1 /* Target-machine dependent code for Renesas H8/300, for GDB.
3 Copyright (C) 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
4 2000, 2001, 2002, 2003, 2005, 2007, 2008 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 Contributed by Steve Chamberlain
28 #include "arch-utils.h"
32 #include "gdb_assert.h"
34 #include "dwarf2-frame.h"
35 #include "frame-base.h"
36 #include "frame-unwind.h"
40 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
41 E_RET0_REGNUM = E_R0_REGNUM,
42 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
43 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
44 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
45 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
46 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
47 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
52 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
53 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
61 #define H8300_MAX_NUM_REGS 18
63 #define E_PSEUDO_CCR_REGNUM (gdbarch_num_regs (current_gdbarch))
64 #define E_PSEUDO_EXR_REGNUM (gdbarch_num_regs (current_gdbarch)+1)
66 struct h8300_frame_cache
73 /* Flag showing that a frame has been created in the prologue code. */
76 /* Saved registers. */
77 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
85 h8300_max_reg_size = 4,
88 static int is_h8300hmode (struct gdbarch *gdbarch);
89 static int is_h8300smode (struct gdbarch *gdbarch);
90 static int is_h8300sxmode (struct gdbarch *gdbarch);
91 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
93 #define BINWORD ((is_h8300hmode (current_gdbarch) \
94 && !is_h8300_normal_mode (current_gdbarch)) \
95 ? h8300h_reg_size : h8300_reg_size)
98 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
100 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
104 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
106 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
109 static struct frame_id
110 h8300_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
112 return frame_id_build (h8300_unwind_sp (gdbarch, next_frame),
113 frame_pc_unwind (next_frame));
118 /* Allocate and initialize a frame cache. */
121 h8300_init_frame_cache (struct h8300_frame_cache *cache)
127 cache->sp_offset = 0;
130 /* Frameless until proven otherwise. */
133 /* Saved registers. We initialize these to -1 since zero is a valid
134 offset (that's where %fp is supposed to be stored). */
135 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
136 cache->saved_regs[i] = -1;
139 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
140 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
141 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
142 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
143 #define IS_MOVB_EXT(x) ((x) == 0x7860)
144 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
145 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
146 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
147 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
148 /* Same instructions as mov.w, just prefixed with 0x0100 */
149 #define IS_MOVL_PRE(x) ((x) == 0x0100)
150 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
151 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
152 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
154 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
155 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
156 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
157 #define IS_SUB2_SP(x) ((x) == 0x1b87)
158 #define IS_SUB4_SP(x) ((x) == 0x1b97)
159 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
160 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
161 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
162 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
163 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
164 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
165 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
167 /* If the instruction at PC is an argument register spill, return its
168 length. Otherwise, return zero.
170 An argument register spill is an instruction that moves an argument
171 from the register in which it was passed to the stack slot in which
172 it really lives. It is a byte, word, or longword move from an
173 argument register to a negative offset from the frame pointer.
175 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
176 is used, it could be a byte, word or long move to registers r3-r5. */
179 h8300_is_argument_spill (CORE_ADDR pc)
181 int w = read_memory_unsigned_integer (pc, 2);
183 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
184 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
185 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
188 if (IS_MOVB_Rn16_SP (w)
189 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
191 if (read_memory_integer (pc + 2, 2) < 0) /* ... and d:16 is negative. */
194 else if (IS_MOVB_EXT (w))
196 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2)))
198 LONGEST disp = read_memory_integer (pc + 4, 4);
200 /* ... and d:24 is negative. */
201 if (disp < 0 && disp > 0xffffff)
205 else if (IS_MOVW_Rn16_SP (w)
206 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
208 /* ... and d:16 is negative. */
209 if (read_memory_integer (pc + 2, 2) < 0)
212 else if (IS_MOVW_EXT (w))
214 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2)))
216 LONGEST disp = read_memory_integer (pc + 4, 4);
218 /* ... and d:24 is negative. */
219 if (disp < 0 && disp > 0xffffff)
223 else if (IS_MOVL_PRE (w))
225 int w2 = read_memory_integer (pc + 2, 2);
227 if (IS_MOVL_Rn16_SP (w2)
228 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
230 /* ... and d:16 is negative. */
231 if (read_memory_integer (pc + 4, 2) < 0)
234 else if (IS_MOVL_EXT (w2))
236 int w3 = read_memory_integer (pc + 4, 2);
238 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2)))
240 LONGEST disp = read_memory_integer (pc + 6, 4);
242 /* ... and d:24 is negative. */
243 if (disp < 0 && disp > 0xffffff)
252 /* Do a full analysis of the prologue at PC and update CACHE
253 accordingly. Bail out early if CURRENT_PC is reached. Return the
254 address where the analysis stopped.
256 We handle all cases that can be generated by gcc.
258 For allocating a stack frame:
279 For saving registers:
288 h8300_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
289 struct h8300_frame_cache *cache)
292 int regno, i, spill_size;
294 cache->sp_offset = 0;
296 if (pc >= current_pc)
299 op = read_memory_unsigned_integer (pc, 4);
301 if (IS_PUSHFP_MOVESPFP (op))
303 cache->saved_regs[E_FP_REGNUM] = 0;
307 else if (IS_PUSH_FP (op))
309 cache->saved_regs[E_FP_REGNUM] = 0;
311 if (pc >= current_pc)
313 op = read_memory_unsigned_integer (pc, 2);
314 if (IS_MOV_SP_FP (op))
321 while (pc < current_pc)
323 op = read_memory_unsigned_integer (pc, 2);
326 cache->sp_offset += 2;
329 else if (IS_SUB4_SP (op))
331 cache->sp_offset += 4;
334 else if (IS_ADD_IMM_SP (op))
336 cache->sp_offset += -read_memory_integer (pc + 2, 2);
339 else if (IS_SUB_IMM_SP (op))
341 cache->sp_offset += read_memory_integer (pc + 2, 2);
344 else if (IS_SUBL4_SP (op))
346 cache->sp_offset += 4;
349 else if (IS_MOV_IMM_Rn (op))
351 int offset = read_memory_integer (pc + 2, 2);
353 op = read_memory_unsigned_integer (pc + 4, 2);
354 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
356 cache->sp_offset -= offset;
359 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
361 cache->sp_offset += offset;
367 else if (IS_PUSH (op))
370 cache->sp_offset += 2;
371 cache->saved_regs[regno] = cache->sp_offset;
374 else if (op == 0x0100)
376 op = read_memory_unsigned_integer (pc + 2, 2);
380 cache->sp_offset += 4;
381 cache->saved_regs[regno] = cache->sp_offset;
387 else if ((op & 0xffcf) == 0x0100)
390 op1 = read_memory_unsigned_integer (pc + 2, 2);
393 /* Since the prefix is 0x01x0, this is not a simple pushm but a
394 stm.l reglist,@-sp */
395 i = ((op & 0x0030) >> 4) + 1;
396 regno = op1 & 0x000f;
397 for (; i > 0; regno++, --i)
399 cache->sp_offset += 4;
400 cache->saved_regs[regno] = cache->sp_offset;
411 /* Check for spilling an argument register to the stack frame.
412 This could also be an initializing store from non-prologue code,
413 but I don't think there's any harm in skipping that. */
414 while ((spill_size = h8300_is_argument_spill (pc)) > 0
415 && pc + spill_size <= current_pc)
421 static struct h8300_frame_cache *
422 h8300_frame_cache (struct frame_info *next_frame, void **this_cache)
424 struct h8300_frame_cache *cache;
427 CORE_ADDR current_pc;
432 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
433 h8300_init_frame_cache (cache);
436 /* In principle, for normal frames, %fp holds the frame pointer,
437 which holds the base address for the current stack frame.
438 However, for functions that don't need it, the frame pointer is
439 optional. For these "frameless" functions the frame pointer is
440 actually the frame pointer of the calling frame. */
442 cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
443 if (cache->base == 0)
446 cache->saved_regs[E_PC_REGNUM] = -BINWORD;
448 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
449 current_pc = frame_pc_unwind (next_frame);
451 h8300_analyze_prologue (cache->pc, current_pc, cache);
455 /* We didn't find a valid frame, which means that CACHE->base
456 currently holds the frame pointer for our calling frame. If
457 we're at the start of a function, or somewhere half-way its
458 prologue, the function's frame probably hasn't been fully
459 setup yet. Try to reconstruct the base address for the stack
460 frame by looking at the stack pointer. For truly "frameless"
461 functions this might work too. */
463 cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM)
465 cache->saved_sp = cache->base + BINWORD;
466 cache->saved_regs[E_PC_REGNUM] = 0;
470 cache->saved_sp = cache->base + 2 * BINWORD;
471 cache->saved_regs[E_PC_REGNUM] = -BINWORD;
474 /* Adjust all the saved registers such that they contain addresses
475 instead of offsets. */
476 for (i = 0; i < gdbarch_num_regs (get_frame_arch (next_frame)); i++)
477 if (cache->saved_regs[i] != -1)
478 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
484 h8300_frame_this_id (struct frame_info *next_frame, void **this_cache,
485 struct frame_id *this_id)
487 struct h8300_frame_cache *cache =
488 h8300_frame_cache (next_frame, this_cache);
490 /* This marks the outermost frame. */
491 if (cache->base == 0)
494 *this_id = frame_id_build (cache->saved_sp, cache->pc);
498 h8300_frame_prev_register (struct frame_info *next_frame, void **this_cache,
499 int regnum, int *optimizedp,
500 enum lval_type *lvalp, CORE_ADDR *addrp,
501 int *realnump, gdb_byte *valuep)
503 struct gdbarch *gdbarch = get_frame_arch (next_frame);
504 struct h8300_frame_cache *cache =
505 h8300_frame_cache (next_frame, this_cache);
507 gdb_assert (regnum >= 0);
509 if (regnum == E_SP_REGNUM && cache->saved_sp)
516 store_unsigned_integer (valuep, BINWORD, cache->saved_sp);
520 if (regnum < gdbarch_num_regs (gdbarch)
521 && cache->saved_regs[regnum] != -1)
524 *lvalp = lval_memory;
525 *addrp = cache->saved_regs[regnum];
528 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
533 *lvalp = lval_register;
537 frame_unwind_register (next_frame, *realnump, valuep);
540 static const struct frame_unwind h8300_frame_unwind = {
543 h8300_frame_prev_register
546 static const struct frame_unwind *
547 h8300_frame_sniffer (struct frame_info *next_frame)
549 return &h8300_frame_unwind;
553 h8300_frame_base_address (struct frame_info *next_frame, void **this_cache)
555 struct h8300_frame_cache *cache = h8300_frame_cache (next_frame, this_cache);
559 static const struct frame_base h8300_frame_base = {
561 h8300_frame_base_address,
562 h8300_frame_base_address,
563 h8300_frame_base_address
567 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
569 CORE_ADDR func_addr = 0 , func_end = 0;
571 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
573 struct symtab_and_line sal;
574 struct h8300_frame_cache cache;
576 /* Found a function. */
577 sal = find_pc_line (func_addr, 0);
578 if (sal.end && sal.end < func_end)
579 /* Found a line number, use it as end of prologue. */
582 /* No useable line symbol. Use prologue parsing method. */
583 h8300_init_frame_cache (&cache);
584 return h8300_analyze_prologue (func_addr, func_end, &cache);
587 /* No function symbol -- just return the PC. */
588 return (CORE_ADDR) pc;
591 /* Function: push_dummy_call
592 Setup the function arguments for calling a function in the inferior.
593 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
596 There are actually two ABI's here: -mquickcall (the default) and
597 -mno-quickcall. With -mno-quickcall, all arguments are passed on
598 the stack after the return address, word-aligned. With
599 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
600 GCC doesn't indicate in the object file which ABI was used to
601 compile it, GDB only supports the default --- -mquickcall.
603 Here are the rules for -mquickcall, in detail:
605 Each argument, whether scalar or aggregate, is padded to occupy a
606 whole number of words. Arguments smaller than a word are padded at
607 the most significant end; those larger than a word are padded at
608 the least significant end.
610 The initial arguments are passed in r0 -- r2. Earlier arguments go in
611 lower-numbered registers. Multi-word arguments are passed in
612 consecutive registers, with the most significant end in the
613 lower-numbered register.
615 If an argument doesn't fit entirely in the remaining registers, it
616 is passed entirely on the stack. Stack arguments begin just after
617 the return address. Once an argument has overflowed onto the stack
618 this way, all subsequent arguments are passed on the stack.
620 The above rule has odd consequences. For example, on the h8/300s,
621 if a function takes two longs and an int as arguments:
622 - the first long will be passed in r0/r1,
623 - the second long will be passed entirely on the stack, since it
625 - and the int will be passed on the stack, even though it could fit
628 A weird exception: if an argument is larger than a word, but not a
629 whole number of words in length (before padding), it is passed on
630 the stack following the rules for stack arguments above, even if
631 there are sufficient registers available to hold it. Stranger
632 still, the argument registers are still `used up' --- even though
633 there's nothing in them.
635 So, for example, on the h8/300s, if a function expects a three-byte
636 structure and an int, the structure will go on the stack, and the
637 int will go in r2, not r0.
639 If the function returns an aggregate type (struct, union, or class)
640 by value, the caller must allocate space to hold the return value,
641 and pass the callee a pointer to this space as an invisible first
644 For varargs functions, the last fixed argument and all the variable
645 arguments are always passed on the stack. This means that calls to
646 varargs functions don't work properly unless there is a prototype
649 Basically, this ABI is not good, for the following reasons:
650 - You can't call vararg functions properly unless a prototype is in scope.
651 - Structure passing is inconsistent, to no purpose I can see.
652 - It often wastes argument registers, of which there are only three
656 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
657 struct regcache *regcache, CORE_ADDR bp_addr,
658 int nargs, struct value **args, CORE_ADDR sp,
659 int struct_return, CORE_ADDR struct_addr)
661 int stack_alloc = 0, stack_offset = 0;
662 int wordsize = BINWORD;
663 int reg = E_ARG0_REGNUM;
666 /* First, make sure the stack is properly aligned. */
667 sp = align_down (sp, wordsize);
669 /* Now make sure there's space on the stack for the arguments. We
670 may over-allocate a little here, but that won't hurt anything. */
671 for (argument = 0; argument < nargs; argument++)
672 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
676 /* Now load as many arguments as possible into registers, and push
677 the rest onto the stack.
678 If we're returning a structure by value, then we must pass a
679 pointer to the buffer for the return value as an invisible first
682 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
684 for (argument = 0; argument < nargs; argument++)
686 struct type *type = value_type (args[argument]);
687 int len = TYPE_LENGTH (type);
688 char *contents = (char *) value_contents (args[argument]);
690 /* Pad the argument appropriately. */
691 int padded_len = align_up (len, wordsize);
692 gdb_byte *padded = alloca (padded_len);
694 memset (padded, 0, padded_len);
695 memcpy (len < wordsize ? padded + padded_len - len : padded,
698 /* Could the argument fit in the remaining registers? */
699 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
701 /* Are we going to pass it on the stack anyway, for no good
703 if (len > wordsize && len % wordsize)
705 /* I feel so unclean. */
706 write_memory (sp + stack_offset, padded, padded_len);
707 stack_offset += padded_len;
709 /* That's right --- even though we passed the argument
710 on the stack, we consume the registers anyway! Love
712 reg += padded_len / wordsize;
716 /* Heavens to Betsy --- it's really going in registers!
717 It would be nice if we could use write_register_bytes
718 here, but on the h8/300s, there are gaps between
719 the registers in the register file. */
722 for (offset = 0; offset < padded_len; offset += wordsize)
724 ULONGEST word = extract_unsigned_integer (padded + offset,
726 regcache_cooked_write_unsigned (regcache, reg++, word);
732 /* It doesn't fit in registers! Onto the stack it goes. */
733 write_memory (sp + stack_offset, padded, padded_len);
734 stack_offset += padded_len;
736 /* Once one argument has spilled onto the stack, all
737 subsequent arguments go on the stack. */
738 reg = E_ARGLAST_REGNUM + 1;
742 /* Store return address. */
744 write_memory_unsigned_integer (sp, wordsize, bp_addr);
746 /* Update stack pointer. */
747 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
749 /* Return the new stack pointer minus the return address slot since
750 that's what DWARF2/GCC uses as the frame's CFA. */
751 return sp + wordsize;
754 /* Function: extract_return_value
755 Figure out where in REGBUF the called function has left its return value.
756 Copy that into VALBUF. Be sure to account for CPU type. */
759 h8300_extract_return_value (struct type *type, struct regcache *regcache,
762 int len = TYPE_LENGTH (type);
769 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
770 store_unsigned_integer (valbuf, len, c);
772 case 4: /* Needs two registers on plain H8/300 */
773 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
774 store_unsigned_integer (valbuf, 2, c);
775 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
776 store_unsigned_integer ((void *) ((char *) valbuf + 2), 2, c);
778 case 8: /* long long is now 8 bytes. */
779 if (TYPE_CODE (type) == TYPE_CODE_INT)
781 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
782 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
783 store_unsigned_integer (valbuf, len, c);
787 error ("I don't know how this 8 byte value is returned.");
794 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
797 int len = TYPE_LENGTH (type);
805 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
806 store_unsigned_integer (valbuf, len, c);
808 case 8: /* long long is now 8 bytes. */
809 if (TYPE_CODE (type) == TYPE_CODE_INT)
811 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
812 store_unsigned_integer (valbuf, 4, c);
813 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
814 store_unsigned_integer ((void *) ((char *) valbuf + 4), 4, c);
818 error ("I don't know how this 8 byte value is returned.");
825 h8300_use_struct_convention (struct type *value_type)
827 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
830 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
831 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
833 return !(TYPE_LENGTH (value_type) == 1
834 || TYPE_LENGTH (value_type) == 2
835 || TYPE_LENGTH (value_type) == 4);
839 h8300h_use_struct_convention (struct type *value_type)
841 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
842 returned in R0/R1, everything else on the stack. */
843 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
844 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
846 return !(TYPE_LENGTH (value_type) == 1
847 || TYPE_LENGTH (value_type) == 2
848 || TYPE_LENGTH (value_type) == 4
849 || (TYPE_LENGTH (value_type) == 8
850 && TYPE_CODE (value_type) == TYPE_CODE_INT));
853 /* Function: store_return_value
854 Place the appropriate value in the appropriate registers.
855 Primarily used by the RETURN command. */
858 h8300_store_return_value (struct type *type, struct regcache *regcache,
861 int len = TYPE_LENGTH (type);
867 case 2: /* short... */
868 val = extract_unsigned_integer (valbuf, len);
869 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
871 case 4: /* long, float */
872 val = extract_unsigned_integer (valbuf, len);
873 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
874 (val >> 16) & 0xffff);
875 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
877 case 8: /* long long, double and long double are all defined
878 as 4 byte types so far so this shouldn't happen. */
879 error ("I don't know how to return an 8 byte value.");
885 h8300h_store_return_value (struct type *type, struct regcache *regcache,
888 int len = TYPE_LENGTH (type);
895 case 4: /* long, float */
896 val = extract_unsigned_integer (valbuf, len);
897 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
900 val = extract_unsigned_integer (valbuf, len);
901 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
902 (val >> 32) & 0xffffffff);
903 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
909 static enum return_value_convention
910 h8300_return_value (struct gdbarch *gdbarch, struct type *type,
911 struct regcache *regcache,
912 gdb_byte *readbuf, const gdb_byte *writebuf)
914 if (h8300_use_struct_convention (type))
915 return RETURN_VALUE_STRUCT_CONVENTION;
917 h8300_store_return_value (type, regcache, writebuf);
919 h8300_extract_return_value (type, regcache, readbuf);
920 return RETURN_VALUE_REGISTER_CONVENTION;
923 static enum return_value_convention
924 h8300h_return_value (struct gdbarch *gdbarch, struct type *type,
925 struct regcache *regcache,
926 gdb_byte *readbuf, const gdb_byte *writebuf)
928 if (h8300h_use_struct_convention (type))
934 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
935 read_memory (addr, readbuf, TYPE_LENGTH (type));
938 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
941 h8300h_store_return_value (type, regcache, writebuf);
943 h8300h_extract_return_value (type, regcache, readbuf);
944 return RETURN_VALUE_REGISTER_CONVENTION;
947 static struct cmd_list_element *setmachinelist;
950 h8300_register_name (struct gdbarch *gdbarch, int regno)
952 /* The register names change depending on which h8300 processor
954 static char *register_names[] = {
955 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
956 "sp", "", "pc", "cycles", "tick", "inst",
957 "ccr", /* pseudo register */
960 || regno >= (sizeof (register_names) / sizeof (*register_names)))
961 internal_error (__FILE__, __LINE__,
962 "h8300_register_name: illegal register number %d", regno);
964 return register_names[regno];
968 h8300s_register_name (struct gdbarch *gdbarch, int regno)
970 static char *register_names[] = {
971 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
972 "sp", "", "pc", "cycles", "", "tick", "inst",
974 "ccr", "exr" /* pseudo registers */
977 || regno >= (sizeof (register_names) / sizeof (*register_names)))
978 internal_error (__FILE__, __LINE__,
979 "h8300s_register_name: illegal register number %d",
982 return register_names[regno];
986 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
988 static char *register_names[] = {
989 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
990 "sp", "", "pc", "cycles", "", "tick", "inst",
991 "mach", "macl", "sbr", "vbr",
992 "ccr", "exr" /* pseudo registers */
995 || regno >= (sizeof (register_names) / sizeof (*register_names)))
996 internal_error (__FILE__, __LINE__,
997 "h8300sx_register_name: illegal register number %d",
1000 return register_names[regno];
1004 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1005 struct frame_info *frame, int regno)
1008 const char *name = gdbarch_register_name (gdbarch, regno);
1010 if (!name || !*name)
1013 rval = get_frame_register_signed (frame, regno);
1015 fprintf_filtered (file, "%-14s ", name);
1016 if ((regno == E_PSEUDO_CCR_REGNUM) || \
1017 (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (gdbarch)))
1019 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1020 print_longest (file, 'u', 1, rval);
1024 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval, BINWORD));
1025 print_longest (file, 'd', 1, rval);
1027 if (regno == E_PSEUDO_CCR_REGNUM)
1031 unsigned char l = rval & 0xff;
1032 fprintf_filtered (file, "\t");
1033 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1034 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1035 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1036 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1041 fprintf_filtered (file, "N-%d ", N);
1042 fprintf_filtered (file, "Z-%d ", Z);
1043 fprintf_filtered (file, "V-%d ", V);
1044 fprintf_filtered (file, "C-%d ", C);
1046 fprintf_filtered (file, "u> ");
1048 fprintf_filtered (file, "u<= ");
1050 fprintf_filtered (file, "u>= ");
1052 fprintf_filtered (file, "u< ");
1054 fprintf_filtered (file, "!= ");
1056 fprintf_filtered (file, "== ");
1058 fprintf_filtered (file, ">= ");
1060 fprintf_filtered (file, "< ");
1061 if ((Z | (N ^ V)) == 0)
1062 fprintf_filtered (file, "> ");
1063 if ((Z | (N ^ V)) == 1)
1064 fprintf_filtered (file, "<= ");
1066 else if (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (gdbarch))
1069 unsigned char l = rval & 0xff;
1070 fprintf_filtered (file, "\t");
1071 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1072 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1073 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1074 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1076 fprintf_filtered (file, "\n");
1080 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1081 struct frame_info *frame, int regno, int cpregs)
1085 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1086 h8300_print_register (gdbarch, file, frame, regno);
1087 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1088 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1089 if (is_h8300smode (gdbarch))
1091 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1092 if (is_h8300sxmode (gdbarch))
1094 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1095 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1097 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1098 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1099 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1100 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1101 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1105 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1106 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1107 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1112 if (regno == E_CCR_REGNUM)
1113 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1114 else if (regno == E_PSEUDO_EXR_REGNUM
1115 && is_h8300smode (gdbarch))
1116 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1118 h8300_print_register (gdbarch, file, frame, regno);
1122 static struct type *
1123 h8300_register_type (struct gdbarch *gdbarch, int regno)
1125 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
1126 + gdbarch_num_pseudo_regs (gdbarch))
1127 internal_error (__FILE__, __LINE__,
1128 "h8300_register_type: illegal register number %d", regno);
1134 return builtin_type_void_func_ptr;
1137 return builtin_type_void_data_ptr;
1139 if (regno == E_PSEUDO_CCR_REGNUM)
1140 return builtin_type_uint8;
1141 else if (regno == E_PSEUDO_EXR_REGNUM)
1142 return builtin_type_uint8;
1143 else if (is_h8300hmode (gdbarch))
1144 return builtin_type_int32;
1146 return builtin_type_int16;
1152 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1153 struct regcache *regcache, int regno,
1156 if (regno == E_PSEUDO_CCR_REGNUM)
1157 regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1158 else if (regno == E_PSEUDO_EXR_REGNUM)
1159 regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1161 regcache_raw_read (regcache, regno, buf);
1165 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1166 struct regcache *regcache, int regno,
1167 const gdb_byte *buf)
1169 if (regno == E_PSEUDO_CCR_REGNUM)
1170 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1171 else if (regno == E_PSEUDO_EXR_REGNUM)
1172 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1174 regcache_raw_write (regcache, regno, buf);
1178 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1180 if (regno == E_CCR_REGNUM)
1181 return E_PSEUDO_CCR_REGNUM;
1186 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1188 if (regno == E_CCR_REGNUM)
1189 return E_PSEUDO_CCR_REGNUM;
1190 if (regno == E_EXR_REGNUM)
1191 return E_PSEUDO_EXR_REGNUM;
1195 const static unsigned char *
1196 h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1199 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1200 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1202 *lenptr = sizeof (breakpoint);
1207 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1208 struct frame_info *frame, const char *args)
1210 fprintf_filtered (file, "\
1211 No floating-point info available for this processor.\n");
1214 static struct gdbarch *
1215 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1217 struct gdbarch_tdep *tdep = NULL;
1218 struct gdbarch *gdbarch;
1220 arches = gdbarch_list_lookup_by_info (arches, &info);
1222 return arches->gdbarch;
1225 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1228 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1231 gdbarch = gdbarch_alloc (&info, 0);
1233 switch (info.bfd_arch_info->mach)
1235 case bfd_mach_h8300:
1236 set_gdbarch_num_regs (gdbarch, 13);
1237 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1238 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1239 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1240 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1241 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1242 set_gdbarch_register_name (gdbarch, h8300_register_name);
1243 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1244 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1245 set_gdbarch_return_value (gdbarch, h8300_return_value);
1246 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1248 case bfd_mach_h8300h:
1249 case bfd_mach_h8300hn:
1250 set_gdbarch_num_regs (gdbarch, 13);
1251 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1252 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1253 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1254 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1255 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1256 set_gdbarch_register_name (gdbarch, h8300_register_name);
1257 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1259 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1260 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1264 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1265 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1267 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1268 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1270 case bfd_mach_h8300s:
1271 case bfd_mach_h8300sn:
1272 set_gdbarch_num_regs (gdbarch, 16);
1273 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1274 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1275 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1276 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1277 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1278 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1279 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1281 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1282 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1286 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1287 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1289 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1290 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1292 case bfd_mach_h8300sx:
1293 case bfd_mach_h8300sxn:
1294 set_gdbarch_num_regs (gdbarch, 18);
1295 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1296 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1297 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1298 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1299 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1300 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1301 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1303 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1304 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1308 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1309 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1311 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1312 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1316 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1317 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1320 * Basic register fields and methods.
1323 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1324 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1325 set_gdbarch_register_type (gdbarch, h8300_register_type);
1326 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1327 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1332 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1334 /* Frame unwinder. */
1335 set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1336 set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1337 set_gdbarch_unwind_dummy_id (gdbarch, h8300_unwind_dummy_id);
1338 frame_base_set_default (gdbarch, &h8300_frame_base);
1343 /* Stack grows up. */
1344 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1346 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1347 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1349 set_gdbarch_char_signed (gdbarch, 0);
1350 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1351 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1352 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1353 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1354 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1356 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1358 /* Hook in the DWARF CFI frame unwinder. */
1359 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1360 frame_unwind_append_sniffer (gdbarch, h8300_frame_sniffer);
1366 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1369 _initialize_h8300_tdep (void)
1371 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1375 is_h8300hmode (struct gdbarch *gdbarch)
1377 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1378 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1379 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1380 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1381 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1382 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1386 is_h8300smode (struct gdbarch *gdbarch)
1388 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1389 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1390 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1391 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1395 is_h8300sxmode (struct gdbarch *gdbarch)
1397 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1398 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1402 is_h8300_normal_mode (struct gdbarch *gdbarch)
1404 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1405 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1406 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;