1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 Contributed by Steve Chamberlain
32 #include "arch-utils.h"
37 #include "gdb_assert.h"
39 /* Extra info which is saved in each frame_info. */
40 struct frame_extra_info
43 CORE_ADDR args_pointer;
44 CORE_ADDR locals_pointer;
47 #define E_NUM_REGS (h8300smode ? 14 : 13)
53 h8300_max_reg_size = 4,
55 #define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size)
59 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
60 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM,
61 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
62 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
63 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
64 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
65 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
70 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
71 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
75 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
77 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
78 #define IS_PUSH_FP(x) (x == 0x6df6)
79 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
80 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
81 #define IS_SUB2_SP(x) (x==0x1b87)
82 #define IS_SUB4_SP(x) (x==0x1b97)
83 #define IS_SUBL_SP(x) (x==0x7a37)
84 #define IS_MOVK_R5(x) (x==0x7905)
85 #define IS_SUB_R5SP(x) (x==0x1957)
87 /* If the instruction at PC is an argument register spill, return its
88 length. Otherwise, return zero.
90 An argument register spill is an instruction that moves an argument
91 from the register in which it was passed to the stack slot in which
92 it really lives. It is a byte, word, or longword move from an
93 argument register to a negative offset from the frame pointer. */
96 h8300_is_argument_spill (CORE_ADDR pc)
98 int w = read_memory_unsigned_integer (pc, 2);
100 if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
101 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
103 int w2 = read_memory_integer (pc + 2, 2);
105 /* ... and d:16 is negative. */
109 else if (w == 0x7860)
111 int w2 = read_memory_integer (pc + 2, 2);
113 if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
115 LONGEST disp = read_memory_integer (pc + 4, 4);
117 /* ... and d:24 is negative. */
118 if (disp < 0 && disp > 0xffffff)
122 else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
123 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
125 int w2 = read_memory_integer (pc + 2, 2);
127 /* ... and d:16 is negative. */
131 else if (w == 0x78e0)
133 int w2 = read_memory_integer (pc + 2, 2);
135 if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
137 LONGEST disp = read_memory_integer (pc + 4, 4);
139 /* ... and d:24 is negative. */
140 if (disp < 0 && disp > 0xffffff)
144 else if (w == 0x0100)
146 int w2 = read_memory_integer (pc + 2, 2);
148 if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
149 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
151 int w3 = read_memory_integer (pc + 4, 2);
153 /* ... and d:16 is negative. */
157 else if (w2 == 0x78e0)
159 int w3 = read_memory_integer (pc + 4, 2);
161 if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
163 LONGEST disp = read_memory_integer (pc + 6, 4);
165 /* ... and d:24 is negative. */
166 if (disp < 0 && disp > 0xffffff)
176 h8300_skip_prologue (CORE_ADDR start_pc)
181 /* Skip past all push and stm insns. */
184 w = read_memory_unsigned_integer (start_pc, 2);
185 /* First look for push insns. */
186 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
188 w = read_memory_unsigned_integer (start_pc + 2, 2);
194 start_pc += 2 + adjust;
195 w = read_memory_unsigned_integer (start_pc, 2);
202 /* Skip past a move to FP, either word or long sized */
203 w = read_memory_unsigned_integer (start_pc, 2);
206 w = read_memory_unsigned_integer (start_pc + 2, 2);
212 start_pc += 2 + adjust;
213 w = read_memory_unsigned_integer (start_pc, 2);
216 /* Check for loading either a word constant into r5;
217 long versions are handled by the SUBL_SP below. */
221 w = read_memory_unsigned_integer (start_pc, 2);
224 /* Now check for subtracting r5 from sp, word sized only. */
227 start_pc += 2 + adjust;
228 w = read_memory_unsigned_integer (start_pc, 2);
231 /* Check for subs #2 and subs #4. */
232 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
234 start_pc += 2 + adjust;
235 w = read_memory_unsigned_integer (start_pc, 2);
238 /* Check for a 32bit subtract. */
240 start_pc += 6 + adjust;
242 /* Check for spilling an argument register to the stack frame.
243 This could also be an initializing store from non-prologue code,
244 but I don't think there's any harm in skipping that. */
247 int spill_size = h8300_is_argument_spill (start_pc);
250 start_pc += spill_size;
257 gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info * info)
260 return print_insn_h8300s (memaddr, info);
262 return print_insn_h8300h (memaddr, info);
264 return print_insn_h8300 (memaddr, info);
267 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
268 is not the address of a valid instruction, the address of the next
269 instruction beyond ADDR otherwise. *PWORD1 receives the first word
270 of the instruction. */
273 h8300_next_prologue_insn (CORE_ADDR addr, CORE_ADDR lim, unsigned short* pword1)
278 read_memory (addr, buf, 2);
279 *pword1 = extract_signed_integer (buf, 2);
286 /* Examine the prologue of a function. `ip' points to the first instruction.
287 `limit' is the limit of the prologue (e.g. the addr of the first
288 linenumber, or perhaps the program counter if we're stepping through).
289 `frame_sp' is the stack pointer value in use in this frame.
290 `fsr' is a pointer to a frame_saved_regs structure into which we put
291 info about the registers saved by this frame.
292 `fi' is a struct frame_info pointer; we fill in various fields in it
293 to reflect the offsets of the arg pointer and the locals pointer. */
295 /* Any function with a frame looks like this
301 SAVED FP <-FP POINTS HERE
303 LOCALS1 <-SP POINTS HERE
307 h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
308 CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
309 struct frame_info *fi)
311 register CORE_ADDR next_ip;
314 unsigned short insn_word;
315 /* Number of things pushed onto stack, starts at 2/4, 'cause the
316 PC is already there */
317 unsigned int reg_save_depth = BINWORD;
319 unsigned int auto_depth = 0; /* Number of bytes of autos */
321 char in_frame[11]; /* One for each reg */
325 memset (in_frame, 1, 11);
326 for (r = 0; r < 8; r++)
330 if (after_prolog_fp == 0)
332 after_prolog_fp = read_register (E_SP_REGNUM);
335 /* If the PC isn't valid, quit now. */
336 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
339 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
341 if (insn_word == 0x0100)
343 insn_word = read_memory_unsigned_integer (ip + 2, 2);
347 /* Skip over any fp push instructions */
348 fsr[E_FP_REGNUM] = after_prolog_fp;
349 while (next_ip && IS_PUSH_FP (insn_word))
351 ip = next_ip + adjust;
353 in_frame[insn_word & 0x7] = reg_save_depth;
354 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
355 reg_save_depth += 2 + adjust;
358 /* Is this a move into the fp */
359 if (next_ip && IS_MOV_SP_FP (insn_word))
362 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
366 /* Skip over any stack adjustment, happens either with a number of
367 sub#2,sp or a mov #x,r5 sub r5,sp */
369 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
371 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
373 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
375 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
380 if (next_ip && IS_MOVK_R5 (insn_word))
383 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
384 auto_depth += insn_word;
386 next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
387 auto_depth += insn_word;
389 if (next_ip && IS_SUBL_SP (insn_word))
392 auto_depth += read_memory_unsigned_integer (ip, 4);
395 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
399 /* Now examine the push insns to determine where everything lives
407 if (insn_word == 0x0100)
410 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
414 if (IS_PUSH (insn_word))
416 auto_depth += 2 + adjust;
417 fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
419 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
423 /* Now check for push multiple insns. */
424 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
426 int count = ((insn_word >> 4) & 0xf) + 1;
430 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
431 start = insn_word & 0x7;
433 for (i = start; i < start + count; i++)
436 fsr[i] = after_prolog_fp - auto_depth;
442 /* The args are always reffed based from the stack pointer */
443 get_frame_extra_info (fi)->args_pointer = after_prolog_fp;
444 /* Locals are always reffed based from the fp */
445 get_frame_extra_info (fi)->locals_pointer = after_prolog_fp;
446 /* The PC is at a known place */
447 get_frame_extra_info (fi)->from_pc =
448 read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
450 /* Rememeber any others too */
451 in_frame[E_PC_REGNUM] = 0;
454 /* We keep the old FP in the SP spot */
455 fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM], BINWORD);
457 fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
463 h8300_frame_init_saved_regs (struct frame_info *fi)
465 CORE_ADDR func_addr, func_end;
467 if (!get_frame_saved_regs (fi))
469 frame_saved_regs_zalloc (fi);
471 /* Find the beginning of this function, so we can analyze its
473 if (find_pc_partial_function (get_frame_pc (fi), NULL, &func_addr, &func_end))
475 struct symtab_and_line sal = find_pc_line (func_addr, 0);
476 CORE_ADDR limit = (sal.end && sal.end < get_frame_pc (fi)) ? sal.end : get_frame_pc (fi);
477 /* This will fill in fields in fi. */
478 h8300_examine_prologue (func_addr, limit, get_frame_base (fi),
479 get_frame_saved_regs (fi), fi);
481 /* Else we're out of luck (can't debug completely stripped code).
486 /* Given a GDB frame, determine the address of the calling function's
487 frame. This will be used to create a new GDB frame struct, and
488 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
489 will be called for the new frame.
491 For us, the frame address is its stack pointer value, so we look up
492 the function prologue to determine the caller's sp value, and return it. */
495 h8300_frame_chain (struct frame_info *thisframe)
497 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
498 get_frame_base (thisframe),
499 get_frame_base (thisframe)))
500 { /* initialize the from_pc now */
501 get_frame_extra_info (thisframe)->from_pc =
502 deprecated_read_register_dummy (get_frame_pc (thisframe),
503 get_frame_base (thisframe),
505 return get_frame_base (thisframe);
507 return get_frame_saved_regs (thisframe)[E_SP_REGNUM];
510 /* Return the saved PC from this frame.
512 If the frame has a memory copy of SRP_REGNUM, use that. If not,
513 just use the register SRP_REGNUM itself. */
516 h8300_frame_saved_pc (struct frame_info *frame)
518 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
519 get_frame_base (frame),
520 get_frame_base (frame)))
521 return deprecated_read_register_dummy (get_frame_pc (frame),
522 get_frame_base (frame),
525 return get_frame_extra_info (frame)->from_pc;
529 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
531 if (!get_frame_extra_info (fi))
533 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
534 get_frame_extra_info (fi)->from_pc = 0;
535 get_frame_extra_info (fi)->args_pointer = 0; /* Unknown */
536 get_frame_extra_info (fi)->locals_pointer = 0; /* Unknown */
538 if (!get_frame_pc (fi))
540 if (get_next_frame (fi))
541 deprecated_update_frame_pc_hack (fi, h8300_frame_saved_pc (get_next_frame (fi)));
543 h8300_frame_init_saved_regs (fi);
548 h8300_frame_locals_address (struct frame_info *fi)
550 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
551 get_frame_base (fi)))
552 return (CORE_ADDR) 0; /* Not sure what else to do... */
553 return get_frame_extra_info (fi)->locals_pointer;
556 /* Return the address of the argument block for the frame
557 described by FI. Returns 0 if the address is unknown. */
560 h8300_frame_args_address (struct frame_info *fi)
562 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
563 get_frame_base (fi)))
564 return (CORE_ADDR) 0; /* Not sure what else to do... */
565 return get_frame_extra_info (fi)->args_pointer;
568 /* Round N up or down to the nearest multiple of UNIT.
569 Evaluate N only once, UNIT several times.
570 UNIT must be a power of two. */
571 #define round_up(n, unit) (((n) + (unit) - 1) & -(unit))
572 #define round_down(n, unit) ((n) & -(unit))
574 /* Function: push_arguments
575 Setup the function arguments for calling a function in the inferior.
576 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
579 There are actually two ABI's here: -mquickcall (the default) and
580 -mno-quickcall. With -mno-quickcall, all arguments are passed on
581 the stack after the return address, word-aligned. With
582 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
583 GCC doesn't indicate in the object file which ABI was used to
584 compile it, GDB only supports the default --- -mquickcall.
586 Here are the rules for -mquickcall, in detail:
588 Each argument, whether scalar or aggregate, is padded to occupy a
589 whole number of words. Arguments smaller than a word are padded at
590 the most significant end; those larger than a word are padded at
591 the least significant end.
593 The initial arguments are passed in r0 -- r2. Earlier arguments go in
594 lower-numbered registers. Multi-word arguments are passed in
595 consecutive registers, with the most significant end in the
596 lower-numbered register.
598 If an argument doesn't fit entirely in the remaining registers, it
599 is passed entirely on the stack. Stack arguments begin just after
600 the return address. Once an argument has overflowed onto the stack
601 this way, all subsequent arguments are passed on the stack.
603 The above rule has odd consequences. For example, on the h8/300s,
604 if a function takes two longs and an int as arguments:
605 - the first long will be passed in r0/r1,
606 - the second long will be passed entirely on the stack, since it
608 - and the int will be passed on the stack, even though it could fit
611 A weird exception: if an argument is larger than a word, but not a
612 whole number of words in length (before padding), it is passed on
613 the stack following the rules for stack arguments above, even if
614 there are sufficient registers available to hold it. Stranger
615 still, the argument registers are still `used up' --- even though
616 there's nothing in them.
618 So, for example, on the h8/300s, if a function expects a three-byte
619 structure and an int, the structure will go on the stack, and the
620 int will go in r2, not r0.
622 If the function returns an aggregate type (struct, union, or class)
623 by value, the caller must allocate space to hold the return value,
624 and pass the callee a pointer to this space as an invisible first
627 For varargs functions, the last fixed argument and all the variable
628 arguments are always passed on the stack. This means that calls to
629 varargs functions don't work properly unless there is a prototype
632 Basically, this ABI is not good, for the following reasons:
633 - You can't call vararg functions properly unless a prototype is in scope.
634 - Structure passing is inconsistent, to no purpose I can see.
635 - It often wastes argument registers, of which there are only three
639 h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
640 int struct_return, CORE_ADDR struct_addr)
642 int stack_align, stack_alloc, stack_offset;
643 int wordsize = BINWORD;
647 /* First, make sure the stack is properly aligned. */
648 sp = round_down (sp, wordsize);
650 /* Now make sure there's space on the stack for the arguments. We
651 may over-allocate a little here, but that won't hurt anything. */
653 for (argument = 0; argument < nargs; argument++)
654 stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
658 /* Now load as many arguments as possible into registers, and push
659 the rest onto the stack. */
663 /* If we're returning a structure by value, then we must pass a
664 pointer to the buffer for the return value as an invisible first
667 write_register (reg++, struct_addr);
669 for (argument = 0; argument < nargs; argument++)
671 struct type *type = VALUE_TYPE (args[argument]);
672 int len = TYPE_LENGTH (type);
673 char *contents = (char *) VALUE_CONTENTS (args[argument]);
675 /* Pad the argument appropriately. */
676 int padded_len = round_up (len, wordsize);
677 char *padded = alloca (padded_len);
679 memset (padded, 0, padded_len);
680 memcpy (len < wordsize ? padded + padded_len - len : padded,
683 /* Could the argument fit in the remaining registers? */
684 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
686 /* Are we going to pass it on the stack anyway, for no good
688 if (len > wordsize && len % wordsize)
690 /* I feel so unclean. */
691 write_memory (sp + stack_offset, padded, padded_len);
692 stack_offset += padded_len;
694 /* That's right --- even though we passed the argument
695 on the stack, we consume the registers anyway! Love
697 reg += padded_len / wordsize;
701 /* Heavens to Betsy --- it's really going in registers!
702 It would be nice if we could use write_register_bytes
703 here, but on the h8/300s, there are gaps between
704 the registers in the register file. */
707 for (offset = 0; offset < padded_len; offset += wordsize)
709 ULONGEST word = extract_unsigned_integer (padded + offset, wordsize);
710 write_register (reg++, word);
716 /* It doesn't fit in registers! Onto the stack it goes. */
717 write_memory (sp + stack_offset, padded, padded_len);
718 stack_offset += padded_len;
720 /* Once one argument has spilled onto the stack, all
721 subsequent arguments go on the stack. */
722 reg = E_ARGLAST_REGNUM + 1;
729 /* Function: push_return_address
730 Setup the return address for a dummy frame, as called by
731 call_function_by_hand. Only necessary when you are using an
732 empty CALL_DUMMY, ie. the target will not actually be executing
733 a JSR/BSR instruction. */
736 h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
738 unsigned char buf[4];
739 int wordsize = BINWORD;
742 store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
743 write_memory (sp, buf, wordsize);
747 /* Function: h8300_pop_frame
748 Restore the machine to the state it had before the current frame
749 was created. Usually used either by the "RETURN" command, or by
750 call_function_by_hand after the dummy_frame is finished. */
753 h8300_pop_frame (void)
756 struct frame_info *frame = get_current_frame ();
758 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
759 get_frame_base (frame),
760 get_frame_base (frame)))
762 generic_pop_dummy_frame ();
766 for (regno = 0; regno < 8; regno++)
768 /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
769 actual value we want, not the address of the value we want. */
770 if (get_frame_saved_regs (frame)[regno] && regno != E_SP_REGNUM)
771 write_register (regno,
772 read_memory_integer (get_frame_saved_regs (frame)[regno],
774 else if (get_frame_saved_regs (frame)[regno] && regno == E_SP_REGNUM)
775 write_register (regno, get_frame_base (frame) + 2 * BINWORD);
778 /* Don't forget to update the PC too! */
779 write_register (E_PC_REGNUM, get_frame_extra_info (frame)->from_pc);
781 flush_cached_frames ();
784 /* Function: extract_return_value
785 Figure out where in REGBUF the called function has left its return value.
786 Copy that into VALBUF. Be sure to account for CPU type. */
789 h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
791 int wordsize = BINWORD;
792 int len = TYPE_LENGTH (type);
797 case 2: /* (short), (int) */
798 memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
800 case 4: /* (long), (float) */
803 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
807 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
808 memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
811 case 8: /* (double) (doesn't seem to happen, which is good,
812 because this almost certainly isn't right. */
813 error ("I don't know how a double is returned.");
818 /* Function: store_return_value
819 Place the appropriate value in the appropriate registers.
820 Primarily used by the RETURN command. */
823 h8300_store_return_value (struct type *type, char *valbuf)
826 int wordsize = BINWORD;
827 int len = TYPE_LENGTH (type);
832 case 2: /* short, int */
833 regval = extract_unsigned_integer (valbuf, len);
834 write_register (0, regval);
836 case 4: /* long, float */
837 regval = extract_unsigned_integer (valbuf, len);
840 write_register (0, regval);
844 write_register (0, regval >> 16);
845 write_register (1, regval & 0xffff);
848 case 8: /* presumeably double, but doesn't seem to happen */
849 error ("I don't know how to return a double.");
854 static struct cmd_list_element *setmachinelist;
857 h8300_register_name (int regno)
859 /* The register names change depending on whether the h8300h processor
861 static char *h8300_register_names[] = {
862 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
863 "sp", "ccr","pc","cycles", "tick", "inst", ""
865 static char *h8300s_register_names[] = {
866 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
867 "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
869 char **register_names =
870 h8300smode ? h8300s_register_names : h8300_register_names;
871 if (regno < 0 || regno >= E_NUM_REGS)
872 internal_error (__FILE__, __LINE__,
873 "h8300_register_name: illegal register number %d", regno);
875 return register_names[regno];
879 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
880 struct frame_info *frame, int regno)
884 const char *name = h8300_register_name (regno);
889 /* FIXME: cagney/2002-10-22: The code below assumes that VAL is at
890 least 4 bytes (32 bits) in size and hence is large enough to hold
891 the largest h8300 register. Should instead be using ULONGEST and
892 the phex() functions. */
893 gdb_assert (sizeof (val) >= 4);
894 frame_read_unsigned_register (frame, regno, &rval);
897 fprintf_filtered (file, "%-14s ", name);
901 fprintf_filtered (file, "0x%08lx %-8ld", val, val);
903 fprintf_filtered (file, "0x%-8lx %-8ld", val, val);
908 fprintf_filtered (file, "0x%04lx %-4ld", val, val);
910 fprintf_filtered (file, "0x%-4lx %-4ld", val, val);
912 if (regno == E_CCR_REGNUM)
916 unsigned char b[h8300h_reg_size];
918 frame_register_read (deprecated_selected_frame, regno, b);
919 l = b[REGISTER_VIRTUAL_SIZE (E_CCR_REGNUM) - 1];
920 fprintf_filtered (file, "\t");
921 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
922 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
923 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
924 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
929 fprintf_filtered (file, "N-%d ", N);
930 fprintf_filtered (file, "Z-%d ", Z);
931 fprintf_filtered (file, "V-%d ", V);
932 fprintf_filtered (file, "C-%d ", C);
934 fprintf_filtered (file, "u> ");
936 fprintf_filtered (file, "u<= ");
938 fprintf_filtered (file, "u>= ");
940 fprintf_filtered (file, "u< ");
942 fprintf_filtered (file, "!= ");
944 fprintf_filtered (file, "== ");
946 fprintf_filtered (file, ">= ");
948 fprintf_filtered (file, "< ");
949 if ((Z | (N ^ V)) == 0)
950 fprintf_filtered (file, "> ");
951 if ((Z | (N ^ V)) == 1)
952 fprintf_filtered (file, "<= ");
954 else if (regno == E_EXR_REGNUM && h8300smode)
957 unsigned char b[h8300h_reg_size];
959 frame_register_read (deprecated_selected_frame, regno, b);
960 l = b[REGISTER_VIRTUAL_SIZE (E_EXR_REGNUM) - 1];
961 fprintf_filtered (file, "\t");
962 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
963 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
964 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
965 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
967 fprintf_filtered (file, "\n");
971 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
972 struct frame_info *frame, int regno, int cpregs)
975 for (regno = 0; regno < E_NUM_REGS; ++regno)
976 h8300_print_register (gdbarch, file, frame, regno);
978 h8300_print_register (gdbarch, file, frame, regno);
982 h8300_saved_pc_after_call (struct frame_info *ignore)
984 return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
988 h8300_register_byte (int regno)
990 if (regno < 0 || regno >= E_NUM_REGS)
991 internal_error (__FILE__, __LINE__,
992 "h8300_register_byte: illegal register number %d", regno);
994 return regno * BINWORD;
998 h8300_register_raw_size (int regno)
1000 if (regno < 0 || regno >= E_NUM_REGS)
1001 internal_error (__FILE__, __LINE__,
1002 "h8300_register_raw_size: illegal register number %d",
1008 static struct type *
1009 h8300_register_virtual_type (int regno)
1011 if (regno < 0 || regno >= E_NUM_REGS)
1012 internal_error (__FILE__, __LINE__,
1013 "h8300_register_virtual_type: illegal register number %d",
1017 builtin_type_unsigned_long : builtin_type_unsigned_short;
1021 h8300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1023 write_register (0, addr);
1027 h8300_use_struct_convention (int gcc_p, struct type *type)
1033 h8300_extract_struct_value_address (char *regbuf)
1035 return extract_unsigned_integer (regbuf + h8300_register_byte (E_ARG0_REGNUM),
1036 h8300_register_raw_size (E_ARG0_REGNUM));
1039 const static unsigned char *
1040 h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1042 /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
1043 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1045 *lenptr = sizeof (breakpoint);
1050 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1051 struct frame_info *frame, const char *args)
1053 fprintf_filtered (file, "\
1054 No floating-point info available for this processor.\n");
1057 static struct gdbarch *
1058 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1060 static LONGEST call_dummy_words[1] = { 0 };
1061 struct gdbarch_tdep *tdep = NULL;
1062 struct gdbarch *gdbarch;
1064 arches = gdbarch_list_lookup_by_info (arches, &info);
1066 return arches->gdbarch;
1069 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1072 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1075 switch (info.bfd_arch_info->mach)
1077 case bfd_mach_h8300:
1082 case bfd_mach_h8300h:
1083 case bfd_mach_h8300hn:
1088 case bfd_mach_h8300s:
1089 case bfd_mach_h8300sn:
1094 case bfd_mach_h8300sx:
1101 gdbarch = gdbarch_alloc (&info, 0);
1103 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1104 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1105 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1108 * Basic register fields and methods.
1111 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1112 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1113 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1114 set_gdbarch_deprecated_fp_regnum (gdbarch, E_FP_REGNUM);
1115 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1116 set_gdbarch_register_name (gdbarch, h8300_register_name);
1117 set_gdbarch_deprecated_register_size (gdbarch, BINWORD);
1118 set_gdbarch_deprecated_register_bytes (gdbarch, E_NUM_REGS * BINWORD);
1119 set_gdbarch_register_byte (gdbarch, h8300_register_byte);
1120 set_gdbarch_register_raw_size (gdbarch, h8300_register_raw_size);
1121 set_gdbarch_deprecated_max_register_raw_size (gdbarch, h8300h_reg_size);
1122 set_gdbarch_register_virtual_size (gdbarch, h8300_register_raw_size);
1123 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, h8300h_reg_size);
1124 set_gdbarch_register_virtual_type (gdbarch, h8300_register_virtual_type);
1125 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1126 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1131 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, h8300_frame_init_saved_regs);
1132 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, h8300_init_extra_frame_info);
1133 set_gdbarch_deprecated_frame_chain (gdbarch, h8300_frame_chain);
1134 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, h8300_saved_pc_after_call);
1135 set_gdbarch_deprecated_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
1136 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1137 set_gdbarch_frame_args_address (gdbarch, h8300_frame_args_address);
1138 set_gdbarch_frame_locals_address (gdbarch, h8300_frame_locals_address);
1143 /* Stack grows up. */
1144 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1145 /* PC stops zero byte after a trap instruction
1146 (which means: exactly on trap instruction). */
1147 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1148 /* This value is almost never non-zero... */
1149 set_gdbarch_function_start_offset (gdbarch, 0);
1150 /* This value is almost never non-zero... */
1151 set_gdbarch_frame_args_skip (gdbarch, 0);
1152 /* OK to default this value to 'unknown'. */
1153 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1154 set_gdbarch_frameless_function_invocation (gdbarch,
1155 frameless_look_for_prologue);
1160 * These values and methods are used when gdb calls a target function. */
1161 set_gdbarch_deprecated_push_return_address (gdbarch, h8300_push_return_address);
1162 set_gdbarch_deprecated_extract_return_value (gdbarch, h8300_extract_return_value);
1163 set_gdbarch_deprecated_push_arguments (gdbarch, h8300_push_arguments);
1164 set_gdbarch_deprecated_pop_frame (gdbarch, h8300_pop_frame);
1165 set_gdbarch_deprecated_store_struct_return (gdbarch, h8300_store_struct_return);
1166 set_gdbarch_deprecated_store_return_value (gdbarch, h8300_store_return_value);
1167 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address);
1168 set_gdbarch_use_struct_convention (gdbarch, h8300_use_struct_convention);
1169 set_gdbarch_deprecated_call_dummy_words (gdbarch, call_dummy_words);
1170 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
1171 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1173 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1174 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1175 set_gdbarch_ptr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
1176 set_gdbarch_addr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
1178 /* set_gdbarch_stack_align (gdbarch, SOME_stack_align); */
1179 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1181 /* Should be using push_dummy_call. */
1182 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
1188 _initialize_h8300_tdep (void)
1190 deprecated_tm_print_insn = gdb_print_insn_h8300;
1191 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);