1 /* Target-machine dependent code for Renesas H8/300, for GDB.
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 Contributed by Steve Chamberlain
27 #include "arch-utils.h"
32 #include "dwarf2-frame.h"
33 #include "frame-base.h"
34 #include "frame-unwind.h"
38 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
39 E_RET0_REGNUM = E_R0_REGNUM,
40 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
41 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
42 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
44 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
45 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
50 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
51 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
59 #define H8300_MAX_NUM_REGS 18
61 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
62 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
64 struct h8300_frame_cache
71 /* Flag showing that a frame has been created in the prologue code. */
74 /* Saved registers. */
75 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
83 h8300_max_reg_size = 4,
86 static int is_h8300hmode (struct gdbarch *gdbarch);
87 static int is_h8300smode (struct gdbarch *gdbarch);
88 static int is_h8300sxmode (struct gdbarch *gdbarch);
89 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
91 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
92 && !is_h8300_normal_mode (gdbarch)) \
93 ? h8300h_reg_size : h8300_reg_size)
96 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
98 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
102 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
104 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
107 static struct frame_id
108 h8300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
110 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
111 return frame_id_build (sp, get_frame_pc (this_frame));
116 /* Allocate and initialize a frame cache. */
119 h8300_init_frame_cache (struct gdbarch *gdbarch,
120 struct h8300_frame_cache *cache)
126 cache->sp_offset = 0;
129 /* Frameless until proven otherwise. */
132 /* Saved registers. We initialize these to -1 since zero is a valid
133 offset (that's where %fp is supposed to be stored). */
134 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
135 cache->saved_regs[i] = -1;
138 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
139 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
140 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
141 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
142 #define IS_MOVB_EXT(x) ((x) == 0x7860)
143 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
144 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
145 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
146 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
147 /* Same instructions as mov.w, just prefixed with 0x0100. */
148 #define IS_MOVL_PRE(x) ((x) == 0x0100)
149 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
150 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
151 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
153 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
154 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
155 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
156 #define IS_SUB2_SP(x) ((x) == 0x1b87)
157 #define IS_SUB4_SP(x) ((x) == 0x1b97)
158 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
159 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
160 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
161 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
162 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
163 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
164 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
166 /* If the instruction at PC is an argument register spill, return its
167 length. Otherwise, return zero.
169 An argument register spill is an instruction that moves an argument
170 from the register in which it was passed to the stack slot in which
171 it really lives. It is a byte, word, or longword move from an
172 argument register to a negative offset from the frame pointer.
174 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
175 is used, it could be a byte, word or long move to registers r3-r5. */
178 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
180 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181 int w = read_memory_unsigned_integer (pc, 2, byte_order);
183 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
184 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
185 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
188 if (IS_MOVB_Rn16_SP (w)
189 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
191 /* ... and d:16 is negative. */
192 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
195 else if (IS_MOVB_EXT (w))
197 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
200 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
202 /* ... and d:24 is negative. */
203 if (disp < 0 && disp > 0xffffff)
207 else if (IS_MOVW_Rn16_SP (w)
208 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
210 /* ... and d:16 is negative. */
211 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
214 else if (IS_MOVW_EXT (w))
216 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
219 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
221 /* ... and d:24 is negative. */
222 if (disp < 0 && disp > 0xffffff)
226 else if (IS_MOVL_PRE (w))
228 int w2 = read_memory_integer (pc + 2, 2, byte_order);
230 if (IS_MOVL_Rn16_SP (w2)
231 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
233 /* ... and d:16 is negative. */
234 if (read_memory_integer (pc + 4, 2, byte_order) < 0)
237 else if (IS_MOVL_EXT (w2))
239 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
241 LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);
243 /* ... and d:24 is negative. */
244 if (disp < 0 && disp > 0xffffff)
253 /* Do a full analysis of the prologue at PC and update CACHE
254 accordingly. Bail out early if CURRENT_PC is reached. Return the
255 address where the analysis stopped.
257 We handle all cases that can be generated by gcc.
259 For allocating a stack frame:
280 For saving registers:
289 h8300_analyze_prologue (struct gdbarch *gdbarch,
290 CORE_ADDR pc, CORE_ADDR current_pc,
291 struct h8300_frame_cache *cache)
293 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
295 int regno, i, spill_size;
297 cache->sp_offset = 0;
299 if (pc >= current_pc)
302 op = read_memory_unsigned_integer (pc, 4, byte_order);
304 if (IS_PUSHFP_MOVESPFP (op))
306 cache->saved_regs[E_FP_REGNUM] = 0;
310 else if (IS_PUSH_FP (op))
312 cache->saved_regs[E_FP_REGNUM] = 0;
314 if (pc >= current_pc)
316 op = read_memory_unsigned_integer (pc, 2, byte_order);
317 if (IS_MOV_SP_FP (op))
324 while (pc < current_pc)
326 op = read_memory_unsigned_integer (pc, 2, byte_order);
329 cache->sp_offset += 2;
332 else if (IS_SUB4_SP (op))
334 cache->sp_offset += 4;
337 else if (IS_ADD_IMM_SP (op))
339 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
342 else if (IS_SUB_IMM_SP (op))
344 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
347 else if (IS_SUBL4_SP (op))
349 cache->sp_offset += 4;
352 else if (IS_MOV_IMM_Rn (op))
354 int offset = read_memory_integer (pc + 2, 2, byte_order);
356 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
357 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
359 cache->sp_offset -= offset;
362 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
364 cache->sp_offset += offset;
370 else if (IS_PUSH (op))
373 cache->sp_offset += 2;
374 cache->saved_regs[regno] = cache->sp_offset;
377 else if (op == 0x0100)
379 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
383 cache->sp_offset += 4;
384 cache->saved_regs[regno] = cache->sp_offset;
390 else if ((op & 0xffcf) == 0x0100)
393 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
396 /* Since the prefix is 0x01x0, this is not a simple pushm but a
397 stm.l reglist,@-sp */
398 i = ((op & 0x0030) >> 4) + 1;
399 regno = op1 & 0x000f;
400 for (; i > 0; regno++, --i)
402 cache->sp_offset += 4;
403 cache->saved_regs[regno] = cache->sp_offset;
414 /* Check for spilling an argument register to the stack frame.
415 This could also be an initializing store from non-prologue code,
416 but I don't think there's any harm in skipping that. */
417 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
418 && pc + spill_size <= current_pc)
424 static struct h8300_frame_cache *
425 h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
427 struct gdbarch *gdbarch = get_frame_arch (this_frame);
428 struct h8300_frame_cache *cache;
430 CORE_ADDR current_pc;
433 return (struct h8300_frame_cache *) *this_cache;
435 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
436 h8300_init_frame_cache (gdbarch, cache);
439 /* In principle, for normal frames, %fp holds the frame pointer,
440 which holds the base address for the current stack frame.
441 However, for functions that don't need it, the frame pointer is
442 optional. For these "frameless" functions the frame pointer is
443 actually the frame pointer of the calling frame. */
445 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
446 if (cache->base == 0)
449 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
451 cache->pc = get_frame_func (this_frame);
452 current_pc = get_frame_pc (this_frame);
454 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
458 /* We didn't find a valid frame, which means that CACHE->base
459 currently holds the frame pointer for our calling frame. If
460 we're at the start of a function, or somewhere half-way its
461 prologue, the function's frame probably hasn't been fully
462 setup yet. Try to reconstruct the base address for the stack
463 frame by looking at the stack pointer. For truly "frameless"
464 functions this might work too. */
466 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
468 cache->saved_sp = cache->base + BINWORD (gdbarch);
469 cache->saved_regs[E_PC_REGNUM] = 0;
473 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
474 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
477 /* Adjust all the saved registers such that they contain addresses
478 instead of offsets. */
479 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
480 if (cache->saved_regs[i] != -1)
481 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
487 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
488 struct frame_id *this_id)
490 struct h8300_frame_cache *cache =
491 h8300_frame_cache (this_frame, this_cache);
493 /* This marks the outermost frame. */
494 if (cache->base == 0)
497 *this_id = frame_id_build (cache->saved_sp, cache->pc);
500 static struct value *
501 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
504 struct gdbarch *gdbarch = get_frame_arch (this_frame);
505 struct h8300_frame_cache *cache =
506 h8300_frame_cache (this_frame, this_cache);
508 gdb_assert (regnum >= 0);
510 if (regnum == E_SP_REGNUM && cache->saved_sp)
511 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
513 if (regnum < gdbarch_num_regs (gdbarch)
514 && cache->saved_regs[regnum] != -1)
515 return frame_unwind_got_memory (this_frame, regnum,
516 cache->saved_regs[regnum]);
518 return frame_unwind_got_register (this_frame, regnum, regnum);
521 static const struct frame_unwind h8300_frame_unwind = {
523 default_frame_unwind_stop_reason,
525 h8300_frame_prev_register,
527 default_frame_sniffer
531 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
533 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
537 static const struct frame_base h8300_frame_base = {
539 h8300_frame_base_address,
540 h8300_frame_base_address,
541 h8300_frame_base_address
545 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
547 CORE_ADDR func_addr = 0 , func_end = 0;
549 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
551 struct symtab_and_line sal;
552 struct h8300_frame_cache cache;
554 /* Found a function. */
555 sal = find_pc_line (func_addr, 0);
556 if (sal.end && sal.end < func_end)
557 /* Found a line number, use it as end of prologue. */
560 /* No useable line symbol. Use prologue parsing method. */
561 h8300_init_frame_cache (gdbarch, &cache);
562 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
565 /* No function symbol -- just return the PC. */
566 return (CORE_ADDR) pc;
569 /* Function: push_dummy_call
570 Setup the function arguments for calling a function in the inferior.
571 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
574 There are actually two ABI's here: -mquickcall (the default) and
575 -mno-quickcall. With -mno-quickcall, all arguments are passed on
576 the stack after the return address, word-aligned. With
577 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
578 GCC doesn't indicate in the object file which ABI was used to
579 compile it, GDB only supports the default --- -mquickcall.
581 Here are the rules for -mquickcall, in detail:
583 Each argument, whether scalar or aggregate, is padded to occupy a
584 whole number of words. Arguments smaller than a word are padded at
585 the most significant end; those larger than a word are padded at
586 the least significant end.
588 The initial arguments are passed in r0 -- r2. Earlier arguments go in
589 lower-numbered registers. Multi-word arguments are passed in
590 consecutive registers, with the most significant end in the
591 lower-numbered register.
593 If an argument doesn't fit entirely in the remaining registers, it
594 is passed entirely on the stack. Stack arguments begin just after
595 the return address. Once an argument has overflowed onto the stack
596 this way, all subsequent arguments are passed on the stack.
598 The above rule has odd consequences. For example, on the h8/300s,
599 if a function takes two longs and an int as arguments:
600 - the first long will be passed in r0/r1,
601 - the second long will be passed entirely on the stack, since it
603 - and the int will be passed on the stack, even though it could fit
606 A weird exception: if an argument is larger than a word, but not a
607 whole number of words in length (before padding), it is passed on
608 the stack following the rules for stack arguments above, even if
609 there are sufficient registers available to hold it. Stranger
610 still, the argument registers are still `used up' --- even though
611 there's nothing in them.
613 So, for example, on the h8/300s, if a function expects a three-byte
614 structure and an int, the structure will go on the stack, and the
615 int will go in r2, not r0.
617 If the function returns an aggregate type (struct, union, or class)
618 by value, the caller must allocate space to hold the return value,
619 and pass the callee a pointer to this space as an invisible first
622 For varargs functions, the last fixed argument and all the variable
623 arguments are always passed on the stack. This means that calls to
624 varargs functions don't work properly unless there is a prototype
627 Basically, this ABI is not good, for the following reasons:
628 - You can't call vararg functions properly unless a prototype is in scope.
629 - Structure passing is inconsistent, to no purpose I can see.
630 - It often wastes argument registers, of which there are only three
634 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
635 struct regcache *regcache, CORE_ADDR bp_addr,
636 int nargs, struct value **args, CORE_ADDR sp,
637 function_call_return_method return_method,
638 CORE_ADDR struct_addr)
640 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
641 int stack_alloc = 0, stack_offset = 0;
642 int wordsize = BINWORD (gdbarch);
643 int reg = E_ARG0_REGNUM;
646 /* First, make sure the stack is properly aligned. */
647 sp = align_down (sp, wordsize);
649 /* Now make sure there's space on the stack for the arguments. We
650 may over-allocate a little here, but that won't hurt anything. */
651 for (argument = 0; argument < nargs; argument++)
652 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
656 /* Now load as many arguments as possible into registers, and push
657 the rest onto the stack.
658 If we're returning a structure by value, then we must pass a
659 pointer to the buffer for the return value as an invisible first
661 if (return_method == return_method_struct)
662 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
664 for (argument = 0; argument < nargs; argument++)
666 struct type *type = value_type (args[argument]);
667 int len = TYPE_LENGTH (type);
668 char *contents = (char *) value_contents (args[argument]);
670 /* Pad the argument appropriately. */
671 int padded_len = align_up (len, wordsize);
672 /* Use std::vector here to get zero initialization. */
673 std::vector<gdb_byte> padded (padded_len);
675 memcpy ((len < wordsize ? padded.data () + padded_len - len
679 /* Could the argument fit in the remaining registers? */
680 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
682 /* Are we going to pass it on the stack anyway, for no good
684 if (len > wordsize && len % wordsize)
686 /* I feel so unclean. */
687 write_memory (sp + stack_offset, padded.data (), padded_len);
688 stack_offset += padded_len;
690 /* That's right --- even though we passed the argument
691 on the stack, we consume the registers anyway! Love
693 reg += padded_len / wordsize;
697 /* Heavens to Betsy --- it's really going in registers!
698 Note that on the h8/300s, there are gaps between the
699 registers in the register file. */
702 for (offset = 0; offset < padded_len; offset += wordsize)
705 = extract_unsigned_integer (&padded[offset],
706 wordsize, byte_order);
707 regcache_cooked_write_unsigned (regcache, reg++, word);
713 /* It doesn't fit in registers! Onto the stack it goes. */
714 write_memory (sp + stack_offset, padded.data (), padded_len);
715 stack_offset += padded_len;
717 /* Once one argument has spilled onto the stack, all
718 subsequent arguments go on the stack. */
719 reg = E_ARGLAST_REGNUM + 1;
723 /* Store return address. */
725 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
727 /* Update stack pointer. */
728 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
730 /* Return the new stack pointer minus the return address slot since
731 that's what DWARF2/GCC uses as the frame's CFA. */
732 return sp + wordsize;
735 /* Function: extract_return_value
736 Figure out where in REGBUF the called function has left its return value.
737 Copy that into VALBUF. Be sure to account for CPU type. */
740 h8300_extract_return_value (struct type *type, struct regcache *regcache,
743 struct gdbarch *gdbarch = regcache->arch ();
744 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
745 int len = TYPE_LENGTH (type);
752 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
753 store_unsigned_integer (valbuf, len, byte_order, c);
755 case 4: /* Needs two registers on plain H8/300 */
756 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
757 store_unsigned_integer (valbuf, 2, byte_order, c);
758 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
759 store_unsigned_integer (valbuf + 2, 2, byte_order, c);
761 case 8: /* long long is now 8 bytes. */
762 if (TYPE_CODE (type) == TYPE_CODE_INT)
764 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
765 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
766 store_unsigned_integer (valbuf, len, byte_order, c);
770 error (_("I don't know how this 8 byte value is returned."));
777 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
780 struct gdbarch *gdbarch = regcache->arch ();
781 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
784 switch (TYPE_LENGTH (type))
789 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
790 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
792 case 8: /* long long is now 8 bytes. */
793 if (TYPE_CODE (type) == TYPE_CODE_INT)
795 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
796 store_unsigned_integer (valbuf, 4, byte_order, c);
797 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
798 store_unsigned_integer (valbuf + 4, 4, byte_order, c);
802 error (_("I don't know how this 8 byte value is returned."));
809 h8300_use_struct_convention (struct type *value_type)
811 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
814 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
815 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
817 return !(TYPE_LENGTH (value_type) == 1
818 || TYPE_LENGTH (value_type) == 2
819 || TYPE_LENGTH (value_type) == 4);
823 h8300h_use_struct_convention (struct type *value_type)
825 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
826 returned in R0/R1, everything else on the stack. */
827 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
828 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
830 return !(TYPE_LENGTH (value_type) == 1
831 || TYPE_LENGTH (value_type) == 2
832 || TYPE_LENGTH (value_type) == 4
833 || (TYPE_LENGTH (value_type) == 8
834 && TYPE_CODE (value_type) == TYPE_CODE_INT));
837 /* Function: store_return_value
838 Place the appropriate value in the appropriate registers.
839 Primarily used by the RETURN command. */
842 h8300_store_return_value (struct type *type, struct regcache *regcache,
843 const gdb_byte *valbuf)
845 struct gdbarch *gdbarch = regcache->arch ();
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849 switch (TYPE_LENGTH (type))
852 case 2: /* short... */
853 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
854 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
856 case 4: /* long, float */
857 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
858 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
859 (val >> 16) & 0xffff);
860 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
862 case 8: /* long long, double and long double
863 are all defined as 4 byte types so
864 far so this shouldn't happen. */
865 error (_("I don't know how to return an 8 byte value."));
871 h8300h_store_return_value (struct type *type, struct regcache *regcache,
872 const gdb_byte *valbuf)
874 struct gdbarch *gdbarch = regcache->arch ();
875 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
878 switch (TYPE_LENGTH (type))
882 case 4: /* long, float */
883 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
884 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
887 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
888 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
889 (val >> 32) & 0xffffffff);
890 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
896 static enum return_value_convention
897 h8300_return_value (struct gdbarch *gdbarch, struct value *function,
898 struct type *type, struct regcache *regcache,
899 gdb_byte *readbuf, const gdb_byte *writebuf)
901 if (h8300_use_struct_convention (type))
902 return RETURN_VALUE_STRUCT_CONVENTION;
904 h8300_store_return_value (type, regcache, writebuf);
906 h8300_extract_return_value (type, regcache, readbuf);
907 return RETURN_VALUE_REGISTER_CONVENTION;
910 static enum return_value_convention
911 h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
912 struct type *type, struct regcache *regcache,
913 gdb_byte *readbuf, const gdb_byte *writebuf)
915 if (h8300h_use_struct_convention (type))
921 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
922 read_memory (addr, readbuf, TYPE_LENGTH (type));
925 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
928 h8300h_store_return_value (type, regcache, writebuf);
930 h8300h_extract_return_value (type, regcache, readbuf);
931 return RETURN_VALUE_REGISTER_CONVENTION;
934 /* Implementation of 'register_sim_regno' gdbarch method. */
937 h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum)
939 /* Only makes sense to supply raw registers. */
940 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
942 /* We hide the raw ccr from the user by making it nameless. Because
943 the default register_sim_regno hook returns
944 LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to
945 override it. The sim register numbering is compatible with
951 h8300_register_name (struct gdbarch *gdbarch, int regno)
953 /* The register names change depending on which h8300 processor
955 static const char *register_names[] = {
956 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
957 "sp", "", "pc", "cycles", "tick", "inst",
958 "ccr", /* pseudo register */
961 || regno >= (sizeof (register_names) / sizeof (*register_names)))
962 internal_error (__FILE__, __LINE__,
963 _("h8300_register_name: illegal register number %d"),
966 return register_names[regno];
970 h8300s_register_name (struct gdbarch *gdbarch, int regno)
972 static const char *register_names[] = {
973 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
974 "sp", "", "pc", "cycles", "", "tick", "inst",
976 "ccr", "exr" /* pseudo registers */
979 || regno >= (sizeof (register_names) / sizeof (*register_names)))
980 internal_error (__FILE__, __LINE__,
981 _("h8300s_register_name: illegal register number %d"),
984 return register_names[regno];
988 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
990 static const char *register_names[] = {
991 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
992 "sp", "", "pc", "cycles", "", "tick", "inst",
993 "mach", "macl", "sbr", "vbr",
994 "ccr", "exr" /* pseudo registers */
997 || regno >= (sizeof (register_names) / sizeof (*register_names)))
998 internal_error (__FILE__, __LINE__,
999 _("h8300sx_register_name: illegal register number %d"),
1002 return register_names[regno];
1006 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1007 struct frame_info *frame, int regno)
1010 const char *name = gdbarch_register_name (gdbarch, regno);
1012 if (!name || !*name)
1015 rval = get_frame_register_signed (frame, regno);
1017 fprintf_filtered (file, "%-14s ", name);
1018 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1019 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1021 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1022 print_longest (file, 'u', 1, rval);
1026 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1027 BINWORD (gdbarch)));
1028 print_longest (file, 'd', 1, rval);
1030 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1034 unsigned char l = rval & 0xff;
1035 fprintf_filtered (file, "\t");
1036 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1037 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1038 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1039 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1044 fprintf_filtered (file, "N-%d ", N);
1045 fprintf_filtered (file, "Z-%d ", Z);
1046 fprintf_filtered (file, "V-%d ", V);
1047 fprintf_filtered (file, "C-%d ", C);
1049 fprintf_filtered (file, "u> ");
1051 fprintf_filtered (file, "u<= ");
1053 fprintf_filtered (file, "u>= ");
1055 fprintf_filtered (file, "u< ");
1057 fprintf_filtered (file, "!= ");
1059 fprintf_filtered (file, "== ");
1061 fprintf_filtered (file, ">= ");
1063 fprintf_filtered (file, "< ");
1064 if ((Z | (N ^ V)) == 0)
1065 fprintf_filtered (file, "> ");
1066 if ((Z | (N ^ V)) == 1)
1067 fprintf_filtered (file, "<= ");
1069 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1072 unsigned char l = rval & 0xff;
1073 fprintf_filtered (file, "\t");
1074 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1075 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1076 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1077 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1079 fprintf_filtered (file, "\n");
1083 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1084 struct frame_info *frame, int regno, int cpregs)
1088 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1089 h8300_print_register (gdbarch, file, frame, regno);
1090 h8300_print_register (gdbarch, file, frame,
1091 E_PSEUDO_CCR_REGNUM (gdbarch));
1092 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1093 if (is_h8300smode (gdbarch))
1095 h8300_print_register (gdbarch, file, frame,
1096 E_PSEUDO_EXR_REGNUM (gdbarch));
1097 if (is_h8300sxmode (gdbarch))
1099 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1100 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1102 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1103 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1104 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1105 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1106 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1110 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1111 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1112 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1117 if (regno == E_CCR_REGNUM)
1118 h8300_print_register (gdbarch, file, frame,
1119 E_PSEUDO_CCR_REGNUM (gdbarch));
1120 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1121 && is_h8300smode (gdbarch))
1122 h8300_print_register (gdbarch, file, frame,
1123 E_PSEUDO_EXR_REGNUM (gdbarch));
1125 h8300_print_register (gdbarch, file, frame, regno);
1129 static struct type *
1130 h8300_register_type (struct gdbarch *gdbarch, int regno)
1132 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
1133 internal_error (__FILE__, __LINE__,
1134 _("h8300_register_type: illegal register number %d"),
1141 return builtin_type (gdbarch)->builtin_func_ptr;
1144 return builtin_type (gdbarch)->builtin_data_ptr;
1146 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1147 return builtin_type (gdbarch)->builtin_uint8;
1148 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1149 return builtin_type (gdbarch)->builtin_uint8;
1150 else if (is_h8300hmode (gdbarch))
1151 return builtin_type (gdbarch)->builtin_int32;
1153 return builtin_type (gdbarch)->builtin_int16;
1158 /* Helpers for h8300_pseudo_register_read. We expose ccr/exr as
1159 pseudo-registers to users with smaller sizes than the corresponding
1160 raw registers. These helpers extend/narrow the values. */
1162 static enum register_status
1163 pseudo_from_raw_register (struct gdbarch *gdbarch, readable_regcache *regcache,
1164 gdb_byte *buf, int pseudo_regno, int raw_regno)
1166 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1167 enum register_status status;
1170 status = regcache->raw_read (raw_regno, &val);
1171 if (status == REG_VALID)
1172 store_unsigned_integer (buf,
1173 register_size (gdbarch, pseudo_regno),
1178 /* See pseudo_from_raw_register. */
1181 raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache,
1182 const gdb_byte *buf, int raw_regno, int pseudo_regno)
1184 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1187 val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno),
1189 regcache_raw_write_unsigned (regcache, raw_regno, val);
1192 static enum register_status
1193 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1194 readable_regcache *regcache, int regno,
1197 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1199 return pseudo_from_raw_register (gdbarch, regcache, buf,
1200 regno, E_CCR_REGNUM);
1202 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1204 return pseudo_from_raw_register (gdbarch, regcache, buf,
1205 regno, E_EXR_REGNUM);
1208 return regcache->raw_read (regno, buf);
1212 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1213 struct regcache *regcache, int regno,
1214 const gdb_byte *buf)
1216 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1217 raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno);
1218 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1219 raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno);
1221 regcache->raw_write (regno, buf);
1225 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1227 if (regno == E_CCR_REGNUM)
1228 return E_PSEUDO_CCR_REGNUM (gdbarch);
1233 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1235 if (regno == E_CCR_REGNUM)
1236 return E_PSEUDO_CCR_REGNUM (gdbarch);
1237 if (regno == E_EXR_REGNUM)
1238 return E_PSEUDO_EXR_REGNUM (gdbarch);
1242 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1243 constexpr gdb_byte h8300_break_insn[] = { 0x01, 0x80 }; /* Sleep */
1245 typedef BP_MANIPULATION (h8300_break_insn) h8300_breakpoint;
1247 static struct gdbarch *
1248 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1250 struct gdbarch *gdbarch;
1252 arches = gdbarch_list_lookup_by_info (arches, &info);
1254 return arches->gdbarch;
1256 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1259 gdbarch = gdbarch_alloc (&info, 0);
1261 set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno);
1263 switch (info.bfd_arch_info->mach)
1265 case bfd_mach_h8300:
1266 set_gdbarch_num_regs (gdbarch, 13);
1267 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1268 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1269 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1270 set_gdbarch_register_name (gdbarch, h8300_register_name);
1271 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1272 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1273 set_gdbarch_return_value (gdbarch, h8300_return_value);
1275 case bfd_mach_h8300h:
1276 case bfd_mach_h8300hn:
1277 set_gdbarch_num_regs (gdbarch, 13);
1278 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1279 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1280 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1281 set_gdbarch_register_name (gdbarch, h8300_register_name);
1282 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1284 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1285 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1289 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1290 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1292 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1294 case bfd_mach_h8300s:
1295 case bfd_mach_h8300sn:
1296 set_gdbarch_num_regs (gdbarch, 16);
1297 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1298 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1299 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1300 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1301 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1303 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1304 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1308 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1309 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1311 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1313 case bfd_mach_h8300sx:
1314 case bfd_mach_h8300sxn:
1315 set_gdbarch_num_regs (gdbarch, 18);
1316 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1317 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1318 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1319 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1320 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1322 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1323 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1327 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1328 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1330 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1334 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1335 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1338 * Basic register fields and methods.
1341 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1342 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1343 set_gdbarch_register_type (gdbarch, h8300_register_type);
1344 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1349 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1351 /* Frame unwinder. */
1352 set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1353 set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1354 set_gdbarch_dummy_id (gdbarch, h8300_dummy_id);
1355 frame_base_set_default (gdbarch, &h8300_frame_base);
1360 /* Stack grows up. */
1361 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1363 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1364 h8300_breakpoint::kind_from_pc);
1365 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1366 h8300_breakpoint::bp_from_kind);
1367 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1369 set_gdbarch_char_signed (gdbarch, 0);
1370 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1371 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1372 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1374 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1375 set_gdbarch_wchar_signed (gdbarch, 0);
1377 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1378 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1379 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1380 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1382 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1384 /* Hook in the DWARF CFI frame unwinder. */
1385 dwarf2_append_unwinders (gdbarch);
1386 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
1393 _initialize_h8300_tdep (void)
1395 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1399 is_h8300hmode (struct gdbarch *gdbarch)
1401 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1402 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1403 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1404 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1405 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1406 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1410 is_h8300smode (struct gdbarch *gdbarch)
1412 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1413 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1414 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1415 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1419 is_h8300sxmode (struct gdbarch *gdbarch)
1421 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1422 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1426 is_h8300_normal_mode (struct gdbarch *gdbarch)
1428 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1429 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1430 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;