1 /* Target-dependent code for the HP PA-RISC architecture.
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
10 This file is part of GDB.
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "completer.h"
31 #include "gdb_assert.h"
32 #include "gdb_stdint.h"
33 #include "arch-utils.h"
34 /* For argument passing to the inferior */
37 #include "trad-frame.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
45 #include "hppa-tdep.h"
47 static int hppa_debug = 0;
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
61 /* Get at various relevent fields of an instruction word. */
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
71 /* Routines to extract various sized constants out of hppa
74 /* This assumes that no garbage lies outside of the lower bits of
78 hppa_sign_extend (unsigned val, unsigned bits)
80 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
83 /* For many immediate values the sign bit is the low bit! */
86 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
88 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
91 /* Extract the bits at positions between FROM and TO, using HP's numbering
95 hppa_get_field (unsigned word, int from, int to)
97 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
100 /* extract the immediate field from a ld{bhw}s instruction */
103 hppa_extract_5_load (unsigned word)
105 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
108 /* extract the immediate field from a break instruction */
111 hppa_extract_5r_store (unsigned word)
113 return (word & MASK_5);
116 /* extract the immediate field from a {sr}sm instruction */
119 hppa_extract_5R_store (unsigned word)
121 return (word >> 16 & MASK_5);
124 /* extract a 14 bit immediate field */
127 hppa_extract_14 (unsigned word)
129 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
132 /* extract a 21 bit constant */
135 hppa_extract_21 (unsigned word)
141 val = hppa_get_field (word, 20, 20);
143 val |= hppa_get_field (word, 9, 19);
145 val |= hppa_get_field (word, 5, 6);
147 val |= hppa_get_field (word, 0, 4);
149 val |= hppa_get_field (word, 7, 8);
150 return hppa_sign_extend (val, 21) << 11;
153 /* extract a 17 bit constant from branch instructions, returning the
154 19 bit signed value. */
157 hppa_extract_17 (unsigned word)
159 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
160 hppa_get_field (word, 29, 29) << 10 |
161 hppa_get_field (word, 11, 15) << 11 |
162 (word & 0x1) << 16, 17) << 2;
166 hppa_symbol_address(const char *sym)
168 struct minimal_symbol *minsym;
170 minsym = lookup_minimal_symbol (sym, NULL, NULL);
172 return SYMBOL_VALUE_ADDRESS (minsym);
174 return (CORE_ADDR)-1;
177 struct hppa_objfile_private *
178 hppa_init_objfile_priv_data (struct objfile *objfile)
180 struct hppa_objfile_private *priv;
182 priv = (struct hppa_objfile_private *)
183 obstack_alloc (&objfile->objfile_obstack,
184 sizeof (struct hppa_objfile_private));
185 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
186 memset (priv, 0, sizeof (*priv));
192 /* Compare the start address for two unwind entries returning 1 if
193 the first address is larger than the second, -1 if the second is
194 larger than the first, and zero if they are equal. */
197 compare_unwind_entries (const void *arg1, const void *arg2)
199 const struct unwind_table_entry *a = arg1;
200 const struct unwind_table_entry *b = arg2;
202 if (a->region_start > b->region_start)
204 else if (a->region_start < b->region_start)
211 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
213 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
214 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
216 bfd_vma value = section->vma - section->filepos;
217 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
219 if (value < *low_text_segment_address)
220 *low_text_segment_address = value;
225 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
226 asection *section, unsigned int entries, unsigned int size,
227 CORE_ADDR text_offset)
229 /* We will read the unwind entries into temporary memory, then
230 fill in the actual unwind table. */
236 char *buf = alloca (size);
237 CORE_ADDR low_text_segment_address;
239 /* For ELF targets, then unwinds are supposed to
240 be segment relative offsets instead of absolute addresses.
242 Note that when loading a shared library (text_offset != 0) the
243 unwinds are already relative to the text_offset that will be
245 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
247 low_text_segment_address = -1;
249 bfd_map_over_sections (objfile->obfd,
250 record_text_segment_lowaddr,
251 &low_text_segment_address);
253 text_offset = low_text_segment_address;
255 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
257 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
260 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
262 /* Now internalize the information being careful to handle host/target
264 for (i = 0; i < entries; i++)
266 table[i].region_start = bfd_get_32 (objfile->obfd,
268 table[i].region_start += text_offset;
270 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
271 table[i].region_end += text_offset;
273 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
275 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
276 table[i].Millicode = (tmp >> 30) & 0x1;
277 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
278 table[i].Region_description = (tmp >> 27) & 0x3;
279 table[i].reserved = (tmp >> 26) & 0x1;
280 table[i].Entry_SR = (tmp >> 25) & 0x1;
281 table[i].Entry_FR = (tmp >> 21) & 0xf;
282 table[i].Entry_GR = (tmp >> 16) & 0x1f;
283 table[i].Args_stored = (tmp >> 15) & 0x1;
284 table[i].Variable_Frame = (tmp >> 14) & 0x1;
285 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
286 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
287 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
288 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
289 table[i].sr4export = (tmp >> 9) & 0x1;
290 table[i].cxx_info = (tmp >> 8) & 0x1;
291 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
292 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
293 table[i].reserved1 = (tmp >> 5) & 0x1;
294 table[i].Save_SP = (tmp >> 4) & 0x1;
295 table[i].Save_RP = (tmp >> 3) & 0x1;
296 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
297 table[i].save_r19 = (tmp >> 1) & 0x1;
298 table[i].Cleanup_defined = tmp & 0x1;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
301 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
302 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
303 table[i].Large_frame = (tmp >> 29) & 0x1;
304 table[i].alloca_frame = (tmp >> 28) & 0x1;
305 table[i].reserved2 = (tmp >> 27) & 0x1;
306 table[i].Total_frame_size = tmp & 0x7ffffff;
308 /* Stub unwinds are handled elsewhere. */
309 table[i].stub_unwind.stub_type = 0;
310 table[i].stub_unwind.padding = 0;
315 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
316 the object file. This info is used mainly by find_unwind_entry() to find
317 out the stack frame size and frame pointer used by procedures. We put
318 everything on the psymbol obstack in the objfile so that it automatically
319 gets freed when the objfile is destroyed. */
322 read_unwind_info (struct objfile *objfile)
324 asection *unwind_sec, *stub_unwind_sec;
325 unsigned unwind_size, stub_unwind_size, total_size;
326 unsigned index, unwind_entries;
327 unsigned stub_entries, total_entries;
328 CORE_ADDR text_offset;
329 struct hppa_unwind_info *ui;
330 struct hppa_objfile_private *obj_private;
332 text_offset = ANOFFSET (objfile->section_offsets, 0);
333 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
334 sizeof (struct hppa_unwind_info));
340 /* For reasons unknown the HP PA64 tools generate multiple unwinder
341 sections in a single executable. So we just iterate over every
342 section in the BFD looking for unwinder sections intead of trying
343 to do a lookup with bfd_get_section_by_name.
345 First determine the total size of the unwind tables so that we
346 can allocate memory in a nice big hunk. */
348 for (unwind_sec = objfile->obfd->sections;
350 unwind_sec = unwind_sec->next)
352 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
353 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
355 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
356 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
358 total_entries += unwind_entries;
362 /* Now compute the size of the stub unwinds. Note the ELF tools do not
363 use stub unwinds at the current time. */
364 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
368 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
369 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
373 stub_unwind_size = 0;
377 /* Compute total number of unwind entries and their total size. */
378 total_entries += stub_entries;
379 total_size = total_entries * sizeof (struct unwind_table_entry);
381 /* Allocate memory for the unwind table. */
382 ui->table = (struct unwind_table_entry *)
383 obstack_alloc (&objfile->objfile_obstack, total_size);
384 ui->last = total_entries - 1;
386 /* Now read in each unwind section and internalize the standard unwind
389 for (unwind_sec = objfile->obfd->sections;
391 unwind_sec = unwind_sec->next)
393 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
394 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
399 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
400 unwind_entries, unwind_size, text_offset);
401 index += unwind_entries;
405 /* Now read in and internalize the stub unwind entries. */
406 if (stub_unwind_size > 0)
409 char *buf = alloca (stub_unwind_size);
411 /* Read in the stub unwind entries. */
412 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
413 0, stub_unwind_size);
415 /* Now convert them into regular unwind entries. */
416 for (i = 0; i < stub_entries; i++, index++)
418 /* Clear out the next unwind entry. */
419 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
421 /* Convert offset & size into region_start and region_end.
422 Stuff away the stub type into "reserved" fields. */
423 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
425 ui->table[index].region_start += text_offset;
427 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
430 ui->table[index].region_end
431 = ui->table[index].region_start + 4 *
432 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
438 /* Unwind table needs to be kept sorted. */
439 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
440 compare_unwind_entries);
442 /* Keep a pointer to the unwind information. */
443 obj_private = (struct hppa_objfile_private *)
444 objfile_data (objfile, hppa_objfile_priv_data);
445 if (obj_private == NULL)
446 obj_private = hppa_init_objfile_priv_data (objfile);
448 obj_private->unwind_info = ui;
451 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
452 of the objfiles seeking the unwind table entry for this PC. Each objfile
453 contains a sorted list of struct unwind_table_entry. Since we do a binary
454 search of the unwind tables, we depend upon them to be sorted. */
456 struct unwind_table_entry *
457 find_unwind_entry (CORE_ADDR pc)
459 int first, middle, last;
460 struct objfile *objfile;
461 struct hppa_objfile_private *priv;
464 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
467 /* A function at address 0? Not in HP-UX! */
468 if (pc == (CORE_ADDR) 0)
471 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
475 ALL_OBJFILES (objfile)
477 struct hppa_unwind_info *ui;
479 priv = objfile_data (objfile, hppa_objfile_priv_data);
481 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
485 read_unwind_info (objfile);
486 priv = objfile_data (objfile, hppa_objfile_priv_data);
488 error (_("Internal error reading unwind information."));
489 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
492 /* First, check the cache */
495 && pc >= ui->cache->region_start
496 && pc <= ui->cache->region_end)
499 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
500 paddr_nz ((uintptr_t) ui->cache));
504 /* Not in the cache, do a binary search */
509 while (first <= last)
511 middle = (first + last) / 2;
512 if (pc >= ui->table[middle].region_start
513 && pc <= ui->table[middle].region_end)
515 ui->cache = &ui->table[middle];
517 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
518 paddr_nz ((uintptr_t) ui->cache));
519 return &ui->table[middle];
522 if (pc < ui->table[middle].region_start)
527 } /* ALL_OBJFILES() */
530 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535 /* The epilogue is defined here as the area either on the `bv' instruction
536 itself or an instruction which destroys the function's stack frame.
538 We do not assume that the epilogue is at the end of a function as we can
539 also have return sequences in the middle of a function. */
541 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
543 unsigned long status;
548 status = read_memory_nobpt (pc, buf, 4);
552 inst = extract_unsigned_integer (buf, 4);
554 /* The most common way to perform a stack adjustment ldo X(sp),sp
555 We are destroying a stack frame if the offset is negative. */
556 if ((inst & 0xffffc000) == 0x37de0000
557 && hppa_extract_14 (inst) < 0)
560 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
561 if (((inst & 0x0fc010e0) == 0x0fc010e0
562 || (inst & 0x0fc010e0) == 0x0fc010e0)
563 && hppa_extract_14 (inst) < 0)
566 /* bv %r0(%rp) or bv,n %r0(%rp) */
567 if (inst == 0xe840c000 || inst == 0xe840c002)
573 static const unsigned char *
574 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
576 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
577 (*len) = sizeof (breakpoint);
581 /* Return the name of a register. */
584 hppa32_register_name (struct gdbarch *gdbarch, int i)
586 static char *names[] = {
587 "flags", "r1", "rp", "r3",
588 "r4", "r5", "r6", "r7",
589 "r8", "r9", "r10", "r11",
590 "r12", "r13", "r14", "r15",
591 "r16", "r17", "r18", "r19",
592 "r20", "r21", "r22", "r23",
593 "r24", "r25", "r26", "dp",
594 "ret0", "ret1", "sp", "r31",
595 "sar", "pcoqh", "pcsqh", "pcoqt",
596 "pcsqt", "eiem", "iir", "isr",
597 "ior", "ipsw", "goto", "sr4",
598 "sr0", "sr1", "sr2", "sr3",
599 "sr5", "sr6", "sr7", "cr0",
600 "cr8", "cr9", "ccr", "cr12",
601 "cr13", "cr24", "cr25", "cr26",
602 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
603 "fpsr", "fpe1", "fpe2", "fpe3",
604 "fpe4", "fpe5", "fpe6", "fpe7",
605 "fr4", "fr4R", "fr5", "fr5R",
606 "fr6", "fr6R", "fr7", "fr7R",
607 "fr8", "fr8R", "fr9", "fr9R",
608 "fr10", "fr10R", "fr11", "fr11R",
609 "fr12", "fr12R", "fr13", "fr13R",
610 "fr14", "fr14R", "fr15", "fr15R",
611 "fr16", "fr16R", "fr17", "fr17R",
612 "fr18", "fr18R", "fr19", "fr19R",
613 "fr20", "fr20R", "fr21", "fr21R",
614 "fr22", "fr22R", "fr23", "fr23R",
615 "fr24", "fr24R", "fr25", "fr25R",
616 "fr26", "fr26R", "fr27", "fr27R",
617 "fr28", "fr28R", "fr29", "fr29R",
618 "fr30", "fr30R", "fr31", "fr31R"
620 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
627 hppa64_register_name (struct gdbarch *gdbarch, int i)
629 static char *names[] = {
630 "flags", "r1", "rp", "r3",
631 "r4", "r5", "r6", "r7",
632 "r8", "r9", "r10", "r11",
633 "r12", "r13", "r14", "r15",
634 "r16", "r17", "r18", "r19",
635 "r20", "r21", "r22", "r23",
636 "r24", "r25", "r26", "dp",
637 "ret0", "ret1", "sp", "r31",
638 "sar", "pcoqh", "pcsqh", "pcoqt",
639 "pcsqt", "eiem", "iir", "isr",
640 "ior", "ipsw", "goto", "sr4",
641 "sr0", "sr1", "sr2", "sr3",
642 "sr5", "sr6", "sr7", "cr0",
643 "cr8", "cr9", "ccr", "cr12",
644 "cr13", "cr24", "cr25", "cr26",
645 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
646 "fpsr", "fpe1", "fpe2", "fpe3",
647 "fr4", "fr5", "fr6", "fr7",
648 "fr8", "fr9", "fr10", "fr11",
649 "fr12", "fr13", "fr14", "fr15",
650 "fr16", "fr17", "fr18", "fr19",
651 "fr20", "fr21", "fr22", "fr23",
652 "fr24", "fr25", "fr26", "fr27",
653 "fr28", "fr29", "fr30", "fr31"
655 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
662 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
664 /* r0-r31 and sar map one-to-one. */
668 /* fr4-fr31 are mapped from 72 in steps of 2. */
669 if (reg >= 72 || reg < 72 + 28 * 2)
670 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
672 error ("Invalid DWARF register num %d.", reg);
676 /* This function pushes a stack frame with arguments as part of the
677 inferior function calling mechanism.
679 This is the version of the function for the 32-bit PA machines, in
680 which later arguments appear at lower addresses. (The stack always
681 grows towards higher addresses.)
683 We simply allocate the appropriate amount of stack space and put
684 arguments into their proper slots. */
687 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
688 struct regcache *regcache, CORE_ADDR bp_addr,
689 int nargs, struct value **args, CORE_ADDR sp,
690 int struct_return, CORE_ADDR struct_addr)
692 /* Stack base address at which any pass-by-reference parameters are
694 CORE_ADDR struct_end = 0;
695 /* Stack base address at which the first parameter is stored. */
696 CORE_ADDR param_end = 0;
698 /* The inner most end of the stack after all the parameters have
700 CORE_ADDR new_sp = 0;
702 /* Two passes. First pass computes the location of everything,
703 second pass writes the bytes out. */
706 /* Global pointer (r19) of the function we are trying to call. */
709 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
711 for (write_pass = 0; write_pass < 2; write_pass++)
713 CORE_ADDR struct_ptr = 0;
714 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
715 struct_ptr is adjusted for each argument below, so the first
716 argument will end up at sp-36. */
717 CORE_ADDR param_ptr = 32;
719 int small_struct = 0;
721 for (i = 0; i < nargs; i++)
723 struct value *arg = args[i];
724 struct type *type = check_typedef (value_type (arg));
725 /* The corresponding parameter that is pushed onto the
726 stack, and [possibly] passed in a register. */
729 memset (param_val, 0, sizeof param_val);
730 if (TYPE_LENGTH (type) > 8)
732 /* Large parameter, pass by reference. Store the value
733 in "struct" area and then pass its address. */
735 struct_ptr += align_up (TYPE_LENGTH (type), 8);
737 write_memory (struct_end - struct_ptr, value_contents (arg),
739 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
741 else if (TYPE_CODE (type) == TYPE_CODE_INT
742 || TYPE_CODE (type) == TYPE_CODE_ENUM)
744 /* Integer value store, right aligned. "unpack_long"
745 takes care of any sign-extension problems. */
746 param_len = align_up (TYPE_LENGTH (type), 4);
747 store_unsigned_integer (param_val, param_len,
749 value_contents (arg)));
751 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
753 /* Floating point value store, right aligned. */
754 param_len = align_up (TYPE_LENGTH (type), 4);
755 memcpy (param_val, value_contents (arg), param_len);
759 param_len = align_up (TYPE_LENGTH (type), 4);
761 /* Small struct value are stored right-aligned. */
762 memcpy (param_val + param_len - TYPE_LENGTH (type),
763 value_contents (arg), TYPE_LENGTH (type));
765 /* Structures of size 5, 6 and 7 bytes are special in that
766 the higher-ordered word is stored in the lower-ordered
767 argument, and even though it is a 8-byte quantity the
768 registers need not be 8-byte aligned. */
769 if (param_len > 4 && param_len < 8)
773 param_ptr += param_len;
774 if (param_len == 8 && !small_struct)
775 param_ptr = align_up (param_ptr, 8);
777 /* First 4 non-FP arguments are passed in gr26-gr23.
778 First 4 32-bit FP arguments are passed in fr4L-fr7L.
779 First 2 64-bit FP arguments are passed in fr5 and fr7.
781 The rest go on the stack, starting at sp-36, towards lower
782 addresses. 8-byte arguments must be aligned to a 8-byte
786 write_memory (param_end - param_ptr, param_val, param_len);
788 /* There are some cases when we don't know the type
789 expected by the callee (e.g. for variadic functions), so
790 pass the parameters in both general and fp regs. */
793 int grreg = 26 - (param_ptr - 36) / 4;
794 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
795 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
797 regcache_cooked_write (regcache, grreg, param_val);
798 regcache_cooked_write (regcache, fpLreg, param_val);
802 regcache_cooked_write (regcache, grreg + 1,
805 regcache_cooked_write (regcache, fpreg, param_val);
806 regcache_cooked_write (regcache, fpreg + 1,
813 /* Update the various stack pointers. */
816 struct_end = sp + align_up (struct_ptr, 64);
817 /* PARAM_PTR already accounts for all the arguments passed
818 by the user. However, the ABI mandates minimum stack
819 space allocations for outgoing arguments. The ABI also
820 mandates minimum stack alignments which we must
822 param_end = struct_end + align_up (param_ptr, 64);
826 /* If a structure has to be returned, set up register 28 to hold its
829 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
831 gp = tdep->find_global_pointer (function);
834 regcache_cooked_write_unsigned (regcache, 19, gp);
836 /* Set the return address. */
837 if (!gdbarch_push_dummy_code_p (gdbarch))
838 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
840 /* Update the Stack Pointer. */
841 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
846 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
847 Runtime Architecture for PA-RISC 2.0", which is distributed as part
848 as of the HP-UX Software Transition Kit (STK). This implementation
849 is based on version 3.3, dated October 6, 1997. */
851 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
854 hppa64_integral_or_pointer_p (const struct type *type)
856 switch (TYPE_CODE (type))
862 case TYPE_CODE_RANGE:
864 int len = TYPE_LENGTH (type);
865 return (len == 1 || len == 2 || len == 4 || len == 8);
869 return (TYPE_LENGTH (type) == 8);
877 /* Check whether TYPE is a "Floating Scalar Type". */
880 hppa64_floating_p (const struct type *type)
882 switch (TYPE_CODE (type))
886 int len = TYPE_LENGTH (type);
887 return (len == 4 || len == 8 || len == 16);
896 /* If CODE points to a function entry address, try to look up the corresponding
897 function descriptor and return its address instead. If CODE is not a
898 function entry address, then just return it unchanged. */
900 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
902 struct obj_section *sec, *opd;
904 sec = find_pc_section (code);
909 /* If CODE is in a data section, assume it's already a fptr. */
910 if (!(sec->the_bfd_section->flags & SEC_CODE))
913 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
915 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
919 if (opd < sec->objfile->sections_end)
923 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
928 if (target_read_memory (addr, tmp, sizeof (tmp)))
930 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
941 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
942 struct regcache *regcache, CORE_ADDR bp_addr,
943 int nargs, struct value **args, CORE_ADDR sp,
944 int struct_return, CORE_ADDR struct_addr)
946 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
950 /* "The outgoing parameter area [...] must be aligned at a 16-byte
952 sp = align_up (sp, 16);
954 for (i = 0; i < nargs; i++)
956 struct value *arg = args[i];
957 struct type *type = value_type (arg);
958 int len = TYPE_LENGTH (type);
959 const bfd_byte *valbuf;
963 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
964 offset = align_up (offset, 8);
966 if (hppa64_integral_or_pointer_p (type))
968 /* "Integral scalar parameters smaller than 64 bits are
969 padded on the left (i.e., the value is in the
970 least-significant bits of the 64-bit storage unit, and
971 the high-order bits are undefined)." Therefore we can
972 safely sign-extend them. */
975 arg = value_cast (builtin_type_int64, arg);
979 else if (hppa64_floating_p (type))
983 /* "Quad-precision (128-bit) floating-point scalar
984 parameters are aligned on a 16-byte boundary." */
985 offset = align_up (offset, 16);
987 /* "Double-extended- and quad-precision floating-point
988 parameters within the first 64 bytes of the parameter
989 list are always passed in general registers." */
995 /* "Single-precision (32-bit) floating-point scalar
996 parameters are padded on the left with 32 bits of
997 garbage (i.e., the floating-point value is in the
998 least-significant 32 bits of a 64-bit storage
1003 /* "Single- and double-precision floating-point
1004 parameters in this area are passed according to the
1005 available formal parameter information in a function
1006 prototype. [...] If no prototype is in scope,
1007 floating-point parameters must be passed both in the
1008 corresponding general registers and in the
1009 corresponding floating-point registers." */
1010 regnum = HPPA64_FP4_REGNUM + offset / 8;
1012 if (regnum < HPPA64_FP4_REGNUM + 8)
1014 /* "Single-precision floating-point parameters, when
1015 passed in floating-point registers, are passed in
1016 the right halves of the floating point registers;
1017 the left halves are unused." */
1018 regcache_cooked_write_part (regcache, regnum, offset % 8,
1019 len, value_contents (arg));
1027 /* "Aggregates larger than 8 bytes are aligned on a
1028 16-byte boundary, possibly leaving an unused argument
1029 slot, which is filled with garbage. If necessary,
1030 they are padded on the right (with garbage), to a
1031 multiple of 8 bytes." */
1032 offset = align_up (offset, 16);
1036 /* If we are passing a function pointer, make sure we pass a function
1037 descriptor instead of the function entry address. */
1038 if (TYPE_CODE (type) == TYPE_CODE_PTR
1039 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1041 ULONGEST codeptr, fptr;
1043 codeptr = unpack_long (type, value_contents (arg));
1044 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1045 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1050 valbuf = value_contents (arg);
1053 /* Always store the argument in memory. */
1054 write_memory (sp + offset, valbuf, len);
1056 regnum = HPPA_ARG0_REGNUM - offset / 8;
1057 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1059 regcache_cooked_write_part (regcache, regnum,
1060 offset % 8, min (len, 8), valbuf);
1061 offset += min (len, 8);
1062 valbuf += min (len, 8);
1063 len -= min (len, 8);
1070 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1071 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1073 /* Allocate the outgoing parameter area. Make sure the outgoing
1074 parameter area is multiple of 16 bytes in length. */
1075 sp += max (align_up (offset, 16), 64);
1077 /* Allocate 32-bytes of scratch space. The documentation doesn't
1078 mention this, but it seems to be needed. */
1081 /* Allocate the frame marker area. */
1084 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1087 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1089 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1090 gp = tdep->find_global_pointer (function);
1092 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1094 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1095 if (!gdbarch_push_dummy_code_p (gdbarch))
1096 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1098 /* Set up GR30 to hold the stack pointer (sp). */
1099 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1105 /* Handle 32/64-bit struct return conventions. */
1107 static enum return_value_convention
1108 hppa32_return_value (struct gdbarch *gdbarch,
1109 struct type *type, struct regcache *regcache,
1110 gdb_byte *readbuf, const gdb_byte *writebuf)
1112 if (TYPE_LENGTH (type) <= 2 * 4)
1114 /* The value always lives in the right hand end of the register
1115 (or register pair)? */
1117 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1118 int part = TYPE_LENGTH (type) % 4;
1119 /* The left hand register contains only part of the value,
1120 transfer that first so that the rest can be xfered as entire
1121 4-byte registers. */
1124 if (readbuf != NULL)
1125 regcache_cooked_read_part (regcache, reg, 4 - part,
1127 if (writebuf != NULL)
1128 regcache_cooked_write_part (regcache, reg, 4 - part,
1132 /* Now transfer the remaining register values. */
1133 for (b = part; b < TYPE_LENGTH (type); b += 4)
1135 if (readbuf != NULL)
1136 regcache_cooked_read (regcache, reg, readbuf + b);
1137 if (writebuf != NULL)
1138 regcache_cooked_write (regcache, reg, writebuf + b);
1141 return RETURN_VALUE_REGISTER_CONVENTION;
1144 return RETURN_VALUE_STRUCT_CONVENTION;
1147 static enum return_value_convention
1148 hppa64_return_value (struct gdbarch *gdbarch,
1149 struct type *type, struct regcache *regcache,
1150 gdb_byte *readbuf, const gdb_byte *writebuf)
1152 int len = TYPE_LENGTH (type);
1157 /* All return values larget than 128 bits must be aggregate
1159 gdb_assert (!hppa64_integral_or_pointer_p (type));
1160 gdb_assert (!hppa64_floating_p (type));
1162 /* "Aggregate return values larger than 128 bits are returned in
1163 a buffer allocated by the caller. The address of the buffer
1164 must be passed in GR 28." */
1165 return RETURN_VALUE_STRUCT_CONVENTION;
1168 if (hppa64_integral_or_pointer_p (type))
1170 /* "Integral return values are returned in GR 28. Values
1171 smaller than 64 bits are padded on the left (with garbage)." */
1172 regnum = HPPA_RET0_REGNUM;
1175 else if (hppa64_floating_p (type))
1179 /* "Double-extended- and quad-precision floating-point
1180 values are returned in GRs 28 and 29. The sign,
1181 exponent, and most-significant bits of the mantissa are
1182 returned in GR 28; the least-significant bits of the
1183 mantissa are passed in GR 29. For double-extended
1184 precision values, GR 29 is padded on the right with 48
1185 bits of garbage." */
1186 regnum = HPPA_RET0_REGNUM;
1191 /* "Single-precision and double-precision floating-point
1192 return values are returned in FR 4R (single precision) or
1193 FR 4 (double-precision)." */
1194 regnum = HPPA64_FP4_REGNUM;
1200 /* "Aggregate return values up to 64 bits in size are returned
1201 in GR 28. Aggregates smaller than 64 bits are left aligned
1202 in the register; the pad bits on the right are undefined."
1204 "Aggregate return values between 65 and 128 bits are returned
1205 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1206 the remaining bits are placed, left aligned, in GR 29. The
1207 pad bits on the right of GR 29 (if any) are undefined." */
1208 regnum = HPPA_RET0_REGNUM;
1216 regcache_cooked_read_part (regcache, regnum, offset,
1217 min (len, 8), readbuf);
1218 readbuf += min (len, 8);
1219 len -= min (len, 8);
1228 regcache_cooked_write_part (regcache, regnum, offset,
1229 min (len, 8), writebuf);
1230 writebuf += min (len, 8);
1231 len -= min (len, 8);
1236 return RETURN_VALUE_REGISTER_CONVENTION;
1241 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1242 struct target_ops *targ)
1246 CORE_ADDR plabel = addr & ~3;
1247 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1254 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1256 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1258 return align_up (addr, 64);
1261 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1264 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1266 /* Just always 16-byte align. */
1267 return align_up (addr, 16);
1271 hppa_read_pc (struct regcache *regcache)
1276 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1277 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1279 /* If the current instruction is nullified, then we are effectively
1280 still executing the previous instruction. Pretend we are still
1281 there. This is needed when single stepping; if the nullified
1282 instruction is on a different line, we don't want GDB to think
1283 we've stepped onto that line. */
1284 if (ipsw & 0x00200000)
1291 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1293 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1294 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1297 /* return the alignment of a type in bytes. Structures have the maximum
1298 alignment required by their fields. */
1301 hppa_alignof (struct type *type)
1303 int max_align, align, i;
1304 CHECK_TYPEDEF (type);
1305 switch (TYPE_CODE (type))
1310 return TYPE_LENGTH (type);
1311 case TYPE_CODE_ARRAY:
1312 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1313 case TYPE_CODE_STRUCT:
1314 case TYPE_CODE_UNION:
1316 for (i = 0; i < TYPE_NFIELDS (type); i++)
1318 /* Bit fields have no real alignment. */
1319 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1320 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1322 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1323 max_align = max (max_align, align);
1332 /* For the given instruction (INST), return any adjustment it makes
1333 to the stack pointer or zero for no adjustment.
1335 This only handles instructions commonly found in prologues. */
1338 prologue_inst_adjust_sp (unsigned long inst)
1340 /* This must persist across calls. */
1341 static int save_high21;
1343 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1344 if ((inst & 0xffffc000) == 0x37de0000)
1345 return hppa_extract_14 (inst);
1348 if ((inst & 0xffe00000) == 0x6fc00000)
1349 return hppa_extract_14 (inst);
1351 /* std,ma X,D(sp) */
1352 if ((inst & 0xffe00008) == 0x73c00008)
1353 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1355 /* addil high21,%r30; ldo low11,(%r1),%r30)
1356 save high bits in save_high21 for later use. */
1357 if ((inst & 0xffe00000) == 0x2bc00000)
1359 save_high21 = hppa_extract_21 (inst);
1363 if ((inst & 0xffff0000) == 0x343e0000)
1364 return save_high21 + hppa_extract_14 (inst);
1366 /* fstws as used by the HP compilers. */
1367 if ((inst & 0xffffffe0) == 0x2fd01220)
1368 return hppa_extract_5_load (inst);
1370 /* No adjustment. */
1374 /* Return nonzero if INST is a branch of some kind, else return zero. */
1377 is_branch (unsigned long inst)
1406 /* Return the register number for a GR which is saved by INST or
1407 zero it INST does not save a GR. */
1410 inst_saves_gr (unsigned long inst)
1412 /* Does it look like a stw? */
1413 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1414 || (inst >> 26) == 0x1f
1415 || ((inst >> 26) == 0x1f
1416 && ((inst >> 6) == 0xa)))
1417 return hppa_extract_5R_store (inst);
1419 /* Does it look like a std? */
1420 if ((inst >> 26) == 0x1c
1421 || ((inst >> 26) == 0x03
1422 && ((inst >> 6) & 0xf) == 0xb))
1423 return hppa_extract_5R_store (inst);
1425 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1426 if ((inst >> 26) == 0x1b)
1427 return hppa_extract_5R_store (inst);
1429 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1431 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1432 || ((inst >> 26) == 0x3
1433 && (((inst >> 6) & 0xf) == 0x8
1434 || (inst >> 6) & 0xf) == 0x9))
1435 return hppa_extract_5R_store (inst);
1440 /* Return the register number for a FR which is saved by INST or
1441 zero it INST does not save a FR.
1443 Note we only care about full 64bit register stores (that's the only
1444 kind of stores the prologue will use).
1446 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1449 inst_saves_fr (unsigned long inst)
1451 /* is this an FSTD ? */
1452 if ((inst & 0xfc00dfc0) == 0x2c001200)
1453 return hppa_extract_5r_store (inst);
1454 if ((inst & 0xfc000002) == 0x70000002)
1455 return hppa_extract_5R_store (inst);
1456 /* is this an FSTW ? */
1457 if ((inst & 0xfc00df80) == 0x24001200)
1458 return hppa_extract_5r_store (inst);
1459 if ((inst & 0xfc000002) == 0x7c000000)
1460 return hppa_extract_5R_store (inst);
1464 /* Advance PC across any function entry prologue instructions
1465 to reach some "real" code.
1467 Use information in the unwind table to determine what exactly should
1468 be in the prologue. */
1472 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1475 CORE_ADDR orig_pc = pc;
1476 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1477 unsigned long args_stored, status, i, restart_gr, restart_fr;
1478 struct unwind_table_entry *u;
1479 int final_iteration;
1485 u = find_unwind_entry (pc);
1489 /* If we are not at the beginning of a function, then return now. */
1490 if ((pc & ~0x3) != u->region_start)
1493 /* This is how much of a frame adjustment we need to account for. */
1494 stack_remaining = u->Total_frame_size << 3;
1496 /* Magic register saves we want to know about. */
1497 save_rp = u->Save_RP;
1498 save_sp = u->Save_SP;
1500 /* An indication that args may be stored into the stack. Unfortunately
1501 the HPUX compilers tend to set this in cases where no args were
1505 /* Turn the Entry_GR field into a bitmask. */
1507 for (i = 3; i < u->Entry_GR + 3; i++)
1509 /* Frame pointer gets saved into a special location. */
1510 if (u->Save_SP && i == HPPA_FP_REGNUM)
1513 save_gr |= (1 << i);
1515 save_gr &= ~restart_gr;
1517 /* Turn the Entry_FR field into a bitmask too. */
1519 for (i = 12; i < u->Entry_FR + 12; i++)
1520 save_fr |= (1 << i);
1521 save_fr &= ~restart_fr;
1523 final_iteration = 0;
1525 /* Loop until we find everything of interest or hit a branch.
1527 For unoptimized GCC code and for any HP CC code this will never ever
1528 examine any user instructions.
1530 For optimzied GCC code we're faced with problems. GCC will schedule
1531 its prologue and make prologue instructions available for delay slot
1532 filling. The end result is user code gets mixed in with the prologue
1533 and a prologue instruction may be in the delay slot of the first branch
1536 Some unexpected things are expected with debugging optimized code, so
1537 we allow this routine to walk past user instructions in optimized
1539 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1542 unsigned int reg_num;
1543 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1544 unsigned long old_save_rp, old_save_sp, next_inst;
1546 /* Save copies of all the triggers so we can compare them later
1548 old_save_gr = save_gr;
1549 old_save_fr = save_fr;
1550 old_save_rp = save_rp;
1551 old_save_sp = save_sp;
1552 old_stack_remaining = stack_remaining;
1554 status = read_memory_nobpt (pc, buf, 4);
1555 inst = extract_unsigned_integer (buf, 4);
1561 /* Note the interesting effects of this instruction. */
1562 stack_remaining -= prologue_inst_adjust_sp (inst);
1564 /* There are limited ways to store the return pointer into the
1566 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1569 /* These are the only ways we save SP into the stack. At this time
1570 the HP compilers never bother to save SP into the stack. */
1571 if ((inst & 0xffffc000) == 0x6fc10000
1572 || (inst & 0xffffc00c) == 0x73c10008)
1575 /* Are we loading some register with an offset from the argument
1577 if ((inst & 0xffe00000) == 0x37a00000
1578 || (inst & 0xffffffe0) == 0x081d0240)
1584 /* Account for general and floating-point register saves. */
1585 reg_num = inst_saves_gr (inst);
1586 save_gr &= ~(1 << reg_num);
1588 /* Ugh. Also account for argument stores into the stack.
1589 Unfortunately args_stored only tells us that some arguments
1590 where stored into the stack. Not how many or what kind!
1592 This is a kludge as on the HP compiler sets this bit and it
1593 never does prologue scheduling. So once we see one, skip past
1594 all of them. We have similar code for the fp arg stores below.
1596 FIXME. Can still die if we have a mix of GR and FR argument
1598 if (reg_num >= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 19 : 23)
1601 while (reg_num >= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 19 : 23)
1605 status = read_memory_nobpt (pc, buf, 4);
1606 inst = extract_unsigned_integer (buf, 4);
1609 reg_num = inst_saves_gr (inst);
1615 reg_num = inst_saves_fr (inst);
1616 save_fr &= ~(1 << reg_num);
1618 status = read_memory_nobpt (pc + 4, buf, 4);
1619 next_inst = extract_unsigned_integer (buf, 4);
1625 /* We've got to be read to handle the ldo before the fp register
1627 if ((inst & 0xfc000000) == 0x34000000
1628 && inst_saves_fr (next_inst) >= 4
1629 && inst_saves_fr (next_inst)
1630 <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1632 /* So we drop into the code below in a reasonable state. */
1633 reg_num = inst_saves_fr (next_inst);
1637 /* Ugh. Also account for argument stores into the stack.
1638 This is a kludge as on the HP compiler sets this bit and it
1639 never does prologue scheduling. So once we see one, skip past
1642 && reg_num <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1646 <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1649 status = read_memory_nobpt (pc, buf, 4);
1650 inst = extract_unsigned_integer (buf, 4);
1653 if ((inst & 0xfc000000) != 0x34000000)
1655 status = read_memory_nobpt (pc + 4, buf, 4);
1656 next_inst = extract_unsigned_integer (buf, 4);
1659 reg_num = inst_saves_fr (next_inst);
1665 /* Quit if we hit any kind of branch. This can happen if a prologue
1666 instruction is in the delay slot of the first call/branch. */
1667 if (is_branch (inst) && stop_before_branch)
1670 /* What a crock. The HP compilers set args_stored even if no
1671 arguments were stored into the stack (boo hiss). This could
1672 cause this code to then skip a bunch of user insns (up to the
1675 To combat this we try to identify when args_stored was bogusly
1676 set and clear it. We only do this when args_stored is nonzero,
1677 all other resources are accounted for, and nothing changed on
1680 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1681 && old_save_gr == save_gr && old_save_fr == save_fr
1682 && old_save_rp == save_rp && old_save_sp == save_sp
1683 && old_stack_remaining == stack_remaining)
1689 /* !stop_before_branch, so also look at the insn in the delay slot
1691 if (final_iteration)
1693 if (is_branch (inst))
1694 final_iteration = 1;
1697 /* We've got a tenative location for the end of the prologue. However
1698 because of limitations in the unwind descriptor mechanism we may
1699 have went too far into user code looking for the save of a register
1700 that does not exist. So, if there registers we expected to be saved
1701 but never were, mask them out and restart.
1703 This should only happen in optimized code, and should be very rare. */
1704 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1707 restart_gr = save_gr;
1708 restart_fr = save_fr;
1716 /* Return the address of the PC after the last prologue instruction if
1717 we can determine it from the debug symbols. Else return zero. */
1720 after_prologue (CORE_ADDR pc)
1722 struct symtab_and_line sal;
1723 CORE_ADDR func_addr, func_end;
1726 /* If we can not find the symbol in the partial symbol table, then
1727 there is no hope we can determine the function's start address
1729 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1732 /* Get the line associated with FUNC_ADDR. */
1733 sal = find_pc_line (func_addr, 0);
1735 /* There are only two cases to consider. First, the end of the source line
1736 is within the function bounds. In that case we return the end of the
1737 source line. Second is the end of the source line extends beyond the
1738 bounds of the current function. We need to use the slow code to
1739 examine instructions in that case.
1741 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1742 the wrong thing to do. In fact, it should be entirely possible for this
1743 function to always return zero since the slow instruction scanning code
1744 is supposed to *always* work. If it does not, then it is a bug. */
1745 if (sal.end < func_end)
1751 /* To skip prologues, I use this predicate. Returns either PC itself
1752 if the code at PC does not look like a function prologue; otherwise
1753 returns an address that (if we're lucky) follows the prologue.
1755 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1756 It doesn't necessarily skips all the insns in the prologue. In fact
1757 we might not want to skip all the insns because a prologue insn may
1758 appear in the delay slot of the first branch, and we don't want to
1759 skip over the branch in that case. */
1762 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1766 CORE_ADDR post_prologue_pc;
1769 /* See if we can determine the end of the prologue via the symbol table.
1770 If so, then return either PC, or the PC after the prologue, whichever
1773 post_prologue_pc = after_prologue (pc);
1775 /* If after_prologue returned a useful address, then use it. Else
1776 fall back on the instruction skipping code.
1778 Some folks have claimed this causes problems because the breakpoint
1779 may be the first instruction of the prologue. If that happens, then
1780 the instruction skipping code has a bug that needs to be fixed. */
1781 if (post_prologue_pc != 0)
1782 return max (pc, post_prologue_pc);
1784 return (skip_prologue_hard_way (pc, 1));
1787 /* Return an unwind entry that falls within the frame's code block. */
1788 static struct unwind_table_entry *
1789 hppa_find_unwind_entry_in_block (struct frame_info *f)
1791 CORE_ADDR pc = frame_unwind_address_in_block (f, NORMAL_FRAME);
1793 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1794 result of frame_unwind_address_in_block implies a problem.
1795 The bits should have been removed earlier, before the return
1796 value of frame_pc_unwind. That might be happening already;
1797 if it isn't, it should be fixed. Then this call can be
1799 pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
1800 return find_unwind_entry (pc);
1803 struct hppa_frame_cache
1806 struct trad_frame_saved_reg *saved_regs;
1809 static struct hppa_frame_cache *
1810 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1812 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1813 struct hppa_frame_cache *cache;
1818 struct unwind_table_entry *u;
1819 CORE_ADDR prologue_end;
1824 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1825 frame_relative_level(next_frame));
1827 if ((*this_cache) != NULL)
1830 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1831 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1832 return (*this_cache);
1834 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1835 (*this_cache) = cache;
1836 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1839 u = hppa_find_unwind_entry_in_block (next_frame);
1843 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1844 return (*this_cache);
1847 /* Turn the Entry_GR field into a bitmask. */
1849 for (i = 3; i < u->Entry_GR + 3; i++)
1851 /* Frame pointer gets saved into a special location. */
1852 if (u->Save_SP && i == HPPA_FP_REGNUM)
1855 saved_gr_mask |= (1 << i);
1858 /* Turn the Entry_FR field into a bitmask too. */
1860 for (i = 12; i < u->Entry_FR + 12; i++)
1861 saved_fr_mask |= (1 << i);
1863 /* Loop until we find everything of interest or hit a branch.
1865 For unoptimized GCC code and for any HP CC code this will never ever
1866 examine any user instructions.
1868 For optimized GCC code we're faced with problems. GCC will schedule
1869 its prologue and make prologue instructions available for delay slot
1870 filling. The end result is user code gets mixed in with the prologue
1871 and a prologue instruction may be in the delay slot of the first branch
1874 Some unexpected things are expected with debugging optimized code, so
1875 we allow this routine to walk past user instructions in optimized
1878 int final_iteration = 0;
1879 CORE_ADDR pc, start_pc, end_pc;
1880 int looking_for_sp = u->Save_SP;
1881 int looking_for_rp = u->Save_RP;
1884 /* We have to use skip_prologue_hard_way instead of just
1885 skip_prologue_using_sal, in case we stepped into a function without
1886 symbol information. hppa_skip_prologue also bounds the returned
1887 pc by the passed in pc, so it will not return a pc in the next
1890 We used to call hppa_skip_prologue to find the end of the prologue,
1891 but if some non-prologue instructions get scheduled into the prologue,
1892 and the program is compiled with debug information, the "easy" way
1893 in hppa_skip_prologue will return a prologue end that is too early
1894 for us to notice any potential frame adjustments. */
1896 /* We used to use frame_func_unwind () to locate the beginning of the
1897 function to pass to skip_prologue (). However, when objects are
1898 compiled without debug symbols, frame_func_unwind can return the wrong
1899 function (or 0). We can do better than that by using unwind records.
1900 This only works if the Region_description of the unwind record
1901 indicates that it includes the entry point of the function.
1902 HP compilers sometimes generate unwind records for regions that
1903 do not include the entry or exit point of a function. GNU tools
1906 if ((u->Region_description & 0x2) == 0)
1907 start_pc = u->region_start;
1909 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1911 prologue_end = skip_prologue_hard_way (start_pc, 0);
1912 end_pc = frame_pc_unwind (next_frame);
1914 if (prologue_end != 0 && end_pc > prologue_end)
1915 end_pc = prologue_end;
1920 ((saved_gr_mask || saved_fr_mask
1921 || looking_for_sp || looking_for_rp
1922 || frame_size < (u->Total_frame_size << 3))
1930 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1933 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1934 return (*this_cache);
1937 inst = extract_unsigned_integer (buf4, sizeof buf4);
1939 /* Note the interesting effects of this instruction. */
1940 frame_size += prologue_inst_adjust_sp (inst);
1942 /* There are limited ways to store the return pointer into the
1944 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1947 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1949 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1952 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1954 else if (inst == 0x0fc212c1
1955 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1958 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1961 /* Check to see if we saved SP into the stack. This also
1962 happens to indicate the location of the saved frame
1964 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1965 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1968 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1970 else if (inst == 0x08030241) /* copy %r3, %r1 */
1975 /* Account for general and floating-point register saves. */
1976 reg = inst_saves_gr (inst);
1977 if (reg >= 3 && reg <= 18
1978 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1980 saved_gr_mask &= ~(1 << reg);
1981 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1982 /* stwm with a positive displacement is a _post_
1984 cache->saved_regs[reg].addr = 0;
1985 else if ((inst & 0xfc00000c) == 0x70000008)
1986 /* A std has explicit post_modify forms. */
1987 cache->saved_regs[reg].addr = 0;
1992 if ((inst >> 26) == 0x1c)
1993 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1994 else if ((inst >> 26) == 0x03)
1995 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1997 offset = hppa_extract_14 (inst);
1999 /* Handle code with and without frame pointers. */
2001 cache->saved_regs[reg].addr = offset;
2003 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2007 /* GCC handles callee saved FP regs a little differently.
2009 It emits an instruction to put the value of the start of
2010 the FP store area into %r1. It then uses fstds,ma with a
2011 basereg of %r1 for the stores.
2013 HP CC emits them at the current stack pointer modifying the
2014 stack pointer as it stores each register. */
2016 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2017 if ((inst & 0xffffc000) == 0x34610000
2018 || (inst & 0xffffc000) == 0x37c10000)
2019 fp_loc = hppa_extract_14 (inst);
2021 reg = inst_saves_fr (inst);
2022 if (reg >= 12 && reg <= 21)
2024 /* Note +4 braindamage below is necessary because the FP
2025 status registers are internally 8 registers rather than
2026 the expected 4 registers. */
2027 saved_fr_mask &= ~(1 << reg);
2030 /* 1st HP CC FP register store. After this
2031 instruction we've set enough state that the GCC and
2032 HPCC code are both handled in the same manner. */
2033 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2038 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2043 /* Quit if we hit any kind of branch the previous iteration. */
2044 if (final_iteration)
2046 /* We want to look precisely one instruction beyond the branch
2047 if we have not found everything yet. */
2048 if (is_branch (inst))
2049 final_iteration = 1;
2054 /* The frame base always represents the value of %sp at entry to
2055 the current function (and is thus equivalent to the "saved"
2057 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2061 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2062 "prologue_end=0x%s) ",
2064 paddr_nz (frame_pc_unwind (next_frame)),
2065 paddr_nz (prologue_end));
2067 /* Check to see if a frame pointer is available, and use it for
2068 frame unwinding if it is.
2070 There are some situations where we need to rely on the frame
2071 pointer to do stack unwinding. For example, if a function calls
2072 alloca (), the stack pointer can get adjusted inside the body of
2073 the function. In this case, the ABI requires that the compiler
2074 maintain a frame pointer for the function.
2076 The unwind record has a flag (alloca_frame) that indicates that
2077 a function has a variable frame; unfortunately, gcc/binutils
2078 does not set this flag. Instead, whenever a frame pointer is used
2079 and saved on the stack, the Save_SP flag is set. We use this to
2080 decide whether to use the frame pointer for unwinding.
2082 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2083 instead of Save_SP. */
2085 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
2087 if (u->alloca_frame)
2088 fp -= u->Total_frame_size << 3;
2090 if (frame_pc_unwind (next_frame) >= prologue_end
2091 && (u->Save_SP || u->alloca_frame) && fp != 0)
2096 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2097 paddr_nz (cache->base));
2100 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2102 /* Both we're expecting the SP to be saved and the SP has been
2103 saved. The entry SP value is saved at this frame's SP
2105 cache->base = read_memory_integer
2106 (this_sp, gdbarch_ptr_bit (gdbarch) / 8);
2109 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2110 paddr_nz (cache->base));
2114 /* The prologue has been slowly allocating stack space. Adjust
2116 cache->base = this_sp - frame_size;
2118 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2119 paddr_nz (cache->base));
2122 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2125 /* The PC is found in the "return register", "Millicode" uses "r31"
2126 as the return register while normal code uses "rp". */
2129 if (trad_frame_addr_p (cache->saved_regs, 31))
2131 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2133 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2137 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2138 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2140 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2145 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2147 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2148 cache->saved_regs[HPPA_RP_REGNUM];
2150 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2154 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2155 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2157 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2161 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2162 frame. However, there is a one-insn window where we haven't saved it
2163 yet, but we've already clobbered it. Detect this case and fix it up.
2165 The prologue sequence for frame-pointer functions is:
2166 0: stw %rp, -20(%sp)
2169 c: stw,ma %r1, XX(%sp)
2171 So if we are at offset c, the r3 value that we want is not yet saved
2172 on the stack, but it's been overwritten. The prologue analyzer will
2173 set fp_in_r1 when it sees the copy insn so we know to get the value
2175 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2178 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2179 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2183 /* Convert all the offsets into addresses. */
2185 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2187 if (trad_frame_addr_p (cache->saved_regs, reg))
2188 cache->saved_regs[reg].addr += cache->base;
2193 struct gdbarch_tdep *tdep;
2195 tdep = gdbarch_tdep (gdbarch);
2197 if (tdep->unwind_adjust_stub)
2199 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2204 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2205 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2206 return (*this_cache);
2210 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2211 struct frame_id *this_id)
2213 struct hppa_frame_cache *info;
2214 CORE_ADDR pc = frame_pc_unwind (next_frame);
2215 struct unwind_table_entry *u;
2217 info = hppa_frame_cache (next_frame, this_cache);
2218 u = hppa_find_unwind_entry_in_block (next_frame);
2220 (*this_id) = frame_id_build (info->base, u->region_start);
2224 hppa_frame_prev_register (struct frame_info *next_frame,
2226 int regnum, int *optimizedp,
2227 enum lval_type *lvalp, CORE_ADDR *addrp,
2228 int *realnump, gdb_byte *valuep)
2230 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2231 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2232 optimizedp, lvalp, addrp, realnump, valuep);
2235 static const struct frame_unwind hppa_frame_unwind =
2239 hppa_frame_prev_register
2242 static const struct frame_unwind *
2243 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2245 if (hppa_find_unwind_entry_in_block (next_frame))
2246 return &hppa_frame_unwind;
2251 /* This is a generic fallback frame unwinder that kicks in if we fail all
2252 the other ones. Normally we would expect the stub and regular unwinder
2253 to work, but in some cases we might hit a function that just doesn't
2254 have any unwind information available. In this case we try to do
2255 unwinding solely based on code reading. This is obviously going to be
2256 slow, so only use this as a last resort. Currently this will only
2257 identify the stack and pc for the frame. */
2259 static struct hppa_frame_cache *
2260 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2262 struct hppa_frame_cache *cache;
2263 unsigned int frame_size = 0;
2268 fprintf_unfiltered (gdb_stdlog,
2269 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2270 frame_relative_level (next_frame));
2272 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2273 (*this_cache) = cache;
2274 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2276 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2279 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2282 for (pc = start_pc; pc < cur_pc; pc += 4)
2286 insn = read_memory_unsigned_integer (pc, 4);
2287 frame_size += prologue_inst_adjust_sp (insn);
2289 /* There are limited ways to store the return pointer into the
2291 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2293 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2296 else if (insn == 0x0fc212c1
2297 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2299 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2306 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2307 frame_size, found_rp);
2309 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2310 cache->base -= frame_size;
2311 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2313 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2315 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2316 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2317 cache->saved_regs[HPPA_RP_REGNUM];
2322 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2323 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2330 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2331 struct frame_id *this_id)
2333 struct hppa_frame_cache *info =
2334 hppa_fallback_frame_cache (next_frame, this_cache);
2335 (*this_id) = frame_id_build (info->base,
2336 frame_func_unwind (next_frame, NORMAL_FRAME));
2340 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2342 int regnum, int *optimizedp,
2343 enum lval_type *lvalp, CORE_ADDR *addrp,
2344 int *realnump, gdb_byte *valuep)
2346 struct hppa_frame_cache *info =
2347 hppa_fallback_frame_cache (next_frame, this_cache);
2348 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2349 optimizedp, lvalp, addrp, realnump, valuep);
2352 static const struct frame_unwind hppa_fallback_frame_unwind =
2355 hppa_fallback_frame_this_id,
2356 hppa_fallback_frame_prev_register
2359 static const struct frame_unwind *
2360 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2362 return &hppa_fallback_frame_unwind;
2365 /* Stub frames, used for all kinds of call stubs. */
2366 struct hppa_stub_unwind_cache
2369 struct trad_frame_saved_reg *saved_regs;
2372 static struct hppa_stub_unwind_cache *
2373 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2376 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2377 struct hppa_stub_unwind_cache *info;
2378 struct unwind_table_entry *u;
2383 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2385 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2387 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2389 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2391 /* HPUX uses export stubs in function calls; the export stub clobbers
2392 the return value of the caller, and, later restores it from the
2394 u = find_unwind_entry (frame_pc_unwind (next_frame));
2396 if (u && u->stub_unwind.stub_type == EXPORT)
2398 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2404 /* By default we assume that stubs do not change the rp. */
2405 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2411 hppa_stub_frame_this_id (struct frame_info *next_frame,
2412 void **this_prologue_cache,
2413 struct frame_id *this_id)
2415 struct hppa_stub_unwind_cache *info
2416 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2419 *this_id = frame_id_build (info->base,
2420 frame_func_unwind (next_frame, NORMAL_FRAME));
2422 *this_id = null_frame_id;
2426 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2427 void **this_prologue_cache,
2428 int regnum, int *optimizedp,
2429 enum lval_type *lvalp, CORE_ADDR *addrp,
2430 int *realnump, gdb_byte *valuep)
2432 struct hppa_stub_unwind_cache *info
2433 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2436 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2437 optimizedp, lvalp, addrp, realnump,
2440 error (_("Requesting registers from null frame."));
2443 static const struct frame_unwind hppa_stub_frame_unwind = {
2445 hppa_stub_frame_this_id,
2446 hppa_stub_frame_prev_register
2449 static const struct frame_unwind *
2450 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2452 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2453 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2457 || (tdep->in_solib_call_trampoline != NULL
2458 && tdep->in_solib_call_trampoline (pc, NULL))
2459 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2460 return &hppa_stub_frame_unwind;
2464 static struct frame_id
2465 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2467 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2469 frame_pc_unwind (next_frame));
2473 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2478 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2479 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2481 /* If the current instruction is nullified, then we are effectively
2482 still executing the previous instruction. Pretend we are still
2483 there. This is needed when single stepping; if the nullified
2484 instruction is on a different line, we don't want GDB to think
2485 we've stepped onto that line. */
2486 if (ipsw & 0x00200000)
2492 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2493 Return NULL if no such symbol was found. */
2495 struct minimal_symbol *
2496 hppa_lookup_stub_minimal_symbol (const char *name,
2497 enum unwind_stub_types stub_type)
2499 struct objfile *objfile;
2500 struct minimal_symbol *msym;
2502 ALL_MSYMBOLS (objfile, msym)
2504 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2506 struct unwind_table_entry *u;
2508 u = find_unwind_entry (SYMBOL_VALUE (msym));
2509 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2518 unwind_command (char *exp, int from_tty)
2521 struct unwind_table_entry *u;
2523 /* If we have an expression, evaluate it and use it as the address. */
2525 if (exp != 0 && *exp != 0)
2526 address = parse_and_eval_address (exp);
2530 u = find_unwind_entry (address);
2534 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2538 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2540 printf_unfiltered ("\tregion_start = ");
2541 print_address (u->region_start, gdb_stdout);
2542 gdb_flush (gdb_stdout);
2544 printf_unfiltered ("\n\tregion_end = ");
2545 print_address (u->region_end, gdb_stdout);
2546 gdb_flush (gdb_stdout);
2548 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2550 printf_unfiltered ("\n\tflags =");
2551 pif (Cannot_unwind);
2553 pif (Millicode_save_sr0);
2556 pif (Variable_Frame);
2557 pif (Separate_Package_Body);
2558 pif (Frame_Extension_Millicode);
2559 pif (Stack_Overflow_Check);
2560 pif (Two_Instruction_SP_Increment);
2563 pif (cxx_try_catch);
2564 pif (sched_entry_seq);
2567 pif (Save_MRP_in_frame);
2569 pif (Cleanup_defined);
2570 pif (MPE_XL_interrupt_marker);
2571 pif (HP_UX_interrupt_marker);
2575 putchar_unfiltered ('\n');
2577 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2579 pin (Region_description);
2582 pin (Total_frame_size);
2584 if (u->stub_unwind.stub_type)
2586 printf_unfiltered ("\tstub type = ");
2587 switch (u->stub_unwind.stub_type)
2590 printf_unfiltered ("long branch\n");
2592 case PARAMETER_RELOCATION:
2593 printf_unfiltered ("parameter relocation\n");
2596 printf_unfiltered ("export\n");
2599 printf_unfiltered ("import\n");
2602 printf_unfiltered ("import shlib\n");
2605 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2610 /* Return the GDB type object for the "standard" data type of data in
2613 static struct type *
2614 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2616 if (regnum < HPPA_FP4_REGNUM)
2617 return builtin_type_uint32;
2619 return builtin_type_ieee_single;
2622 static struct type *
2623 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2625 if (regnum < HPPA64_FP4_REGNUM)
2626 return builtin_type_uint64;
2628 return builtin_type_ieee_double;
2631 /* Return non-zero if REGNUM is not a register available to the user
2632 through ptrace/ttrace. */
2635 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2638 || regnum == HPPA_PCSQ_HEAD_REGNUM
2639 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2640 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2644 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2646 /* cr26 and cr27 are readable (but not writable) from userspace. */
2647 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2650 return hppa32_cannot_store_register (gdbarch, regnum);
2654 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2657 || regnum == HPPA_PCSQ_HEAD_REGNUM
2658 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2659 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2663 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2665 /* cr26 and cr27 are readable (but not writable) from userspace. */
2666 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2669 return hppa64_cannot_store_register (gdbarch, regnum);
2673 hppa_smash_text_address (CORE_ADDR addr)
2675 /* The low two bits of the PC on the PA contain the privilege level.
2676 Some genius implementing a (non-GCC) compiler apparently decided
2677 this means that "addresses" in a text section therefore include a
2678 privilege level, and thus symbol tables should contain these bits.
2679 This seems like a bonehead thing to do--anyway, it seems to work
2680 for our purposes to just ignore those bits. */
2682 return (addr &= ~0x3);
2685 /* Get the ARGIth function argument for the current function. */
2688 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2691 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2695 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2696 int regnum, gdb_byte *buf)
2700 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2701 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2703 store_unsigned_integer (buf, sizeof tmp, tmp);
2707 hppa_find_global_pointer (struct value *function)
2713 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2714 struct trad_frame_saved_reg saved_regs[],
2715 int regnum, int *optimizedp,
2716 enum lval_type *lvalp, CORE_ADDR *addrp,
2717 int *realnump, gdb_byte *valuep)
2719 struct gdbarch *arch = get_frame_arch (next_frame);
2721 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2725 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2728 trad_frame_get_prev_register (next_frame, saved_regs,
2729 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2730 lvalp, addrp, realnump, valuep);
2732 pc = extract_unsigned_integer (valuep, size);
2733 store_unsigned_integer (valuep, size, pc + 4);
2736 /* It's a computed value. */
2744 /* Make sure the "flags" register is zero in all unwound frames.
2745 The "flags" registers is a HP-UX specific wart, and only the code
2746 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2747 with it here. This shouldn't affect other systems since those
2748 should provide zero for the "flags" register anyway. */
2749 if (regnum == HPPA_FLAGS_REGNUM)
2752 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2754 /* It's a computed value. */
2762 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2763 optimizedp, lvalp, addrp, realnump, valuep);
2767 /* An instruction to match. */
2770 unsigned int data; /* See if it matches this.... */
2771 unsigned int mask; /* ... with this mask. */
2774 /* See bfd/elf32-hppa.c */
2775 static struct insn_pattern hppa_long_branch_stub[] = {
2776 /* ldil LR'xxx,%r1 */
2777 { 0x20200000, 0xffe00000 },
2778 /* be,n RR'xxx(%sr4,%r1) */
2779 { 0xe0202002, 0xffe02002 },
2783 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2785 { 0xe8200000, 0xffe00000 },
2786 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2787 { 0x28200000, 0xffe00000 },
2788 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2789 { 0xe0202002, 0xffe02002 },
2793 static struct insn_pattern hppa_import_stub[] = {
2794 /* addil LR'xxx, %dp */
2795 { 0x2b600000, 0xffe00000 },
2796 /* ldw RR'xxx(%r1), %r21 */
2797 { 0x48350000, 0xffffb000 },
2799 { 0xeaa0c000, 0xffffffff },
2800 /* ldw RR'xxx+4(%r1), %r19 */
2801 { 0x48330000, 0xffffb000 },
2805 static struct insn_pattern hppa_import_pic_stub[] = {
2806 /* addil LR'xxx,%r19 */
2807 { 0x2a600000, 0xffe00000 },
2808 /* ldw RR'xxx(%r1),%r21 */
2809 { 0x48350000, 0xffffb000 },
2811 { 0xeaa0c000, 0xffffffff },
2812 /* ldw RR'xxx+4(%r1),%r19 */
2813 { 0x48330000, 0xffffb000 },
2817 static struct insn_pattern hppa_plt_stub[] = {
2818 /* b,l 1b, %r20 - 1b is 3 insns before here */
2819 { 0xea9f1fdd, 0xffffffff },
2820 /* depi 0,31,2,%r20 */
2821 { 0xd6801c1e, 0xffffffff },
2825 static struct insn_pattern hppa_sigtramp[] = {
2826 /* ldi 0, %r25 or ldi 1, %r25 */
2827 { 0x34190000, 0xfffffffd },
2828 /* ldi __NR_rt_sigreturn, %r20 */
2829 { 0x3414015a, 0xffffffff },
2830 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2831 { 0xe4008200, 0xffffffff },
2833 { 0x08000240, 0xffffffff },
2837 /* Maximum number of instructions on the patterns above. */
2838 #define HPPA_MAX_INSN_PATTERN_LEN 4
2840 /* Return non-zero if the instructions at PC match the series
2841 described in PATTERN, or zero otherwise. PATTERN is an array of
2842 'struct insn_pattern' objects, terminated by an entry whose mask is
2845 When the match is successful, fill INSN[i] with what PATTERN[i]
2849 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2855 for (i = 0; pattern[i].mask; i++)
2857 gdb_byte buf[HPPA_INSN_SIZE];
2859 read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
2860 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2861 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2870 /* This relaxed version of the insstruction matcher allows us to match
2871 from somewhere inside the pattern, by looking backwards in the
2872 instruction scheme. */
2875 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2878 int offset, len = 0;
2880 while (pattern[len].mask)
2883 for (offset = 0; offset < len; offset++)
2884 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2891 hppa_in_dyncall (CORE_ADDR pc)
2893 struct unwind_table_entry *u;
2895 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2899 return (pc >= u->region_start && pc <= u->region_end);
2903 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2905 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2906 struct unwind_table_entry *u;
2908 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2911 /* The GNU toolchain produces linker stubs without unwind
2912 information. Since the pattern matching for linker stubs can be
2913 quite slow, so bail out if we do have an unwind entry. */
2915 u = find_unwind_entry (pc);
2919 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2920 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2921 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2922 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2925 /* This code skips several kind of "trampolines" used on PA-RISC
2926 systems: $$dyncall, import stubs and PLT stubs. */
2929 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2931 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2934 /* $$dyncall handles both PLABELs and direct addresses. */
2935 if (hppa_in_dyncall (pc))
2937 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2939 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2941 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2946 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2947 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2949 /* Extract the target address from the addil/ldw sequence. */
2950 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2953 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2955 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2960 if (in_plt_section (pc, NULL))
2962 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2964 /* If the PLT slot has not yet been resolved, the target will be
2966 if (in_plt_section (pc, NULL))
2968 /* Sanity check: are we pointing to the PLT stub? */
2969 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2971 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2975 /* This should point to the fixup routine. */
2976 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2984 /* Here is a table of C type sizes on hppa with various compiles
2985 and options. I measured this on PA 9000/800 with HP-UX 11.11
2986 and these compilers:
2988 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2989 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2990 /opt/aCC/bin/aCC B3910B A.03.45
2991 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2993 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2994 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2995 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2996 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2997 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2998 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2999 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3000 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3004 compiler and options
3005 char, short, int, long, long long
3006 float, double, long double
3009 So all these compilers use either ILP32 or LP64 model.
3010 TODO: gcc has more options so it needs more investigation.
3012 For floating point types, see:
3014 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3015 HP-UX floating-point guide, hpux 11.00
3017 -- chastain 2003-12-18 */
3019 static struct gdbarch *
3020 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3022 struct gdbarch_tdep *tdep;
3023 struct gdbarch *gdbarch;
3025 /* Try to determine the ABI of the object we are loading. */
3026 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3028 /* If it's a SOM file, assume it's HP/UX SOM. */
3029 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3030 info.osabi = GDB_OSABI_HPUX_SOM;
3033 /* find a candidate among the list of pre-declared architectures. */
3034 arches = gdbarch_list_lookup_by_info (arches, &info);
3036 return (arches->gdbarch);
3038 /* If none found, then allocate and initialize one. */
3039 tdep = XZALLOC (struct gdbarch_tdep);
3040 gdbarch = gdbarch_alloc (&info, tdep);
3042 /* Determine from the bfd_arch_info structure if we are dealing with
3043 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3044 then default to a 32bit machine. */
3045 if (info.bfd_arch_info != NULL)
3046 tdep->bytes_per_address =
3047 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3049 tdep->bytes_per_address = 4;
3051 tdep->find_global_pointer = hppa_find_global_pointer;
3053 /* Some parts of the gdbarch vector depend on whether we are running
3054 on a 32 bits or 64 bits target. */
3055 switch (tdep->bytes_per_address)
3058 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3059 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3060 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3061 set_gdbarch_cannot_store_register (gdbarch,
3062 hppa32_cannot_store_register);
3063 set_gdbarch_cannot_fetch_register (gdbarch,
3064 hppa32_cannot_fetch_register);
3067 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3068 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3069 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3070 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3071 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3072 set_gdbarch_cannot_store_register (gdbarch,
3073 hppa64_cannot_store_register);
3074 set_gdbarch_cannot_fetch_register (gdbarch,
3075 hppa64_cannot_fetch_register);
3078 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3079 tdep->bytes_per_address);
3082 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3083 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3085 /* The following gdbarch vector elements are the same in both ILP32
3086 and LP64, but might show differences some day. */
3087 set_gdbarch_long_long_bit (gdbarch, 64);
3088 set_gdbarch_long_double_bit (gdbarch, 128);
3089 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3091 /* The following gdbarch vector elements do not depend on the address
3092 size, or in any other gdbarch element previously set. */
3093 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3094 set_gdbarch_in_function_epilogue_p (gdbarch,
3095 hppa_in_function_epilogue_p);
3096 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3097 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3098 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3099 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3100 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3101 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3102 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3103 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3105 /* Helper for function argument information. */
3106 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3108 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3110 /* When a hardware watchpoint triggers, we'll move the inferior past
3111 it by removing all eventpoints; stepping past the instruction
3112 that caused the trigger; reinserting eventpoints; and checking
3113 whether any watched location changed. */
3114 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3116 /* Inferior function call methods. */
3117 switch (tdep->bytes_per_address)
3120 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3121 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3122 set_gdbarch_convert_from_func_ptr_addr
3123 (gdbarch, hppa32_convert_from_func_ptr_addr);
3126 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3127 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3130 internal_error (__FILE__, __LINE__, _("bad switch"));
3133 /* Struct return methods. */
3134 switch (tdep->bytes_per_address)
3137 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3140 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3143 internal_error (__FILE__, __LINE__, _("bad switch"));
3146 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3147 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3149 /* Frame unwind methods. */
3150 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3151 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3153 /* Hook in ABI-specific overrides, if they have been registered. */
3154 gdbarch_init_osabi (info, gdbarch);
3156 /* Hook in the default unwinders. */
3157 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
3158 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
3159 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
3165 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3169 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3170 tdep->bytes_per_address);
3171 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3175 _initialize_hppa_tdep (void)
3177 struct cmd_list_element *c;
3179 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3181 hppa_objfile_priv_data = register_objfile_data ();
3183 add_cmd ("unwind", class_maintenance, unwind_command,
3184 _("Print unwind table entry at given address."),
3185 &maintenanceprintlist);
3187 /* Debug this files internals. */
3188 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3189 Set whether hppa target specific debugging information should be displayed."),
3191 Show whether hppa target specific debugging information is displayed."), _("\
3192 This flag controls whether hppa target specific debugging information is\n\
3193 displayed. This information is particularly useful for debugging frame\n\
3194 unwinding problems."),
3196 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3197 &setdebuglist, &showdebuglist);