work
603 internal_error ("Got request for bad register number %d.", regno);
606 /* Store register REGNO back into the child process. If REGNO is -1,
607 do this for all registers (including the floating point and SSE
610 store_inferior_registers (int regno)
614 /* Use the old method of poking around in `struct user' if the
615 SETREGS request isn't available. */
616 if (! have_ptrace_getregs)
618 old_store_inferior_registers (regno);
622 /* Linux LWP ID's are process ID's. */
623 if ((tid = TIDGET (inferior_pid)) == 0)
624 tid = inferior_pid; /* Not a threaded program. */
626 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
627 transfers more registers in one system call. But remember that
628 store_fpxregs can fail, and return zero. */
631 store_regs (tid, regno);
632 if (store_fpxregs (tid, regno))
634 store_fpregs (tid, regno);
638 if (GETREGS_SUPPLIES (regno))
640 store_regs (tid, regno);
644 if (GETFPXREGS_SUPPLIES (regno))
646 if (store_fpxregs (tid, regno))
649 /* Either our processor or our kernel doesn't support the SSE
650 registers, so just write the FP registers in the traditional
652 store_fpregs (tid, regno);
656 internal_error ("Got request to store bad register number %d.", regno);
660 /* Interpreting register set info found in core files. */
662 /* Provide registers to GDB from a core file.
664 (We can't use the generic version of this function in
665 core-regset.c, because Linux has *three* different kinds of
666 register set notes. core-regset.c would have to call
667 supply_fpxregset, which most platforms don't have.)
669 CORE_REG_SECT points to an array of bytes, which are the contents
670 of a `note' from a core file which BFD thinks might contain
671 register contents. CORE_REG_SIZE is its size.
673 WHICH says which register set corelow suspects this is:
674 0 --- the general-purpose register set, in elf_gregset_t format
675 2 --- the floating-point register set, in elf_fpregset_t format
676 3 --- the extended floating-point register set, in elf_fpxregset_t format
678 REG_ADDR isn't used on Linux. */
681 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
682 int which, CORE_ADDR reg_addr)
684 elf_gregset_t gregset;
685 elf_fpregset_t fpregset;
690 if (core_reg_size != sizeof (gregset))
691 warning ("Wrong size gregset in core file.");
694 memcpy (&gregset, core_reg_sect, sizeof (gregset));
695 supply_gregset (&gregset);
700 if (core_reg_size != sizeof (fpregset))
701 warning ("Wrong size fpregset in core file.");
704 memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
705 supply_fpregset (&fpregset);
709 #ifdef HAVE_PTRACE_GETFPXREGS
711 elf_fpxregset_t fpxregset;
714 if (core_reg_size != sizeof (fpxregset))
715 warning ("Wrong size fpxregset in core file.");
718 memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
719 supply_fpxregset (&fpxregset);
726 /* We've covered all the kinds of registers we know about here,
727 so this must be something we wouldn't know what to do with
728 anyway. Just ignore it. */
734 /* The instruction for a Linux system call is:
738 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
740 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
742 /* The system call number is stored in the %eax register. */
743 #define LINUX_SYSCALL_REGNUM 0 /* %eax */
745 /* We are specifically interested in the sigreturn and rt_sigreturn
748 #ifndef SYS_sigreturn
749 #define SYS_sigreturn 0x77
751 #ifndef SYS_rt_sigreturn
752 #define SYS_rt_sigreturn 0xad
755 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
756 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
758 /* Resume execution of the inferior process.
759 If STEP is nonzero, single-step it.
760 If SIGNAL is nonzero, give it that signal. */
763 child_resume (int pid, int step, enum target_signal signal)
765 int request = PTRACE_CONT;
768 /* Resume all threads. */
769 /* I think this only gets used in the non-threaded case, where "resume
770 all threads" and "resume inferior_pid" are the same. */
775 CORE_ADDR pc = read_pc_pid (pid);
776 unsigned char buf[LINUX_SYSCALL_LEN];
778 request = PTRACE_SINGLESTEP;
780 /* Returning from a signal trampoline is done by calling a
781 special system call (sigreturn or rt_sigreturn, see
782 i386-linux-tdep.c for more information). This system call
783 restores the registers that were saved when the signal was
784 raised, including %eflags. That means that single-stepping
785 won't work. Instead, we'll have to modify the signal context
786 that's about to be restored, and set the trace flag there. */
788 /* First check if PC is at a system call. */
789 if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
790 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
792 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM, pid);
794 /* Then check the system call number. */
795 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
797 CORE_ADDR sp = read_register (SP_REGNUM);
799 unsigned long int eflags;
801 if (syscall == SYS_rt_sigreturn)
802 addr = read_memory_integer (sp + 8, 4) + 20;
804 /* Set the trace flag in the context that's about to be
806 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
807 read_memory (addr, (char *) &eflags, 4);
809 write_memory (addr, (char *) &eflags, 4);
814 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
815 perror_with_name ("ptrace");
819 /* Register that we are able to handle Linux ELF core file formats. */
821 static struct core_fns linux_elf_core_fns =
823 bfd_target_elf_flavour, /* core_flavour */
824 default_check_format, /* check_format */
825 default_core_sniffer, /* core_sniffer */
826 fetch_core_registers, /* core_read_registers */
831 _initialize_i386_linux_nat (void)
833 add_core_fns (&linux_elf_core_fns);