1 /* Target-dependent code for the HP PA-RISC architecture.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "completer.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
41 #include "hppa-tdep.h"
44 static int hppa_debug = 0;
46 /* Some local constants. */
47 static const int hppa32_num_regs = 128;
48 static const int hppa64_num_regs = 96;
50 /* We use the objfile->obj_private pointer for two things:
53 * 2. A pointer to any associated shared library object.
55 * #defines are used to help refer to these objects.
58 /* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
64 struct hppa_unwind_info
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
71 struct hppa_objfile_private
73 struct hppa_unwind_info *unwind_info; /* a pointer */
74 struct so_list *so_info; /* a pointer */
77 int dummy_call_sequence_reg;
78 CORE_ADDR dummy_call_sequence_addr;
81 /* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
87 static const struct objfile_data *hppa_objfile_priv_data = NULL;
89 /* Get at various relevent fields of an instruction word. */
92 #define MASK_14 0x3fff
93 #define MASK_21 0x1fffff
95 /* Sizes (in bytes) of the native unwind entries. */
96 #define UNWIND_ENTRY_SIZE 16
97 #define STUB_UNWIND_ENTRY_SIZE 8
99 /* Routines to extract various sized constants out of hppa
102 /* This assumes that no garbage lies outside of the lower bits of
106 hppa_sign_extend (unsigned val, unsigned bits)
108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
111 /* For many immediate values the sign bit is the low bit! */
114 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
119 /* Extract the bits at positions between FROM and TO, using HP's numbering
123 hppa_get_field (unsigned word, int from, int to)
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
128 /* Extract the immediate field from a ld{bhw}s instruction. */
131 hppa_extract_5_load (unsigned word)
133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
136 /* Extract the immediate field from a break instruction. */
139 hppa_extract_5r_store (unsigned word)
141 return (word & MASK_5);
144 /* Extract the immediate field from a {sr}sm instruction. */
147 hppa_extract_5R_store (unsigned word)
149 return (word >> 16 & MASK_5);
152 /* Extract a 14 bit immediate field. */
155 hppa_extract_14 (unsigned word)
157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
160 /* Extract a 21 bit constant. */
163 hppa_extract_21 (unsigned word)
169 val = hppa_get_field (word, 20, 20);
171 val |= hppa_get_field (word, 9, 19);
173 val |= hppa_get_field (word, 5, 6);
175 val |= hppa_get_field (word, 0, 4);
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
181 /* extract a 17 bit constant from branch instructions, returning the
182 19 bit signed value. */
185 hppa_extract_17 (unsigned word)
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
190 (word & 0x1) << 16, 17) << 2;
194 hppa_symbol_address(const char *sym)
196 struct bound_minimal_symbol minsym;
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
200 return BMSYMBOL_VALUE_ADDRESS (minsym);
202 return (CORE_ADDR)-1;
205 static struct hppa_objfile_private *
206 hppa_init_objfile_priv_data (struct objfile *objfile)
208 struct hppa_objfile_private *priv;
210 priv = (struct hppa_objfile_private *)
211 obstack_alloc (&objfile->objfile_obstack,
212 sizeof (struct hppa_objfile_private));
213 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
214 memset (priv, 0, sizeof (*priv));
220 /* Compare the start address for two unwind entries returning 1 if
221 the first address is larger than the second, -1 if the second is
222 larger than the first, and zero if they are equal. */
225 compare_unwind_entries (const void *arg1, const void *arg2)
227 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
228 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
230 if (a->region_start > b->region_start)
232 else if (a->region_start < b->region_start)
239 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
241 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
242 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
244 bfd_vma value = section->vma - section->filepos;
245 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
247 if (value < *low_text_segment_address)
248 *low_text_segment_address = value;
253 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
254 asection *section, unsigned int entries,
255 size_t size, CORE_ADDR text_offset)
257 /* We will read the unwind entries into temporary memory, then
258 fill in the actual unwind table. */
262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
265 char *buf = (char *) alloca (size);
266 CORE_ADDR low_text_segment_address;
268 /* For ELF targets, then unwinds are supposed to
269 be segment relative offsets instead of absolute addresses.
271 Note that when loading a shared library (text_offset != 0) the
272 unwinds are already relative to the text_offset that will be
274 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
276 low_text_segment_address = -1;
278 bfd_map_over_sections (objfile->obfd,
279 record_text_segment_lowaddr,
280 &low_text_segment_address);
282 text_offset = low_text_segment_address;
284 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
286 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
289 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
291 /* Now internalize the information being careful to handle host/target
293 for (i = 0; i < entries; i++)
295 table[i].region_start = bfd_get_32 (objfile->obfd,
297 table[i].region_start += text_offset;
299 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 table[i].region_end += text_offset;
302 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
304 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
305 table[i].Millicode = (tmp >> 30) & 0x1;
306 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
307 table[i].Region_description = (tmp >> 27) & 0x3;
308 table[i].reserved = (tmp >> 26) & 0x1;
309 table[i].Entry_SR = (tmp >> 25) & 0x1;
310 table[i].Entry_FR = (tmp >> 21) & 0xf;
311 table[i].Entry_GR = (tmp >> 16) & 0x1f;
312 table[i].Args_stored = (tmp >> 15) & 0x1;
313 table[i].Variable_Frame = (tmp >> 14) & 0x1;
314 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
315 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
316 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
317 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
318 table[i].sr4export = (tmp >> 9) & 0x1;
319 table[i].cxx_info = (tmp >> 8) & 0x1;
320 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
321 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
322 table[i].reserved1 = (tmp >> 5) & 0x1;
323 table[i].Save_SP = (tmp >> 4) & 0x1;
324 table[i].Save_RP = (tmp >> 3) & 0x1;
325 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
326 table[i].save_r19 = (tmp >> 1) & 0x1;
327 table[i].Cleanup_defined = tmp & 0x1;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
330 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
331 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
332 table[i].Large_frame = (tmp >> 29) & 0x1;
333 table[i].alloca_frame = (tmp >> 28) & 0x1;
334 table[i].reserved2 = (tmp >> 27) & 0x1;
335 table[i].Total_frame_size = tmp & 0x7ffffff;
337 /* Stub unwinds are handled elsewhere. */
338 table[i].stub_unwind.stub_type = 0;
339 table[i].stub_unwind.padding = 0;
344 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
345 the object file. This info is used mainly by find_unwind_entry() to find
346 out the stack frame size and frame pointer used by procedures. We put
347 everything on the psymbol obstack in the objfile so that it automatically
348 gets freed when the objfile is destroyed. */
351 read_unwind_info (struct objfile *objfile)
353 asection *unwind_sec, *stub_unwind_sec;
354 size_t unwind_size, stub_unwind_size, total_size;
355 unsigned index, unwind_entries;
356 unsigned stub_entries, total_entries;
357 CORE_ADDR text_offset;
358 struct hppa_unwind_info *ui;
359 struct hppa_objfile_private *obj_private;
361 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
362 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
363 sizeof (struct hppa_unwind_info));
369 /* For reasons unknown the HP PA64 tools generate multiple unwinder
370 sections in a single executable. So we just iterate over every
371 section in the BFD looking for unwinder sections intead of trying
372 to do a lookup with bfd_get_section_by_name.
374 First determine the total size of the unwind tables so that we
375 can allocate memory in a nice big hunk. */
377 for (unwind_sec = objfile->obfd->sections;
379 unwind_sec = unwind_sec->next)
381 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
382 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
384 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
385 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
387 total_entries += unwind_entries;
391 /* Now compute the size of the stub unwinds. Note the ELF tools do not
392 use stub unwinds at the current time. */
393 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
397 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
398 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
402 stub_unwind_size = 0;
406 /* Compute total number of unwind entries and their total size. */
407 total_entries += stub_entries;
408 total_size = total_entries * sizeof (struct unwind_table_entry);
410 /* Allocate memory for the unwind table. */
411 ui->table = (struct unwind_table_entry *)
412 obstack_alloc (&objfile->objfile_obstack, total_size);
413 ui->last = total_entries - 1;
415 /* Now read in each unwind section and internalize the standard unwind
418 for (unwind_sec = objfile->obfd->sections;
420 unwind_sec = unwind_sec->next)
422 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
423 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
425 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
426 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
428 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
429 unwind_entries, unwind_size, text_offset);
430 index += unwind_entries;
434 /* Now read in and internalize the stub unwind entries. */
435 if (stub_unwind_size > 0)
438 char *buf = (char *) alloca (stub_unwind_size);
440 /* Read in the stub unwind entries. */
441 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
442 0, stub_unwind_size);
444 /* Now convert them into regular unwind entries. */
445 for (i = 0; i < stub_entries; i++, index++)
447 /* Clear out the next unwind entry. */
448 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
450 /* Convert offset & size into region_start and region_end.
451 Stuff away the stub type into "reserved" fields. */
452 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
454 ui->table[index].region_start += text_offset;
456 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
459 ui->table[index].region_end
460 = ui->table[index].region_start + 4 *
461 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
467 /* Unwind table needs to be kept sorted. */
468 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
469 compare_unwind_entries);
471 /* Keep a pointer to the unwind information. */
472 obj_private = (struct hppa_objfile_private *)
473 objfile_data (objfile, hppa_objfile_priv_data);
474 if (obj_private == NULL)
475 obj_private = hppa_init_objfile_priv_data (objfile);
477 obj_private->unwind_info = ui;
480 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
481 of the objfiles seeking the unwind table entry for this PC. Each objfile
482 contains a sorted list of struct unwind_table_entry. Since we do a binary
483 search of the unwind tables, we depend upon them to be sorted. */
485 struct unwind_table_entry *
486 find_unwind_entry (CORE_ADDR pc)
488 int first, middle, last;
489 struct objfile *objfile;
490 struct hppa_objfile_private *priv;
493 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
496 /* A function at address 0? Not in HP-UX! */
497 if (pc == (CORE_ADDR) 0)
500 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
504 ALL_OBJFILES (objfile)
506 struct hppa_unwind_info *ui;
508 priv = ((struct hppa_objfile_private *)
509 objfile_data (objfile, hppa_objfile_priv_data));
511 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
515 read_unwind_info (objfile);
516 priv = ((struct hppa_objfile_private *)
517 objfile_data (objfile, hppa_objfile_priv_data));
519 error (_("Internal error reading unwind information."));
520 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
523 /* First, check the cache. */
526 && pc >= ui->cache->region_start
527 && pc <= ui->cache->region_end)
530 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
531 hex_string ((uintptr_t) ui->cache));
535 /* Not in the cache, do a binary search. */
540 while (first <= last)
542 middle = (first + last) / 2;
543 if (pc >= ui->table[middle].region_start
544 && pc <= ui->table[middle].region_end)
546 ui->cache = &ui->table[middle];
548 fprintf_unfiltered (gdb_stdlog, "%s }\n",
549 hex_string ((uintptr_t) ui->cache));
550 return &ui->table[middle];
553 if (pc < ui->table[middle].region_start)
558 } /* ALL_OBJFILES() */
561 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
566 /* Implement the stack_frame_destroyed_p gdbarch method.
568 The epilogue is defined here as the area either on the `bv' instruction
569 itself or an instruction which destroys the function's stack frame.
571 We do not assume that the epilogue is at the end of a function as we can
572 also have return sequences in the middle of a function. */
575 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
577 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
578 unsigned long status;
582 status = target_read_memory (pc, buf, 4);
586 inst = extract_unsigned_integer (buf, 4, byte_order);
588 /* The most common way to perform a stack adjustment ldo X(sp),sp
589 We are destroying a stack frame if the offset is negative. */
590 if ((inst & 0xffffc000) == 0x37de0000
591 && hppa_extract_14 (inst) < 0)
594 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
595 if (((inst & 0x0fc010e0) == 0x0fc010e0
596 || (inst & 0x0fc010e0) == 0x0fc010e0)
597 && hppa_extract_14 (inst) < 0)
600 /* bv %r0(%rp) or bv,n %r0(%rp) */
601 if (inst == 0xe840c000 || inst == 0xe840c002)
607 constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
609 typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
611 /* Return the name of a register. */
614 hppa32_register_name (struct gdbarch *gdbarch, int i)
616 static char *names[] = {
617 "flags", "r1", "rp", "r3",
618 "r4", "r5", "r6", "r7",
619 "r8", "r9", "r10", "r11",
620 "r12", "r13", "r14", "r15",
621 "r16", "r17", "r18", "r19",
622 "r20", "r21", "r22", "r23",
623 "r24", "r25", "r26", "dp",
624 "ret0", "ret1", "sp", "r31",
625 "sar", "pcoqh", "pcsqh", "pcoqt",
626 "pcsqt", "eiem", "iir", "isr",
627 "ior", "ipsw", "goto", "sr4",
628 "sr0", "sr1", "sr2", "sr3",
629 "sr5", "sr6", "sr7", "cr0",
630 "cr8", "cr9", "ccr", "cr12",
631 "cr13", "cr24", "cr25", "cr26",
632 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
633 "fpsr", "fpe1", "fpe2", "fpe3",
634 "fpe4", "fpe5", "fpe6", "fpe7",
635 "fr4", "fr4R", "fr5", "fr5R",
636 "fr6", "fr6R", "fr7", "fr7R",
637 "fr8", "fr8R", "fr9", "fr9R",
638 "fr10", "fr10R", "fr11", "fr11R",
639 "fr12", "fr12R", "fr13", "fr13R",
640 "fr14", "fr14R", "fr15", "fr15R",
641 "fr16", "fr16R", "fr17", "fr17R",
642 "fr18", "fr18R", "fr19", "fr19R",
643 "fr20", "fr20R", "fr21", "fr21R",
644 "fr22", "fr22R", "fr23", "fr23R",
645 "fr24", "fr24R", "fr25", "fr25R",
646 "fr26", "fr26R", "fr27", "fr27R",
647 "fr28", "fr28R", "fr29", "fr29R",
648 "fr30", "fr30R", "fr31", "fr31R"
650 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
657 hppa64_register_name (struct gdbarch *gdbarch, int i)
659 static char *names[] = {
660 "flags", "r1", "rp", "r3",
661 "r4", "r5", "r6", "r7",
662 "r8", "r9", "r10", "r11",
663 "r12", "r13", "r14", "r15",
664 "r16", "r17", "r18", "r19",
665 "r20", "r21", "r22", "r23",
666 "r24", "r25", "r26", "dp",
667 "ret0", "ret1", "sp", "r31",
668 "sar", "pcoqh", "pcsqh", "pcoqt",
669 "pcsqt", "eiem", "iir", "isr",
670 "ior", "ipsw", "goto", "sr4",
671 "sr0", "sr1", "sr2", "sr3",
672 "sr5", "sr6", "sr7", "cr0",
673 "cr8", "cr9", "ccr", "cr12",
674 "cr13", "cr24", "cr25", "cr26",
675 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
676 "fpsr", "fpe1", "fpe2", "fpe3",
677 "fr4", "fr5", "fr6", "fr7",
678 "fr8", "fr9", "fr10", "fr11",
679 "fr12", "fr13", "fr14", "fr15",
680 "fr16", "fr17", "fr18", "fr19",
681 "fr20", "fr21", "fr22", "fr23",
682 "fr24", "fr25", "fr26", "fr27",
683 "fr28", "fr29", "fr30", "fr31"
685 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
691 /* Map dwarf DBX register numbers to GDB register numbers. */
693 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
695 /* The general registers and the sar are the same in both sets. */
696 if (reg >= 0 && reg <= 32)
699 /* fr4-fr31 are mapped from 72 in steps of 2. */
700 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
701 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
706 /* This function pushes a stack frame with arguments as part of the
707 inferior function calling mechanism.
709 This is the version of the function for the 32-bit PA machines, in
710 which later arguments appear at lower addresses. (The stack always
711 grows towards higher addresses.)
713 We simply allocate the appropriate amount of stack space and put
714 arguments into their proper slots. */
717 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
718 struct regcache *regcache, CORE_ADDR bp_addr,
719 int nargs, struct value **args, CORE_ADDR sp,
720 int struct_return, CORE_ADDR struct_addr)
722 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
724 /* Stack base address at which any pass-by-reference parameters are
726 CORE_ADDR struct_end = 0;
727 /* Stack base address at which the first parameter is stored. */
728 CORE_ADDR param_end = 0;
730 /* Two passes. First pass computes the location of everything,
731 second pass writes the bytes out. */
734 /* Global pointer (r19) of the function we are trying to call. */
737 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
739 for (write_pass = 0; write_pass < 2; write_pass++)
741 CORE_ADDR struct_ptr = 0;
742 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
743 struct_ptr is adjusted for each argument below, so the first
744 argument will end up at sp-36. */
745 CORE_ADDR param_ptr = 32;
747 int small_struct = 0;
749 for (i = 0; i < nargs; i++)
751 struct value *arg = args[i];
752 struct type *type = check_typedef (value_type (arg));
753 /* The corresponding parameter that is pushed onto the
754 stack, and [possibly] passed in a register. */
755 gdb_byte param_val[8];
757 memset (param_val, 0, sizeof param_val);
758 if (TYPE_LENGTH (type) > 8)
760 /* Large parameter, pass by reference. Store the value
761 in "struct" area and then pass its address. */
763 struct_ptr += align_up (TYPE_LENGTH (type), 8);
765 write_memory (struct_end - struct_ptr, value_contents (arg),
767 store_unsigned_integer (param_val, 4, byte_order,
768 struct_end - struct_ptr);
770 else if (TYPE_CODE (type) == TYPE_CODE_INT
771 || TYPE_CODE (type) == TYPE_CODE_ENUM)
773 /* Integer value store, right aligned. "unpack_long"
774 takes care of any sign-extension problems. */
775 param_len = align_up (TYPE_LENGTH (type), 4);
776 store_unsigned_integer (param_val, param_len, byte_order,
778 value_contents (arg)));
780 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
782 /* Floating point value store, right aligned. */
783 param_len = align_up (TYPE_LENGTH (type), 4);
784 memcpy (param_val, value_contents (arg), param_len);
788 param_len = align_up (TYPE_LENGTH (type), 4);
790 /* Small struct value are stored right-aligned. */
791 memcpy (param_val + param_len - TYPE_LENGTH (type),
792 value_contents (arg), TYPE_LENGTH (type));
794 /* Structures of size 5, 6 and 7 bytes are special in that
795 the higher-ordered word is stored in the lower-ordered
796 argument, and even though it is a 8-byte quantity the
797 registers need not be 8-byte aligned. */
798 if (param_len > 4 && param_len < 8)
802 param_ptr += param_len;
803 if (param_len == 8 && !small_struct)
804 param_ptr = align_up (param_ptr, 8);
806 /* First 4 non-FP arguments are passed in gr26-gr23.
807 First 4 32-bit FP arguments are passed in fr4L-fr7L.
808 First 2 64-bit FP arguments are passed in fr5 and fr7.
810 The rest go on the stack, starting at sp-36, towards lower
811 addresses. 8-byte arguments must be aligned to a 8-byte
815 write_memory (param_end - param_ptr, param_val, param_len);
817 /* There are some cases when we don't know the type
818 expected by the callee (e.g. for variadic functions), so
819 pass the parameters in both general and fp regs. */
822 int grreg = 26 - (param_ptr - 36) / 4;
823 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
824 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
826 regcache_cooked_write (regcache, grreg, param_val);
827 regcache_cooked_write (regcache, fpLreg, param_val);
831 regcache_cooked_write (regcache, grreg + 1,
834 regcache_cooked_write (regcache, fpreg, param_val);
835 regcache_cooked_write (regcache, fpreg + 1,
842 /* Update the various stack pointers. */
845 struct_end = sp + align_up (struct_ptr, 64);
846 /* PARAM_PTR already accounts for all the arguments passed
847 by the user. However, the ABI mandates minimum stack
848 space allocations for outgoing arguments. The ABI also
849 mandates minimum stack alignments which we must
851 param_end = struct_end + align_up (param_ptr, 64);
855 /* If a structure has to be returned, set up register 28 to hold its
858 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
860 gp = tdep->find_global_pointer (gdbarch, function);
863 regcache_cooked_write_unsigned (regcache, 19, gp);
865 /* Set the return address. */
866 if (!gdbarch_push_dummy_code_p (gdbarch))
867 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
869 /* Update the Stack Pointer. */
870 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
875 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
876 Runtime Architecture for PA-RISC 2.0", which is distributed as part
877 as of the HP-UX Software Transition Kit (STK). This implementation
878 is based on version 3.3, dated October 6, 1997. */
880 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
883 hppa64_integral_or_pointer_p (const struct type *type)
885 switch (TYPE_CODE (type))
891 case TYPE_CODE_RANGE:
893 int len = TYPE_LENGTH (type);
894 return (len == 1 || len == 2 || len == 4 || len == 8);
898 return (TYPE_LENGTH (type) == 8);
906 /* Check whether TYPE is a "Floating Scalar Type". */
909 hppa64_floating_p (const struct type *type)
911 switch (TYPE_CODE (type))
915 int len = TYPE_LENGTH (type);
916 return (len == 4 || len == 8 || len == 16);
925 /* If CODE points to a function entry address, try to look up the corresponding
926 function descriptor and return its address instead. If CODE is not a
927 function entry address, then just return it unchanged. */
929 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
931 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
932 struct obj_section *sec, *opd;
934 sec = find_pc_section (code);
939 /* If CODE is in a data section, assume it's already a fptr. */
940 if (!(sec->the_bfd_section->flags & SEC_CODE))
943 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
945 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
949 if (opd < sec->objfile->sections_end)
953 for (addr = obj_section_addr (opd);
954 addr < obj_section_endaddr (opd);
960 if (target_read_memory (addr, tmp, sizeof (tmp)))
962 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
973 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
974 struct regcache *regcache, CORE_ADDR bp_addr,
975 int nargs, struct value **args, CORE_ADDR sp,
976 int struct_return, CORE_ADDR struct_addr)
978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
979 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
983 /* "The outgoing parameter area [...] must be aligned at a 16-byte
985 sp = align_up (sp, 16);
987 for (i = 0; i < nargs; i++)
989 struct value *arg = args[i];
990 struct type *type = value_type (arg);
991 int len = TYPE_LENGTH (type);
992 const bfd_byte *valbuf;
996 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
997 offset = align_up (offset, 8);
999 if (hppa64_integral_or_pointer_p (type))
1001 /* "Integral scalar parameters smaller than 64 bits are
1002 padded on the left (i.e., the value is in the
1003 least-significant bits of the 64-bit storage unit, and
1004 the high-order bits are undefined)." Therefore we can
1005 safely sign-extend them. */
1008 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1012 else if (hppa64_floating_p (type))
1016 /* "Quad-precision (128-bit) floating-point scalar
1017 parameters are aligned on a 16-byte boundary." */
1018 offset = align_up (offset, 16);
1020 /* "Double-extended- and quad-precision floating-point
1021 parameters within the first 64 bytes of the parameter
1022 list are always passed in general registers." */
1028 /* "Single-precision (32-bit) floating-point scalar
1029 parameters are padded on the left with 32 bits of
1030 garbage (i.e., the floating-point value is in the
1031 least-significant 32 bits of a 64-bit storage
1036 /* "Single- and double-precision floating-point
1037 parameters in this area are passed according to the
1038 available formal parameter information in a function
1039 prototype. [...] If no prototype is in scope,
1040 floating-point parameters must be passed both in the
1041 corresponding general registers and in the
1042 corresponding floating-point registers." */
1043 regnum = HPPA64_FP4_REGNUM + offset / 8;
1045 if (regnum < HPPA64_FP4_REGNUM + 8)
1047 /* "Single-precision floating-point parameters, when
1048 passed in floating-point registers, are passed in
1049 the right halves of the floating point registers;
1050 the left halves are unused." */
1051 regcache_cooked_write_part (regcache, regnum, offset % 8,
1052 len, value_contents (arg));
1060 /* "Aggregates larger than 8 bytes are aligned on a
1061 16-byte boundary, possibly leaving an unused argument
1062 slot, which is filled with garbage. If necessary,
1063 they are padded on the right (with garbage), to a
1064 multiple of 8 bytes." */
1065 offset = align_up (offset, 16);
1069 /* If we are passing a function pointer, make sure we pass a function
1070 descriptor instead of the function entry address. */
1071 if (TYPE_CODE (type) == TYPE_CODE_PTR
1072 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1074 ULONGEST codeptr, fptr;
1076 codeptr = unpack_long (type, value_contents (arg));
1077 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1078 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1084 valbuf = value_contents (arg);
1087 /* Always store the argument in memory. */
1088 write_memory (sp + offset, valbuf, len);
1090 regnum = HPPA_ARG0_REGNUM - offset / 8;
1091 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1093 regcache_cooked_write_part (regcache, regnum,
1094 offset % 8, std::min (len, 8), valbuf);
1095 offset += std::min (len, 8);
1096 valbuf += std::min (len, 8);
1097 len -= std::min (len, 8);
1104 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1105 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1107 /* Allocate the outgoing parameter area. Make sure the outgoing
1108 parameter area is multiple of 16 bytes in length. */
1109 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
1111 /* Allocate 32-bytes of scratch space. The documentation doesn't
1112 mention this, but it seems to be needed. */
1115 /* Allocate the frame marker area. */
1118 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1121 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1123 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1124 gp = tdep->find_global_pointer (gdbarch, function);
1126 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1128 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1129 if (!gdbarch_push_dummy_code_p (gdbarch))
1130 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1132 /* Set up GR30 to hold the stack pointer (sp). */
1133 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1139 /* Handle 32/64-bit struct return conventions. */
1141 static enum return_value_convention
1142 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1143 struct type *type, struct regcache *regcache,
1144 gdb_byte *readbuf, const gdb_byte *writebuf)
1146 if (TYPE_LENGTH (type) <= 2 * 4)
1148 /* The value always lives in the right hand end of the register
1149 (or register pair)? */
1151 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1152 int part = TYPE_LENGTH (type) % 4;
1153 /* The left hand register contains only part of the value,
1154 transfer that first so that the rest can be xfered as entire
1155 4-byte registers. */
1158 if (readbuf != NULL)
1159 regcache_cooked_read_part (regcache, reg, 4 - part,
1161 if (writebuf != NULL)
1162 regcache_cooked_write_part (regcache, reg, 4 - part,
1166 /* Now transfer the remaining register values. */
1167 for (b = part; b < TYPE_LENGTH (type); b += 4)
1169 if (readbuf != NULL)
1170 regcache_cooked_read (regcache, reg, readbuf + b);
1171 if (writebuf != NULL)
1172 regcache_cooked_write (regcache, reg, writebuf + b);
1175 return RETURN_VALUE_REGISTER_CONVENTION;
1178 return RETURN_VALUE_STRUCT_CONVENTION;
1181 static enum return_value_convention
1182 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1183 struct type *type, struct regcache *regcache,
1184 gdb_byte *readbuf, const gdb_byte *writebuf)
1186 int len = TYPE_LENGTH (type);
1191 /* All return values larget than 128 bits must be aggregate
1193 gdb_assert (!hppa64_integral_or_pointer_p (type));
1194 gdb_assert (!hppa64_floating_p (type));
1196 /* "Aggregate return values larger than 128 bits are returned in
1197 a buffer allocated by the caller. The address of the buffer
1198 must be passed in GR 28." */
1199 return RETURN_VALUE_STRUCT_CONVENTION;
1202 if (hppa64_integral_or_pointer_p (type))
1204 /* "Integral return values are returned in GR 28. Values
1205 smaller than 64 bits are padded on the left (with garbage)." */
1206 regnum = HPPA_RET0_REGNUM;
1209 else if (hppa64_floating_p (type))
1213 /* "Double-extended- and quad-precision floating-point
1214 values are returned in GRs 28 and 29. The sign,
1215 exponent, and most-significant bits of the mantissa are
1216 returned in GR 28; the least-significant bits of the
1217 mantissa are passed in GR 29. For double-extended
1218 precision values, GR 29 is padded on the right with 48
1219 bits of garbage." */
1220 regnum = HPPA_RET0_REGNUM;
1225 /* "Single-precision and double-precision floating-point
1226 return values are returned in FR 4R (single precision) or
1227 FR 4 (double-precision)." */
1228 regnum = HPPA64_FP4_REGNUM;
1234 /* "Aggregate return values up to 64 bits in size are returned
1235 in GR 28. Aggregates smaller than 64 bits are left aligned
1236 in the register; the pad bits on the right are undefined."
1238 "Aggregate return values between 65 and 128 bits are returned
1239 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1240 the remaining bits are placed, left aligned, in GR 29. The
1241 pad bits on the right of GR 29 (if any) are undefined." */
1242 regnum = HPPA_RET0_REGNUM;
1250 regcache_cooked_read_part (regcache, regnum, offset,
1251 std::min (len, 8), readbuf);
1252 readbuf += std::min (len, 8);
1253 len -= std::min (len, 8);
1262 regcache_cooked_write_part (regcache, regnum, offset,
1263 std::min (len, 8), writebuf);
1264 writebuf += std::min (len, 8);
1265 len -= std::min (len, 8);
1270 return RETURN_VALUE_REGISTER_CONVENTION;
1275 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1276 struct target_ops *targ)
1280 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1281 CORE_ADDR plabel = addr & ~3;
1282 return read_memory_typed_address (plabel, func_ptr_type);
1289 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1291 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1293 return align_up (addr, 64);
1296 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1299 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1301 /* Just always 16-byte align. */
1302 return align_up (addr, 16);
1306 hppa_read_pc (struct regcache *regcache)
1311 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1312 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1314 /* If the current instruction is nullified, then we are effectively
1315 still executing the previous instruction. Pretend we are still
1316 there. This is needed when single stepping; if the nullified
1317 instruction is on a different line, we don't want GDB to think
1318 we've stepped onto that line. */
1319 if (ipsw & 0x00200000)
1326 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1328 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1329 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1332 /* For the given instruction (INST), return any adjustment it makes
1333 to the stack pointer or zero for no adjustment.
1335 This only handles instructions commonly found in prologues. */
1338 prologue_inst_adjust_sp (unsigned long inst)
1340 /* This must persist across calls. */
1341 static int save_high21;
1343 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1344 if ((inst & 0xffffc000) == 0x37de0000)
1345 return hppa_extract_14 (inst);
1348 if ((inst & 0xffe00000) == 0x6fc00000)
1349 return hppa_extract_14 (inst);
1351 /* std,ma X,D(sp) */
1352 if ((inst & 0xffe00008) == 0x73c00008)
1353 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
1355 /* addil high21,%r30; ldo low11,(%r1),%r30)
1356 save high bits in save_high21 for later use. */
1357 if ((inst & 0xffe00000) == 0x2bc00000)
1359 save_high21 = hppa_extract_21 (inst);
1363 if ((inst & 0xffff0000) == 0x343e0000)
1364 return save_high21 + hppa_extract_14 (inst);
1366 /* fstws as used by the HP compilers. */
1367 if ((inst & 0xffffffe0) == 0x2fd01220)
1368 return hppa_extract_5_load (inst);
1370 /* No adjustment. */
1374 /* Return nonzero if INST is a branch of some kind, else return zero. */
1377 is_branch (unsigned long inst)
1406 /* Return the register number for a GR which is saved by INST or
1407 zero if INST does not save a GR.
1412 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1415 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1417 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1418 on page 106 in parisc 2.0, all instructions for storing values from
1419 the general registers are:
1421 Store: stb, sth, stw, std (according to Chapter 7, they
1422 are only in both "inst >> 26" and "inst >> 6".
1423 Store Absolute: stwa, stda (according to Chapter 7, they are only
1425 Store Bytes: stby, stdby (according to Chapter 7, they are
1426 only in "inst >> 6").
1428 For (inst >> 26), according to Chapter 7:
1430 The effective memory reference address is formed by the addition
1431 of an immediate displacement to a base value.
1433 - stb: 0x18, store a byte from a general register.
1435 - sth: 0x19, store a halfword from a general register.
1437 - stw: 0x1a, store a word from a general register.
1439 - stwm: 0x1b, store a word from a general register and perform base
1440 register modification (2.0 will still treate it as stw).
1442 - std: 0x1c, store a doubleword from a general register (2.0 only).
1444 - stw: 0x1f, store a word from a general register (2.0 only).
1446 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1448 The effective memory reference address is formed by the addition
1449 of an index value to a base value specified in the instruction.
1451 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1453 - sth: 0x09, store a halfword from a general register (1.1 calls
1456 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1458 - std: 0x0b: store a doubleword from a general register (2.0 only)
1460 Implement fast byte moves (stores) to unaligned word or doubleword
1463 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1465 - stdby: 0x0d for unaligned doubleword (2.0 only).
1467 Store a word or doubleword using an absolute memory address formed
1468 using short or long displacement or indexed
1470 - stwa: 0x0e, store a word from a general register to an absolute
1471 address (1.0 calls stwas).
1473 - stda: 0x0f, store a doubleword from a general register to an
1474 absolute address (2.0 only). */
1477 inst_saves_gr (unsigned long inst)
1479 switch ((inst >> 26) & 0x0f)
1482 switch ((inst >> 6) & 0x0f)
1492 return hppa_extract_5R_store (inst);
1501 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1503 return hppa_extract_5R_store (inst);
1509 /* Return the register number for a FR which is saved by INST or
1510 zero it INST does not save a FR.
1512 Note we only care about full 64bit register stores (that's the only
1513 kind of stores the prologue will use).
1515 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1518 inst_saves_fr (unsigned long inst)
1520 /* Is this an FSTD? */
1521 if ((inst & 0xfc00dfc0) == 0x2c001200)
1522 return hppa_extract_5r_store (inst);
1523 if ((inst & 0xfc000002) == 0x70000002)
1524 return hppa_extract_5R_store (inst);
1525 /* Is this an FSTW? */
1526 if ((inst & 0xfc00df80) == 0x24001200)
1527 return hppa_extract_5r_store (inst);
1528 if ((inst & 0xfc000002) == 0x7c000000)
1529 return hppa_extract_5R_store (inst);
1533 /* Advance PC across any function entry prologue instructions
1534 to reach some "real" code.
1536 Use information in the unwind table to determine what exactly should
1537 be in the prologue. */
1541 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1542 int stop_before_branch)
1544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1546 CORE_ADDR orig_pc = pc;
1547 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1548 unsigned long args_stored, status, i, restart_gr, restart_fr;
1549 struct unwind_table_entry *u;
1550 int final_iteration;
1556 u = find_unwind_entry (pc);
1560 /* If we are not at the beginning of a function, then return now. */
1561 if ((pc & ~0x3) != u->region_start)
1564 /* This is how much of a frame adjustment we need to account for. */
1565 stack_remaining = u->Total_frame_size << 3;
1567 /* Magic register saves we want to know about. */
1568 save_rp = u->Save_RP;
1569 save_sp = u->Save_SP;
1571 /* An indication that args may be stored into the stack. Unfortunately
1572 the HPUX compilers tend to set this in cases where no args were
1576 /* Turn the Entry_GR field into a bitmask. */
1578 for (i = 3; i < u->Entry_GR + 3; i++)
1580 /* Frame pointer gets saved into a special location. */
1581 if (u->Save_SP && i == HPPA_FP_REGNUM)
1584 save_gr |= (1 << i);
1586 save_gr &= ~restart_gr;
1588 /* Turn the Entry_FR field into a bitmask too. */
1590 for (i = 12; i < u->Entry_FR + 12; i++)
1591 save_fr |= (1 << i);
1592 save_fr &= ~restart_fr;
1594 final_iteration = 0;
1596 /* Loop until we find everything of interest or hit a branch.
1598 For unoptimized GCC code and for any HP CC code this will never ever
1599 examine any user instructions.
1601 For optimzied GCC code we're faced with problems. GCC will schedule
1602 its prologue and make prologue instructions available for delay slot
1603 filling. The end result is user code gets mixed in with the prologue
1604 and a prologue instruction may be in the delay slot of the first branch
1607 Some unexpected things are expected with debugging optimized code, so
1608 we allow this routine to walk past user instructions in optimized
1610 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1613 unsigned int reg_num;
1614 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1615 unsigned long old_save_rp, old_save_sp, next_inst;
1617 /* Save copies of all the triggers so we can compare them later
1619 old_save_gr = save_gr;
1620 old_save_fr = save_fr;
1621 old_save_rp = save_rp;
1622 old_save_sp = save_sp;
1623 old_stack_remaining = stack_remaining;
1625 status = target_read_memory (pc, buf, 4);
1626 inst = extract_unsigned_integer (buf, 4, byte_order);
1632 /* Note the interesting effects of this instruction. */
1633 stack_remaining -= prologue_inst_adjust_sp (inst);
1635 /* There are limited ways to store the return pointer into the
1637 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1640 /* These are the only ways we save SP into the stack. At this time
1641 the HP compilers never bother to save SP into the stack. */
1642 if ((inst & 0xffffc000) == 0x6fc10000
1643 || (inst & 0xffffc00c) == 0x73c10008)
1646 /* Are we loading some register with an offset from the argument
1648 if ((inst & 0xffe00000) == 0x37a00000
1649 || (inst & 0xffffffe0) == 0x081d0240)
1655 /* Account for general and floating-point register saves. */
1656 reg_num = inst_saves_gr (inst);
1657 save_gr &= ~(1 << reg_num);
1659 /* Ugh. Also account for argument stores into the stack.
1660 Unfortunately args_stored only tells us that some arguments
1661 where stored into the stack. Not how many or what kind!
1663 This is a kludge as on the HP compiler sets this bit and it
1664 never does prologue scheduling. So once we see one, skip past
1665 all of them. We have similar code for the fp arg stores below.
1667 FIXME. Can still die if we have a mix of GR and FR argument
1669 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1672 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1676 status = target_read_memory (pc, buf, 4);
1677 inst = extract_unsigned_integer (buf, 4, byte_order);
1680 reg_num = inst_saves_gr (inst);
1686 reg_num = inst_saves_fr (inst);
1687 save_fr &= ~(1 << reg_num);
1689 status = target_read_memory (pc + 4, buf, 4);
1690 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1696 /* We've got to be read to handle the ldo before the fp register
1698 if ((inst & 0xfc000000) == 0x34000000
1699 && inst_saves_fr (next_inst) >= 4
1700 && inst_saves_fr (next_inst)
1701 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1703 /* So we drop into the code below in a reasonable state. */
1704 reg_num = inst_saves_fr (next_inst);
1708 /* Ugh. Also account for argument stores into the stack.
1709 This is a kludge as on the HP compiler sets this bit and it
1710 never does prologue scheduling. So once we see one, skip past
1713 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1717 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1720 status = target_read_memory (pc, buf, 4);
1721 inst = extract_unsigned_integer (buf, 4, byte_order);
1724 if ((inst & 0xfc000000) != 0x34000000)
1726 status = target_read_memory (pc + 4, buf, 4);
1727 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1730 reg_num = inst_saves_fr (next_inst);
1736 /* Quit if we hit any kind of branch. This can happen if a prologue
1737 instruction is in the delay slot of the first call/branch. */
1738 if (is_branch (inst) && stop_before_branch)
1741 /* What a crock. The HP compilers set args_stored even if no
1742 arguments were stored into the stack (boo hiss). This could
1743 cause this code to then skip a bunch of user insns (up to the
1746 To combat this we try to identify when args_stored was bogusly
1747 set and clear it. We only do this when args_stored is nonzero,
1748 all other resources are accounted for, and nothing changed on
1751 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1752 && old_save_gr == save_gr && old_save_fr == save_fr
1753 && old_save_rp == save_rp && old_save_sp == save_sp
1754 && old_stack_remaining == stack_remaining)
1760 /* !stop_before_branch, so also look at the insn in the delay slot
1762 if (final_iteration)
1764 if (is_branch (inst))
1765 final_iteration = 1;
1768 /* We've got a tenative location for the end of the prologue. However
1769 because of limitations in the unwind descriptor mechanism we may
1770 have went too far into user code looking for the save of a register
1771 that does not exist. So, if there registers we expected to be saved
1772 but never were, mask them out and restart.
1774 This should only happen in optimized code, and should be very rare. */
1775 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1778 restart_gr = save_gr;
1779 restart_fr = save_fr;
1787 /* Return the address of the PC after the last prologue instruction if
1788 we can determine it from the debug symbols. Else return zero. */
1791 after_prologue (CORE_ADDR pc)
1793 struct symtab_and_line sal;
1794 CORE_ADDR func_addr, func_end;
1796 /* If we can not find the symbol in the partial symbol table, then
1797 there is no hope we can determine the function's start address
1799 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1802 /* Get the line associated with FUNC_ADDR. */
1803 sal = find_pc_line (func_addr, 0);
1805 /* There are only two cases to consider. First, the end of the source line
1806 is within the function bounds. In that case we return the end of the
1807 source line. Second is the end of the source line extends beyond the
1808 bounds of the current function. We need to use the slow code to
1809 examine instructions in that case.
1811 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1812 the wrong thing to do. In fact, it should be entirely possible for this
1813 function to always return zero since the slow instruction scanning code
1814 is supposed to *always* work. If it does not, then it is a bug. */
1815 if (sal.end < func_end)
1821 /* To skip prologues, I use this predicate. Returns either PC itself
1822 if the code at PC does not look like a function prologue; otherwise
1823 returns an address that (if we're lucky) follows the prologue.
1825 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1826 It doesn't necessarily skips all the insns in the prologue. In fact
1827 we might not want to skip all the insns because a prologue insn may
1828 appear in the delay slot of the first branch, and we don't want to
1829 skip over the branch in that case. */
1832 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1834 CORE_ADDR post_prologue_pc;
1836 /* See if we can determine the end of the prologue via the symbol table.
1837 If so, then return either PC, or the PC after the prologue, whichever
1840 post_prologue_pc = after_prologue (pc);
1842 /* If after_prologue returned a useful address, then use it. Else
1843 fall back on the instruction skipping code.
1845 Some folks have claimed this causes problems because the breakpoint
1846 may be the first instruction of the prologue. If that happens, then
1847 the instruction skipping code has a bug that needs to be fixed. */
1848 if (post_prologue_pc != 0)
1849 return std::max (pc, post_prologue_pc);
1851 return (skip_prologue_hard_way (gdbarch, pc, 1));
1854 /* Return an unwind entry that falls within the frame's code block. */
1856 static struct unwind_table_entry *
1857 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1859 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1861 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1862 result of get_frame_address_in_block implies a problem.
1863 The bits should have been removed earlier, before the return
1864 value of gdbarch_unwind_pc. That might be happening already;
1865 if it isn't, it should be fixed. Then this call can be
1867 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1868 return find_unwind_entry (pc);
1871 struct hppa_frame_cache
1874 struct trad_frame_saved_reg *saved_regs;
1877 static struct hppa_frame_cache *
1878 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1880 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1882 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1883 struct hppa_frame_cache *cache;
1887 struct unwind_table_entry *u;
1888 CORE_ADDR prologue_end;
1893 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1894 frame_relative_level(this_frame));
1896 if ((*this_cache) != NULL)
1899 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1900 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1901 return (struct hppa_frame_cache *) (*this_cache);
1903 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1904 (*this_cache) = cache;
1905 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1908 u = hppa_find_unwind_entry_in_block (this_frame);
1912 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1913 return (struct hppa_frame_cache *) (*this_cache);
1916 /* Turn the Entry_GR field into a bitmask. */
1918 for (i = 3; i < u->Entry_GR + 3; i++)
1920 /* Frame pointer gets saved into a special location. */
1921 if (u->Save_SP && i == HPPA_FP_REGNUM)
1924 saved_gr_mask |= (1 << i);
1927 /* Turn the Entry_FR field into a bitmask too. */
1929 for (i = 12; i < u->Entry_FR + 12; i++)
1930 saved_fr_mask |= (1 << i);
1932 /* Loop until we find everything of interest or hit a branch.
1934 For unoptimized GCC code and for any HP CC code this will never ever
1935 examine any user instructions.
1937 For optimized GCC code we're faced with problems. GCC will schedule
1938 its prologue and make prologue instructions available for delay slot
1939 filling. The end result is user code gets mixed in with the prologue
1940 and a prologue instruction may be in the delay slot of the first branch
1943 Some unexpected things are expected with debugging optimized code, so
1944 we allow this routine to walk past user instructions in optimized
1947 int final_iteration = 0;
1948 CORE_ADDR pc, start_pc, end_pc;
1949 int looking_for_sp = u->Save_SP;
1950 int looking_for_rp = u->Save_RP;
1953 /* We have to use skip_prologue_hard_way instead of just
1954 skip_prologue_using_sal, in case we stepped into a function without
1955 symbol information. hppa_skip_prologue also bounds the returned
1956 pc by the passed in pc, so it will not return a pc in the next
1959 We used to call hppa_skip_prologue to find the end of the prologue,
1960 but if some non-prologue instructions get scheduled into the prologue,
1961 and the program is compiled with debug information, the "easy" way
1962 in hppa_skip_prologue will return a prologue end that is too early
1963 for us to notice any potential frame adjustments. */
1965 /* We used to use get_frame_func to locate the beginning of the
1966 function to pass to skip_prologue. However, when objects are
1967 compiled without debug symbols, get_frame_func can return the wrong
1968 function (or 0). We can do better than that by using unwind records.
1969 This only works if the Region_description of the unwind record
1970 indicates that it includes the entry point of the function.
1971 HP compilers sometimes generate unwind records for regions that
1972 do not include the entry or exit point of a function. GNU tools
1975 if ((u->Region_description & 0x2) == 0)
1976 start_pc = u->region_start;
1978 start_pc = get_frame_func (this_frame);
1980 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1981 end_pc = get_frame_pc (this_frame);
1983 if (prologue_end != 0 && end_pc > prologue_end)
1984 end_pc = prologue_end;
1989 ((saved_gr_mask || saved_fr_mask
1990 || looking_for_sp || looking_for_rp
1991 || frame_size < (u->Total_frame_size << 3))
1999 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
2001 error (_("Cannot read instruction at %s."),
2002 paddress (gdbarch, pc));
2003 return (struct hppa_frame_cache *) (*this_cache);
2006 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2008 /* Note the interesting effects of this instruction. */
2009 frame_size += prologue_inst_adjust_sp (inst);
2011 /* There are limited ways to store the return pointer into the
2013 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2016 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2018 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2021 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2023 else if (inst == 0x0fc212c1
2024 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2027 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2030 /* Check to see if we saved SP into the stack. This also
2031 happens to indicate the location of the saved frame
2033 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2034 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2037 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2039 else if (inst == 0x08030241) /* copy %r3, %r1 */
2044 /* Account for general and floating-point register saves. */
2045 reg = inst_saves_gr (inst);
2046 if (reg >= 3 && reg <= 18
2047 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2049 saved_gr_mask &= ~(1 << reg);
2050 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2051 /* stwm with a positive displacement is a _post_
2053 cache->saved_regs[reg].addr = 0;
2054 else if ((inst & 0xfc00000c) == 0x70000008)
2055 /* A std has explicit post_modify forms. */
2056 cache->saved_regs[reg].addr = 0;
2061 if ((inst >> 26) == 0x1c)
2062 offset = (inst & 0x1 ? -(1 << 13) : 0)
2063 | (((inst >> 4) & 0x3ff) << 3);
2064 else if ((inst >> 26) == 0x03)
2065 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2067 offset = hppa_extract_14 (inst);
2069 /* Handle code with and without frame pointers. */
2071 cache->saved_regs[reg].addr = offset;
2073 cache->saved_regs[reg].addr
2074 = (u->Total_frame_size << 3) + offset;
2078 /* GCC handles callee saved FP regs a little differently.
2080 It emits an instruction to put the value of the start of
2081 the FP store area into %r1. It then uses fstds,ma with a
2082 basereg of %r1 for the stores.
2084 HP CC emits them at the current stack pointer modifying the
2085 stack pointer as it stores each register. */
2087 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2088 if ((inst & 0xffffc000) == 0x34610000
2089 || (inst & 0xffffc000) == 0x37c10000)
2090 fp_loc = hppa_extract_14 (inst);
2092 reg = inst_saves_fr (inst);
2093 if (reg >= 12 && reg <= 21)
2095 /* Note +4 braindamage below is necessary because the FP
2096 status registers are internally 8 registers rather than
2097 the expected 4 registers. */
2098 saved_fr_mask &= ~(1 << reg);
2101 /* 1st HP CC FP register store. After this
2102 instruction we've set enough state that the GCC and
2103 HPCC code are both handled in the same manner. */
2104 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2109 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2114 /* Quit if we hit any kind of branch the previous iteration. */
2115 if (final_iteration)
2117 /* We want to look precisely one instruction beyond the branch
2118 if we have not found everything yet. */
2119 if (is_branch (inst))
2120 final_iteration = 1;
2125 /* The frame base always represents the value of %sp at entry to
2126 the current function (and is thus equivalent to the "saved"
2128 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2133 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2134 "prologue_end=%s) ",
2135 paddress (gdbarch, this_sp),
2136 paddress (gdbarch, get_frame_pc (this_frame)),
2137 paddress (gdbarch, prologue_end));
2139 /* Check to see if a frame pointer is available, and use it for
2140 frame unwinding if it is.
2142 There are some situations where we need to rely on the frame
2143 pointer to do stack unwinding. For example, if a function calls
2144 alloca (), the stack pointer can get adjusted inside the body of
2145 the function. In this case, the ABI requires that the compiler
2146 maintain a frame pointer for the function.
2148 The unwind record has a flag (alloca_frame) that indicates that
2149 a function has a variable frame; unfortunately, gcc/binutils
2150 does not set this flag. Instead, whenever a frame pointer is used
2151 and saved on the stack, the Save_SP flag is set. We use this to
2152 decide whether to use the frame pointer for unwinding.
2154 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2155 instead of Save_SP. */
2157 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2159 if (u->alloca_frame)
2160 fp -= u->Total_frame_size << 3;
2162 if (get_frame_pc (this_frame) >= prologue_end
2163 && (u->Save_SP || u->alloca_frame) && fp != 0)
2168 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2169 paddress (gdbarch, cache->base));
2172 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2174 /* Both we're expecting the SP to be saved and the SP has been
2175 saved. The entry SP value is saved at this frame's SP
2177 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2180 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2181 paddress (gdbarch, cache->base));
2185 /* The prologue has been slowly allocating stack space. Adjust
2187 cache->base = this_sp - frame_size;
2189 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2190 paddress (gdbarch, cache->base));
2193 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2196 /* The PC is found in the "return register", "Millicode" uses "r31"
2197 as the return register while normal code uses "rp". */
2200 if (trad_frame_addr_p (cache->saved_regs, 31))
2202 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2204 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2208 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2209 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2211 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2216 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2218 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2219 cache->saved_regs[HPPA_RP_REGNUM];
2221 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2225 ULONGEST rp = get_frame_register_unsigned (this_frame,
2227 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2229 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2233 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2234 frame. However, there is a one-insn window where we haven't saved it
2235 yet, but we've already clobbered it. Detect this case and fix it up.
2237 The prologue sequence for frame-pointer functions is:
2238 0: stw %rp, -20(%sp)
2241 c: stw,ma %r1, XX(%sp)
2243 So if we are at offset c, the r3 value that we want is not yet saved
2244 on the stack, but it's been overwritten. The prologue analyzer will
2245 set fp_in_r1 when it sees the copy insn so we know to get the value
2247 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2250 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2251 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2255 /* Convert all the offsets into addresses. */
2257 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2259 if (trad_frame_addr_p (cache->saved_regs, reg))
2260 cache->saved_regs[reg].addr += cache->base;
2265 struct gdbarch_tdep *tdep;
2267 tdep = gdbarch_tdep (gdbarch);
2269 if (tdep->unwind_adjust_stub)
2270 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2274 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2275 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2276 return (struct hppa_frame_cache *) (*this_cache);
2280 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2281 struct frame_id *this_id)
2283 struct hppa_frame_cache *info;
2284 struct unwind_table_entry *u;
2286 info = hppa_frame_cache (this_frame, this_cache);
2287 u = hppa_find_unwind_entry_in_block (this_frame);
2289 (*this_id) = frame_id_build (info->base, u->region_start);
2292 static struct value *
2293 hppa_frame_prev_register (struct frame_info *this_frame,
2294 void **this_cache, int regnum)
2296 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2298 return hppa_frame_prev_register_helper (this_frame,
2299 info->saved_regs, regnum);
2303 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2304 struct frame_info *this_frame, void **this_cache)
2306 if (hppa_find_unwind_entry_in_block (this_frame))
2312 static const struct frame_unwind hppa_frame_unwind =
2315 default_frame_unwind_stop_reason,
2317 hppa_frame_prev_register,
2319 hppa_frame_unwind_sniffer
2322 /* This is a generic fallback frame unwinder that kicks in if we fail all
2323 the other ones. Normally we would expect the stub and regular unwinder
2324 to work, but in some cases we might hit a function that just doesn't
2325 have any unwind information available. In this case we try to do
2326 unwinding solely based on code reading. This is obviously going to be
2327 slow, so only use this as a last resort. Currently this will only
2328 identify the stack and pc for the frame. */
2330 static struct hppa_frame_cache *
2331 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2333 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2335 struct hppa_frame_cache *cache;
2336 unsigned int frame_size = 0;
2341 fprintf_unfiltered (gdb_stdlog,
2342 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2343 frame_relative_level (this_frame));
2345 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2346 (*this_cache) = cache;
2347 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2349 start_pc = get_frame_func (this_frame);
2352 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2355 for (pc = start_pc; pc < cur_pc; pc += 4)
2359 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2360 frame_size += prologue_inst_adjust_sp (insn);
2362 /* There are limited ways to store the return pointer into the
2364 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2366 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2369 else if (insn == 0x0fc212c1
2370 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2372 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2379 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2380 frame_size, found_rp);
2382 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2383 cache->base -= frame_size;
2384 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2386 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2388 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2389 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2390 cache->saved_regs[HPPA_RP_REGNUM];
2395 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2396 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2403 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2404 struct frame_id *this_id)
2406 struct hppa_frame_cache *info =
2407 hppa_fallback_frame_cache (this_frame, this_cache);
2409 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2412 static struct value *
2413 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2414 void **this_cache, int regnum)
2416 struct hppa_frame_cache *info
2417 = hppa_fallback_frame_cache (this_frame, this_cache);
2419 return hppa_frame_prev_register_helper (this_frame,
2420 info->saved_regs, regnum);
2423 static const struct frame_unwind hppa_fallback_frame_unwind =
2426 default_frame_unwind_stop_reason,
2427 hppa_fallback_frame_this_id,
2428 hppa_fallback_frame_prev_register,
2430 default_frame_sniffer
2433 /* Stub frames, used for all kinds of call stubs. */
2434 struct hppa_stub_unwind_cache
2437 struct trad_frame_saved_reg *saved_regs;
2440 static struct hppa_stub_unwind_cache *
2441 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2444 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2445 struct hppa_stub_unwind_cache *info;
2446 struct unwind_table_entry *u;
2449 return (struct hppa_stub_unwind_cache *) *this_cache;
2451 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2453 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2455 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2457 /* By default we assume that stubs do not change the rp. */
2458 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2464 hppa_stub_frame_this_id (struct frame_info *this_frame,
2465 void **this_prologue_cache,
2466 struct frame_id *this_id)
2468 struct hppa_stub_unwind_cache *info
2469 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2472 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2475 static struct value *
2476 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2477 void **this_prologue_cache, int regnum)
2479 struct hppa_stub_unwind_cache *info
2480 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2483 error (_("Requesting registers from null frame."));
2485 return hppa_frame_prev_register_helper (this_frame,
2486 info->saved_regs, regnum);
2490 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2491 struct frame_info *this_frame,
2494 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2495 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2496 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2499 || (tdep->in_solib_call_trampoline != NULL
2500 && tdep->in_solib_call_trampoline (gdbarch, pc))
2501 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2506 static const struct frame_unwind hppa_stub_frame_unwind = {
2508 default_frame_unwind_stop_reason,
2509 hppa_stub_frame_this_id,
2510 hppa_stub_frame_prev_register,
2512 hppa_stub_unwind_sniffer
2515 static struct frame_id
2516 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2518 return frame_id_build (get_frame_register_unsigned (this_frame,
2520 get_frame_pc (this_frame));
2524 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2529 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2530 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2532 /* If the current instruction is nullified, then we are effectively
2533 still executing the previous instruction. Pretend we are still
2534 there. This is needed when single stepping; if the nullified
2535 instruction is on a different line, we don't want GDB to think
2536 we've stepped onto that line. */
2537 if (ipsw & 0x00200000)
2543 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2544 Return NULL if no such symbol was found. */
2546 struct bound_minimal_symbol
2547 hppa_lookup_stub_minimal_symbol (const char *name,
2548 enum unwind_stub_types stub_type)
2550 struct objfile *objfile;
2551 struct minimal_symbol *msym;
2552 struct bound_minimal_symbol result = { NULL, NULL };
2554 ALL_MSYMBOLS (objfile, msym)
2556 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2558 struct unwind_table_entry *u;
2560 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2561 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2563 result.objfile = objfile;
2564 result.minsym = msym;
2574 unwind_command (char *exp, int from_tty)
2577 struct unwind_table_entry *u;
2579 /* If we have an expression, evaluate it and use it as the address. */
2581 if (exp != 0 && *exp != 0)
2582 address = parse_and_eval_address (exp);
2586 u = find_unwind_entry (address);
2590 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2594 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2596 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2597 gdb_flush (gdb_stdout);
2599 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2600 gdb_flush (gdb_stdout);
2602 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2604 printf_unfiltered ("\n\tflags =");
2605 pif (Cannot_unwind);
2607 pif (Millicode_save_sr0);
2610 pif (Variable_Frame);
2611 pif (Separate_Package_Body);
2612 pif (Frame_Extension_Millicode);
2613 pif (Stack_Overflow_Check);
2614 pif (Two_Instruction_SP_Increment);
2617 pif (cxx_try_catch);
2618 pif (sched_entry_seq);
2621 pif (Save_MRP_in_frame);
2623 pif (Cleanup_defined);
2624 pif (MPE_XL_interrupt_marker);
2625 pif (HP_UX_interrupt_marker);
2629 putchar_unfiltered ('\n');
2631 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2633 pin (Region_description);
2636 pin (Total_frame_size);
2638 if (u->stub_unwind.stub_type)
2640 printf_unfiltered ("\tstub type = ");
2641 switch (u->stub_unwind.stub_type)
2644 printf_unfiltered ("long branch\n");
2646 case PARAMETER_RELOCATION:
2647 printf_unfiltered ("parameter relocation\n");
2650 printf_unfiltered ("export\n");
2653 printf_unfiltered ("import\n");
2656 printf_unfiltered ("import shlib\n");
2659 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2664 /* Return the GDB type object for the "standard" data type of data in
2667 static struct type *
2668 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2670 if (regnum < HPPA_FP4_REGNUM)
2671 return builtin_type (gdbarch)->builtin_uint32;
2673 return builtin_type (gdbarch)->builtin_float;
2676 static struct type *
2677 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2679 if (regnum < HPPA64_FP4_REGNUM)
2680 return builtin_type (gdbarch)->builtin_uint64;
2682 return builtin_type (gdbarch)->builtin_double;
2685 /* Return non-zero if REGNUM is not a register available to the user
2686 through ptrace/ttrace. */
2689 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2692 || regnum == HPPA_PCSQ_HEAD_REGNUM
2693 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2694 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2698 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2700 /* cr26 and cr27 are readable (but not writable) from userspace. */
2701 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2704 return hppa32_cannot_store_register (gdbarch, regnum);
2708 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2711 || regnum == HPPA_PCSQ_HEAD_REGNUM
2712 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2713 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2717 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2719 /* cr26 and cr27 are readable (but not writable) from userspace. */
2720 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2723 return hppa64_cannot_store_register (gdbarch, regnum);
2727 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2729 /* The low two bits of the PC on the PA contain the privilege level.
2730 Some genius implementing a (non-GCC) compiler apparently decided
2731 this means that "addresses" in a text section therefore include a
2732 privilege level, and thus symbol tables should contain these bits.
2733 This seems like a bonehead thing to do--anyway, it seems to work
2734 for our purposes to just ignore those bits. */
2736 return (addr &= ~0x3);
2739 /* Get the ARGIth function argument for the current function. */
2742 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2745 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2748 static enum register_status
2749 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2750 int regnum, gdb_byte *buf)
2752 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2754 enum register_status status;
2756 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2757 if (status == REG_VALID)
2759 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2761 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2767 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2773 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2774 struct trad_frame_saved_reg saved_regs[],
2777 struct gdbarch *arch = get_frame_arch (this_frame);
2778 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2780 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2782 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2784 struct value *pcoq_val =
2785 trad_frame_get_prev_register (this_frame, saved_regs,
2786 HPPA_PCOQ_HEAD_REGNUM);
2788 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2790 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2793 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2797 /* An instruction to match. */
2800 unsigned int data; /* See if it matches this.... */
2801 unsigned int mask; /* ... with this mask. */
2804 /* See bfd/elf32-hppa.c */
2805 static struct insn_pattern hppa_long_branch_stub[] = {
2806 /* ldil LR'xxx,%r1 */
2807 { 0x20200000, 0xffe00000 },
2808 /* be,n RR'xxx(%sr4,%r1) */
2809 { 0xe0202002, 0xffe02002 },
2813 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2815 { 0xe8200000, 0xffe00000 },
2816 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2817 { 0x28200000, 0xffe00000 },
2818 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2819 { 0xe0202002, 0xffe02002 },
2823 static struct insn_pattern hppa_import_stub[] = {
2824 /* addil LR'xxx, %dp */
2825 { 0x2b600000, 0xffe00000 },
2826 /* ldw RR'xxx(%r1), %r21 */
2827 { 0x48350000, 0xffffb000 },
2829 { 0xeaa0c000, 0xffffffff },
2830 /* ldw RR'xxx+4(%r1), %r19 */
2831 { 0x48330000, 0xffffb000 },
2835 static struct insn_pattern hppa_import_pic_stub[] = {
2836 /* addil LR'xxx,%r19 */
2837 { 0x2a600000, 0xffe00000 },
2838 /* ldw RR'xxx(%r1),%r21 */
2839 { 0x48350000, 0xffffb000 },
2841 { 0xeaa0c000, 0xffffffff },
2842 /* ldw RR'xxx+4(%r1),%r19 */
2843 { 0x48330000, 0xffffb000 },
2847 static struct insn_pattern hppa_plt_stub[] = {
2848 /* b,l 1b, %r20 - 1b is 3 insns before here */
2849 { 0xea9f1fdd, 0xffffffff },
2850 /* depi 0,31,2,%r20 */
2851 { 0xd6801c1e, 0xffffffff },
2855 /* Maximum number of instructions on the patterns above. */
2856 #define HPPA_MAX_INSN_PATTERN_LEN 4
2858 /* Return non-zero if the instructions at PC match the series
2859 described in PATTERN, or zero otherwise. PATTERN is an array of
2860 'struct insn_pattern' objects, terminated by an entry whose mask is
2863 When the match is successful, fill INSN[i] with what PATTERN[i]
2867 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2868 struct insn_pattern *pattern, unsigned int *insn)
2870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2874 for (i = 0; pattern[i].mask; i++)
2876 gdb_byte buf[HPPA_INSN_SIZE];
2878 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2879 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2880 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2889 /* This relaxed version of the insstruction matcher allows us to match
2890 from somewhere inside the pattern, by looking backwards in the
2891 instruction scheme. */
2894 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2895 struct insn_pattern *pattern, unsigned int *insn)
2897 int offset, len = 0;
2899 while (pattern[len].mask)
2902 for (offset = 0; offset < len; offset++)
2903 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2911 hppa_in_dyncall (CORE_ADDR pc)
2913 struct unwind_table_entry *u;
2915 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2919 return (pc >= u->region_start && pc <= u->region_end);
2923 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2925 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2926 struct unwind_table_entry *u;
2928 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2931 /* The GNU toolchain produces linker stubs without unwind
2932 information. Since the pattern matching for linker stubs can be
2933 quite slow, so bail out if we do have an unwind entry. */
2935 u = find_unwind_entry (pc);
2940 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2941 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2942 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2943 || hppa_match_insns_relaxed (gdbarch, pc,
2944 hppa_long_branch_pic_stub, insn));
2947 /* This code skips several kind of "trampolines" used on PA-RISC
2948 systems: $$dyncall, import stubs and PLT stubs. */
2951 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2953 struct gdbarch *gdbarch = get_frame_arch (frame);
2954 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2956 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2959 /* $$dyncall handles both PLABELs and direct addresses. */
2960 if (hppa_in_dyncall (pc))
2962 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2964 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2966 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2971 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2972 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2974 /* Extract the target address from the addil/ldw sequence. */
2975 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2978 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2980 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2985 if (in_plt_section (pc))
2987 pc = read_memory_typed_address (pc, func_ptr_type);
2989 /* If the PLT slot has not yet been resolved, the target will be
2991 if (in_plt_section (pc))
2993 /* Sanity check: are we pointing to the PLT stub? */
2994 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2996 warning (_("Cannot resolve PLT stub at %s."),
2997 paddress (gdbarch, pc));
3001 /* This should point to the fixup routine. */
3002 pc = read_memory_typed_address (pc + 8, func_ptr_type);
3010 /* Here is a table of C type sizes on hppa with various compiles
3011 and options. I measured this on PA 9000/800 with HP-UX 11.11
3012 and these compilers:
3014 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3015 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3016 /opt/aCC/bin/aCC B3910B A.03.45
3017 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3019 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3020 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3021 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3022 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3023 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3024 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3025 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3026 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3030 compiler and options
3031 char, short, int, long, long long
3032 float, double, long double
3035 So all these compilers use either ILP32 or LP64 model.
3036 TODO: gcc has more options so it needs more investigation.
3038 For floating point types, see:
3040 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3041 HP-UX floating-point guide, hpux 11.00
3043 -- chastain 2003-12-18 */
3045 static struct gdbarch *
3046 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3048 struct gdbarch_tdep *tdep;
3049 struct gdbarch *gdbarch;
3051 /* find a candidate among the list of pre-declared architectures. */
3052 arches = gdbarch_list_lookup_by_info (arches, &info);
3054 return (arches->gdbarch);
3056 /* If none found, then allocate and initialize one. */
3057 tdep = XCNEW (struct gdbarch_tdep);
3058 gdbarch = gdbarch_alloc (&info, tdep);
3060 /* Determine from the bfd_arch_info structure if we are dealing with
3061 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3062 then default to a 32bit machine. */
3063 if (info.bfd_arch_info != NULL)
3064 tdep->bytes_per_address =
3065 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3067 tdep->bytes_per_address = 4;
3069 tdep->find_global_pointer = hppa_find_global_pointer;
3071 /* Some parts of the gdbarch vector depend on whether we are running
3072 on a 32 bits or 64 bits target. */
3073 switch (tdep->bytes_per_address)
3076 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3077 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3078 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3079 set_gdbarch_cannot_store_register (gdbarch,
3080 hppa32_cannot_store_register);
3081 set_gdbarch_cannot_fetch_register (gdbarch,
3082 hppa32_cannot_fetch_register);
3085 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3086 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3087 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3088 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3089 set_gdbarch_cannot_store_register (gdbarch,
3090 hppa64_cannot_store_register);
3091 set_gdbarch_cannot_fetch_register (gdbarch,
3092 hppa64_cannot_fetch_register);
3095 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3096 tdep->bytes_per_address);
3099 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3100 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3102 /* The following gdbarch vector elements are the same in both ILP32
3103 and LP64, but might show differences some day. */
3104 set_gdbarch_long_long_bit (gdbarch, 64);
3105 set_gdbarch_long_double_bit (gdbarch, 128);
3106 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3108 /* The following gdbarch vector elements do not depend on the address
3109 size, or in any other gdbarch element previously set. */
3110 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3111 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3112 hppa_stack_frame_destroyed_p);
3113 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3114 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3115 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3116 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3117 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3118 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3119 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3121 /* Helper for function argument information. */
3122 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3124 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3126 /* When a hardware watchpoint triggers, we'll move the inferior past
3127 it by removing all eventpoints; stepping past the instruction
3128 that caused the trigger; reinserting eventpoints; and checking
3129 whether any watched location changed. */
3130 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3132 /* Inferior function call methods. */
3133 switch (tdep->bytes_per_address)
3136 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3137 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3138 set_gdbarch_convert_from_func_ptr_addr
3139 (gdbarch, hppa32_convert_from_func_ptr_addr);
3142 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3143 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3146 internal_error (__FILE__, __LINE__, _("bad switch"));
3149 /* Struct return methods. */
3150 switch (tdep->bytes_per_address)
3153 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3156 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3159 internal_error (__FILE__, __LINE__, _("bad switch"));
3162 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3163 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
3164 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3166 /* Frame unwind methods. */
3167 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3168 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3170 /* Hook in ABI-specific overrides, if they have been registered. */
3171 gdbarch_init_osabi (info, gdbarch);
3173 /* Hook in the default unwinders. */
3174 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3175 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3176 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3182 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3186 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3187 tdep->bytes_per_address);
3188 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3191 /* Provide a prototype to silence -Wmissing-prototypes. */
3192 extern initialize_file_ftype _initialize_hppa_tdep;
3195 _initialize_hppa_tdep (void)
3197 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3199 hppa_objfile_priv_data = register_objfile_data ();
3201 add_cmd ("unwind", class_maintenance, unwind_command,
3202 _("Print unwind table entry at given address."),
3203 &maintenanceprintlist);
3205 /* Debug this files internals. */
3206 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3207 Set whether hppa target specific debugging information should be displayed."),
3209 Show whether hppa target specific debugging information is displayed."), _("\
3210 This flag controls whether hppa target specific debugging information is\n\
3211 displayed. This information is particularly useful for debugging frame\n\
3212 unwinding problems."),
3214 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3215 &setdebuglist, &showdebuglist);