1 /* Target-machine dependent code for Renesas H8/300, for GDB.
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 Contributed by Steve Chamberlain
27 #include "arch-utils.h"
32 #include "dwarf2-frame.h"
33 #include "frame-base.h"
34 #include "frame-unwind.h"
38 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
39 E_RET0_REGNUM = E_R0_REGNUM,
40 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
41 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
42 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
44 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
45 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
50 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
51 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
59 #define H8300_MAX_NUM_REGS 18
61 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
62 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
64 struct h8300_frame_cache
71 /* Flag showing that a frame has been created in the prologue code. */
74 /* Saved registers. */
75 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
83 h8300_max_reg_size = 4,
86 static int is_h8300hmode (struct gdbarch *gdbarch);
87 static int is_h8300smode (struct gdbarch *gdbarch);
88 static int is_h8300sxmode (struct gdbarch *gdbarch);
89 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
91 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
92 && !is_h8300_normal_mode (gdbarch)) \
93 ? h8300h_reg_size : h8300_reg_size)
96 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
98 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
102 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
104 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
107 static struct frame_id
108 h8300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
110 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
111 return frame_id_build (sp, get_frame_pc (this_frame));
116 /* Allocate and initialize a frame cache. */
119 h8300_init_frame_cache (struct gdbarch *gdbarch,
120 struct h8300_frame_cache *cache)
126 cache->sp_offset = 0;
129 /* Frameless until proven otherwise. */
132 /* Saved registers. We initialize these to -1 since zero is a valid
133 offset (that's where %fp is supposed to be stored). */
134 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
135 cache->saved_regs[i] = -1;
138 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
139 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
140 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
141 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
142 #define IS_MOVB_EXT(x) ((x) == 0x7860)
143 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
144 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
145 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
146 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
147 /* Same instructions as mov.w, just prefixed with 0x0100. */
148 #define IS_MOVL_PRE(x) ((x) == 0x0100)
149 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
150 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
151 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
153 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
154 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
155 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
156 #define IS_SUB2_SP(x) ((x) == 0x1b87)
157 #define IS_SUB4_SP(x) ((x) == 0x1b97)
158 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
159 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
160 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
161 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
162 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
163 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
164 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
166 /* If the instruction at PC is an argument register spill, return its
167 length. Otherwise, return zero.
169 An argument register spill is an instruction that moves an argument
170 from the register in which it was passed to the stack slot in which
171 it really lives. It is a byte, word, or longword move from an
172 argument register to a negative offset from the frame pointer.
174 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
175 is used, it could be a byte, word or long move to registers r3-r5. */
178 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
180 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181 int w = read_memory_unsigned_integer (pc, 2, byte_order);
183 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
184 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
185 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
188 if (IS_MOVB_Rn16_SP (w)
189 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
191 /* ... and d:16 is negative. */
192 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
195 else if (IS_MOVB_EXT (w))
197 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
200 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
202 /* ... and d:24 is negative. */
203 if (disp < 0 && disp > 0xffffff)
207 else if (IS_MOVW_Rn16_SP (w)
208 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
210 /* ... and d:16 is negative. */
211 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
214 else if (IS_MOVW_EXT (w))
216 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
219 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
221 /* ... and d:24 is negative. */
222 if (disp < 0 && disp > 0xffffff)
226 else if (IS_MOVL_PRE (w))
228 int w2 = read_memory_integer (pc + 2, 2, byte_order);
230 if (IS_MOVL_Rn16_SP (w2)
231 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
233 /* ... and d:16 is negative. */
234 if (read_memory_integer (pc + 4, 2, byte_order) < 0)
237 else if (IS_MOVL_EXT (w2))
239 int w3 = read_memory_integer (pc + 4, 2, byte_order);
241 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
243 LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);
245 /* ... and d:24 is negative. */
246 if (disp < 0 && disp > 0xffffff)
255 /* Do a full analysis of the prologue at PC and update CACHE
256 accordingly. Bail out early if CURRENT_PC is reached. Return the
257 address where the analysis stopped.
259 We handle all cases that can be generated by gcc.
261 For allocating a stack frame:
282 For saving registers:
291 h8300_analyze_prologue (struct gdbarch *gdbarch,
292 CORE_ADDR pc, CORE_ADDR current_pc,
293 struct h8300_frame_cache *cache)
295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
297 int regno, i, spill_size;
299 cache->sp_offset = 0;
301 if (pc >= current_pc)
304 op = read_memory_unsigned_integer (pc, 4, byte_order);
306 if (IS_PUSHFP_MOVESPFP (op))
308 cache->saved_regs[E_FP_REGNUM] = 0;
312 else if (IS_PUSH_FP (op))
314 cache->saved_regs[E_FP_REGNUM] = 0;
316 if (pc >= current_pc)
318 op = read_memory_unsigned_integer (pc, 2, byte_order);
319 if (IS_MOV_SP_FP (op))
326 while (pc < current_pc)
328 op = read_memory_unsigned_integer (pc, 2, byte_order);
331 cache->sp_offset += 2;
334 else if (IS_SUB4_SP (op))
336 cache->sp_offset += 4;
339 else if (IS_ADD_IMM_SP (op))
341 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
344 else if (IS_SUB_IMM_SP (op))
346 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
349 else if (IS_SUBL4_SP (op))
351 cache->sp_offset += 4;
354 else if (IS_MOV_IMM_Rn (op))
356 int offset = read_memory_integer (pc + 2, 2, byte_order);
358 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
359 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
361 cache->sp_offset -= offset;
364 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
366 cache->sp_offset += offset;
372 else if (IS_PUSH (op))
375 cache->sp_offset += 2;
376 cache->saved_regs[regno] = cache->sp_offset;
379 else if (op == 0x0100)
381 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
385 cache->sp_offset += 4;
386 cache->saved_regs[regno] = cache->sp_offset;
392 else if ((op & 0xffcf) == 0x0100)
395 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
398 /* Since the prefix is 0x01x0, this is not a simple pushm but a
399 stm.l reglist,@-sp */
400 i = ((op & 0x0030) >> 4) + 1;
401 regno = op1 & 0x000f;
402 for (; i > 0; regno++, --i)
404 cache->sp_offset += 4;
405 cache->saved_regs[regno] = cache->sp_offset;
416 /* Check for spilling an argument register to the stack frame.
417 This could also be an initializing store from non-prologue code,
418 but I don't think there's any harm in skipping that. */
419 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
420 && pc + spill_size <= current_pc)
426 static struct h8300_frame_cache *
427 h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
430 struct h8300_frame_cache *cache;
432 CORE_ADDR current_pc;
435 return (struct h8300_frame_cache *) *this_cache;
437 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
438 h8300_init_frame_cache (gdbarch, cache);
441 /* In principle, for normal frames, %fp holds the frame pointer,
442 which holds the base address for the current stack frame.
443 However, for functions that don't need it, the frame pointer is
444 optional. For these "frameless" functions the frame pointer is
445 actually the frame pointer of the calling frame. */
447 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
448 if (cache->base == 0)
451 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
453 cache->pc = get_frame_func (this_frame);
454 current_pc = get_frame_pc (this_frame);
456 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
460 /* We didn't find a valid frame, which means that CACHE->base
461 currently holds the frame pointer for our calling frame. If
462 we're at the start of a function, or somewhere half-way its
463 prologue, the function's frame probably hasn't been fully
464 setup yet. Try to reconstruct the base address for the stack
465 frame by looking at the stack pointer. For truly "frameless"
466 functions this might work too. */
468 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
470 cache->saved_sp = cache->base + BINWORD (gdbarch);
471 cache->saved_regs[E_PC_REGNUM] = 0;
475 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
476 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
479 /* Adjust all the saved registers such that they contain addresses
480 instead of offsets. */
481 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
482 if (cache->saved_regs[i] != -1)
483 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
489 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
490 struct frame_id *this_id)
492 struct h8300_frame_cache *cache =
493 h8300_frame_cache (this_frame, this_cache);
495 /* This marks the outermost frame. */
496 if (cache->base == 0)
499 *this_id = frame_id_build (cache->saved_sp, cache->pc);
502 static struct value *
503 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
506 struct gdbarch *gdbarch = get_frame_arch (this_frame);
507 struct h8300_frame_cache *cache =
508 h8300_frame_cache (this_frame, this_cache);
510 gdb_assert (regnum >= 0);
512 if (regnum == E_SP_REGNUM && cache->saved_sp)
513 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
515 if (regnum < gdbarch_num_regs (gdbarch)
516 && cache->saved_regs[regnum] != -1)
517 return frame_unwind_got_memory (this_frame, regnum,
518 cache->saved_regs[regnum]);
520 return frame_unwind_got_register (this_frame, regnum, regnum);
523 static const struct frame_unwind h8300_frame_unwind = {
525 default_frame_unwind_stop_reason,
527 h8300_frame_prev_register,
529 default_frame_sniffer
533 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
535 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
539 static const struct frame_base h8300_frame_base = {
541 h8300_frame_base_address,
542 h8300_frame_base_address,
543 h8300_frame_base_address
547 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
549 CORE_ADDR func_addr = 0 , func_end = 0;
551 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
553 struct symtab_and_line sal;
554 struct h8300_frame_cache cache;
556 /* Found a function. */
557 sal = find_pc_line (func_addr, 0);
558 if (sal.end && sal.end < func_end)
559 /* Found a line number, use it as end of prologue. */
562 /* No useable line symbol. Use prologue parsing method. */
563 h8300_init_frame_cache (gdbarch, &cache);
564 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
567 /* No function symbol -- just return the PC. */
568 return (CORE_ADDR) pc;
571 /* Function: push_dummy_call
572 Setup the function arguments for calling a function in the inferior.
573 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
576 There are actually two ABI's here: -mquickcall (the default) and
577 -mno-quickcall. With -mno-quickcall, all arguments are passed on
578 the stack after the return address, word-aligned. With
579 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
580 GCC doesn't indicate in the object file which ABI was used to
581 compile it, GDB only supports the default --- -mquickcall.
583 Here are the rules for -mquickcall, in detail:
585 Each argument, whether scalar or aggregate, is padded to occupy a
586 whole number of words. Arguments smaller than a word are padded at
587 the most significant end; those larger than a word are padded at
588 the least significant end.
590 The initial arguments are passed in r0 -- r2. Earlier arguments go in
591 lower-numbered registers. Multi-word arguments are passed in
592 consecutive registers, with the most significant end in the
593 lower-numbered register.
595 If an argument doesn't fit entirely in the remaining registers, it
596 is passed entirely on the stack. Stack arguments begin just after
597 the return address. Once an argument has overflowed onto the stack
598 this way, all subsequent arguments are passed on the stack.
600 The above rule has odd consequences. For example, on the h8/300s,
601 if a function takes two longs and an int as arguments:
602 - the first long will be passed in r0/r1,
603 - the second long will be passed entirely on the stack, since it
605 - and the int will be passed on the stack, even though it could fit
608 A weird exception: if an argument is larger than a word, but not a
609 whole number of words in length (before padding), it is passed on
610 the stack following the rules for stack arguments above, even if
611 there are sufficient registers available to hold it. Stranger
612 still, the argument registers are still `used up' --- even though
613 there's nothing in them.
615 So, for example, on the h8/300s, if a function expects a three-byte
616 structure and an int, the structure will go on the stack, and the
617 int will go in r2, not r0.
619 If the function returns an aggregate type (struct, union, or class)
620 by value, the caller must allocate space to hold the return value,
621 and pass the callee a pointer to this space as an invisible first
624 For varargs functions, the last fixed argument and all the variable
625 arguments are always passed on the stack. This means that calls to
626 varargs functions don't work properly unless there is a prototype
629 Basically, this ABI is not good, for the following reasons:
630 - You can't call vararg functions properly unless a prototype is in scope.
631 - Structure passing is inconsistent, to no purpose I can see.
632 - It often wastes argument registers, of which there are only three
636 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
637 struct regcache *regcache, CORE_ADDR bp_addr,
638 int nargs, struct value **args, CORE_ADDR sp,
639 int struct_return, CORE_ADDR struct_addr)
641 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
642 int stack_alloc = 0, stack_offset = 0;
643 int wordsize = BINWORD (gdbarch);
644 int reg = E_ARG0_REGNUM;
647 /* First, make sure the stack is properly aligned. */
648 sp = align_down (sp, wordsize);
650 /* Now make sure there's space on the stack for the arguments. We
651 may over-allocate a little here, but that won't hurt anything. */
652 for (argument = 0; argument < nargs; argument++)
653 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
657 /* Now load as many arguments as possible into registers, and push
658 the rest onto the stack.
659 If we're returning a structure by value, then we must pass a
660 pointer to the buffer for the return value as an invisible first
663 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
665 for (argument = 0; argument < nargs; argument++)
667 struct cleanup *back_to;
668 struct type *type = value_type (args[argument]);
669 int len = TYPE_LENGTH (type);
670 char *contents = (char *) value_contents (args[argument]);
672 /* Pad the argument appropriately. */
673 int padded_len = align_up (len, wordsize);
674 gdb_byte *padded = (gdb_byte *) xmalloc (padded_len);
675 back_to = make_cleanup (xfree, padded);
677 memset (padded, 0, padded_len);
678 memcpy (len < wordsize ? padded + padded_len - len : padded,
681 /* Could the argument fit in the remaining registers? */
682 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
684 /* Are we going to pass it on the stack anyway, for no good
686 if (len > wordsize && len % wordsize)
688 /* I feel so unclean. */
689 write_memory (sp + stack_offset, padded, padded_len);
690 stack_offset += padded_len;
692 /* That's right --- even though we passed the argument
693 on the stack, we consume the registers anyway! Love
695 reg += padded_len / wordsize;
699 /* Heavens to Betsy --- it's really going in registers!
700 Note that on the h8/300s, there are gaps between the
701 registers in the register file. */
704 for (offset = 0; offset < padded_len; offset += wordsize)
707 = extract_unsigned_integer (padded + offset,
708 wordsize, byte_order);
709 regcache_cooked_write_unsigned (regcache, reg++, word);
715 /* It doesn't fit in registers! Onto the stack it goes. */
716 write_memory (sp + stack_offset, padded, padded_len);
717 stack_offset += padded_len;
719 /* Once one argument has spilled onto the stack, all
720 subsequent arguments go on the stack. */
721 reg = E_ARGLAST_REGNUM + 1;
724 do_cleanups (back_to);
727 /* Store return address. */
729 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
731 /* Update stack pointer. */
732 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
734 /* Return the new stack pointer minus the return address slot since
735 that's what DWARF2/GCC uses as the frame's CFA. */
736 return sp + wordsize;
739 /* Function: extract_return_value
740 Figure out where in REGBUF the called function has left its return value.
741 Copy that into VALBUF. Be sure to account for CPU type. */
744 h8300_extract_return_value (struct type *type, struct regcache *regcache,
747 struct gdbarch *gdbarch = get_regcache_arch (regcache);
748 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
749 int len = TYPE_LENGTH (type);
756 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
757 store_unsigned_integer (valbuf, len, byte_order, c);
759 case 4: /* Needs two registers on plain H8/300 */
760 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
761 store_unsigned_integer (valbuf, 2, byte_order, c);
762 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
763 store_unsigned_integer ((void *)((char *) valbuf + 2), 2, byte_order, c);
765 case 8: /* long long is now 8 bytes. */
766 if (TYPE_CODE (type) == TYPE_CODE_INT)
768 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
769 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
770 store_unsigned_integer (valbuf, len, byte_order, c);
774 error (_("I don't know how this 8 byte value is returned."));
781 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 switch (TYPE_LENGTH (type))
793 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
794 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
796 case 8: /* long long is now 8 bytes. */
797 if (TYPE_CODE (type) == TYPE_CODE_INT)
799 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
800 store_unsigned_integer (valbuf, 4, byte_order, c);
801 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
802 store_unsigned_integer ((void *) ((char *) valbuf + 4), 4,
807 error (_("I don't know how this 8 byte value is returned."));
814 h8300_use_struct_convention (struct type *value_type)
816 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
819 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
820 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
822 return !(TYPE_LENGTH (value_type) == 1
823 || TYPE_LENGTH (value_type) == 2
824 || TYPE_LENGTH (value_type) == 4);
828 h8300h_use_struct_convention (struct type *value_type)
830 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
831 returned in R0/R1, everything else on the stack. */
832 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
833 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
835 return !(TYPE_LENGTH (value_type) == 1
836 || TYPE_LENGTH (value_type) == 2
837 || TYPE_LENGTH (value_type) == 4
838 || (TYPE_LENGTH (value_type) == 8
839 && TYPE_CODE (value_type) == TYPE_CODE_INT));
842 /* Function: store_return_value
843 Place the appropriate value in the appropriate registers.
844 Primarily used by the RETURN command. */
847 h8300_store_return_value (struct type *type, struct regcache *regcache,
850 struct gdbarch *gdbarch = get_regcache_arch (regcache);
851 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
854 switch (TYPE_LENGTH (type))
857 case 2: /* short... */
858 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
859 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
861 case 4: /* long, float */
862 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
863 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
864 (val >> 16) & 0xffff);
865 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
867 case 8: /* long long, double and long double
868 are all defined as 4 byte types so
869 far so this shouldn't happen. */
870 error (_("I don't know how to return an 8 byte value."));
876 h8300h_store_return_value (struct type *type, struct regcache *regcache,
879 struct gdbarch *gdbarch = get_regcache_arch (regcache);
880 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
883 switch (TYPE_LENGTH (type))
887 case 4: /* long, float */
888 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
889 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
892 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
893 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
894 (val >> 32) & 0xffffffff);
895 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
901 static enum return_value_convention
902 h8300_return_value (struct gdbarch *gdbarch, struct value *function,
903 struct type *type, struct regcache *regcache,
904 gdb_byte *readbuf, const gdb_byte *writebuf)
906 if (h8300_use_struct_convention (type))
907 return RETURN_VALUE_STRUCT_CONVENTION;
909 h8300_store_return_value (type, regcache, writebuf);
911 h8300_extract_return_value (type, regcache, readbuf);
912 return RETURN_VALUE_REGISTER_CONVENTION;
915 static enum return_value_convention
916 h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
917 struct type *type, struct regcache *regcache,
918 gdb_byte *readbuf, const gdb_byte *writebuf)
920 if (h8300h_use_struct_convention (type))
926 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
927 read_memory (addr, readbuf, TYPE_LENGTH (type));
930 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
933 h8300h_store_return_value (type, regcache, writebuf);
935 h8300h_extract_return_value (type, regcache, readbuf);
936 return RETURN_VALUE_REGISTER_CONVENTION;
939 /* Implementation of 'register_sim_regno' gdbarch method. */
942 h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum)
944 /* Only makes sense to supply raw registers. */
945 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
947 /* We hide the raw ccr from the user by making it nameless. Because
948 the default register_sim_regno hook returns
949 LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to
950 override it. The sim register numbering is compatible with
956 h8300_register_name (struct gdbarch *gdbarch, int regno)
958 /* The register names change depending on which h8300 processor
960 static char *register_names[] = {
961 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
962 "sp", "", "pc", "cycles", "tick", "inst",
963 "ccr", /* pseudo register */
966 || regno >= (sizeof (register_names) / sizeof (*register_names)))
967 internal_error (__FILE__, __LINE__,
968 _("h8300_register_name: illegal register number %d"),
971 return register_names[regno];
975 h8300s_register_name (struct gdbarch *gdbarch, int regno)
977 static char *register_names[] = {
978 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
979 "sp", "", "pc", "cycles", "", "tick", "inst",
981 "ccr", "exr" /* pseudo registers */
984 || regno >= (sizeof (register_names) / sizeof (*register_names)))
985 internal_error (__FILE__, __LINE__,
986 _("h8300s_register_name: illegal register number %d"),
989 return register_names[regno];
993 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
995 static char *register_names[] = {
996 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
997 "sp", "", "pc", "cycles", "", "tick", "inst",
998 "mach", "macl", "sbr", "vbr",
999 "ccr", "exr" /* pseudo registers */
1002 || regno >= (sizeof (register_names) / sizeof (*register_names)))
1003 internal_error (__FILE__, __LINE__,
1004 _("h8300sx_register_name: illegal register number %d"),
1007 return register_names[regno];
1011 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1012 struct frame_info *frame, int regno)
1015 const char *name = gdbarch_register_name (gdbarch, regno);
1017 if (!name || !*name)
1020 rval = get_frame_register_signed (frame, regno);
1022 fprintf_filtered (file, "%-14s ", name);
1023 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1024 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1026 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1027 print_longest (file, 'u', 1, rval);
1031 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1032 BINWORD (gdbarch)));
1033 print_longest (file, 'd', 1, rval);
1035 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1039 unsigned char l = rval & 0xff;
1040 fprintf_filtered (file, "\t");
1041 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1042 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1043 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1044 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1049 fprintf_filtered (file, "N-%d ", N);
1050 fprintf_filtered (file, "Z-%d ", Z);
1051 fprintf_filtered (file, "V-%d ", V);
1052 fprintf_filtered (file, "C-%d ", C);
1054 fprintf_filtered (file, "u> ");
1056 fprintf_filtered (file, "u<= ");
1058 fprintf_filtered (file, "u>= ");
1060 fprintf_filtered (file, "u< ");
1062 fprintf_filtered (file, "!= ");
1064 fprintf_filtered (file, "== ");
1066 fprintf_filtered (file, ">= ");
1068 fprintf_filtered (file, "< ");
1069 if ((Z | (N ^ V)) == 0)
1070 fprintf_filtered (file, "> ");
1071 if ((Z | (N ^ V)) == 1)
1072 fprintf_filtered (file, "<= ");
1074 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1077 unsigned char l = rval & 0xff;
1078 fprintf_filtered (file, "\t");
1079 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1080 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1081 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1082 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1084 fprintf_filtered (file, "\n");
1088 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1089 struct frame_info *frame, int regno, int cpregs)
1093 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1094 h8300_print_register (gdbarch, file, frame, regno);
1095 h8300_print_register (gdbarch, file, frame,
1096 E_PSEUDO_CCR_REGNUM (gdbarch));
1097 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1098 if (is_h8300smode (gdbarch))
1100 h8300_print_register (gdbarch, file, frame,
1101 E_PSEUDO_EXR_REGNUM (gdbarch));
1102 if (is_h8300sxmode (gdbarch))
1104 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1105 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1107 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1108 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1109 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1110 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1111 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1115 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1116 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1117 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1122 if (regno == E_CCR_REGNUM)
1123 h8300_print_register (gdbarch, file, frame,
1124 E_PSEUDO_CCR_REGNUM (gdbarch));
1125 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1126 && is_h8300smode (gdbarch))
1127 h8300_print_register (gdbarch, file, frame,
1128 E_PSEUDO_EXR_REGNUM (gdbarch));
1130 h8300_print_register (gdbarch, file, frame, regno);
1134 static struct type *
1135 h8300_register_type (struct gdbarch *gdbarch, int regno)
1137 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
1138 + gdbarch_num_pseudo_regs (gdbarch))
1139 internal_error (__FILE__, __LINE__,
1140 _("h8300_register_type: illegal register number %d"),
1147 return builtin_type (gdbarch)->builtin_func_ptr;
1150 return builtin_type (gdbarch)->builtin_data_ptr;
1152 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1153 return builtin_type (gdbarch)->builtin_uint8;
1154 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1155 return builtin_type (gdbarch)->builtin_uint8;
1156 else if (is_h8300hmode (gdbarch))
1157 return builtin_type (gdbarch)->builtin_int32;
1159 return builtin_type (gdbarch)->builtin_int16;
1164 /* Helpers for h8300_pseudo_register_read. We expose ccr/exr as
1165 pseudo-registers to users with smaller sizes than the corresponding
1166 raw registers. These helpers extend/narrow the values. */
1168 static enum register_status
1169 pseudo_from_raw_register (struct gdbarch *gdbarch, struct regcache *regcache,
1170 gdb_byte *buf, int pseudo_regno, int raw_regno)
1172 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1173 enum register_status status;
1176 status = regcache_raw_read_unsigned (regcache, raw_regno, &val);
1177 if (status == REG_VALID)
1178 store_unsigned_integer (buf,
1179 register_size (gdbarch, pseudo_regno),
1184 /* See pseudo_from_raw_register. */
1187 raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache,
1188 const gdb_byte *buf, int raw_regno, int pseudo_regno)
1190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1193 val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno),
1195 regcache_raw_write_unsigned (regcache, raw_regno, val);
1198 static enum register_status
1199 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1200 struct regcache *regcache, int regno,
1203 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1205 return pseudo_from_raw_register (gdbarch, regcache, buf,
1206 regno, E_CCR_REGNUM);
1208 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1210 return pseudo_from_raw_register (gdbarch, regcache, buf,
1211 regno, E_EXR_REGNUM);
1214 return regcache_raw_read (regcache, regno, buf);
1218 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1219 struct regcache *regcache, int regno,
1220 const gdb_byte *buf)
1222 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1223 raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno);
1224 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1225 raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno);
1227 regcache_raw_write (regcache, regno, buf);
1231 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1233 if (regno == E_CCR_REGNUM)
1234 return E_PSEUDO_CCR_REGNUM (gdbarch);
1239 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1241 if (regno == E_CCR_REGNUM)
1242 return E_PSEUDO_CCR_REGNUM (gdbarch);
1243 if (regno == E_EXR_REGNUM)
1244 return E_PSEUDO_EXR_REGNUM (gdbarch);
1248 static const unsigned char *
1249 h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1252 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1253 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1255 *lenptr = sizeof (breakpoint);
1259 static struct gdbarch *
1260 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1262 struct gdbarch_tdep *tdep = NULL;
1263 struct gdbarch *gdbarch;
1265 arches = gdbarch_list_lookup_by_info (arches, &info);
1267 return arches->gdbarch;
1270 tdep = XNEW (struct gdbarch_tdep);
1273 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1276 gdbarch = gdbarch_alloc (&info, 0);
1278 set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno);
1280 switch (info.bfd_arch_info->mach)
1282 case bfd_mach_h8300:
1283 set_gdbarch_num_regs (gdbarch, 13);
1284 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1285 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1286 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1287 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1288 set_gdbarch_register_name (gdbarch, h8300_register_name);
1289 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1290 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1291 set_gdbarch_return_value (gdbarch, h8300_return_value);
1292 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1294 case bfd_mach_h8300h:
1295 case bfd_mach_h8300hn:
1296 set_gdbarch_num_regs (gdbarch, 13);
1297 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1298 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1299 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1300 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1301 set_gdbarch_register_name (gdbarch, h8300_register_name);
1302 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1304 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1305 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1309 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1310 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1312 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1313 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1315 case bfd_mach_h8300s:
1316 case bfd_mach_h8300sn:
1317 set_gdbarch_num_regs (gdbarch, 16);
1318 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1319 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1320 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1321 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1322 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1323 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1325 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1326 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1330 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1331 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1333 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1334 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1336 case bfd_mach_h8300sx:
1337 case bfd_mach_h8300sxn:
1338 set_gdbarch_num_regs (gdbarch, 18);
1339 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1340 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1341 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1342 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1343 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1344 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1346 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1347 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1351 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1352 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1354 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1355 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1359 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1360 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1363 * Basic register fields and methods.
1366 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1367 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1368 set_gdbarch_register_type (gdbarch, h8300_register_type);
1369 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1374 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1376 /* Frame unwinder. */
1377 set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1378 set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1379 set_gdbarch_dummy_id (gdbarch, h8300_dummy_id);
1380 frame_base_set_default (gdbarch, &h8300_frame_base);
1385 /* Stack grows up. */
1386 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1388 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1389 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1391 set_gdbarch_char_signed (gdbarch, 0);
1392 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1393 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1394 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1395 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1396 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1397 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1398 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1400 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1402 /* Hook in the DWARF CFI frame unwinder. */
1403 dwarf2_append_unwinders (gdbarch);
1404 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
1410 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1413 _initialize_h8300_tdep (void)
1415 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1419 is_h8300hmode (struct gdbarch *gdbarch)
1421 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1422 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1423 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1424 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1425 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1426 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1430 is_h8300smode (struct gdbarch *gdbarch)
1432 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1433 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1434 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1435 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1439 is_h8300sxmode (struct gdbarch *gdbarch)
1441 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1442 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1446 is_h8300_normal_mode (struct gdbarch *gdbarch)
1448 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1449 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1450 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;