1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
91 #include "gdbthread.h"
96 #include "floatformat.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "nat/x86-cpuid.h"
102 #include "regcache.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
109 #include <sys/utsname.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
121 #include <langinfo.h>
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
132 unsigned short exponent:15;
133 unsigned short sign:1;
139 unsigned int control;
144 unsigned int dataptr;
145 unsigned int datasel;
152 static void save_npx (void); /* Save the FPU of the debugged program. */
153 static void load_npx (void); /* Restore the FPU of the debugged program. */
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
187 asm ("frstor %0":"=m" (npx));
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
197 redir_cmdline_delete (cmdline_t *ptr)
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
209 redir_to_child (cmdline_t *ptr)
215 redir_to_debugger (cmdline_t *ptr)
221 redir_debug_init (cmdline_t *ptr)
225 #endif /* __DJGPP_MINOR < 3 */
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
234 static int prog_has_started = 0;
235 static void go32_mourn_inferior (struct target_ops *ops);
237 #define r_ofs(x) (offsetof(TSS,x))
246 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
247 {r_ofs (tss_ecx), 4},
248 {r_ofs (tss_edx), 4},
249 {r_ofs (tss_ebx), 4},
250 {r_ofs (tss_esp), 4},
251 {r_ofs (tss_ebp), 4},
252 {r_ofs (tss_esi), 4},
253 {r_ofs (tss_edi), 4},
254 {r_ofs (tss_eip), 4},
255 {r_ofs (tss_eflags), 4},
262 {0, 10}, /* 8 FP registers, from npx.reg[] */
270 /* The order of the next 7 registers must be consistent
271 with their numbering in config/i386/tm-i386.h, which see. */
272 {0, 2}, /* control word, from npx */
273 {4, 2}, /* status word, from npx */
274 {8, 2}, /* tag word, from npx */
275 {16, 2}, /* last FP exception CS from npx */
276 {12, 4}, /* last FP exception EIP from npx */
277 {24, 2}, /* last FP exception operand selector from npx */
278 {20, 4}, /* last FP exception operand offset from npx */
279 {18, 2} /* last FP opcode from npx */
285 enum gdb_signal gdb_sig;
290 {1, GDB_SIGNAL_TRAP},
291 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
292 but I think SIGBUS is better, since the NMI is usually activated
293 as a result of a memory parity check failure. */
295 {3, GDB_SIGNAL_TRAP},
297 {5, GDB_SIGNAL_SEGV},
299 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
300 {8, GDB_SIGNAL_SEGV},
301 {9, GDB_SIGNAL_SEGV},
302 {10, GDB_SIGNAL_BUS},
303 {11, GDB_SIGNAL_SEGV},
304 {12, GDB_SIGNAL_SEGV},
305 {13, GDB_SIGNAL_SEGV},
306 {14, GDB_SIGNAL_SEGV},
307 {16, GDB_SIGNAL_FPE},
308 {17, GDB_SIGNAL_BUS},
309 {31, GDB_SIGNAL_ILL},
310 {0x1b, GDB_SIGNAL_INT},
311 {0x75, GDB_SIGNAL_FPE},
312 {0x78, GDB_SIGNAL_ALRM},
313 {0x79, GDB_SIGNAL_INT},
314 {0x7a, GDB_SIGNAL_QUIT},
315 {-1, GDB_SIGNAL_LAST}
319 enum gdb_signal gdb_sig;
323 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
324 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
325 {GDB_SIGNAL_SEGV, 13}, /* GPF */
326 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
327 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
329 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
330 {GDB_SIGNAL_FPE, 0x75},
331 {GDB_SIGNAL_INT, 0x79},
332 {GDB_SIGNAL_QUIT, 0x7a},
333 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
334 {GDB_SIGNAL_PROF, 0x78},
335 {GDB_SIGNAL_LAST, -1}
339 go32_attach (struct target_ops *ops, const char *args, int from_tty)
342 You cannot attach to a running program on this platform.\n\
343 Use the `run' command to run DJGPP programs."));
346 static int resume_is_step;
347 static int resume_signal = -1;
350 go32_resume (struct target_ops *ops,
351 ptid_t ptid, int step, enum gdb_signal siggnal)
355 resume_is_step = step;
357 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
359 for (i = 0, resume_signal = -1;
360 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
361 if (excepn_map[i].gdb_sig == siggnal)
363 resume_signal = excepn_map[i].djgpp_excepno;
366 if (resume_signal == -1)
367 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
368 gdb_signal_to_name (siggnal));
372 static char child_cwd[FILENAME_MAX];
375 go32_wait (struct target_ops *ops,
376 ptid_t ptid, struct target_waitstatus *status, int options)
379 unsigned char saved_opcode;
380 unsigned long INT3_addr = 0;
381 int stepping_over_INT = 0;
383 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
386 /* If the next instruction is INT xx or INTO, we need to handle
387 them specially. Intel manuals say that these instructions
388 reset the single-step flag (a.k.a. TF). However, it seems
389 that, at least in the DPMI environment, and at least when
390 stepping over the DPMI interrupt 31h, the problem is having
391 TF set at all when INT 31h is executed: the debuggee either
392 crashes (and takes the system with it) or is killed by a
395 So we need to emulate single-step mode: we put an INT3 opcode
396 right after the INT xx instruction, let the debuggee run
397 until it hits INT3 and stops, then restore the original
398 instruction which we overwrote with the INT3 opcode, and back
399 up the debuggee's EIP to that instruction. */
400 read_child (a_tss.tss_eip, &saved_opcode, 1);
401 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
403 unsigned char INT3_opcode = 0xCC;
406 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
407 stepping_over_INT = 1;
408 read_child (INT3_addr, &saved_opcode, 1);
409 write_child (INT3_addr, &INT3_opcode, 1);
412 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
415 /* The special value FFFFh in tss_trap indicates to run_child that
416 tss_irqn holds a signal to be delivered to the debuggee. */
417 if (resume_signal <= -1)
420 a_tss.tss_irqn = 0xff;
424 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
425 a_tss.tss_irqn = resume_signal;
428 /* The child might change working directory behind our back. The
429 GDB users won't like the side effects of that when they work with
430 relative file names, and GDB might be confused by its current
431 directory not being in sync with the truth. So we always make a
432 point of changing back to where GDB thinks is its cwd, when we
433 return control to the debugger, but restore child's cwd before we
435 /* Initialize child_cwd, before the first call to run_child and not
436 in the initialization, so the child get also the changed directory
437 set with the gdb-command "cd ..." */
439 /* Initialize child's cwd with the current one. */
440 getcwd (child_cwd, sizeof (child_cwd));
444 #if __DJGPP_MINOR__ < 3
448 #if __DJGPP_MINOR__ < 3
452 /* Did we step over an INT xx instruction? */
453 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
455 /* Restore the original opcode. */
456 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
457 write_child (a_tss.tss_eip, &saved_opcode, 1);
458 /* Simulate a TRAP exception. */
460 a_tss.tss_eflags |= 0x0100;
463 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
464 chdir (current_directory);
466 if (a_tss.tss_irqn == 0x21)
468 status->kind = TARGET_WAITKIND_EXITED;
469 status->value.integer = a_tss.tss_eax & 0xff;
473 status->value.sig = GDB_SIGNAL_UNKNOWN;
474 status->kind = TARGET_WAITKIND_STOPPED;
475 for (i = 0; sig_map[i].go32_sig != -1; i++)
477 if (a_tss.tss_irqn == sig_map[i].go32_sig)
479 #if __DJGPP_MINOR__ < 3
480 if ((status->value.sig = sig_map[i].gdb_sig) !=
482 status->kind = TARGET_WAITKIND_SIGNALLED;
484 status->value.sig = sig_map[i].gdb_sig;
490 return pid_to_ptid (SOME_PID);
494 fetch_register (struct regcache *regcache, int regno)
496 struct gdbarch *gdbarch = get_regcache_arch (regcache);
497 if (regno < gdbarch_fp0_regnum (gdbarch))
498 regcache_raw_supply (regcache, regno,
499 (char *) &a_tss + regno_mapping[regno].tss_ofs);
500 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
502 i387_supply_fsave (regcache, regno, &npx);
504 internal_error (__FILE__, __LINE__,
505 _("Invalid register no. %d in fetch_register."), regno);
509 go32_fetch_registers (struct target_ops *ops,
510 struct regcache *regcache, int regno)
513 fetch_register (regcache, regno);
517 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
519 fetch_register (regcache, regno);
520 i387_supply_fsave (regcache, -1, &npx);
525 store_register (const struct regcache *regcache, int regno)
527 struct gdbarch *gdbarch = get_regcache_arch (regcache);
528 if (regno < gdbarch_fp0_regnum (gdbarch))
529 regcache_raw_collect (regcache, regno,
530 (char *) &a_tss + regno_mapping[regno].tss_ofs);
531 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
533 i387_collect_fsave (regcache, regno, &npx);
535 internal_error (__FILE__, __LINE__,
536 _("Invalid register no. %d in store_register."), regno);
540 go32_store_registers (struct target_ops *ops,
541 struct regcache *regcache, int regno)
546 store_register (regcache, regno);
549 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
550 store_register (regcache, r);
551 i387_collect_fsave (regcache, -1, &npx);
555 /* Const-correct version of DJGPP's write_child, which unfortunately
556 takes a non-const buffer pointer. */
559 my_write_child (unsigned child_addr, const void *buf, unsigned len)
561 static void *buffer = NULL;
562 static unsigned buffer_len = 0;
565 if (buffer_len < len)
567 buffer = xrealloc (buffer, len);
571 memcpy (buffer, buf, len);
572 res = write_child (child_addr, buffer, len);
576 /* Helper for go32_xfer_partial that handles memory transfers.
577 Arguments are like target_xfer_partial. */
579 static enum target_xfer_status
580 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
581 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
585 if (writebuf != NULL)
586 res = my_write_child (memaddr, writebuf, len);
588 res = read_child (memaddr, readbuf, len);
591 return TARGET_XFER_E_IO;
594 return TARGET_XFER_OK;
597 /* Target to_xfer_partial implementation. */
599 static enum target_xfer_status
600 go32_xfer_partial (struct target_ops *ops, enum target_object object,
601 const char *annex, gdb_byte *readbuf,
602 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
603 ULONGEST *xfered_len)
607 case TARGET_OBJECT_MEMORY:
608 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
611 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
612 readbuf, writebuf, offset, len,
617 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
620 go32_files_info (struct target_ops *target)
622 printf_unfiltered ("You are running a DJGPP V2 program.\n");
626 go32_kill_inferior (struct target_ops *ops)
628 go32_mourn_inferior (ops);
632 go32_create_inferior (struct target_ops *ops, char *exec_file,
633 char *args, char **env, int from_tty)
635 extern char **environ;
638 char **env_save = environ;
640 struct inferior *inf;
643 /* If no exec file handed to us, get it from the exec-file command -- with
644 a good, common error message if none is specified. */
646 exec_file = get_exec_file (1);
651 /* Initialize child's cwd as empty to be initialized when starting
655 /* Init command line storage. */
656 if (redir_debug_init (&child_cmd) == -1)
657 internal_error (__FILE__, __LINE__,
658 _("Cannot allocate redirection storage: "
659 "not enough memory.\n"));
661 /* Parse the command line and create redirections. */
662 if (strpbrk (args, "<>"))
664 if (redir_cmdline_parse (args, &child_cmd) == 0)
665 args = child_cmd.command;
667 error (_("Syntax error in command line."));
670 child_cmd.command = xstrdup (args);
672 cmdlen = strlen (args);
673 /* v2loadimage passes command lines via DOS memory, so it cannot
674 possibly handle commands longer than 1MB. */
675 if (cmdlen > 1024*1024)
676 error (_("Command line too long."));
678 cmdline = xmalloc (cmdlen + 4);
679 strcpy (cmdline + 1, args);
680 /* If the command-line length fits into DOS 126-char limits, use the
681 DOS command tail format; otherwise, tell v2loadimage to pass it
682 through a buffer in conventional memory. */
685 cmdline[0] = strlen (args);
686 cmdline[cmdlen + 1] = 13;
689 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
693 result = v2loadimage (exec_file, cmdline, start_state);
699 error (_("Load failed for image %s", exec_file);
701 edi_init (start_state);
702 #if __DJGPP_MINOR__ < 3
706 inferior_ptid = pid_to_ptid (SOME_PID);
707 inf = current_inferior ();
708 inferior_appeared (inf, SOME_PID);
710 if (!target_is_pushed (ops))
713 add_thread_silent (inferior_ptid);
715 clear_proceed_status (0);
716 insert_breakpoints ();
717 prog_has_started = 1;
721 go32_mourn_inferior (struct target_ops *ops)
725 redir_cmdline_delete (&child_cmd);
731 /* We need to make sure all the breakpoint enable bits in the DR7
732 register are reset when the inferior exits. Otherwise, if they
733 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
734 failure to set more watchpoints, and other calamities. It would
735 be nice if GDB itself would take care to remove all breakpoints
736 at all times, but it doesn't, probably under an assumption that
737 the OS cleans up when the debuggee exits. */
738 x86_cleanup_dregs ();
740 ptid = inferior_ptid;
741 inferior_ptid = null_ptid;
742 delete_thread_silent (ptid);
743 prog_has_started = 0;
745 generic_mourn_inferior ();
746 inf_child_maybe_unpush_target (ops);
749 /* Hardware watchpoint support. */
751 #define D_REGS edi.dr
752 #define CONTROL D_REGS[7]
753 #define STATUS D_REGS[6]
755 /* Pass the address ADDR to the inferior in the I'th debug register.
756 Here we just store the address in D_REGS, the watchpoint will be
757 actually set up when go32_wait runs the debuggee. */
759 go32_set_dr (int i, CORE_ADDR addr)
762 internal_error (__FILE__, __LINE__,
763 _("Invalid register %d in go32_set_dr.\n"), i);
767 /* Pass the value VAL to the inferior in the DR7 debug control
768 register. Here we just store the address in D_REGS, the watchpoint
769 will be actually set up when go32_wait runs the debuggee. */
771 go32_set_dr7 (unsigned long val)
776 /* Get the value of the DR6 debug status register from the inferior.
777 Here we just return the value stored in D_REGS, as we've got it
778 from the last go32_wait call. */
785 /* Get the value of the DR7 debug status register from the inferior.
786 Here we just return the value stored in D_REGS, as we've got it
787 from the last go32_wait call. */
795 /* Get the value of the DR debug register I from the inferior. Here
796 we just return the value stored in D_REGS, as we've got it from the
797 last go32_wait call. */
803 internal_error (__FILE__, __LINE__,
804 _("Invalid register %d in go32_get_dr.\n"), i);
808 /* Put the device open on handle FD into either raw or cooked
809 mode, return 1 if it was in raw mode, zero otherwise. */
812 device_mode (int fd, int raw_p)
814 int oldmode, newmode;
819 __dpmi_int (0x21, ®s);
820 if (regs.x.flags & 1)
822 newmode = oldmode = regs.x.dx;
829 if (oldmode & 0x80) /* Only for character dev. */
833 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
834 __dpmi_int (0x21, ®s);
835 if (regs.x.flags & 1)
838 return (oldmode & 0x20) == 0x20;
842 static int inf_mode_valid = 0;
843 static int inf_terminal_mode;
845 /* This semaphore is needed because, amazingly enough, GDB calls
846 target.to_terminal_ours more than once after the inferior stops.
847 But we need the information from the first call only, since the
848 second call will always see GDB's own cooked terminal. */
849 static int terminal_is_ours = 1;
852 go32_terminal_init (struct target_ops *self)
854 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
855 terminal_is_ours = 1;
859 go32_terminal_info (struct target_ops *self, const char *args, int from_tty)
861 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
863 ? "default" : inf_terminal_mode ? "raw" : "cooked");
865 #if __DJGPP_MINOR__ > 2
866 if (child_cmd.redirection)
870 for (i = 0; i < DBG_HANDLES; i++)
872 if (child_cmd.redirection[i]->file_name)
873 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
874 i, child_cmd.redirection[i]->file_name);
875 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
877 ("\tFile handle %d appears to be closed by inferior.\n", i);
878 /* Mask off the raw/cooked bit when comparing device info words. */
879 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
880 != (_get_dev_info (i) & 0xdf))
882 ("\tFile handle %d appears to be redirected by inferior.\n", i);
889 go32_terminal_inferior (struct target_ops *self)
891 /* Redirect standard handles as child wants them. */
893 if (redir_to_child (&child_cmd) == -1)
895 redir_to_debugger (&child_cmd);
896 error (_("Cannot redirect standard handles for program: %s."),
897 safe_strerror (errno));
899 /* Set the console device of the inferior to whatever mode
900 (raw or cooked) we found it last time. */
901 if (terminal_is_ours)
904 device_mode (0, inf_terminal_mode);
905 terminal_is_ours = 0;
910 go32_terminal_ours (struct target_ops *self)
912 /* Switch to cooked mode on the gdb terminal and save the inferior
913 terminal mode to be restored when it is resumed. */
914 if (!terminal_is_ours)
916 inf_terminal_mode = device_mode (0, 0);
917 if (inf_terminal_mode != -1)
920 /* If device_mode returned -1, we don't know what happens with
921 handle 0 anymore, so make the info invalid. */
923 terminal_is_ours = 1;
925 /* Restore debugger's standard handles. */
927 if (redir_to_debugger (&child_cmd) == -1)
929 redir_to_child (&child_cmd);
930 error (_("Cannot redirect standard handles for debugger: %s."),
931 safe_strerror (errno));
937 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
939 return !ptid_equal (inferior_ptid, null_ptid);
943 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
945 return normal_pid_to_str (ptid);
948 /* Create a go32 target. */
950 static struct target_ops *
953 struct target_ops *t = inf_child_target ();
955 t->to_attach = go32_attach;
956 t->to_resume = go32_resume;
957 t->to_wait = go32_wait;
958 t->to_fetch_registers = go32_fetch_registers;
959 t->to_store_registers = go32_store_registers;
960 t->to_xfer_partial = go32_xfer_partial;
961 t->to_files_info = go32_files_info;
962 t->to_terminal_init = go32_terminal_init;
963 t->to_terminal_inferior = go32_terminal_inferior;
964 t->to_terminal_ours_for_output = go32_terminal_ours;
965 t->to_terminal_ours = go32_terminal_ours;
966 t->to_terminal_info = go32_terminal_info;
967 t->to_kill = go32_kill_inferior;
968 t->to_create_inferior = go32_create_inferior;
969 t->to_mourn_inferior = go32_mourn_inferior;
970 t->to_thread_alive = go32_thread_alive;
971 t->to_pid_to_str = go32_pid_to_str;
976 /* Return the current DOS codepage number. */
983 __dpmi_int (0x21, ®s);
984 if (!(regs.x.flags & 1))
985 return regs.x.bx & 0xffff;
987 return 437; /* default */
990 /* Limited emulation of `nl_langinfo', for charset.c. */
992 nl_langinfo (nl_item item)
1000 /* 8 is enough for SHORT_MAX + "CP" + null. */
1002 int blen = sizeof (buf);
1003 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1005 if (needed > blen) /* Should never happen. */
1007 retval = xstrdup (buf);
1011 retval = xstrdup ("");
1017 unsigned short windows_major, windows_minor;
1019 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1021 go32_get_windows_version(void)
1026 __dpmi_int(0x2f, &r);
1027 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1028 && (r.h.al > 3 || r.h.ah > 0))
1030 windows_major = r.h.al;
1031 windows_minor = r.h.ah;
1034 windows_major = 0xff; /* meaning no Windows */
1037 /* A subroutine of go32_sysinfo to display memory info. */
1039 print_mem (unsigned long datum, const char *header, int in_pages_p)
1041 if (datum != 0xffffffffUL)
1045 puts_filtered (header);
1048 printf_filtered ("%lu KB", datum >> 10);
1049 if (datum > 1024 * 1024)
1050 printf_filtered (" (%lu MB)", datum >> 20);
1053 printf_filtered ("%lu Bytes", datum);
1054 puts_filtered ("\n");
1058 /* Display assorted information about the underlying OS. */
1060 go32_sysinfo (char *arg, int from_tty)
1062 static const char test_pattern[] =
1063 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1064 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1065 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1067 char cpuid_vendor[13];
1068 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1069 unsigned true_dos_version = _get_dos_version (1);
1070 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1072 char dpmi_vendor_info[129];
1073 int dpmi_vendor_available;
1074 __dpmi_version_ret dpmi_version_data;
1076 __dpmi_free_mem_info mem_info;
1079 cpuid_vendor[0] = '\0';
1081 strcpy (u.machine, "Unknown x86");
1082 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1084 /* CPUID with EAX = 0 returns the Vendor ID. */
1086 /* Ideally we would use x86_cpuid(), but it needs someone to run
1087 native tests first to make sure things actually work. They should.
1088 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1089 unsigned int eax, ebx, ecx, edx;
1091 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
1094 memcpy (&vendor[0], &ebx, 4);
1095 memcpy (&vendor[4], &ecx, 4);
1096 memcpy (&vendor[8], &edx, 4);
1097 cpuid_vendor[12] = '\0';
1100 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1101 "xorl %%ecx, %%ecx;"
1102 "xorl %%edx, %%edx;"
1109 : "=m" (cpuid_vendor[0]),
1110 "=m" (cpuid_vendor[4]),
1111 "=m" (cpuid_vendor[8]),
1114 : "%eax", "%ebx", "%ecx", "%edx");
1115 cpuid_vendor[12] = '\0';
1119 printf_filtered ("CPU Type.......................%s", u.machine);
1120 if (cpuid_vendor[0])
1121 printf_filtered (" (%s)", cpuid_vendor);
1122 puts_filtered ("\n");
1124 /* CPUID with EAX = 1 returns processor signature and features. */
1127 static char *brand_name[] = {
1135 char cpu_string[80];
1138 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1139 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1140 unsigned cpu_family, cpu_model;
1143 /* See comment above about cpuid usage. */
1144 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1146 __asm__ __volatile__ ("movl $1, %%eax;"
1154 brand_idx = cpuid_ebx & 0xff;
1155 cpu_family = (cpuid_eax >> 8) & 0xf;
1156 cpu_model = (cpuid_eax >> 4) & 0xf;
1157 cpu_brand[0] = '\0';
1161 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1162 && *brand_name[brand_idx])
1163 strcpy (cpu_brand, brand_name[brand_idx]);
1164 else if (cpu_family == 5)
1166 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1167 strcpy (cpu_brand, " MMX");
1168 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1169 strcpy (cpu_brand, " OverDrive");
1170 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1171 strcpy (cpu_brand, " Dual");
1173 else if (cpu_family == 6 && cpu_model < 8)
1178 strcpy (cpu_brand, " Pro");
1181 strcpy (cpu_brand, " II");
1184 strcpy (cpu_brand, " II Xeon");
1187 strcpy (cpu_brand, " Celeron");
1190 strcpy (cpu_brand, " III");
1200 strcpy (cpu_brand, "486/5x86");
1209 strcpy (cpu_brand, "-K5");
1213 strcpy (cpu_brand, "-K6");
1216 strcpy (cpu_brand, "-K6-2");
1219 strcpy (cpu_brand, "-K6-III");
1229 strcpy (cpu_brand, " Athlon");
1232 strcpy (cpu_brand, " Duron");
1238 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1239 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1240 cpu_brand, cpu_model, cpuid_eax & 0xf);
1241 printfi_filtered (31, "%s\n", cpu_string);
1242 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1243 || ((cpuid_edx & 1) == 0)
1244 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1246 puts_filtered ("CPU Features...................");
1247 /* We only list features which might be useful in the DPMI
1249 if ((cpuid_edx & 1) == 0)
1250 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1251 if ((cpuid_edx & (1 << 1)) != 0)
1252 puts_filtered ("VME ");
1253 if ((cpuid_edx & (1 << 2)) != 0)
1254 puts_filtered ("DE ");
1255 if ((cpuid_edx & (1 << 4)) != 0)
1256 puts_filtered ("TSC ");
1257 if ((cpuid_edx & (1 << 23)) != 0)
1258 puts_filtered ("MMX ");
1259 if ((cpuid_edx & (1 << 25)) != 0)
1260 puts_filtered ("SSE ");
1261 if ((cpuid_edx & (1 << 26)) != 0)
1262 puts_filtered ("SSE2 ");
1265 if ((cpuid_edx & (1 << 31)) != 0)
1266 puts_filtered ("3DNow! ");
1267 if ((cpuid_edx & (1 << 30)) != 0)
1268 puts_filtered ("3DNow!Ext");
1270 puts_filtered ("\n");
1273 puts_filtered ("\n");
1274 printf_filtered ("DOS Version....................%s %s.%s",
1275 _os_flavor, u.release, u.version);
1276 if (true_dos_version != advertized_dos_version)
1277 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1278 puts_filtered ("\n");
1280 go32_get_windows_version ();
1281 if (windows_major != 0xff)
1283 const char *windows_flavor;
1285 printf_filtered ("Windows Version................%d.%02d (Windows ",
1286 windows_major, windows_minor);
1287 switch (windows_major)
1290 windows_flavor = "3.X";
1293 switch (windows_minor)
1296 windows_flavor = "95, 95A, or 95B";
1299 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1302 windows_flavor = "98 or 98 SE";
1305 windows_flavor = "ME";
1308 windows_flavor = "9X";
1313 windows_flavor = "??";
1316 printf_filtered ("%s)\n", windows_flavor);
1318 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1319 printf_filtered ("Windows Version................"
1320 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1321 puts_filtered ("\n");
1322 /* On some versions of Windows, __dpmi_get_capabilities returns
1323 zero, but the buffer is not filled with info, so we fill the
1324 buffer with a known pattern and test for it afterwards. */
1325 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1326 dpmi_vendor_available =
1327 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1328 if (dpmi_vendor_available == 0
1329 && memcmp (dpmi_vendor_info, test_pattern,
1330 sizeof(dpmi_vendor_info)) != 0)
1332 /* The DPMI spec says the vendor string should be ASCIIZ, but
1333 I don't trust the vendors to follow that... */
1334 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1335 dpmi_vendor_info[128] = '\0';
1336 printf_filtered ("DPMI Host......................"
1337 "%s v%d.%d (capabilities: %#x)\n",
1338 &dpmi_vendor_info[2],
1339 (unsigned)dpmi_vendor_info[0],
1340 (unsigned)dpmi_vendor_info[1],
1341 ((unsigned)dpmi_flags & 0x7f));
1344 printf_filtered ("DPMI Host......................(Info not available)\n");
1345 __dpmi_get_version (&dpmi_version_data);
1346 printf_filtered ("DPMI Version...................%d.%02d\n",
1347 dpmi_version_data.major, dpmi_version_data.minor);
1348 printf_filtered ("DPMI Info......................"
1349 "%s-bit DPMI, with%s Virtual Memory support\n",
1350 (dpmi_version_data.flags & 1) ? "32" : "16",
1351 (dpmi_version_data.flags & 4) ? "" : "out");
1352 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1353 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1354 printfi_filtered (31, "Processor type: i%d86\n",
1355 dpmi_version_data.cpu);
1356 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1357 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1359 /* a_tss is only initialized when the debuggee is first run. */
1360 if (prog_has_started)
1362 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1363 printf_filtered ("Protection....................."
1364 "Ring %d (in %s), with%s I/O protection\n",
1365 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1366 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1368 puts_filtered ("\n");
1369 __dpmi_get_free_memory_information (&mem_info);
1370 print_mem (mem_info.total_number_of_physical_pages,
1371 "DPMI Total Physical Memory.....", 1);
1372 print_mem (mem_info.total_number_of_free_pages,
1373 "DPMI Free Physical Memory......", 1);
1374 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1375 "DPMI Swap Space................", 1);
1376 print_mem (mem_info.linear_address_space_size_in_pages,
1377 "DPMI Total Linear Address Size.", 1);
1378 print_mem (mem_info.free_linear_address_space_in_pages,
1379 "DPMI Free Linear Address Size..", 1);
1380 print_mem (mem_info.largest_available_free_block_in_bytes,
1381 "DPMI Largest Free Memory Block.", 0);
1385 __dpmi_int (0x21, ®s);
1386 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1388 __dpmi_int (0x21, ®s);
1389 if ((regs.x.flags & 1) == 0)
1391 static const char *dos_hilo[] = {
1392 "Low", "", "", "", "High", "", "", "", "High, then Low"
1394 static const char *dos_fit[] = {
1395 "First", "Best", "Last"
1397 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1398 int fit_idx = regs.x.ax & 0x0f;
1404 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1405 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1407 __dpmi_int (0x21, ®s);
1408 if ((regs.x.flags & 1) != 0)
1410 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1411 regs.h.al == 0 ? "not " : "");
1416 unsigned short limit0;
1417 unsigned short base0;
1418 unsigned char base1;
1423 unsigned available:1;
1426 unsigned page_granular:1;
1427 unsigned char base2;
1428 } __attribute__ ((packed));
1431 unsigned short offset0;
1432 unsigned short selector;
1433 unsigned param_count:5;
1438 unsigned short offset1;
1439 } __attribute__ ((packed));
1441 /* Read LEN bytes starting at logical address ADDR, and put the result
1442 into DEST. Return 1 if success, zero if not. */
1444 read_memory_region (unsigned long addr, void *dest, size_t len)
1446 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1449 /* For the low memory, we can simply use _dos_ds. */
1450 if (addr <= dos_ds_limit - len)
1451 dosmemget (addr, len, dest);
1454 /* For memory above 1MB we need to set up a special segment to
1455 be able to access that memory. */
1456 int sel = __dpmi_allocate_ldt_descriptors (1);
1462 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1463 size_t segment_limit = len - 1;
1465 /* Make sure the crucial bits in the descriptor access
1466 rights are set correctly. Some DPMI providers might barf
1467 if we set the segment limit to something that is not an
1468 integral multiple of 4KB pages if the granularity bit is
1469 not set to byte-granular, even though the DPMI spec says
1470 it's the host's responsibility to set that bit correctly. */
1471 if (len > 1024 * 1024)
1473 access_rights |= 0x8000;
1474 /* Page-granular segments should have the low 12 bits of
1476 segment_limit |= 0xfff;
1479 access_rights &= ~0x8000;
1481 if (__dpmi_set_segment_base_address (sel, addr) != -1
1482 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1483 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1484 /* W2K silently fails to set the segment limit, leaving
1485 it at zero; this test avoids the resulting crash. */
1486 && __dpmi_get_segment_limit (sel) >= segment_limit)
1487 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1491 __dpmi_free_ldt_descriptor (sel);
1497 /* Get a segment descriptor stored at index IDX in the descriptor
1498 table whose base address is TABLE_BASE. Return the descriptor
1499 type, or -1 if failure. */
1501 get_descriptor (unsigned long table_base, int idx, void *descr)
1503 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1505 if (read_memory_region (addr, descr, 8))
1506 return (int)((struct seg_descr *)descr)->stype;
1511 unsigned short limit __attribute__((packed));
1512 unsigned long base __attribute__((packed));
1515 /* Display a segment descriptor stored at index IDX in a descriptor
1516 table whose type is TYPE and whose base address is BASE_ADDR. If
1517 FORCE is non-zero, display even invalid descriptors. */
1519 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1521 struct seg_descr descr;
1522 struct gate_descr gate;
1524 /* Get the descriptor from the table. */
1525 if (idx == 0 && type == 0)
1526 puts_filtered ("0x000: null descriptor\n");
1527 else if (get_descriptor (base_addr, idx, &descr) != -1)
1529 /* For each type of descriptor table, this has a bit set if the
1530 corresponding type of selectors is valid in that table. */
1531 static unsigned allowed_descriptors[] = {
1532 0xffffdafeL, /* GDT */
1533 0x0000c0e0L, /* IDT */
1534 0xffffdafaL /* LDT */
1537 /* If the program hasn't started yet, assume the debuggee will
1538 have the same CPL as the debugger. */
1539 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1540 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1543 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1545 printf_filtered ("0x%03x: ",
1547 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1548 if (descr.page_granular)
1549 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1550 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1551 || descr.stype == 9 || descr.stype == 11
1552 || (descr.stype >= 16 && descr.stype < 32))
1553 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1554 descr.base2, descr.base1, descr.base0, limit);
1556 switch (descr.stype)
1560 printf_filtered (" 16-bit TSS (task %sactive)",
1561 descr.stype == 3 ? "" : "in");
1564 puts_filtered (" LDT");
1567 memcpy (&gate, &descr, sizeof gate);
1568 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1569 gate.selector, gate.offset1, gate.offset0);
1570 printf_filtered (" 16-bit Call Gate (params=%d)",
1574 printf_filtered ("TSS selector=0x%04x", descr.base0);
1575 printfi_filtered (16, "Task Gate");
1579 memcpy (&gate, &descr, sizeof gate);
1580 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1581 gate.selector, gate.offset1, gate.offset0);
1582 printf_filtered (" 16-bit %s Gate",
1583 descr.stype == 6 ? "Interrupt" : "Trap");
1587 printf_filtered (" 32-bit TSS (task %sactive)",
1588 descr.stype == 3 ? "" : "in");
1591 memcpy (&gate, &descr, sizeof gate);
1592 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1593 gate.selector, gate.offset1, gate.offset0);
1594 printf_filtered (" 32-bit Call Gate (params=%d)",
1599 memcpy (&gate, &descr, sizeof gate);
1600 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1601 gate.selector, gate.offset1, gate.offset0);
1602 printf_filtered (" 32-bit %s Gate",
1603 descr.stype == 14 ? "Interrupt" : "Trap");
1605 case 16: /* data segments */
1613 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1614 descr.bit32 ? "32" : "16",
1616 ? "Read/Write," : "Read-Only, ",
1617 descr.stype & 4 ? "down" : "up",
1618 descr.stype & 1 ? "" : ", N.Acc");
1620 case 24: /* code segments */
1628 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1629 descr.bit32 ? "32" : "16",
1630 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1631 descr.stype & 4 ? "" : "N.",
1632 descr.stype & 1 ? "" : ", N.Acc");
1635 printf_filtered ("Unknown type 0x%02x", descr.stype);
1638 puts_filtered ("\n");
1642 printf_filtered ("0x%03x: ",
1644 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1646 puts_filtered ("Segment not present\n");
1648 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1653 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1657 go32_sldt (char *arg, int from_tty)
1659 struct dtr_reg gdtr;
1660 unsigned short ldtr = 0;
1662 struct seg_descr ldt_descr;
1663 long ldt_entry = -1L;
1664 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1668 arg = skip_spaces (arg);
1672 ldt_entry = parse_and_eval_long (arg);
1674 || (ldt_entry & 4) == 0
1675 || (ldt_entry & 3) != (cpl & 3))
1676 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1680 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1681 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1684 puts_filtered ("There is no LDT.\n");
1685 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1686 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1687 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1689 | (ldt_descr.base1 << 16)
1690 | (ldt_descr.base2 << 24));
1695 | (ldt_descr.base1 << 16)
1696 | (ldt_descr.base2 << 24);
1697 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1700 if (ldt_descr.page_granular)
1701 /* Page-granular segments must have the low 12 bits of their
1703 limit = (limit << 12) | 0xfff;
1704 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1709 max_entry = (limit + 1) / 8;
1713 if (ldt_entry > limit)
1714 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1715 (unsigned long)ldt_entry, limit);
1717 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1723 for (i = 0; i < max_entry; i++)
1724 display_descriptor (ldt_descr.stype, base, i, 0);
1730 go32_sgdt (char *arg, int from_tty)
1732 struct dtr_reg gdtr;
1733 long gdt_entry = -1L;
1738 arg = skip_spaces (arg);
1742 gdt_entry = parse_and_eval_long (arg);
1743 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1744 error (_("Invalid GDT entry 0x%03lx: "
1745 "not an integral multiple of 8."),
1746 (unsigned long)gdt_entry);
1750 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1751 max_entry = (gdtr.limit + 1) / 8;
1755 if (gdt_entry > gdtr.limit)
1756 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1757 (unsigned long)gdt_entry, gdtr.limit);
1759 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1765 for (i = 0; i < max_entry; i++)
1766 display_descriptor (0, gdtr.base, i, 0);
1771 go32_sidt (char *arg, int from_tty)
1773 struct dtr_reg idtr;
1774 long idt_entry = -1L;
1779 arg = skip_spaces (arg);
1783 idt_entry = parse_and_eval_long (arg);
1785 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1789 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1790 max_entry = (idtr.limit + 1) / 8;
1791 if (max_entry > 0x100) /* No more than 256 entries. */
1796 if (idt_entry > idtr.limit)
1797 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1798 (unsigned long)idt_entry, idtr.limit);
1800 display_descriptor (1, idtr.base, idt_entry, 1);
1806 for (i = 0; i < max_entry; i++)
1807 display_descriptor (1, idtr.base, i, 0);
1811 /* Cached linear address of the base of the page directory. For
1812 now, available only under CWSDPMI. Code based on ideas and
1813 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1814 static unsigned long pdbr;
1816 static unsigned long
1821 unsigned long taskbase, cr3;
1822 struct dtr_reg gdtr;
1824 if (pdbr > 0 && pdbr <= 0xfffff)
1827 /* Get the linear address of GDT and the Task Register. */
1828 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1829 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1831 /* Task Register is a segment selector for the TSS of the current
1832 task. Therefore, it can be used as an index into the GDT to get
1833 at the segment descriptor for the TSS. To get the index, reset
1834 the low 3 bits of the selector (which give the CPL). Add 2 to the
1835 offset to point to the 3 low bytes of the base address. */
1836 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1839 /* CWSDPMI's task base is always under the 1MB mark. */
1840 if (offset > 0xfffff)
1843 _farsetsel (_dos_ds);
1844 taskbase = _farnspeekl (offset) & 0xffffffU;
1845 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1846 if (taskbase > 0xfffff)
1849 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1850 offset 1Ch in the TSS. */
1851 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1854 #if 0 /* Not fullly supported yet. */
1855 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1856 the first Page Table right below the Page Directory. Thus,
1857 the first Page Table's entry for its own address and the Page
1858 Directory entry for that Page Table will hold the same
1859 physical address. The loop below searches the entire UMB
1860 range of addresses for such an occurence. */
1861 unsigned long addr, pte_idx;
1863 for (addr = 0xb0000, pte_idx = 0xb0;
1865 addr += 0x1000, pte_idx++)
1867 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1868 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1869 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1871 cr3 = addr + 0x1000;
1884 /* Return the N'th Page Directory entry. */
1885 static unsigned long
1888 unsigned long pde = 0;
1890 if (pdbr && n >= 0 && n < 1024)
1892 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1897 /* Return the N'th entry of the Page Table whose Page Directory entry
1899 static unsigned long
1900 get_pte (unsigned long pde, int n)
1902 unsigned long pte = 0;
1904 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1905 page tables, for now. */
1906 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1908 pde &= ~0xfff; /* Clear non-address bits. */
1909 pte = _farpeekl (_dos_ds, pde + 4*n);
1914 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1915 says this is a Page Directory entry. If FORCE is non-zero, display
1916 the entry even if its Present flag is off. OFF is the offset of the
1917 address from the page's base address. */
1919 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1921 if ((entry & 1) != 0)
1923 printf_filtered ("Base=0x%05lx000", entry >> 12);
1924 if ((entry & 0x100) && !is_dir)
1925 puts_filtered (" Global");
1926 if ((entry & 0x40) && !is_dir)
1927 puts_filtered (" Dirty");
1928 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1929 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1930 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1931 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1932 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1934 printf_filtered (" +0x%x", off);
1935 puts_filtered ("\n");
1938 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1939 is_dir ? " Table" : "", entry >> 1);
1943 go32_pde (char *arg, int from_tty)
1945 long pde_idx = -1, i;
1949 arg = skip_spaces (arg);
1953 pde_idx = parse_and_eval_long (arg);
1954 if (pde_idx < 0 || pde_idx >= 1024)
1955 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1961 puts_filtered ("Access to Page Directories is "
1962 "not supported on this system.\n");
1963 else if (pde_idx >= 0)
1964 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1966 for (i = 0; i < 1024; i++)
1967 display_ptable_entry (get_pde (i), 1, 0, 0);
1970 /* A helper function to display entries in a Page Table pointed to by
1971 the N'th entry in the Page Directory. If FORCE is non-zero, say
1972 something even if the Page Table is not accessible. */
1974 display_page_table (long n, int force)
1976 unsigned long pde = get_pde (n);
1982 printf_filtered ("Page Table pointed to by "
1983 "Page Directory entry 0x%lx:\n", n);
1984 for (i = 0; i < 1024; i++)
1985 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
1986 puts_filtered ("\n");
1989 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
1993 go32_pte (char *arg, int from_tty)
1995 long pde_idx = -1L, i;
1999 arg = skip_spaces (arg);
2003 pde_idx = parse_and_eval_long (arg);
2004 if (pde_idx < 0 || pde_idx >= 1024)
2005 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2011 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2012 else if (pde_idx >= 0)
2013 display_page_table (pde_idx, 1);
2015 for (i = 0; i < 1024; i++)
2016 display_page_table (i, 0);
2020 go32_pte_for_address (char *arg, int from_tty)
2022 CORE_ADDR addr = 0, i;
2026 arg = skip_spaces (arg);
2029 addr = parse_and_eval_address (arg);
2032 error_no_arg (_("linear address"));
2036 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2039 int pde_idx = (addr >> 22) & 0x3ff;
2040 int pte_idx = (addr >> 12) & 0x3ff;
2041 unsigned offs = addr & 0xfff;
2043 printf_filtered ("Page Table entry for address %s:\n",
2045 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2049 static struct cmd_list_element *info_dos_cmdlist = NULL;
2052 go32_info_dos_command (char *args, int from_tty)
2054 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2057 /* -Wmissing-prototypes */
2058 extern initialize_file_ftype _initialize_go32_nat;
2061 _initialize_go32_nat (void)
2063 struct target_ops *t = go32_target ();
2065 x86_dr_low.set_control = go32_set_dr7;
2066 x86_dr_low.set_addr = go32_set_dr;
2067 x86_dr_low.get_status = go32_get_dr6;
2068 x86_dr_low.get_control = go32_get_dr7;
2069 x86_dr_low.get_addr = go32_get_dr;
2070 x86_set_debug_register_length (4);
2072 x86_use_watchpoints (t);
2075 /* Initialize child's cwd as empty to be initialized when starting
2079 /* Initialize child's command line storage. */
2080 if (redir_debug_init (&child_cmd) == -1)
2081 internal_error (__FILE__, __LINE__,
2082 _("Cannot allocate redirection storage: "
2083 "not enough memory.\n"));
2085 /* We are always processing GCC-compiled programs. */
2086 processing_gcc_compilation = 2;
2088 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2089 Print information specific to DJGPP (aka MS-DOS) debugging."),
2090 &info_dos_cmdlist, "info dos ", 0, &infolist);
2092 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2093 Display information about the target system, including CPU, OS, DPMI, etc."),
2095 add_cmd ("ldt", class_info, go32_sldt, _("\
2096 Display entries in the LDT (Local Descriptor Table).\n\
2097 Entry number (an expression) as an argument means display only that entry."),
2099 add_cmd ("gdt", class_info, go32_sgdt, _("\
2100 Display entries in the GDT (Global Descriptor Table).\n\
2101 Entry number (an expression) as an argument means display only that entry."),
2103 add_cmd ("idt", class_info, go32_sidt, _("\
2104 Display entries in the IDT (Interrupt Descriptor Table).\n\
2105 Entry number (an expression) as an argument means display only that entry."),
2107 add_cmd ("pde", class_info, go32_pde, _("\
2108 Display entries in the Page Directory.\n\
2109 Entry number (an expression) as an argument means display only that entry."),
2111 add_cmd ("pte", class_info, go32_pte, _("\
2112 Display entries in Page Tables.\n\
2113 Entry number (an expression) as an argument means display only entries\n\
2114 from the Page Table pointed to by the specified Page Directory entry."),
2116 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2117 Display a Page Table entry for a linear address.\n\
2118 The address argument must be a linear address, after adding to\n\
2119 it the base address of the appropriate segment.\n\
2120 The base address of variables and functions in the debuggee's data\n\
2121 or code segment is stored in the variable __djgpp_base_address,\n\
2122 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2123 For other segments, look up their base address in the output of\n\
2124 the `info dos ldt' command."),
2138 tcsetpgrp (int fd, pid_t pgid)
2140 if (isatty (fd) && pgid == SOME_PID)
2142 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;