1 /* Target-dependent code for the HP PA-RISC architecture.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "completer.h"
29 #include "gdb_assert.h"
30 #include "arch-utils.h"
31 /* For argument passing to the inferior. */
34 #include "trad-frame.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
42 #include "hppa-tdep.h"
44 static int hppa_debug = 0;
46 /* Some local constants. */
47 static const int hppa32_num_regs = 128;
48 static const int hppa64_num_regs = 96;
50 /* hppa-specific object data -- unwind and solib info.
51 TODO/maybe: think about splitting this into two parts; the unwind data is
52 common to all hppa targets, but is only used in this file; we can register
53 that separately and make this static. The solib data is probably hpux-
54 specific, so we can create a separate extern objfile_data that is registered
55 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
56 const struct objfile_data *hppa_objfile_priv_data = NULL;
58 /* Get at various relevent fields of an instruction word. */
61 #define MASK_14 0x3fff
62 #define MASK_21 0x1fffff
64 /* Sizes (in bytes) of the native unwind entries. */
65 #define UNWIND_ENTRY_SIZE 16
66 #define STUB_UNWIND_ENTRY_SIZE 8
68 /* Routines to extract various sized constants out of hppa
71 /* This assumes that no garbage lies outside of the lower bits of
75 hppa_sign_extend (unsigned val, unsigned bits)
77 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
80 /* For many immediate values the sign bit is the low bit! */
83 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
85 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
88 /* Extract the bits at positions between FROM and TO, using HP's numbering
92 hppa_get_field (unsigned word, int from, int to)
94 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
97 /* Extract the immediate field from a ld{bhw}s instruction. */
100 hppa_extract_5_load (unsigned word)
102 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
105 /* Extract the immediate field from a break instruction. */
108 hppa_extract_5r_store (unsigned word)
110 return (word & MASK_5);
113 /* Extract the immediate field from a {sr}sm instruction. */
116 hppa_extract_5R_store (unsigned word)
118 return (word >> 16 & MASK_5);
121 /* Extract a 14 bit immediate field. */
124 hppa_extract_14 (unsigned word)
126 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
129 /* Extract a 21 bit constant. */
132 hppa_extract_21 (unsigned word)
138 val = hppa_get_field (word, 20, 20);
140 val |= hppa_get_field (word, 9, 19);
142 val |= hppa_get_field (word, 5, 6);
144 val |= hppa_get_field (word, 0, 4);
146 val |= hppa_get_field (word, 7, 8);
147 return hppa_sign_extend (val, 21) << 11;
150 /* extract a 17 bit constant from branch instructions, returning the
151 19 bit signed value. */
154 hppa_extract_17 (unsigned word)
156 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
157 hppa_get_field (word, 29, 29) << 10 |
158 hppa_get_field (word, 11, 15) << 11 |
159 (word & 0x1) << 16, 17) << 2;
163 hppa_symbol_address(const char *sym)
165 struct bound_minimal_symbol minsym;
167 minsym = lookup_minimal_symbol (sym, NULL, NULL);
169 return BMSYMBOL_VALUE_ADDRESS (minsym);
171 return (CORE_ADDR)-1;
174 struct hppa_objfile_private *
175 hppa_init_objfile_priv_data (struct objfile *objfile)
177 struct hppa_objfile_private *priv;
179 priv = (struct hppa_objfile_private *)
180 obstack_alloc (&objfile->objfile_obstack,
181 sizeof (struct hppa_objfile_private));
182 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
183 memset (priv, 0, sizeof (*priv));
189 /* Compare the start address for two unwind entries returning 1 if
190 the first address is larger than the second, -1 if the second is
191 larger than the first, and zero if they are equal. */
194 compare_unwind_entries (const void *arg1, const void *arg2)
196 const struct unwind_table_entry *a = arg1;
197 const struct unwind_table_entry *b = arg2;
199 if (a->region_start > b->region_start)
201 else if (a->region_start < b->region_start)
208 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
210 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
211 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
213 bfd_vma value = section->vma - section->filepos;
214 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
216 if (value < *low_text_segment_address)
217 *low_text_segment_address = value;
222 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
223 asection *section, unsigned int entries,
224 unsigned int size, CORE_ADDR text_offset)
226 /* We will read the unwind entries into temporary memory, then
227 fill in the actual unwind table. */
231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 char *buf = alloca (size);
235 CORE_ADDR low_text_segment_address;
237 /* For ELF targets, then unwinds are supposed to
238 be segment relative offsets instead of absolute addresses.
240 Note that when loading a shared library (text_offset != 0) the
241 unwinds are already relative to the text_offset that will be
243 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
245 low_text_segment_address = -1;
247 bfd_map_over_sections (objfile->obfd,
248 record_text_segment_lowaddr,
249 &low_text_segment_address);
251 text_offset = low_text_segment_address;
253 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
255 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
258 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
260 /* Now internalize the information being careful to handle host/target
262 for (i = 0; i < entries; i++)
264 table[i].region_start = bfd_get_32 (objfile->obfd,
266 table[i].region_start += text_offset;
268 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
269 table[i].region_end += text_offset;
271 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
273 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
274 table[i].Millicode = (tmp >> 30) & 0x1;
275 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
276 table[i].Region_description = (tmp >> 27) & 0x3;
277 table[i].reserved = (tmp >> 26) & 0x1;
278 table[i].Entry_SR = (tmp >> 25) & 0x1;
279 table[i].Entry_FR = (tmp >> 21) & 0xf;
280 table[i].Entry_GR = (tmp >> 16) & 0x1f;
281 table[i].Args_stored = (tmp >> 15) & 0x1;
282 table[i].Variable_Frame = (tmp >> 14) & 0x1;
283 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
284 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
285 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
286 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
287 table[i].sr4export = (tmp >> 9) & 0x1;
288 table[i].cxx_info = (tmp >> 8) & 0x1;
289 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
290 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
291 table[i].reserved1 = (tmp >> 5) & 0x1;
292 table[i].Save_SP = (tmp >> 4) & 0x1;
293 table[i].Save_RP = (tmp >> 3) & 0x1;
294 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
295 table[i].save_r19 = (tmp >> 1) & 0x1;
296 table[i].Cleanup_defined = tmp & 0x1;
297 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
299 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
300 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
301 table[i].Large_frame = (tmp >> 29) & 0x1;
302 table[i].alloca_frame = (tmp >> 28) & 0x1;
303 table[i].reserved2 = (tmp >> 27) & 0x1;
304 table[i].Total_frame_size = tmp & 0x7ffffff;
306 /* Stub unwinds are handled elsewhere. */
307 table[i].stub_unwind.stub_type = 0;
308 table[i].stub_unwind.padding = 0;
313 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
314 the object file. This info is used mainly by find_unwind_entry() to find
315 out the stack frame size and frame pointer used by procedures. We put
316 everything on the psymbol obstack in the objfile so that it automatically
317 gets freed when the objfile is destroyed. */
320 read_unwind_info (struct objfile *objfile)
322 asection *unwind_sec, *stub_unwind_sec;
323 unsigned unwind_size, stub_unwind_size, total_size;
324 unsigned index, unwind_entries;
325 unsigned stub_entries, total_entries;
326 CORE_ADDR text_offset;
327 struct hppa_unwind_info *ui;
328 struct hppa_objfile_private *obj_private;
330 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
331 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
332 sizeof (struct hppa_unwind_info));
338 /* For reasons unknown the HP PA64 tools generate multiple unwinder
339 sections in a single executable. So we just iterate over every
340 section in the BFD looking for unwinder sections intead of trying
341 to do a lookup with bfd_get_section_by_name.
343 First determine the total size of the unwind tables so that we
344 can allocate memory in a nice big hunk. */
346 for (unwind_sec = objfile->obfd->sections;
348 unwind_sec = unwind_sec->next)
350 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
351 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
353 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
354 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
356 total_entries += unwind_entries;
360 /* Now compute the size of the stub unwinds. Note the ELF tools do not
361 use stub unwinds at the current time. */
362 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
366 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
367 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
371 stub_unwind_size = 0;
375 /* Compute total number of unwind entries and their total size. */
376 total_entries += stub_entries;
377 total_size = total_entries * sizeof (struct unwind_table_entry);
379 /* Allocate memory for the unwind table. */
380 ui->table = (struct unwind_table_entry *)
381 obstack_alloc (&objfile->objfile_obstack, total_size);
382 ui->last = total_entries - 1;
384 /* Now read in each unwind section and internalize the standard unwind
387 for (unwind_sec = objfile->obfd->sections;
389 unwind_sec = unwind_sec->next)
391 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
392 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
394 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
395 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
397 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
398 unwind_entries, unwind_size, text_offset);
399 index += unwind_entries;
403 /* Now read in and internalize the stub unwind entries. */
404 if (stub_unwind_size > 0)
407 char *buf = alloca (stub_unwind_size);
409 /* Read in the stub unwind entries. */
410 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
411 0, stub_unwind_size);
413 /* Now convert them into regular unwind entries. */
414 for (i = 0; i < stub_entries; i++, index++)
416 /* Clear out the next unwind entry. */
417 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
419 /* Convert offset & size into region_start and region_end.
420 Stuff away the stub type into "reserved" fields. */
421 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
423 ui->table[index].region_start += text_offset;
425 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
428 ui->table[index].region_end
429 = ui->table[index].region_start + 4 *
430 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
436 /* Unwind table needs to be kept sorted. */
437 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
438 compare_unwind_entries);
440 /* Keep a pointer to the unwind information. */
441 obj_private = (struct hppa_objfile_private *)
442 objfile_data (objfile, hppa_objfile_priv_data);
443 if (obj_private == NULL)
444 obj_private = hppa_init_objfile_priv_data (objfile);
446 obj_private->unwind_info = ui;
449 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
450 of the objfiles seeking the unwind table entry for this PC. Each objfile
451 contains a sorted list of struct unwind_table_entry. Since we do a binary
452 search of the unwind tables, we depend upon them to be sorted. */
454 struct unwind_table_entry *
455 find_unwind_entry (CORE_ADDR pc)
457 int first, middle, last;
458 struct objfile *objfile;
459 struct hppa_objfile_private *priv;
462 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
465 /* A function at address 0? Not in HP-UX! */
466 if (pc == (CORE_ADDR) 0)
469 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
473 ALL_OBJFILES (objfile)
475 struct hppa_unwind_info *ui;
477 priv = objfile_data (objfile, hppa_objfile_priv_data);
479 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
483 read_unwind_info (objfile);
484 priv = objfile_data (objfile, hppa_objfile_priv_data);
486 error (_("Internal error reading unwind information."));
487 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
490 /* First, check the cache. */
493 && pc >= ui->cache->region_start
494 && pc <= ui->cache->region_end)
497 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
498 hex_string ((uintptr_t) ui->cache));
502 /* Not in the cache, do a binary search. */
507 while (first <= last)
509 middle = (first + last) / 2;
510 if (pc >= ui->table[middle].region_start
511 && pc <= ui->table[middle].region_end)
513 ui->cache = &ui->table[middle];
515 fprintf_unfiltered (gdb_stdlog, "%s }\n",
516 hex_string ((uintptr_t) ui->cache));
517 return &ui->table[middle];
520 if (pc < ui->table[middle].region_start)
525 } /* ALL_OBJFILES() */
528 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
533 /* The epilogue is defined here as the area either on the `bv' instruction
534 itself or an instruction which destroys the function's stack frame.
536 We do not assume that the epilogue is at the end of a function as we can
537 also have return sequences in the middle of a function. */
539 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
542 unsigned long status;
546 status = target_read_memory (pc, buf, 4);
550 inst = extract_unsigned_integer (buf, 4, byte_order);
552 /* The most common way to perform a stack adjustment ldo X(sp),sp
553 We are destroying a stack frame if the offset is negative. */
554 if ((inst & 0xffffc000) == 0x37de0000
555 && hppa_extract_14 (inst) < 0)
558 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
559 if (((inst & 0x0fc010e0) == 0x0fc010e0
560 || (inst & 0x0fc010e0) == 0x0fc010e0)
561 && hppa_extract_14 (inst) < 0)
564 /* bv %r0(%rp) or bv,n %r0(%rp) */
565 if (inst == 0xe840c000 || inst == 0xe840c002)
571 static const unsigned char *
572 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
574 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
575 (*len) = sizeof (breakpoint);
579 /* Return the name of a register. */
582 hppa32_register_name (struct gdbarch *gdbarch, int i)
584 static char *names[] = {
585 "flags", "r1", "rp", "r3",
586 "r4", "r5", "r6", "r7",
587 "r8", "r9", "r10", "r11",
588 "r12", "r13", "r14", "r15",
589 "r16", "r17", "r18", "r19",
590 "r20", "r21", "r22", "r23",
591 "r24", "r25", "r26", "dp",
592 "ret0", "ret1", "sp", "r31",
593 "sar", "pcoqh", "pcsqh", "pcoqt",
594 "pcsqt", "eiem", "iir", "isr",
595 "ior", "ipsw", "goto", "sr4",
596 "sr0", "sr1", "sr2", "sr3",
597 "sr5", "sr6", "sr7", "cr0",
598 "cr8", "cr9", "ccr", "cr12",
599 "cr13", "cr24", "cr25", "cr26",
600 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
601 "fpsr", "fpe1", "fpe2", "fpe3",
602 "fpe4", "fpe5", "fpe6", "fpe7",
603 "fr4", "fr4R", "fr5", "fr5R",
604 "fr6", "fr6R", "fr7", "fr7R",
605 "fr8", "fr8R", "fr9", "fr9R",
606 "fr10", "fr10R", "fr11", "fr11R",
607 "fr12", "fr12R", "fr13", "fr13R",
608 "fr14", "fr14R", "fr15", "fr15R",
609 "fr16", "fr16R", "fr17", "fr17R",
610 "fr18", "fr18R", "fr19", "fr19R",
611 "fr20", "fr20R", "fr21", "fr21R",
612 "fr22", "fr22R", "fr23", "fr23R",
613 "fr24", "fr24R", "fr25", "fr25R",
614 "fr26", "fr26R", "fr27", "fr27R",
615 "fr28", "fr28R", "fr29", "fr29R",
616 "fr30", "fr30R", "fr31", "fr31R"
618 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
625 hppa64_register_name (struct gdbarch *gdbarch, int i)
627 static char *names[] = {
628 "flags", "r1", "rp", "r3",
629 "r4", "r5", "r6", "r7",
630 "r8", "r9", "r10", "r11",
631 "r12", "r13", "r14", "r15",
632 "r16", "r17", "r18", "r19",
633 "r20", "r21", "r22", "r23",
634 "r24", "r25", "r26", "dp",
635 "ret0", "ret1", "sp", "r31",
636 "sar", "pcoqh", "pcsqh", "pcoqt",
637 "pcsqt", "eiem", "iir", "isr",
638 "ior", "ipsw", "goto", "sr4",
639 "sr0", "sr1", "sr2", "sr3",
640 "sr5", "sr6", "sr7", "cr0",
641 "cr8", "cr9", "ccr", "cr12",
642 "cr13", "cr24", "cr25", "cr26",
643 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
644 "fpsr", "fpe1", "fpe2", "fpe3",
645 "fr4", "fr5", "fr6", "fr7",
646 "fr8", "fr9", "fr10", "fr11",
647 "fr12", "fr13", "fr14", "fr15",
648 "fr16", "fr17", "fr18", "fr19",
649 "fr20", "fr21", "fr22", "fr23",
650 "fr24", "fr25", "fr26", "fr27",
651 "fr28", "fr29", "fr30", "fr31"
653 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
659 /* Map dwarf DBX register numbers to GDB register numbers. */
661 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
663 /* The general registers and the sar are the same in both sets. */
667 /* fr4-fr31 are mapped from 72 in steps of 2. */
668 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
669 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
671 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
675 /* This function pushes a stack frame with arguments as part of the
676 inferior function calling mechanism.
678 This is the version of the function for the 32-bit PA machines, in
679 which later arguments appear at lower addresses. (The stack always
680 grows towards higher addresses.)
682 We simply allocate the appropriate amount of stack space and put
683 arguments into their proper slots. */
686 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
687 struct regcache *regcache, CORE_ADDR bp_addr,
688 int nargs, struct value **args, CORE_ADDR sp,
689 int struct_return, CORE_ADDR struct_addr)
691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
693 /* Stack base address at which any pass-by-reference parameters are
695 CORE_ADDR struct_end = 0;
696 /* Stack base address at which the first parameter is stored. */
697 CORE_ADDR param_end = 0;
699 /* The inner most end of the stack after all the parameters have
701 CORE_ADDR new_sp = 0;
703 /* Two passes. First pass computes the location of everything,
704 second pass writes the bytes out. */
707 /* Global pointer (r19) of the function we are trying to call. */
710 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
712 for (write_pass = 0; write_pass < 2; write_pass++)
714 CORE_ADDR struct_ptr = 0;
715 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
716 struct_ptr is adjusted for each argument below, so the first
717 argument will end up at sp-36. */
718 CORE_ADDR param_ptr = 32;
720 int small_struct = 0;
722 for (i = 0; i < nargs; i++)
724 struct value *arg = args[i];
725 struct type *type = check_typedef (value_type (arg));
726 /* The corresponding parameter that is pushed onto the
727 stack, and [possibly] passed in a register. */
728 gdb_byte param_val[8];
730 memset (param_val, 0, sizeof param_val);
731 if (TYPE_LENGTH (type) > 8)
733 /* Large parameter, pass by reference. Store the value
734 in "struct" area and then pass its address. */
736 struct_ptr += align_up (TYPE_LENGTH (type), 8);
738 write_memory (struct_end - struct_ptr, value_contents (arg),
740 store_unsigned_integer (param_val, 4, byte_order,
741 struct_end - struct_ptr);
743 else if (TYPE_CODE (type) == TYPE_CODE_INT
744 || TYPE_CODE (type) == TYPE_CODE_ENUM)
746 /* Integer value store, right aligned. "unpack_long"
747 takes care of any sign-extension problems. */
748 param_len = align_up (TYPE_LENGTH (type), 4);
749 store_unsigned_integer (param_val, param_len, byte_order,
751 value_contents (arg)));
753 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
755 /* Floating point value store, right aligned. */
756 param_len = align_up (TYPE_LENGTH (type), 4);
757 memcpy (param_val, value_contents (arg), param_len);
761 param_len = align_up (TYPE_LENGTH (type), 4);
763 /* Small struct value are stored right-aligned. */
764 memcpy (param_val + param_len - TYPE_LENGTH (type),
765 value_contents (arg), TYPE_LENGTH (type));
767 /* Structures of size 5, 6 and 7 bytes are special in that
768 the higher-ordered word is stored in the lower-ordered
769 argument, and even though it is a 8-byte quantity the
770 registers need not be 8-byte aligned. */
771 if (param_len > 4 && param_len < 8)
775 param_ptr += param_len;
776 if (param_len == 8 && !small_struct)
777 param_ptr = align_up (param_ptr, 8);
779 /* First 4 non-FP arguments are passed in gr26-gr23.
780 First 4 32-bit FP arguments are passed in fr4L-fr7L.
781 First 2 64-bit FP arguments are passed in fr5 and fr7.
783 The rest go on the stack, starting at sp-36, towards lower
784 addresses. 8-byte arguments must be aligned to a 8-byte
788 write_memory (param_end - param_ptr, param_val, param_len);
790 /* There are some cases when we don't know the type
791 expected by the callee (e.g. for variadic functions), so
792 pass the parameters in both general and fp regs. */
795 int grreg = 26 - (param_ptr - 36) / 4;
796 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
797 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
799 regcache_cooked_write (regcache, grreg, param_val);
800 regcache_cooked_write (regcache, fpLreg, param_val);
804 regcache_cooked_write (regcache, grreg + 1,
807 regcache_cooked_write (regcache, fpreg, param_val);
808 regcache_cooked_write (regcache, fpreg + 1,
815 /* Update the various stack pointers. */
818 struct_end = sp + align_up (struct_ptr, 64);
819 /* PARAM_PTR already accounts for all the arguments passed
820 by the user. However, the ABI mandates minimum stack
821 space allocations for outgoing arguments. The ABI also
822 mandates minimum stack alignments which we must
824 param_end = struct_end + align_up (param_ptr, 64);
828 /* If a structure has to be returned, set up register 28 to hold its
831 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
833 gp = tdep->find_global_pointer (gdbarch, function);
836 regcache_cooked_write_unsigned (regcache, 19, gp);
838 /* Set the return address. */
839 if (!gdbarch_push_dummy_code_p (gdbarch))
840 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
842 /* Update the Stack Pointer. */
843 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
848 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
849 Runtime Architecture for PA-RISC 2.0", which is distributed as part
850 as of the HP-UX Software Transition Kit (STK). This implementation
851 is based on version 3.3, dated October 6, 1997. */
853 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
856 hppa64_integral_or_pointer_p (const struct type *type)
858 switch (TYPE_CODE (type))
864 case TYPE_CODE_RANGE:
866 int len = TYPE_LENGTH (type);
867 return (len == 1 || len == 2 || len == 4 || len == 8);
871 return (TYPE_LENGTH (type) == 8);
879 /* Check whether TYPE is a "Floating Scalar Type". */
882 hppa64_floating_p (const struct type *type)
884 switch (TYPE_CODE (type))
888 int len = TYPE_LENGTH (type);
889 return (len == 4 || len == 8 || len == 16);
898 /* If CODE points to a function entry address, try to look up the corresponding
899 function descriptor and return its address instead. If CODE is not a
900 function entry address, then just return it unchanged. */
902 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
905 struct obj_section *sec, *opd;
907 sec = find_pc_section (code);
912 /* If CODE is in a data section, assume it's already a fptr. */
913 if (!(sec->the_bfd_section->flags & SEC_CODE))
916 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
918 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
922 if (opd < sec->objfile->sections_end)
926 for (addr = obj_section_addr (opd);
927 addr < obj_section_endaddr (opd);
933 if (target_read_memory (addr, tmp, sizeof (tmp)))
935 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
946 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
947 struct regcache *regcache, CORE_ADDR bp_addr,
948 int nargs, struct value **args, CORE_ADDR sp,
949 int struct_return, CORE_ADDR struct_addr)
951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
952 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
956 /* "The outgoing parameter area [...] must be aligned at a 16-byte
958 sp = align_up (sp, 16);
960 for (i = 0; i < nargs; i++)
962 struct value *arg = args[i];
963 struct type *type = value_type (arg);
964 int len = TYPE_LENGTH (type);
965 const bfd_byte *valbuf;
969 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
970 offset = align_up (offset, 8);
972 if (hppa64_integral_or_pointer_p (type))
974 /* "Integral scalar parameters smaller than 64 bits are
975 padded on the left (i.e., the value is in the
976 least-significant bits of the 64-bit storage unit, and
977 the high-order bits are undefined)." Therefore we can
978 safely sign-extend them. */
981 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
985 else if (hppa64_floating_p (type))
989 /* "Quad-precision (128-bit) floating-point scalar
990 parameters are aligned on a 16-byte boundary." */
991 offset = align_up (offset, 16);
993 /* "Double-extended- and quad-precision floating-point
994 parameters within the first 64 bytes of the parameter
995 list are always passed in general registers." */
1001 /* "Single-precision (32-bit) floating-point scalar
1002 parameters are padded on the left with 32 bits of
1003 garbage (i.e., the floating-point value is in the
1004 least-significant 32 bits of a 64-bit storage
1009 /* "Single- and double-precision floating-point
1010 parameters in this area are passed according to the
1011 available formal parameter information in a function
1012 prototype. [...] If no prototype is in scope,
1013 floating-point parameters must be passed both in the
1014 corresponding general registers and in the
1015 corresponding floating-point registers." */
1016 regnum = HPPA64_FP4_REGNUM + offset / 8;
1018 if (regnum < HPPA64_FP4_REGNUM + 8)
1020 /* "Single-precision floating-point parameters, when
1021 passed in floating-point registers, are passed in
1022 the right halves of the floating point registers;
1023 the left halves are unused." */
1024 regcache_cooked_write_part (regcache, regnum, offset % 8,
1025 len, value_contents (arg));
1033 /* "Aggregates larger than 8 bytes are aligned on a
1034 16-byte boundary, possibly leaving an unused argument
1035 slot, which is filled with garbage. If necessary,
1036 they are padded on the right (with garbage), to a
1037 multiple of 8 bytes." */
1038 offset = align_up (offset, 16);
1042 /* If we are passing a function pointer, make sure we pass a function
1043 descriptor instead of the function entry address. */
1044 if (TYPE_CODE (type) == TYPE_CODE_PTR
1045 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1047 ULONGEST codeptr, fptr;
1049 codeptr = unpack_long (type, value_contents (arg));
1050 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1051 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1057 valbuf = value_contents (arg);
1060 /* Always store the argument in memory. */
1061 write_memory (sp + offset, valbuf, len);
1063 regnum = HPPA_ARG0_REGNUM - offset / 8;
1064 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1066 regcache_cooked_write_part (regcache, regnum,
1067 offset % 8, min (len, 8), valbuf);
1068 offset += min (len, 8);
1069 valbuf += min (len, 8);
1070 len -= min (len, 8);
1077 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1078 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1080 /* Allocate the outgoing parameter area. Make sure the outgoing
1081 parameter area is multiple of 16 bytes in length. */
1082 sp += max (align_up (offset, 16), 64);
1084 /* Allocate 32-bytes of scratch space. The documentation doesn't
1085 mention this, but it seems to be needed. */
1088 /* Allocate the frame marker area. */
1091 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1094 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1096 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1097 gp = tdep->find_global_pointer (gdbarch, function);
1099 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1101 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1102 if (!gdbarch_push_dummy_code_p (gdbarch))
1103 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1105 /* Set up GR30 to hold the stack pointer (sp). */
1106 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1112 /* Handle 32/64-bit struct return conventions. */
1114 static enum return_value_convention
1115 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1116 struct type *type, struct regcache *regcache,
1117 gdb_byte *readbuf, const gdb_byte *writebuf)
1119 if (TYPE_LENGTH (type) <= 2 * 4)
1121 /* The value always lives in the right hand end of the register
1122 (or register pair)? */
1124 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1125 int part = TYPE_LENGTH (type) % 4;
1126 /* The left hand register contains only part of the value,
1127 transfer that first so that the rest can be xfered as entire
1128 4-byte registers. */
1131 if (readbuf != NULL)
1132 regcache_cooked_read_part (regcache, reg, 4 - part,
1134 if (writebuf != NULL)
1135 regcache_cooked_write_part (regcache, reg, 4 - part,
1139 /* Now transfer the remaining register values. */
1140 for (b = part; b < TYPE_LENGTH (type); b += 4)
1142 if (readbuf != NULL)
1143 regcache_cooked_read (regcache, reg, readbuf + b);
1144 if (writebuf != NULL)
1145 regcache_cooked_write (regcache, reg, writebuf + b);
1148 return RETURN_VALUE_REGISTER_CONVENTION;
1151 return RETURN_VALUE_STRUCT_CONVENTION;
1154 static enum return_value_convention
1155 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1156 struct type *type, struct regcache *regcache,
1157 gdb_byte *readbuf, const gdb_byte *writebuf)
1159 int len = TYPE_LENGTH (type);
1164 /* All return values larget than 128 bits must be aggregate
1166 gdb_assert (!hppa64_integral_or_pointer_p (type));
1167 gdb_assert (!hppa64_floating_p (type));
1169 /* "Aggregate return values larger than 128 bits are returned in
1170 a buffer allocated by the caller. The address of the buffer
1171 must be passed in GR 28." */
1172 return RETURN_VALUE_STRUCT_CONVENTION;
1175 if (hppa64_integral_or_pointer_p (type))
1177 /* "Integral return values are returned in GR 28. Values
1178 smaller than 64 bits are padded on the left (with garbage)." */
1179 regnum = HPPA_RET0_REGNUM;
1182 else if (hppa64_floating_p (type))
1186 /* "Double-extended- and quad-precision floating-point
1187 values are returned in GRs 28 and 29. The sign,
1188 exponent, and most-significant bits of the mantissa are
1189 returned in GR 28; the least-significant bits of the
1190 mantissa are passed in GR 29. For double-extended
1191 precision values, GR 29 is padded on the right with 48
1192 bits of garbage." */
1193 regnum = HPPA_RET0_REGNUM;
1198 /* "Single-precision and double-precision floating-point
1199 return values are returned in FR 4R (single precision) or
1200 FR 4 (double-precision)." */
1201 regnum = HPPA64_FP4_REGNUM;
1207 /* "Aggregate return values up to 64 bits in size are returned
1208 in GR 28. Aggregates smaller than 64 bits are left aligned
1209 in the register; the pad bits on the right are undefined."
1211 "Aggregate return values between 65 and 128 bits are returned
1212 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1213 the remaining bits are placed, left aligned, in GR 29. The
1214 pad bits on the right of GR 29 (if any) are undefined." */
1215 regnum = HPPA_RET0_REGNUM;
1223 regcache_cooked_read_part (regcache, regnum, offset,
1224 min (len, 8), readbuf);
1225 readbuf += min (len, 8);
1226 len -= min (len, 8);
1235 regcache_cooked_write_part (regcache, regnum, offset,
1236 min (len, 8), writebuf);
1237 writebuf += min (len, 8);
1238 len -= min (len, 8);
1243 return RETURN_VALUE_REGISTER_CONVENTION;
1248 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1249 struct target_ops *targ)
1253 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1254 CORE_ADDR plabel = addr & ~3;
1255 return read_memory_typed_address (plabel, func_ptr_type);
1262 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1264 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1266 return align_up (addr, 64);
1269 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1272 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1274 /* Just always 16-byte align. */
1275 return align_up (addr, 16);
1279 hppa_read_pc (struct regcache *regcache)
1284 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1285 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1287 /* If the current instruction is nullified, then we are effectively
1288 still executing the previous instruction. Pretend we are still
1289 there. This is needed when single stepping; if the nullified
1290 instruction is on a different line, we don't want GDB to think
1291 we've stepped onto that line. */
1292 if (ipsw & 0x00200000)
1299 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1301 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1302 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1305 /* For the given instruction (INST), return any adjustment it makes
1306 to the stack pointer or zero for no adjustment.
1308 This only handles instructions commonly found in prologues. */
1311 prologue_inst_adjust_sp (unsigned long inst)
1313 /* This must persist across calls. */
1314 static int save_high21;
1316 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1317 if ((inst & 0xffffc000) == 0x37de0000)
1318 return hppa_extract_14 (inst);
1321 if ((inst & 0xffe00000) == 0x6fc00000)
1322 return hppa_extract_14 (inst);
1324 /* std,ma X,D(sp) */
1325 if ((inst & 0xffe00008) == 0x73c00008)
1326 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1328 /* addil high21,%r30; ldo low11,(%r1),%r30)
1329 save high bits in save_high21 for later use. */
1330 if ((inst & 0xffe00000) == 0x2bc00000)
1332 save_high21 = hppa_extract_21 (inst);
1336 if ((inst & 0xffff0000) == 0x343e0000)
1337 return save_high21 + hppa_extract_14 (inst);
1339 /* fstws as used by the HP compilers. */
1340 if ((inst & 0xffffffe0) == 0x2fd01220)
1341 return hppa_extract_5_load (inst);
1343 /* No adjustment. */
1347 /* Return nonzero if INST is a branch of some kind, else return zero. */
1350 is_branch (unsigned long inst)
1379 /* Return the register number for a GR which is saved by INST or
1380 zero it INST does not save a GR. */
1383 inst_saves_gr (unsigned long inst)
1385 /* Does it look like a stw? */
1386 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1387 || (inst >> 26) == 0x1f
1388 || ((inst >> 26) == 0x1f
1389 && ((inst >> 6) == 0xa)))
1390 return hppa_extract_5R_store (inst);
1392 /* Does it look like a std? */
1393 if ((inst >> 26) == 0x1c
1394 || ((inst >> 26) == 0x03
1395 && ((inst >> 6) & 0xf) == 0xb))
1396 return hppa_extract_5R_store (inst);
1398 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1399 if ((inst >> 26) == 0x1b)
1400 return hppa_extract_5R_store (inst);
1402 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1404 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1405 || ((inst >> 26) == 0x3
1406 && (((inst >> 6) & 0xf) == 0x8
1407 || (inst >> 6) & 0xf) == 0x9))
1408 return hppa_extract_5R_store (inst);
1413 /* Return the register number for a FR which is saved by INST or
1414 zero it INST does not save a FR.
1416 Note we only care about full 64bit register stores (that's the only
1417 kind of stores the prologue will use).
1419 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1422 inst_saves_fr (unsigned long inst)
1424 /* Is this an FSTD? */
1425 if ((inst & 0xfc00dfc0) == 0x2c001200)
1426 return hppa_extract_5r_store (inst);
1427 if ((inst & 0xfc000002) == 0x70000002)
1428 return hppa_extract_5R_store (inst);
1429 /* Is this an FSTW? */
1430 if ((inst & 0xfc00df80) == 0x24001200)
1431 return hppa_extract_5r_store (inst);
1432 if ((inst & 0xfc000002) == 0x7c000000)
1433 return hppa_extract_5R_store (inst);
1437 /* Advance PC across any function entry prologue instructions
1438 to reach some "real" code.
1440 Use information in the unwind table to determine what exactly should
1441 be in the prologue. */
1445 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1446 int stop_before_branch)
1448 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1450 CORE_ADDR orig_pc = pc;
1451 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1452 unsigned long args_stored, status, i, restart_gr, restart_fr;
1453 struct unwind_table_entry *u;
1454 int final_iteration;
1460 u = find_unwind_entry (pc);
1464 /* If we are not at the beginning of a function, then return now. */
1465 if ((pc & ~0x3) != u->region_start)
1468 /* This is how much of a frame adjustment we need to account for. */
1469 stack_remaining = u->Total_frame_size << 3;
1471 /* Magic register saves we want to know about. */
1472 save_rp = u->Save_RP;
1473 save_sp = u->Save_SP;
1475 /* An indication that args may be stored into the stack. Unfortunately
1476 the HPUX compilers tend to set this in cases where no args were
1480 /* Turn the Entry_GR field into a bitmask. */
1482 for (i = 3; i < u->Entry_GR + 3; i++)
1484 /* Frame pointer gets saved into a special location. */
1485 if (u->Save_SP && i == HPPA_FP_REGNUM)
1488 save_gr |= (1 << i);
1490 save_gr &= ~restart_gr;
1492 /* Turn the Entry_FR field into a bitmask too. */
1494 for (i = 12; i < u->Entry_FR + 12; i++)
1495 save_fr |= (1 << i);
1496 save_fr &= ~restart_fr;
1498 final_iteration = 0;
1500 /* Loop until we find everything of interest or hit a branch.
1502 For unoptimized GCC code and for any HP CC code this will never ever
1503 examine any user instructions.
1505 For optimzied GCC code we're faced with problems. GCC will schedule
1506 its prologue and make prologue instructions available for delay slot
1507 filling. The end result is user code gets mixed in with the prologue
1508 and a prologue instruction may be in the delay slot of the first branch
1511 Some unexpected things are expected with debugging optimized code, so
1512 we allow this routine to walk past user instructions in optimized
1514 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1517 unsigned int reg_num;
1518 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1519 unsigned long old_save_rp, old_save_sp, next_inst;
1521 /* Save copies of all the triggers so we can compare them later
1523 old_save_gr = save_gr;
1524 old_save_fr = save_fr;
1525 old_save_rp = save_rp;
1526 old_save_sp = save_sp;
1527 old_stack_remaining = stack_remaining;
1529 status = target_read_memory (pc, buf, 4);
1530 inst = extract_unsigned_integer (buf, 4, byte_order);
1536 /* Note the interesting effects of this instruction. */
1537 stack_remaining -= prologue_inst_adjust_sp (inst);
1539 /* There are limited ways to store the return pointer into the
1541 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1544 /* These are the only ways we save SP into the stack. At this time
1545 the HP compilers never bother to save SP into the stack. */
1546 if ((inst & 0xffffc000) == 0x6fc10000
1547 || (inst & 0xffffc00c) == 0x73c10008)
1550 /* Are we loading some register with an offset from the argument
1552 if ((inst & 0xffe00000) == 0x37a00000
1553 || (inst & 0xffffffe0) == 0x081d0240)
1559 /* Account for general and floating-point register saves. */
1560 reg_num = inst_saves_gr (inst);
1561 save_gr &= ~(1 << reg_num);
1563 /* Ugh. Also account for argument stores into the stack.
1564 Unfortunately args_stored only tells us that some arguments
1565 where stored into the stack. Not how many or what kind!
1567 This is a kludge as on the HP compiler sets this bit and it
1568 never does prologue scheduling. So once we see one, skip past
1569 all of them. We have similar code for the fp arg stores below.
1571 FIXME. Can still die if we have a mix of GR and FR argument
1573 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1576 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1580 status = target_read_memory (pc, buf, 4);
1581 inst = extract_unsigned_integer (buf, 4, byte_order);
1584 reg_num = inst_saves_gr (inst);
1590 reg_num = inst_saves_fr (inst);
1591 save_fr &= ~(1 << reg_num);
1593 status = target_read_memory (pc + 4, buf, 4);
1594 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1600 /* We've got to be read to handle the ldo before the fp register
1602 if ((inst & 0xfc000000) == 0x34000000
1603 && inst_saves_fr (next_inst) >= 4
1604 && inst_saves_fr (next_inst)
1605 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1607 /* So we drop into the code below in a reasonable state. */
1608 reg_num = inst_saves_fr (next_inst);
1612 /* Ugh. Also account for argument stores into the stack.
1613 This is a kludge as on the HP compiler sets this bit and it
1614 never does prologue scheduling. So once we see one, skip past
1617 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1621 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1624 status = target_read_memory (pc, buf, 4);
1625 inst = extract_unsigned_integer (buf, 4, byte_order);
1628 if ((inst & 0xfc000000) != 0x34000000)
1630 status = target_read_memory (pc + 4, buf, 4);
1631 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1634 reg_num = inst_saves_fr (next_inst);
1640 /* Quit if we hit any kind of branch. This can happen if a prologue
1641 instruction is in the delay slot of the first call/branch. */
1642 if (is_branch (inst) && stop_before_branch)
1645 /* What a crock. The HP compilers set args_stored even if no
1646 arguments were stored into the stack (boo hiss). This could
1647 cause this code to then skip a bunch of user insns (up to the
1650 To combat this we try to identify when args_stored was bogusly
1651 set and clear it. We only do this when args_stored is nonzero,
1652 all other resources are accounted for, and nothing changed on
1655 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1656 && old_save_gr == save_gr && old_save_fr == save_fr
1657 && old_save_rp == save_rp && old_save_sp == save_sp
1658 && old_stack_remaining == stack_remaining)
1664 /* !stop_before_branch, so also look at the insn in the delay slot
1666 if (final_iteration)
1668 if (is_branch (inst))
1669 final_iteration = 1;
1672 /* We've got a tenative location for the end of the prologue. However
1673 because of limitations in the unwind descriptor mechanism we may
1674 have went too far into user code looking for the save of a register
1675 that does not exist. So, if there registers we expected to be saved
1676 but never were, mask them out and restart.
1678 This should only happen in optimized code, and should be very rare. */
1679 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1682 restart_gr = save_gr;
1683 restart_fr = save_fr;
1691 /* Return the address of the PC after the last prologue instruction if
1692 we can determine it from the debug symbols. Else return zero. */
1695 after_prologue (CORE_ADDR pc)
1697 struct symtab_and_line sal;
1698 CORE_ADDR func_addr, func_end;
1700 /* If we can not find the symbol in the partial symbol table, then
1701 there is no hope we can determine the function's start address
1703 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1706 /* Get the line associated with FUNC_ADDR. */
1707 sal = find_pc_line (func_addr, 0);
1709 /* There are only two cases to consider. First, the end of the source line
1710 is within the function bounds. In that case we return the end of the
1711 source line. Second is the end of the source line extends beyond the
1712 bounds of the current function. We need to use the slow code to
1713 examine instructions in that case.
1715 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1716 the wrong thing to do. In fact, it should be entirely possible for this
1717 function to always return zero since the slow instruction scanning code
1718 is supposed to *always* work. If it does not, then it is a bug. */
1719 if (sal.end < func_end)
1725 /* To skip prologues, I use this predicate. Returns either PC itself
1726 if the code at PC does not look like a function prologue; otherwise
1727 returns an address that (if we're lucky) follows the prologue.
1729 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1730 It doesn't necessarily skips all the insns in the prologue. In fact
1731 we might not want to skip all the insns because a prologue insn may
1732 appear in the delay slot of the first branch, and we don't want to
1733 skip over the branch in that case. */
1736 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1738 CORE_ADDR post_prologue_pc;
1740 /* See if we can determine the end of the prologue via the symbol table.
1741 If so, then return either PC, or the PC after the prologue, whichever
1744 post_prologue_pc = after_prologue (pc);
1746 /* If after_prologue returned a useful address, then use it. Else
1747 fall back on the instruction skipping code.
1749 Some folks have claimed this causes problems because the breakpoint
1750 may be the first instruction of the prologue. If that happens, then
1751 the instruction skipping code has a bug that needs to be fixed. */
1752 if (post_prologue_pc != 0)
1753 return max (pc, post_prologue_pc);
1755 return (skip_prologue_hard_way (gdbarch, pc, 1));
1758 /* Return an unwind entry that falls within the frame's code block. */
1760 static struct unwind_table_entry *
1761 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1763 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1765 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1766 result of get_frame_address_in_block implies a problem.
1767 The bits should have been removed earlier, before the return
1768 value of gdbarch_unwind_pc. That might be happening already;
1769 if it isn't, it should be fixed. Then this call can be
1771 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1772 return find_unwind_entry (pc);
1775 struct hppa_frame_cache
1778 struct trad_frame_saved_reg *saved_regs;
1781 static struct hppa_frame_cache *
1782 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1784 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1786 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1787 struct hppa_frame_cache *cache;
1791 struct unwind_table_entry *u;
1792 CORE_ADDR prologue_end;
1797 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1798 frame_relative_level(this_frame));
1800 if ((*this_cache) != NULL)
1803 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1804 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1805 return (*this_cache);
1807 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1808 (*this_cache) = cache;
1809 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1812 u = hppa_find_unwind_entry_in_block (this_frame);
1816 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1817 return (*this_cache);
1820 /* Turn the Entry_GR field into a bitmask. */
1822 for (i = 3; i < u->Entry_GR + 3; i++)
1824 /* Frame pointer gets saved into a special location. */
1825 if (u->Save_SP && i == HPPA_FP_REGNUM)
1828 saved_gr_mask |= (1 << i);
1831 /* Turn the Entry_FR field into a bitmask too. */
1833 for (i = 12; i < u->Entry_FR + 12; i++)
1834 saved_fr_mask |= (1 << i);
1836 /* Loop until we find everything of interest or hit a branch.
1838 For unoptimized GCC code and for any HP CC code this will never ever
1839 examine any user instructions.
1841 For optimized GCC code we're faced with problems. GCC will schedule
1842 its prologue and make prologue instructions available for delay slot
1843 filling. The end result is user code gets mixed in with the prologue
1844 and a prologue instruction may be in the delay slot of the first branch
1847 Some unexpected things are expected with debugging optimized code, so
1848 we allow this routine to walk past user instructions in optimized
1851 int final_iteration = 0;
1852 CORE_ADDR pc, start_pc, end_pc;
1853 int looking_for_sp = u->Save_SP;
1854 int looking_for_rp = u->Save_RP;
1857 /* We have to use skip_prologue_hard_way instead of just
1858 skip_prologue_using_sal, in case we stepped into a function without
1859 symbol information. hppa_skip_prologue also bounds the returned
1860 pc by the passed in pc, so it will not return a pc in the next
1863 We used to call hppa_skip_prologue to find the end of the prologue,
1864 but if some non-prologue instructions get scheduled into the prologue,
1865 and the program is compiled with debug information, the "easy" way
1866 in hppa_skip_prologue will return a prologue end that is too early
1867 for us to notice any potential frame adjustments. */
1869 /* We used to use get_frame_func to locate the beginning of the
1870 function to pass to skip_prologue. However, when objects are
1871 compiled without debug symbols, get_frame_func can return the wrong
1872 function (or 0). We can do better than that by using unwind records.
1873 This only works if the Region_description of the unwind record
1874 indicates that it includes the entry point of the function.
1875 HP compilers sometimes generate unwind records for regions that
1876 do not include the entry or exit point of a function. GNU tools
1879 if ((u->Region_description & 0x2) == 0)
1880 start_pc = u->region_start;
1882 start_pc = get_frame_func (this_frame);
1884 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1885 end_pc = get_frame_pc (this_frame);
1887 if (prologue_end != 0 && end_pc > prologue_end)
1888 end_pc = prologue_end;
1893 ((saved_gr_mask || saved_fr_mask
1894 || looking_for_sp || looking_for_rp
1895 || frame_size < (u->Total_frame_size << 3))
1903 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1905 error (_("Cannot read instruction at %s."),
1906 paddress (gdbarch, pc));
1907 return (*this_cache);
1910 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
1912 /* Note the interesting effects of this instruction. */
1913 frame_size += prologue_inst_adjust_sp (inst);
1915 /* There are limited ways to store the return pointer into the
1917 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1920 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1922 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1925 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1927 else if (inst == 0x0fc212c1
1928 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1931 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1934 /* Check to see if we saved SP into the stack. This also
1935 happens to indicate the location of the saved frame
1937 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1938 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1941 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1943 else if (inst == 0x08030241) /* copy %r3, %r1 */
1948 /* Account for general and floating-point register saves. */
1949 reg = inst_saves_gr (inst);
1950 if (reg >= 3 && reg <= 18
1951 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1953 saved_gr_mask &= ~(1 << reg);
1954 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1955 /* stwm with a positive displacement is a _post_
1957 cache->saved_regs[reg].addr = 0;
1958 else if ((inst & 0xfc00000c) == 0x70000008)
1959 /* A std has explicit post_modify forms. */
1960 cache->saved_regs[reg].addr = 0;
1965 if ((inst >> 26) == 0x1c)
1966 offset = (inst & 0x1 ? -1 << 13 : 0)
1967 | (((inst >> 4) & 0x3ff) << 3);
1968 else if ((inst >> 26) == 0x03)
1969 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1971 offset = hppa_extract_14 (inst);
1973 /* Handle code with and without frame pointers. */
1975 cache->saved_regs[reg].addr = offset;
1977 cache->saved_regs[reg].addr
1978 = (u->Total_frame_size << 3) + offset;
1982 /* GCC handles callee saved FP regs a little differently.
1984 It emits an instruction to put the value of the start of
1985 the FP store area into %r1. It then uses fstds,ma with a
1986 basereg of %r1 for the stores.
1988 HP CC emits them at the current stack pointer modifying the
1989 stack pointer as it stores each register. */
1991 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1992 if ((inst & 0xffffc000) == 0x34610000
1993 || (inst & 0xffffc000) == 0x37c10000)
1994 fp_loc = hppa_extract_14 (inst);
1996 reg = inst_saves_fr (inst);
1997 if (reg >= 12 && reg <= 21)
1999 /* Note +4 braindamage below is necessary because the FP
2000 status registers are internally 8 registers rather than
2001 the expected 4 registers. */
2002 saved_fr_mask &= ~(1 << reg);
2005 /* 1st HP CC FP register store. After this
2006 instruction we've set enough state that the GCC and
2007 HPCC code are both handled in the same manner. */
2008 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2013 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2018 /* Quit if we hit any kind of branch the previous iteration. */
2019 if (final_iteration)
2021 /* We want to look precisely one instruction beyond the branch
2022 if we have not found everything yet. */
2023 if (is_branch (inst))
2024 final_iteration = 1;
2029 /* The frame base always represents the value of %sp at entry to
2030 the current function (and is thus equivalent to the "saved"
2032 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2037 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2038 "prologue_end=%s) ",
2039 paddress (gdbarch, this_sp),
2040 paddress (gdbarch, get_frame_pc (this_frame)),
2041 paddress (gdbarch, prologue_end));
2043 /* Check to see if a frame pointer is available, and use it for
2044 frame unwinding if it is.
2046 There are some situations where we need to rely on the frame
2047 pointer to do stack unwinding. For example, if a function calls
2048 alloca (), the stack pointer can get adjusted inside the body of
2049 the function. In this case, the ABI requires that the compiler
2050 maintain a frame pointer for the function.
2052 The unwind record has a flag (alloca_frame) that indicates that
2053 a function has a variable frame; unfortunately, gcc/binutils
2054 does not set this flag. Instead, whenever a frame pointer is used
2055 and saved on the stack, the Save_SP flag is set. We use this to
2056 decide whether to use the frame pointer for unwinding.
2058 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2059 instead of Save_SP. */
2061 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2063 if (u->alloca_frame)
2064 fp -= u->Total_frame_size << 3;
2066 if (get_frame_pc (this_frame) >= prologue_end
2067 && (u->Save_SP || u->alloca_frame) && fp != 0)
2072 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2073 paddress (gdbarch, cache->base));
2076 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2078 /* Both we're expecting the SP to be saved and the SP has been
2079 saved. The entry SP value is saved at this frame's SP
2081 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2084 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2085 paddress (gdbarch, cache->base));
2089 /* The prologue has been slowly allocating stack space. Adjust
2091 cache->base = this_sp - frame_size;
2093 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2094 paddress (gdbarch, cache->base));
2097 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2100 /* The PC is found in the "return register", "Millicode" uses "r31"
2101 as the return register while normal code uses "rp". */
2104 if (trad_frame_addr_p (cache->saved_regs, 31))
2106 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2108 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2112 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2113 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2115 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2120 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2122 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2123 cache->saved_regs[HPPA_RP_REGNUM];
2125 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2129 ULONGEST rp = get_frame_register_unsigned (this_frame,
2131 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2133 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2137 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2138 frame. However, there is a one-insn window where we haven't saved it
2139 yet, but we've already clobbered it. Detect this case and fix it up.
2141 The prologue sequence for frame-pointer functions is:
2142 0: stw %rp, -20(%sp)
2145 c: stw,ma %r1, XX(%sp)
2147 So if we are at offset c, the r3 value that we want is not yet saved
2148 on the stack, but it's been overwritten. The prologue analyzer will
2149 set fp_in_r1 when it sees the copy insn so we know to get the value
2151 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2154 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2155 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2159 /* Convert all the offsets into addresses. */
2161 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2163 if (trad_frame_addr_p (cache->saved_regs, reg))
2164 cache->saved_regs[reg].addr += cache->base;
2169 struct gdbarch_tdep *tdep;
2171 tdep = gdbarch_tdep (gdbarch);
2173 if (tdep->unwind_adjust_stub)
2174 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2178 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2179 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2180 return (*this_cache);
2184 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2185 struct frame_id *this_id)
2187 struct hppa_frame_cache *info;
2188 CORE_ADDR pc = get_frame_pc (this_frame);
2189 struct unwind_table_entry *u;
2191 info = hppa_frame_cache (this_frame, this_cache);
2192 u = hppa_find_unwind_entry_in_block (this_frame);
2194 (*this_id) = frame_id_build (info->base, u->region_start);
2197 static struct value *
2198 hppa_frame_prev_register (struct frame_info *this_frame,
2199 void **this_cache, int regnum)
2201 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2203 return hppa_frame_prev_register_helper (this_frame,
2204 info->saved_regs, regnum);
2208 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2209 struct frame_info *this_frame, void **this_cache)
2211 if (hppa_find_unwind_entry_in_block (this_frame))
2217 static const struct frame_unwind hppa_frame_unwind =
2220 default_frame_unwind_stop_reason,
2222 hppa_frame_prev_register,
2224 hppa_frame_unwind_sniffer
2227 /* This is a generic fallback frame unwinder that kicks in if we fail all
2228 the other ones. Normally we would expect the stub and regular unwinder
2229 to work, but in some cases we might hit a function that just doesn't
2230 have any unwind information available. In this case we try to do
2231 unwinding solely based on code reading. This is obviously going to be
2232 slow, so only use this as a last resort. Currently this will only
2233 identify the stack and pc for the frame. */
2235 static struct hppa_frame_cache *
2236 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2238 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2239 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2240 struct hppa_frame_cache *cache;
2241 unsigned int frame_size = 0;
2246 fprintf_unfiltered (gdb_stdlog,
2247 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2248 frame_relative_level (this_frame));
2250 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2251 (*this_cache) = cache;
2252 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2254 start_pc = get_frame_func (this_frame);
2257 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2260 for (pc = start_pc; pc < cur_pc; pc += 4)
2264 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2265 frame_size += prologue_inst_adjust_sp (insn);
2267 /* There are limited ways to store the return pointer into the
2269 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2271 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2274 else if (insn == 0x0fc212c1
2275 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2277 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2284 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2285 frame_size, found_rp);
2287 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2288 cache->base -= frame_size;
2289 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2291 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2293 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2294 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2295 cache->saved_regs[HPPA_RP_REGNUM];
2300 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2301 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2308 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2309 struct frame_id *this_id)
2311 struct hppa_frame_cache *info =
2312 hppa_fallback_frame_cache (this_frame, this_cache);
2314 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2317 static struct value *
2318 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2319 void **this_cache, int regnum)
2321 struct hppa_frame_cache *info
2322 = hppa_fallback_frame_cache (this_frame, this_cache);
2324 return hppa_frame_prev_register_helper (this_frame,
2325 info->saved_regs, regnum);
2328 static const struct frame_unwind hppa_fallback_frame_unwind =
2331 default_frame_unwind_stop_reason,
2332 hppa_fallback_frame_this_id,
2333 hppa_fallback_frame_prev_register,
2335 default_frame_sniffer
2338 /* Stub frames, used for all kinds of call stubs. */
2339 struct hppa_stub_unwind_cache
2342 struct trad_frame_saved_reg *saved_regs;
2345 static struct hppa_stub_unwind_cache *
2346 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2349 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2350 struct hppa_stub_unwind_cache *info;
2351 struct unwind_table_entry *u;
2356 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2358 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2360 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2362 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2364 /* HPUX uses export stubs in function calls; the export stub clobbers
2365 the return value of the caller, and, later restores it from the
2367 u = find_unwind_entry (get_frame_pc (this_frame));
2369 if (u && u->stub_unwind.stub_type == EXPORT)
2371 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2377 /* By default we assume that stubs do not change the rp. */
2378 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2384 hppa_stub_frame_this_id (struct frame_info *this_frame,
2385 void **this_prologue_cache,
2386 struct frame_id *this_id)
2388 struct hppa_stub_unwind_cache *info
2389 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2392 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2395 static struct value *
2396 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2397 void **this_prologue_cache, int regnum)
2399 struct hppa_stub_unwind_cache *info
2400 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2403 error (_("Requesting registers from null frame."));
2405 return hppa_frame_prev_register_helper (this_frame,
2406 info->saved_regs, regnum);
2410 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2411 struct frame_info *this_frame,
2414 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2415 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2419 || (tdep->in_solib_call_trampoline != NULL
2420 && tdep->in_solib_call_trampoline (gdbarch, pc))
2421 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2426 static const struct frame_unwind hppa_stub_frame_unwind = {
2428 default_frame_unwind_stop_reason,
2429 hppa_stub_frame_this_id,
2430 hppa_stub_frame_prev_register,
2432 hppa_stub_unwind_sniffer
2435 static struct frame_id
2436 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2438 return frame_id_build (get_frame_register_unsigned (this_frame,
2440 get_frame_pc (this_frame));
2444 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2449 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2450 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2452 /* If the current instruction is nullified, then we are effectively
2453 still executing the previous instruction. Pretend we are still
2454 there. This is needed when single stepping; if the nullified
2455 instruction is on a different line, we don't want GDB to think
2456 we've stepped onto that line. */
2457 if (ipsw & 0x00200000)
2463 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2464 Return NULL if no such symbol was found. */
2466 struct bound_minimal_symbol
2467 hppa_lookup_stub_minimal_symbol (const char *name,
2468 enum unwind_stub_types stub_type)
2470 struct objfile *objfile;
2471 struct minimal_symbol *msym;
2472 struct bound_minimal_symbol result = { NULL, NULL };
2474 ALL_MSYMBOLS (objfile, msym)
2476 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2478 struct unwind_table_entry *u;
2480 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2481 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2483 result.objfile = objfile;
2484 result.minsym = msym;
2494 unwind_command (char *exp, int from_tty)
2497 struct unwind_table_entry *u;
2499 /* If we have an expression, evaluate it and use it as the address. */
2501 if (exp != 0 && *exp != 0)
2502 address = parse_and_eval_address (exp);
2506 u = find_unwind_entry (address);
2510 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2514 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2516 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2517 gdb_flush (gdb_stdout);
2519 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2520 gdb_flush (gdb_stdout);
2522 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2524 printf_unfiltered ("\n\tflags =");
2525 pif (Cannot_unwind);
2527 pif (Millicode_save_sr0);
2530 pif (Variable_Frame);
2531 pif (Separate_Package_Body);
2532 pif (Frame_Extension_Millicode);
2533 pif (Stack_Overflow_Check);
2534 pif (Two_Instruction_SP_Increment);
2537 pif (cxx_try_catch);
2538 pif (sched_entry_seq);
2541 pif (Save_MRP_in_frame);
2543 pif (Cleanup_defined);
2544 pif (MPE_XL_interrupt_marker);
2545 pif (HP_UX_interrupt_marker);
2549 putchar_unfiltered ('\n');
2551 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2553 pin (Region_description);
2556 pin (Total_frame_size);
2558 if (u->stub_unwind.stub_type)
2560 printf_unfiltered ("\tstub type = ");
2561 switch (u->stub_unwind.stub_type)
2564 printf_unfiltered ("long branch\n");
2566 case PARAMETER_RELOCATION:
2567 printf_unfiltered ("parameter relocation\n");
2570 printf_unfiltered ("export\n");
2573 printf_unfiltered ("import\n");
2576 printf_unfiltered ("import shlib\n");
2579 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2584 /* Return the GDB type object for the "standard" data type of data in
2587 static struct type *
2588 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2590 if (regnum < HPPA_FP4_REGNUM)
2591 return builtin_type (gdbarch)->builtin_uint32;
2593 return builtin_type (gdbarch)->builtin_float;
2596 static struct type *
2597 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2599 if (regnum < HPPA64_FP4_REGNUM)
2600 return builtin_type (gdbarch)->builtin_uint64;
2602 return builtin_type (gdbarch)->builtin_double;
2605 /* Return non-zero if REGNUM is not a register available to the user
2606 through ptrace/ttrace. */
2609 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2612 || regnum == HPPA_PCSQ_HEAD_REGNUM
2613 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2614 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2618 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2620 /* cr26 and cr27 are readable (but not writable) from userspace. */
2621 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2624 return hppa32_cannot_store_register (gdbarch, regnum);
2628 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2631 || regnum == HPPA_PCSQ_HEAD_REGNUM
2632 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2633 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2637 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2639 /* cr26 and cr27 are readable (but not writable) from userspace. */
2640 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2643 return hppa64_cannot_store_register (gdbarch, regnum);
2647 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2649 /* The low two bits of the PC on the PA contain the privilege level.
2650 Some genius implementing a (non-GCC) compiler apparently decided
2651 this means that "addresses" in a text section therefore include a
2652 privilege level, and thus symbol tables should contain these bits.
2653 This seems like a bonehead thing to do--anyway, it seems to work
2654 for our purposes to just ignore those bits. */
2656 return (addr &= ~0x3);
2659 /* Get the ARGIth function argument for the current function. */
2662 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2665 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2668 static enum register_status
2669 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2670 int regnum, gdb_byte *buf)
2672 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2674 enum register_status status;
2676 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2677 if (status == REG_VALID)
2679 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2681 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2687 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2693 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2694 struct trad_frame_saved_reg saved_regs[],
2697 struct gdbarch *arch = get_frame_arch (this_frame);
2698 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2700 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2702 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2704 struct value *pcoq_val =
2705 trad_frame_get_prev_register (this_frame, saved_regs,
2706 HPPA_PCOQ_HEAD_REGNUM);
2708 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2710 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2713 /* Make sure the "flags" register is zero in all unwound frames.
2714 The "flags" registers is a HP-UX specific wart, and only the code
2715 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2716 with it here. This shouldn't affect other systems since those
2717 should provide zero for the "flags" register anyway. */
2718 if (regnum == HPPA_FLAGS_REGNUM)
2719 return frame_unwind_got_constant (this_frame, regnum, 0);
2721 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2725 /* An instruction to match. */
2728 unsigned int data; /* See if it matches this.... */
2729 unsigned int mask; /* ... with this mask. */
2732 /* See bfd/elf32-hppa.c */
2733 static struct insn_pattern hppa_long_branch_stub[] = {
2734 /* ldil LR'xxx,%r1 */
2735 { 0x20200000, 0xffe00000 },
2736 /* be,n RR'xxx(%sr4,%r1) */
2737 { 0xe0202002, 0xffe02002 },
2741 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2743 { 0xe8200000, 0xffe00000 },
2744 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2745 { 0x28200000, 0xffe00000 },
2746 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2747 { 0xe0202002, 0xffe02002 },
2751 static struct insn_pattern hppa_import_stub[] = {
2752 /* addil LR'xxx, %dp */
2753 { 0x2b600000, 0xffe00000 },
2754 /* ldw RR'xxx(%r1), %r21 */
2755 { 0x48350000, 0xffffb000 },
2757 { 0xeaa0c000, 0xffffffff },
2758 /* ldw RR'xxx+4(%r1), %r19 */
2759 { 0x48330000, 0xffffb000 },
2763 static struct insn_pattern hppa_import_pic_stub[] = {
2764 /* addil LR'xxx,%r19 */
2765 { 0x2a600000, 0xffe00000 },
2766 /* ldw RR'xxx(%r1),%r21 */
2767 { 0x48350000, 0xffffb000 },
2769 { 0xeaa0c000, 0xffffffff },
2770 /* ldw RR'xxx+4(%r1),%r19 */
2771 { 0x48330000, 0xffffb000 },
2775 static struct insn_pattern hppa_plt_stub[] = {
2776 /* b,l 1b, %r20 - 1b is 3 insns before here */
2777 { 0xea9f1fdd, 0xffffffff },
2778 /* depi 0,31,2,%r20 */
2779 { 0xd6801c1e, 0xffffffff },
2783 /* Maximum number of instructions on the patterns above. */
2784 #define HPPA_MAX_INSN_PATTERN_LEN 4
2786 /* Return non-zero if the instructions at PC match the series
2787 described in PATTERN, or zero otherwise. PATTERN is an array of
2788 'struct insn_pattern' objects, terminated by an entry whose mask is
2791 When the match is successful, fill INSN[i] with what PATTERN[i]
2795 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2796 struct insn_pattern *pattern, unsigned int *insn)
2798 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2802 for (i = 0; pattern[i].mask; i++)
2804 gdb_byte buf[HPPA_INSN_SIZE];
2806 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2807 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2808 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2817 /* This relaxed version of the insstruction matcher allows us to match
2818 from somewhere inside the pattern, by looking backwards in the
2819 instruction scheme. */
2822 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2823 struct insn_pattern *pattern, unsigned int *insn)
2825 int offset, len = 0;
2827 while (pattern[len].mask)
2830 for (offset = 0; offset < len; offset++)
2831 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2839 hppa_in_dyncall (CORE_ADDR pc)
2841 struct unwind_table_entry *u;
2843 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2847 return (pc >= u->region_start && pc <= u->region_end);
2851 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2853 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2854 struct unwind_table_entry *u;
2856 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2859 /* The GNU toolchain produces linker stubs without unwind
2860 information. Since the pattern matching for linker stubs can be
2861 quite slow, so bail out if we do have an unwind entry. */
2863 u = find_unwind_entry (pc);
2868 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2869 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2870 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2871 || hppa_match_insns_relaxed (gdbarch, pc,
2872 hppa_long_branch_pic_stub, insn));
2875 /* This code skips several kind of "trampolines" used on PA-RISC
2876 systems: $$dyncall, import stubs and PLT stubs. */
2879 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2881 struct gdbarch *gdbarch = get_frame_arch (frame);
2882 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2884 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2887 /* $$dyncall handles both PLABELs and direct addresses. */
2888 if (hppa_in_dyncall (pc))
2890 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2892 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2894 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2899 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2900 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2902 /* Extract the target address from the addil/ldw sequence. */
2903 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2906 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2908 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2913 if (in_plt_section (pc))
2915 pc = read_memory_typed_address (pc, func_ptr_type);
2917 /* If the PLT slot has not yet been resolved, the target will be
2919 if (in_plt_section (pc))
2921 /* Sanity check: are we pointing to the PLT stub? */
2922 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2924 warning (_("Cannot resolve PLT stub at %s."),
2925 paddress (gdbarch, pc));
2929 /* This should point to the fixup routine. */
2930 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2938 /* Here is a table of C type sizes on hppa with various compiles
2939 and options. I measured this on PA 9000/800 with HP-UX 11.11
2940 and these compilers:
2942 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2943 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2944 /opt/aCC/bin/aCC B3910B A.03.45
2945 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2947 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2948 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2949 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2950 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2951 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2952 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2953 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2954 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2958 compiler and options
2959 char, short, int, long, long long
2960 float, double, long double
2963 So all these compilers use either ILP32 or LP64 model.
2964 TODO: gcc has more options so it needs more investigation.
2966 For floating point types, see:
2968 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2969 HP-UX floating-point guide, hpux 11.00
2971 -- chastain 2003-12-18 */
2973 static struct gdbarch *
2974 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2976 struct gdbarch_tdep *tdep;
2977 struct gdbarch *gdbarch;
2979 /* Try to determine the ABI of the object we are loading. */
2980 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2982 /* If it's a SOM file, assume it's HP/UX SOM. */
2983 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2984 info.osabi = GDB_OSABI_HPUX_SOM;
2987 /* find a candidate among the list of pre-declared architectures. */
2988 arches = gdbarch_list_lookup_by_info (arches, &info);
2990 return (arches->gdbarch);
2992 /* If none found, then allocate and initialize one. */
2993 tdep = XCNEW (struct gdbarch_tdep);
2994 gdbarch = gdbarch_alloc (&info, tdep);
2996 /* Determine from the bfd_arch_info structure if we are dealing with
2997 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2998 then default to a 32bit machine. */
2999 if (info.bfd_arch_info != NULL)
3000 tdep->bytes_per_address =
3001 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3003 tdep->bytes_per_address = 4;
3005 tdep->find_global_pointer = hppa_find_global_pointer;
3007 /* Some parts of the gdbarch vector depend on whether we are running
3008 on a 32 bits or 64 bits target. */
3009 switch (tdep->bytes_per_address)
3012 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3013 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3014 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3015 set_gdbarch_cannot_store_register (gdbarch,
3016 hppa32_cannot_store_register);
3017 set_gdbarch_cannot_fetch_register (gdbarch,
3018 hppa32_cannot_fetch_register);
3021 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3022 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3023 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3024 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3025 set_gdbarch_cannot_store_register (gdbarch,
3026 hppa64_cannot_store_register);
3027 set_gdbarch_cannot_fetch_register (gdbarch,
3028 hppa64_cannot_fetch_register);
3031 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3032 tdep->bytes_per_address);
3035 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3036 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3038 /* The following gdbarch vector elements are the same in both ILP32
3039 and LP64, but might show differences some day. */
3040 set_gdbarch_long_long_bit (gdbarch, 64);
3041 set_gdbarch_long_double_bit (gdbarch, 128);
3042 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3044 /* The following gdbarch vector elements do not depend on the address
3045 size, or in any other gdbarch element previously set. */
3046 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3047 set_gdbarch_in_function_epilogue_p (gdbarch,
3048 hppa_in_function_epilogue_p);
3049 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3050 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3051 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3052 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3053 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3054 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3055 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3057 /* Helper for function argument information. */
3058 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3060 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3062 /* When a hardware watchpoint triggers, we'll move the inferior past
3063 it by removing all eventpoints; stepping past the instruction
3064 that caused the trigger; reinserting eventpoints; and checking
3065 whether any watched location changed. */
3066 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3068 /* Inferior function call methods. */
3069 switch (tdep->bytes_per_address)
3072 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3073 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3074 set_gdbarch_convert_from_func_ptr_addr
3075 (gdbarch, hppa32_convert_from_func_ptr_addr);
3078 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3079 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3082 internal_error (__FILE__, __LINE__, _("bad switch"));
3085 /* Struct return methods. */
3086 switch (tdep->bytes_per_address)
3089 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3092 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3095 internal_error (__FILE__, __LINE__, _("bad switch"));
3098 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3099 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3101 /* Frame unwind methods. */
3102 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3103 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3105 /* Hook in ABI-specific overrides, if they have been registered. */
3106 gdbarch_init_osabi (info, gdbarch);
3108 /* Hook in the default unwinders. */
3109 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3110 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3111 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3117 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3121 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3122 tdep->bytes_per_address);
3123 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3126 /* Provide a prototype to silence -Wmissing-prototypes. */
3127 extern initialize_file_ftype _initialize_hppa_tdep;
3130 _initialize_hppa_tdep (void)
3132 struct cmd_list_element *c;
3134 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3136 hppa_objfile_priv_data = register_objfile_data ();
3138 add_cmd ("unwind", class_maintenance, unwind_command,
3139 _("Print unwind table entry at given address."),
3140 &maintenanceprintlist);
3142 /* Debug this files internals. */
3143 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3144 Set whether hppa target specific debugging information should be displayed."),
3146 Show whether hppa target specific debugging information is displayed."), _("\
3147 This flag controls whether hppa target specific debugging information is\n\
3148 displayed. This information is particularly useful for debugging frame\n\
3149 unwinding problems."),
3151 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3152 &setdebuglist, &showdebuglist);