1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
91 #include "gdbthread.h"
92 #include "gdbsupport/gdb_wait.h"
96 #include "floatformat.h"
97 #include "buildsym-legacy.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "nat/x86-cpuid.h"
102 #include "regcache.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
109 #include <sys/utsname.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
121 #include <langinfo.h>
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
132 unsigned short exponent:15;
133 unsigned short sign:1;
139 unsigned int control;
144 unsigned int dataptr;
145 unsigned int datasel;
152 static void save_npx (void); /* Save the FPU of the debugged program. */
153 static void load_npx (void); /* Restore the FPU of the debugged program. */
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
187 asm ("frstor %0":"=m" (npx));
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
197 redir_cmdline_delete (cmdline_t *ptr)
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
209 redir_to_child (cmdline_t *ptr)
215 redir_to_debugger (cmdline_t *ptr)
221 redir_debug_init (cmdline_t *ptr)
225 #endif /* __DJGPP_MINOR < 3 */
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
234 static int prog_has_started = 0;
236 #define r_ofs(x) (offsetof(TSS,x))
245 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
246 {r_ofs (tss_ecx), 4},
247 {r_ofs (tss_edx), 4},
248 {r_ofs (tss_ebx), 4},
249 {r_ofs (tss_esp), 4},
250 {r_ofs (tss_ebp), 4},
251 {r_ofs (tss_esi), 4},
252 {r_ofs (tss_edi), 4},
253 {r_ofs (tss_eip), 4},
254 {r_ofs (tss_eflags), 4},
261 {0, 10}, /* 8 FP registers, from npx.reg[] */
269 /* The order of the next 7 registers must be consistent
270 with their numbering in config/i386/tm-i386.h, which see. */
271 {0, 2}, /* control word, from npx */
272 {4, 2}, /* status word, from npx */
273 {8, 2}, /* tag word, from npx */
274 {16, 2}, /* last FP exception CS from npx */
275 {12, 4}, /* last FP exception EIP from npx */
276 {24, 2}, /* last FP exception operand selector from npx */
277 {20, 4}, /* last FP exception operand offset from npx */
278 {18, 2} /* last FP opcode from npx */
284 enum gdb_signal gdb_sig;
289 {1, GDB_SIGNAL_TRAP},
290 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
291 but I think SIGBUS is better, since the NMI is usually activated
292 as a result of a memory parity check failure. */
294 {3, GDB_SIGNAL_TRAP},
296 {5, GDB_SIGNAL_SEGV},
298 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
299 {8, GDB_SIGNAL_SEGV},
300 {9, GDB_SIGNAL_SEGV},
301 {10, GDB_SIGNAL_BUS},
302 {11, GDB_SIGNAL_SEGV},
303 {12, GDB_SIGNAL_SEGV},
304 {13, GDB_SIGNAL_SEGV},
305 {14, GDB_SIGNAL_SEGV},
306 {16, GDB_SIGNAL_FPE},
307 {17, GDB_SIGNAL_BUS},
308 {31, GDB_SIGNAL_ILL},
309 {0x1b, GDB_SIGNAL_INT},
310 {0x75, GDB_SIGNAL_FPE},
311 {0x78, GDB_SIGNAL_ALRM},
312 {0x79, GDB_SIGNAL_INT},
313 {0x7a, GDB_SIGNAL_QUIT},
314 {-1, GDB_SIGNAL_LAST}
318 enum gdb_signal gdb_sig;
322 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
323 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
324 {GDB_SIGNAL_SEGV, 13}, /* GPF */
325 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
326 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
328 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
329 {GDB_SIGNAL_FPE, 0x75},
330 {GDB_SIGNAL_INT, 0x79},
331 {GDB_SIGNAL_QUIT, 0x7a},
332 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
333 {GDB_SIGNAL_PROF, 0x78},
334 {GDB_SIGNAL_LAST, -1}
337 /* The go32 target. */
339 struct go32_nat_target final : public x86_nat_target<inf_child_target>
341 void attach (const char *, int) override;
343 void resume (ptid_t, int, enum gdb_signal) override;
345 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
347 void fetch_registers (struct regcache *, int) override;
348 void store_registers (struct regcache *, int) override;
350 enum target_xfer_status xfer_partial (enum target_object object,
353 const gdb_byte *writebuf,
354 ULONGEST offset, ULONGEST len,
355 ULONGEST *xfered_len) override;
357 void files_info () override;
359 void terminal_init () override;
361 void terminal_inferior () override;
363 void terminal_ours_for_output () override;
365 void terminal_ours () override;
367 void terminal_info (const char *, int) override;
369 void pass_ctrlc () override;
371 void kill () override;
373 void create_inferior (const char *, const std::string &,
374 char **, int) override;
376 void mourn_inferior () override;
378 bool thread_alive (ptid_t ptid) override;
380 std::string pid_to_str (ptid_t) override;
383 static go32_nat_target the_go32_nat_target;
386 go32_nat_target::attach (const char *args, int from_tty)
389 You cannot attach to a running program on this platform.\n\
390 Use the `run' command to run DJGPP programs."));
393 static int resume_is_step;
394 static int resume_signal = -1;
397 go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
401 resume_is_step = step;
403 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
405 for (i = 0, resume_signal = -1;
406 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
407 if (excepn_map[i].gdb_sig == siggnal)
409 resume_signal = excepn_map[i].djgpp_excepno;
412 if (resume_signal == -1)
413 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
414 gdb_signal_to_name (siggnal));
418 static char child_cwd[FILENAME_MAX];
421 go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status,
425 unsigned char saved_opcode;
426 unsigned long INT3_addr = 0;
427 int stepping_over_INT = 0;
429 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
432 /* If the next instruction is INT xx or INTO, we need to handle
433 them specially. Intel manuals say that these instructions
434 reset the single-step flag (a.k.a. TF). However, it seems
435 that, at least in the DPMI environment, and at least when
436 stepping over the DPMI interrupt 31h, the problem is having
437 TF set at all when INT 31h is executed: the debuggee either
438 crashes (and takes the system with it) or is killed by a
441 So we need to emulate single-step mode: we put an INT3 opcode
442 right after the INT xx instruction, let the debuggee run
443 until it hits INT3 and stops, then restore the original
444 instruction which we overwrote with the INT3 opcode, and back
445 up the debuggee's EIP to that instruction. */
446 read_child (a_tss.tss_eip, &saved_opcode, 1);
447 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
449 unsigned char INT3_opcode = 0xCC;
452 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
453 stepping_over_INT = 1;
454 read_child (INT3_addr, &saved_opcode, 1);
455 write_child (INT3_addr, &INT3_opcode, 1);
458 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
461 /* The special value FFFFh in tss_trap indicates to run_child that
462 tss_irqn holds a signal to be delivered to the debuggee. */
463 if (resume_signal <= -1)
466 a_tss.tss_irqn = 0xff;
470 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
471 a_tss.tss_irqn = resume_signal;
474 /* The child might change working directory behind our back. The
475 GDB users won't like the side effects of that when they work with
476 relative file names, and GDB might be confused by its current
477 directory not being in sync with the truth. So we always make a
478 point of changing back to where GDB thinks is its cwd, when we
479 return control to the debugger, but restore child's cwd before we
481 /* Initialize child_cwd, before the first call to run_child and not
482 in the initialization, so the child get also the changed directory
483 set with the gdb-command "cd ..." */
485 /* Initialize child's cwd with the current one. */
486 getcwd (child_cwd, sizeof (child_cwd));
490 #if __DJGPP_MINOR__ < 3
494 #if __DJGPP_MINOR__ < 3
498 /* Did we step over an INT xx instruction? */
499 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
501 /* Restore the original opcode. */
502 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
503 write_child (a_tss.tss_eip, &saved_opcode, 1);
504 /* Simulate a TRAP exception. */
506 a_tss.tss_eflags |= 0x0100;
509 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
510 chdir (current_directory);
512 if (a_tss.tss_irqn == 0x21)
514 status->kind = TARGET_WAITKIND_EXITED;
515 status->value.integer = a_tss.tss_eax & 0xff;
519 status->value.sig = GDB_SIGNAL_UNKNOWN;
520 status->kind = TARGET_WAITKIND_STOPPED;
521 for (i = 0; sig_map[i].go32_sig != -1; i++)
523 if (a_tss.tss_irqn == sig_map[i].go32_sig)
525 #if __DJGPP_MINOR__ < 3
526 if ((status->value.sig = sig_map[i].gdb_sig) !=
528 status->kind = TARGET_WAITKIND_SIGNALLED;
530 status->value.sig = sig_map[i].gdb_sig;
536 return ptid_t (SOME_PID);
540 fetch_register (struct regcache *regcache, int regno)
542 struct gdbarch *gdbarch = regcache->arch ();
543 if (regno < gdbarch_fp0_regnum (gdbarch))
544 regcache->raw_supply (regno,
545 (char *) &a_tss + regno_mapping[regno].tss_ofs);
546 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
548 i387_supply_fsave (regcache, regno, &npx);
550 internal_error (__FILE__, __LINE__,
551 _("Invalid register no. %d in fetch_register."), regno);
555 go32_nat_target::fetch_registers (struct regcache *regcache, int regno)
558 fetch_register (regcache, regno);
562 regno < gdbarch_fp0_regnum (regcache->arch ());
564 fetch_register (regcache, regno);
565 i387_supply_fsave (regcache, -1, &npx);
570 store_register (const struct regcache *regcache, int regno)
572 struct gdbarch *gdbarch = regcache->arch ();
573 if (regno < gdbarch_fp0_regnum (gdbarch))
574 regcache->raw_collect (regno,
575 (char *) &a_tss + regno_mapping[regno].tss_ofs);
576 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
578 i387_collect_fsave (regcache, regno, &npx);
580 internal_error (__FILE__, __LINE__,
581 _("Invalid register no. %d in store_register."), regno);
585 go32_nat_target::store_registers (struct regcache *regcache, int regno)
590 store_register (regcache, regno);
593 for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++)
594 store_register (regcache, r);
595 i387_collect_fsave (regcache, -1, &npx);
599 /* Const-correct version of DJGPP's write_child, which unfortunately
600 takes a non-const buffer pointer. */
603 my_write_child (unsigned child_addr, const void *buf, unsigned len)
605 static void *buffer = NULL;
606 static unsigned buffer_len = 0;
609 if (buffer_len < len)
611 buffer = xrealloc (buffer, len);
615 memcpy (buffer, buf, len);
616 res = write_child (child_addr, buffer, len);
620 /* Helper for go32_xfer_partial that handles memory transfers.
621 Arguments are like target_xfer_partial. */
623 static enum target_xfer_status
624 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
625 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
629 if (writebuf != NULL)
630 res = my_write_child (memaddr, writebuf, len);
632 res = read_child (memaddr, readbuf, len);
634 /* read_child and write_child return zero on success, non-zero on
637 return TARGET_XFER_E_IO;
640 return TARGET_XFER_OK;
643 /* Target to_xfer_partial implementation. */
645 enum target_xfer_status
646 go32_nat_target::xfer_partial (enum target_object object,
647 const char *annex, gdb_byte *readbuf,
648 const gdb_byte *writebuf, ULONGEST offset,
650 ULONGEST *xfered_len)
654 case TARGET_OBJECT_MEMORY:
655 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
658 return this->beneath ()->xfer_partial (object, annex,
659 readbuf, writebuf, offset, len,
664 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
667 go32_nat_target::files_info ()
669 printf_unfiltered ("You are running a DJGPP V2 program.\n");
673 go32_nat_target::kill_inferior ()
679 go32_nat_target::create_inferior (const char *exec_file,
680 const std::string &allargs,
681 char **env, int from_tty)
683 extern char **environ;
686 char **env_save = environ;
688 struct inferior *inf;
690 const char *args = allargs.c_str ();
692 /* If no exec file handed to us, get it from the exec-file command -- with
693 a good, common error message if none is specified. */
695 exec_file = get_exec_file (1);
700 /* Initialize child's cwd as empty to be initialized when starting
704 /* Init command line storage. */
705 if (redir_debug_init (&child_cmd) == -1)
706 internal_error (__FILE__, __LINE__,
707 _("Cannot allocate redirection storage: "
708 "not enough memory.\n"));
710 /* Parse the command line and create redirections. */
711 if (strpbrk (args, "<>"))
713 if (redir_cmdline_parse (args, &child_cmd) == 0)
714 args = child_cmd.command;
716 error (_("Syntax error in command line."));
719 child_cmd.command = xstrdup (args);
721 cmdlen = strlen (args);
722 /* v2loadimage passes command lines via DOS memory, so it cannot
723 possibly handle commands longer than 1MB. */
724 if (cmdlen > 1024*1024)
725 error (_("Command line too long."));
727 cmdline = (char *) xmalloc (cmdlen + 4);
728 strcpy (cmdline + 1, args);
729 /* If the command-line length fits into DOS 126-char limits, use the
730 DOS command tail format; otherwise, tell v2loadimage to pass it
731 through a buffer in conventional memory. */
734 cmdline[0] = strlen (args);
735 cmdline[cmdlen + 1] = 13;
738 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
742 result = v2loadimage (exec_file, cmdline, start_state);
748 error (_("Load failed for image %s"), exec_file);
750 edi_init (start_state);
751 #if __DJGPP_MINOR__ < 3
755 inferior_ptid = ptid_t (SOME_PID);
756 inf = current_inferior ();
757 inferior_appeared (inf, SOME_PID);
759 if (!target_is_pushed (this))
762 add_thread_silent (inferior_ptid);
764 clear_proceed_status (0);
765 insert_breakpoints ();
766 prog_has_started = 1;
770 go32_nat_target::mourn_inferior ()
774 redir_cmdline_delete (&child_cmd);
780 /* We need to make sure all the breakpoint enable bits in the DR7
781 register are reset when the inferior exits. Otherwise, if they
782 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
783 failure to set more watchpoints, and other calamities. It would
784 be nice if GDB itself would take care to remove all breakpoints
785 at all times, but it doesn't, probably under an assumption that
786 the OS cleans up when the debuggee exits. */
787 x86_cleanup_dregs ();
789 ptid = inferior_ptid;
790 inferior_ptid = null_ptid;
791 prog_has_started = 0;
793 generic_mourn_inferior ();
794 maybe_unpush_target ();
797 /* Hardware watchpoint support. */
799 #define D_REGS edi.dr
800 #define CONTROL D_REGS[7]
801 #define STATUS D_REGS[6]
803 /* Pass the address ADDR to the inferior in the I'th debug register.
804 Here we just store the address in D_REGS, the watchpoint will be
805 actually set up when go32_wait runs the debuggee. */
807 go32_set_dr (int i, CORE_ADDR addr)
810 internal_error (__FILE__, __LINE__,
811 _("Invalid register %d in go32_set_dr.\n"), i);
815 /* Pass the value VAL to the inferior in the DR7 debug control
816 register. Here we just store the address in D_REGS, the watchpoint
817 will be actually set up when go32_wait runs the debuggee. */
819 go32_set_dr7 (unsigned long val)
824 /* Get the value of the DR6 debug status register from the inferior.
825 Here we just return the value stored in D_REGS, as we've got it
826 from the last go32_wait call. */
833 /* Get the value of the DR7 debug status register from the inferior.
834 Here we just return the value stored in D_REGS, as we've got it
835 from the last go32_wait call. */
843 /* Get the value of the DR debug register I from the inferior. Here
844 we just return the value stored in D_REGS, as we've got it from the
845 last go32_wait call. */
851 internal_error (__FILE__, __LINE__,
852 _("Invalid register %d in go32_get_dr.\n"), i);
856 /* Put the device open on handle FD into either raw or cooked
857 mode, return 1 if it was in raw mode, zero otherwise. */
860 device_mode (int fd, int raw_p)
862 int oldmode, newmode;
867 __dpmi_int (0x21, ®s);
868 if (regs.x.flags & 1)
870 newmode = oldmode = regs.x.dx;
877 if (oldmode & 0x80) /* Only for character dev. */
881 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
882 __dpmi_int (0x21, ®s);
883 if (regs.x.flags & 1)
886 return (oldmode & 0x20) == 0x20;
890 static int inf_mode_valid = 0;
891 static int inf_terminal_mode;
893 /* This semaphore is needed because, amazingly enough, GDB calls
894 target.to_terminal_ours more than once after the inferior stops.
895 But we need the information from the first call only, since the
896 second call will always see GDB's own cooked terminal. */
897 static int terminal_is_ours = 1;
900 go32_nat_target::terminal_init ()
902 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
903 terminal_is_ours = 1;
907 go32_nat_target::terminal_info (const char *args, int from_tty)
909 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
911 ? "default" : inf_terminal_mode ? "raw" : "cooked");
913 #if __DJGPP_MINOR__ > 2
914 if (child_cmd.redirection)
918 for (i = 0; i < DBG_HANDLES; i++)
920 if (child_cmd.redirection[i]->file_name)
921 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
922 i, child_cmd.redirection[i]->file_name);
923 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
925 ("\tFile handle %d appears to be closed by inferior.\n", i);
926 /* Mask off the raw/cooked bit when comparing device info words. */
927 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
928 != (_get_dev_info (i) & 0xdf))
930 ("\tFile handle %d appears to be redirected by inferior.\n", i);
937 go32_nat_target::terminal_inferior ()
939 /* Redirect standard handles as child wants them. */
941 if (redir_to_child (&child_cmd) == -1)
943 redir_to_debugger (&child_cmd);
944 error (_("Cannot redirect standard handles for program: %s."),
945 safe_strerror (errno));
947 /* Set the console device of the inferior to whatever mode
948 (raw or cooked) we found it last time. */
949 if (terminal_is_ours)
952 device_mode (0, inf_terminal_mode);
953 terminal_is_ours = 0;
958 go32_nat_target::terminal_ours ()
960 /* Switch to cooked mode on the gdb terminal and save the inferior
961 terminal mode to be restored when it is resumed. */
962 if (!terminal_is_ours)
964 inf_terminal_mode = device_mode (0, 0);
965 if (inf_terminal_mode != -1)
968 /* If device_mode returned -1, we don't know what happens with
969 handle 0 anymore, so make the info invalid. */
971 terminal_is_ours = 1;
973 /* Restore debugger's standard handles. */
975 if (redir_to_debugger (&child_cmd) == -1)
977 redir_to_child (&child_cmd);
978 error (_("Cannot redirect standard handles for debugger: %s."),
979 safe_strerror (errno));
985 go32_nat_target::pass_ctrlc ()
990 go32_nat_target::thread_alive (ptid_t ptid)
992 return ptid != null_ptid;
996 go32_nat_target::pid_to_str (ptid_t ptid)
998 return normal_pid_to_str (ptid);
1001 /* Return the current DOS codepage number. */
1008 __dpmi_int (0x21, ®s);
1009 if (!(regs.x.flags & 1))
1010 return regs.x.bx & 0xffff;
1012 return 437; /* default */
1015 /* Limited emulation of `nl_langinfo', for charset.c. */
1017 nl_langinfo (nl_item item)
1025 /* 8 is enough for SHORT_MAX + "CP" + null. */
1027 int blen = sizeof (buf);
1028 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1030 if (needed > blen) /* Should never happen. */
1032 retval = xstrdup (buf);
1036 retval = xstrdup ("");
1042 unsigned short windows_major, windows_minor;
1044 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1046 go32_get_windows_version(void)
1051 __dpmi_int(0x2f, &r);
1052 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1053 && (r.h.al > 3 || r.h.ah > 0))
1055 windows_major = r.h.al;
1056 windows_minor = r.h.ah;
1059 windows_major = 0xff; /* meaning no Windows */
1062 /* A subroutine of go32_sysinfo to display memory info. */
1064 print_mem (unsigned long datum, const char *header, int in_pages_p)
1066 if (datum != 0xffffffffUL)
1070 puts_filtered (header);
1073 printf_filtered ("%lu KB", datum >> 10);
1074 if (datum > 1024 * 1024)
1075 printf_filtered (" (%lu MB)", datum >> 20);
1078 printf_filtered ("%lu Bytes", datum);
1079 puts_filtered ("\n");
1083 /* Display assorted information about the underlying OS. */
1085 go32_sysinfo (const char *arg, int from_tty)
1087 static const char test_pattern[] =
1088 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1089 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1090 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1092 char cpuid_vendor[13];
1093 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1094 unsigned true_dos_version = _get_dos_version (1);
1095 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1097 char dpmi_vendor_info[129];
1098 int dpmi_vendor_available;
1099 __dpmi_version_ret dpmi_version_data;
1101 __dpmi_free_mem_info mem_info;
1104 cpuid_vendor[0] = '\0';
1106 strcpy (u.machine, "Unknown x86");
1107 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1109 /* CPUID with EAX = 0 returns the Vendor ID. */
1111 /* Ideally we would use x86_cpuid(), but it needs someone to run
1112 native tests first to make sure things actually work. They should.
1113 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1114 unsigned int eax, ebx, ecx, edx;
1116 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
1119 memcpy (&vendor[0], &ebx, 4);
1120 memcpy (&vendor[4], &ecx, 4);
1121 memcpy (&vendor[8], &edx, 4);
1122 cpuid_vendor[12] = '\0';
1125 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1126 "xorl %%ecx, %%ecx;"
1127 "xorl %%edx, %%edx;"
1134 : "=m" (cpuid_vendor[0]),
1135 "=m" (cpuid_vendor[4]),
1136 "=m" (cpuid_vendor[8]),
1139 : "%eax", "%ebx", "%ecx", "%edx");
1140 cpuid_vendor[12] = '\0';
1144 printf_filtered ("CPU Type.......................%s", u.machine);
1145 if (cpuid_vendor[0])
1146 printf_filtered (" (%s)", cpuid_vendor);
1147 puts_filtered ("\n");
1149 /* CPUID with EAX = 1 returns processor signature and features. */
1152 static const char *brand_name[] = {
1160 char cpu_string[80];
1163 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1164 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1165 unsigned cpu_family, cpu_model;
1168 /* See comment above about cpuid usage. */
1169 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1171 __asm__ __volatile__ ("movl $1, %%eax;"
1179 brand_idx = cpuid_ebx & 0xff;
1180 cpu_family = (cpuid_eax >> 8) & 0xf;
1181 cpu_model = (cpuid_eax >> 4) & 0xf;
1182 cpu_brand[0] = '\0';
1186 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1187 && *brand_name[brand_idx])
1188 strcpy (cpu_brand, brand_name[brand_idx]);
1189 else if (cpu_family == 5)
1191 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1192 strcpy (cpu_brand, " MMX");
1193 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1194 strcpy (cpu_brand, " OverDrive");
1195 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1196 strcpy (cpu_brand, " Dual");
1198 else if (cpu_family == 6 && cpu_model < 8)
1203 strcpy (cpu_brand, " Pro");
1206 strcpy (cpu_brand, " II");
1209 strcpy (cpu_brand, " II Xeon");
1212 strcpy (cpu_brand, " Celeron");
1215 strcpy (cpu_brand, " III");
1225 strcpy (cpu_brand, "486/5x86");
1234 strcpy (cpu_brand, "-K5");
1238 strcpy (cpu_brand, "-K6");
1241 strcpy (cpu_brand, "-K6-2");
1244 strcpy (cpu_brand, "-K6-III");
1254 strcpy (cpu_brand, " Athlon");
1257 strcpy (cpu_brand, " Duron");
1263 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1264 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1265 cpu_brand, cpu_model, cpuid_eax & 0xf);
1266 printfi_filtered (31, "%s\n", cpu_string);
1267 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1268 || ((cpuid_edx & 1) == 0)
1269 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1271 puts_filtered ("CPU Features...................");
1272 /* We only list features which might be useful in the DPMI
1274 if ((cpuid_edx & 1) == 0)
1275 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1276 if ((cpuid_edx & (1 << 1)) != 0)
1277 puts_filtered ("VME ");
1278 if ((cpuid_edx & (1 << 2)) != 0)
1279 puts_filtered ("DE ");
1280 if ((cpuid_edx & (1 << 4)) != 0)
1281 puts_filtered ("TSC ");
1282 if ((cpuid_edx & (1 << 23)) != 0)
1283 puts_filtered ("MMX ");
1284 if ((cpuid_edx & (1 << 25)) != 0)
1285 puts_filtered ("SSE ");
1286 if ((cpuid_edx & (1 << 26)) != 0)
1287 puts_filtered ("SSE2 ");
1290 if ((cpuid_edx & (1 << 31)) != 0)
1291 puts_filtered ("3DNow! ");
1292 if ((cpuid_edx & (1 << 30)) != 0)
1293 puts_filtered ("3DNow!Ext");
1295 puts_filtered ("\n");
1298 puts_filtered ("\n");
1299 printf_filtered ("DOS Version....................%s %s.%s",
1300 _os_flavor, u.release, u.version);
1301 if (true_dos_version != advertized_dos_version)
1302 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1303 puts_filtered ("\n");
1305 go32_get_windows_version ();
1306 if (windows_major != 0xff)
1308 const char *windows_flavor;
1310 printf_filtered ("Windows Version................%d.%02d (Windows ",
1311 windows_major, windows_minor);
1312 switch (windows_major)
1315 windows_flavor = "3.X";
1318 switch (windows_minor)
1321 windows_flavor = "95, 95A, or 95B";
1324 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1327 windows_flavor = "98 or 98 SE";
1330 windows_flavor = "ME";
1333 windows_flavor = "9X";
1338 windows_flavor = "??";
1341 printf_filtered ("%s)\n", windows_flavor);
1343 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1344 printf_filtered ("Windows Version................"
1345 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1346 puts_filtered ("\n");
1347 /* On some versions of Windows, __dpmi_get_capabilities returns
1348 zero, but the buffer is not filled with info, so we fill the
1349 buffer with a known pattern and test for it afterwards. */
1350 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1351 dpmi_vendor_available =
1352 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1353 if (dpmi_vendor_available == 0
1354 && memcmp (dpmi_vendor_info, test_pattern,
1355 sizeof(dpmi_vendor_info)) != 0)
1357 /* The DPMI spec says the vendor string should be ASCIIZ, but
1358 I don't trust the vendors to follow that... */
1359 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1360 dpmi_vendor_info[128] = '\0';
1361 printf_filtered ("DPMI Host......................"
1362 "%s v%d.%d (capabilities: %#x)\n",
1363 &dpmi_vendor_info[2],
1364 (unsigned)dpmi_vendor_info[0],
1365 (unsigned)dpmi_vendor_info[1],
1366 ((unsigned)dpmi_flags & 0x7f));
1369 printf_filtered ("DPMI Host......................(Info not available)\n");
1370 __dpmi_get_version (&dpmi_version_data);
1371 printf_filtered ("DPMI Version...................%d.%02d\n",
1372 dpmi_version_data.major, dpmi_version_data.minor);
1373 printf_filtered ("DPMI Info......................"
1374 "%s-bit DPMI, with%s Virtual Memory support\n",
1375 (dpmi_version_data.flags & 1) ? "32" : "16",
1376 (dpmi_version_data.flags & 4) ? "" : "out");
1377 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1378 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1379 printfi_filtered (31, "Processor type: i%d86\n",
1380 dpmi_version_data.cpu);
1381 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1382 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1384 /* a_tss is only initialized when the debuggee is first run. */
1385 if (prog_has_started)
1387 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1388 printf_filtered ("Protection....................."
1389 "Ring %d (in %s), with%s I/O protection\n",
1390 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1391 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1393 puts_filtered ("\n");
1394 __dpmi_get_free_memory_information (&mem_info);
1395 print_mem (mem_info.total_number_of_physical_pages,
1396 "DPMI Total Physical Memory.....", 1);
1397 print_mem (mem_info.total_number_of_free_pages,
1398 "DPMI Free Physical Memory......", 1);
1399 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1400 "DPMI Swap Space................", 1);
1401 print_mem (mem_info.linear_address_space_size_in_pages,
1402 "DPMI Total Linear Address Size.", 1);
1403 print_mem (mem_info.free_linear_address_space_in_pages,
1404 "DPMI Free Linear Address Size..", 1);
1405 print_mem (mem_info.largest_available_free_block_in_bytes,
1406 "DPMI Largest Free Memory Block.", 0);
1410 __dpmi_int (0x21, ®s);
1411 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1413 __dpmi_int (0x21, ®s);
1414 if ((regs.x.flags & 1) == 0)
1416 static const char *dos_hilo[] = {
1417 "Low", "", "", "", "High", "", "", "", "High, then Low"
1419 static const char *dos_fit[] = {
1420 "First", "Best", "Last"
1422 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1423 int fit_idx = regs.x.ax & 0x0f;
1429 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1430 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1432 __dpmi_int (0x21, ®s);
1433 if ((regs.x.flags & 1) != 0)
1435 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1436 regs.h.al == 0 ? "not " : "");
1441 unsigned short limit0;
1442 unsigned short base0;
1443 unsigned char base1;
1448 unsigned available:1;
1451 unsigned page_granular:1;
1452 unsigned char base2;
1453 } __attribute__ ((packed));
1456 unsigned short offset0;
1457 unsigned short selector;
1458 unsigned param_count:5;
1463 unsigned short offset1;
1464 } __attribute__ ((packed));
1466 /* Read LEN bytes starting at logical address ADDR, and put the result
1467 into DEST. Return 1 if success, zero if not. */
1469 read_memory_region (unsigned long addr, void *dest, size_t len)
1471 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1474 /* For the low memory, we can simply use _dos_ds. */
1475 if (addr <= dos_ds_limit - len)
1476 dosmemget (addr, len, dest);
1479 /* For memory above 1MB we need to set up a special segment to
1480 be able to access that memory. */
1481 int sel = __dpmi_allocate_ldt_descriptors (1);
1487 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1488 size_t segment_limit = len - 1;
1490 /* Make sure the crucial bits in the descriptor access
1491 rights are set correctly. Some DPMI providers might barf
1492 if we set the segment limit to something that is not an
1493 integral multiple of 4KB pages if the granularity bit is
1494 not set to byte-granular, even though the DPMI spec says
1495 it's the host's responsibility to set that bit correctly. */
1496 if (len > 1024 * 1024)
1498 access_rights |= 0x8000;
1499 /* Page-granular segments should have the low 12 bits of
1501 segment_limit |= 0xfff;
1504 access_rights &= ~0x8000;
1506 if (__dpmi_set_segment_base_address (sel, addr) != -1
1507 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1508 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1509 /* W2K silently fails to set the segment limit, leaving
1510 it at zero; this test avoids the resulting crash. */
1511 && __dpmi_get_segment_limit (sel) >= segment_limit)
1512 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1516 __dpmi_free_ldt_descriptor (sel);
1522 /* Get a segment descriptor stored at index IDX in the descriptor
1523 table whose base address is TABLE_BASE. Return the descriptor
1524 type, or -1 if failure. */
1526 get_descriptor (unsigned long table_base, int idx, void *descr)
1528 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1530 if (read_memory_region (addr, descr, 8))
1531 return (int)((struct seg_descr *)descr)->stype;
1536 unsigned short limit __attribute__((packed));
1537 unsigned long base __attribute__((packed));
1540 /* Display a segment descriptor stored at index IDX in a descriptor
1541 table whose type is TYPE and whose base address is BASE_ADDR. If
1542 FORCE is non-zero, display even invalid descriptors. */
1544 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1546 struct seg_descr descr;
1547 struct gate_descr gate;
1549 /* Get the descriptor from the table. */
1550 if (idx == 0 && type == 0)
1551 puts_filtered ("0x000: null descriptor\n");
1552 else if (get_descriptor (base_addr, idx, &descr) != -1)
1554 /* For each type of descriptor table, this has a bit set if the
1555 corresponding type of selectors is valid in that table. */
1556 static unsigned allowed_descriptors[] = {
1557 0xffffdafeL, /* GDT */
1558 0x0000c0e0L, /* IDT */
1559 0xffffdafaL /* LDT */
1562 /* If the program hasn't started yet, assume the debuggee will
1563 have the same CPL as the debugger. */
1564 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1565 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1568 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1570 printf_filtered ("0x%03x: ",
1572 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1573 if (descr.page_granular)
1574 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1575 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1576 || descr.stype == 9 || descr.stype == 11
1577 || (descr.stype >= 16 && descr.stype < 32))
1578 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1579 descr.base2, descr.base1, descr.base0, limit);
1581 switch (descr.stype)
1585 printf_filtered (" 16-bit TSS (task %sactive)",
1586 descr.stype == 3 ? "" : "in");
1589 puts_filtered (" LDT");
1592 memcpy (&gate, &descr, sizeof gate);
1593 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1594 gate.selector, gate.offset1, gate.offset0);
1595 printf_filtered (" 16-bit Call Gate (params=%d)",
1599 printf_filtered ("TSS selector=0x%04x", descr.base0);
1600 printfi_filtered (16, "Task Gate");
1604 memcpy (&gate, &descr, sizeof gate);
1605 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1606 gate.selector, gate.offset1, gate.offset0);
1607 printf_filtered (" 16-bit %s Gate",
1608 descr.stype == 6 ? "Interrupt" : "Trap");
1612 printf_filtered (" 32-bit TSS (task %sactive)",
1613 descr.stype == 3 ? "" : "in");
1616 memcpy (&gate, &descr, sizeof gate);
1617 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1618 gate.selector, gate.offset1, gate.offset0);
1619 printf_filtered (" 32-bit Call Gate (params=%d)",
1624 memcpy (&gate, &descr, sizeof gate);
1625 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1626 gate.selector, gate.offset1, gate.offset0);
1627 printf_filtered (" 32-bit %s Gate",
1628 descr.stype == 14 ? "Interrupt" : "Trap");
1630 case 16: /* data segments */
1638 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1639 descr.bit32 ? "32" : "16",
1641 ? "Read/Write," : "Read-Only, ",
1642 descr.stype & 4 ? "down" : "up",
1643 descr.stype & 1 ? "" : ", N.Acc");
1645 case 24: /* code segments */
1653 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1654 descr.bit32 ? "32" : "16",
1655 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1656 descr.stype & 4 ? "" : "N.",
1657 descr.stype & 1 ? "" : ", N.Acc");
1660 printf_filtered ("Unknown type 0x%02x", descr.stype);
1663 puts_filtered ("\n");
1667 printf_filtered ("0x%03x: ",
1669 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1671 puts_filtered ("Segment not present\n");
1673 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1678 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1682 go32_sldt (const char *arg, int from_tty)
1684 struct dtr_reg gdtr;
1685 unsigned short ldtr = 0;
1687 struct seg_descr ldt_descr;
1688 long ldt_entry = -1L;
1689 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1693 arg = skip_spaces (arg);
1697 ldt_entry = parse_and_eval_long (arg);
1699 || (ldt_entry & 4) == 0
1700 || (ldt_entry & 3) != (cpl & 3))
1701 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1705 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1706 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1709 puts_filtered ("There is no LDT.\n");
1710 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1711 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1712 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1714 | (ldt_descr.base1 << 16)
1715 | (ldt_descr.base2 << 24));
1720 | (ldt_descr.base1 << 16)
1721 | (ldt_descr.base2 << 24);
1722 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1725 if (ldt_descr.page_granular)
1726 /* Page-granular segments must have the low 12 bits of their
1728 limit = (limit << 12) | 0xfff;
1729 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1734 max_entry = (limit + 1) / 8;
1738 if (ldt_entry > limit)
1739 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1740 (unsigned long)ldt_entry, limit);
1742 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1748 for (i = 0; i < max_entry; i++)
1749 display_descriptor (ldt_descr.stype, base, i, 0);
1755 go32_sgdt (const char *arg, int from_tty)
1757 struct dtr_reg gdtr;
1758 long gdt_entry = -1L;
1763 arg = skip_spaces (arg);
1767 gdt_entry = parse_and_eval_long (arg);
1768 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1769 error (_("Invalid GDT entry 0x%03lx: "
1770 "not an integral multiple of 8."),
1771 (unsigned long)gdt_entry);
1775 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1776 max_entry = (gdtr.limit + 1) / 8;
1780 if (gdt_entry > gdtr.limit)
1781 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1782 (unsigned long)gdt_entry, gdtr.limit);
1784 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1790 for (i = 0; i < max_entry; i++)
1791 display_descriptor (0, gdtr.base, i, 0);
1796 go32_sidt (const char *arg, int from_tty)
1798 struct dtr_reg idtr;
1799 long idt_entry = -1L;
1804 arg = skip_spaces (arg);
1808 idt_entry = parse_and_eval_long (arg);
1810 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1814 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1815 max_entry = (idtr.limit + 1) / 8;
1816 if (max_entry > 0x100) /* No more than 256 entries. */
1821 if (idt_entry > idtr.limit)
1822 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1823 (unsigned long)idt_entry, idtr.limit);
1825 display_descriptor (1, idtr.base, idt_entry, 1);
1831 for (i = 0; i < max_entry; i++)
1832 display_descriptor (1, idtr.base, i, 0);
1836 /* Cached linear address of the base of the page directory. For
1837 now, available only under CWSDPMI. Code based on ideas and
1838 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1839 static unsigned long pdbr;
1841 static unsigned long
1846 unsigned long taskbase, cr3;
1847 struct dtr_reg gdtr;
1849 if (pdbr > 0 && pdbr <= 0xfffff)
1852 /* Get the linear address of GDT and the Task Register. */
1853 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1854 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1856 /* Task Register is a segment selector for the TSS of the current
1857 task. Therefore, it can be used as an index into the GDT to get
1858 at the segment descriptor for the TSS. To get the index, reset
1859 the low 3 bits of the selector (which give the CPL). Add 2 to the
1860 offset to point to the 3 low bytes of the base address. */
1861 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1864 /* CWSDPMI's task base is always under the 1MB mark. */
1865 if (offset > 0xfffff)
1868 _farsetsel (_dos_ds);
1869 taskbase = _farnspeekl (offset) & 0xffffffU;
1870 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1871 if (taskbase > 0xfffff)
1874 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1875 offset 1Ch in the TSS. */
1876 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1879 #if 0 /* Not fullly supported yet. */
1880 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1881 the first Page Table right below the Page Directory. Thus,
1882 the first Page Table's entry for its own address and the Page
1883 Directory entry for that Page Table will hold the same
1884 physical address. The loop below searches the entire UMB
1885 range of addresses for such an occurence. */
1886 unsigned long addr, pte_idx;
1888 for (addr = 0xb0000, pte_idx = 0xb0;
1890 addr += 0x1000, pte_idx++)
1892 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1893 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1894 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1896 cr3 = addr + 0x1000;
1909 /* Return the N'th Page Directory entry. */
1910 static unsigned long
1913 unsigned long pde = 0;
1915 if (pdbr && n >= 0 && n < 1024)
1917 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1922 /* Return the N'th entry of the Page Table whose Page Directory entry
1924 static unsigned long
1925 get_pte (unsigned long pde, int n)
1927 unsigned long pte = 0;
1929 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1930 page tables, for now. */
1931 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1933 pde &= ~0xfff; /* Clear non-address bits. */
1934 pte = _farpeekl (_dos_ds, pde + 4*n);
1939 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1940 says this is a Page Directory entry. If FORCE is non-zero, display
1941 the entry even if its Present flag is off. OFF is the offset of the
1942 address from the page's base address. */
1944 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1946 if ((entry & 1) != 0)
1948 printf_filtered ("Base=0x%05lx000", entry >> 12);
1949 if ((entry & 0x100) && !is_dir)
1950 puts_filtered (" Global");
1951 if ((entry & 0x40) && !is_dir)
1952 puts_filtered (" Dirty");
1953 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1954 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1955 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1956 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1957 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1959 printf_filtered (" +0x%x", off);
1960 puts_filtered ("\n");
1963 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1964 is_dir ? " Table" : "", entry >> 1);
1968 go32_pde (const char *arg, int from_tty)
1970 long pde_idx = -1, i;
1974 arg = skip_spaces (arg);
1978 pde_idx = parse_and_eval_long (arg);
1979 if (pde_idx < 0 || pde_idx >= 1024)
1980 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1986 puts_filtered ("Access to Page Directories is "
1987 "not supported on this system.\n");
1988 else if (pde_idx >= 0)
1989 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1991 for (i = 0; i < 1024; i++)
1992 display_ptable_entry (get_pde (i), 1, 0, 0);
1995 /* A helper function to display entries in a Page Table pointed to by
1996 the N'th entry in the Page Directory. If FORCE is non-zero, say
1997 something even if the Page Table is not accessible. */
1999 display_page_table (long n, int force)
2001 unsigned long pde = get_pde (n);
2007 printf_filtered ("Page Table pointed to by "
2008 "Page Directory entry 0x%lx:\n", n);
2009 for (i = 0; i < 1024; i++)
2010 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2011 puts_filtered ("\n");
2014 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2018 go32_pte (const char *arg, int from_tty)
2020 long pde_idx = -1L, i;
2024 arg = skip_spaces (arg);
2028 pde_idx = parse_and_eval_long (arg);
2029 if (pde_idx < 0 || pde_idx >= 1024)
2030 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2036 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2037 else if (pde_idx >= 0)
2038 display_page_table (pde_idx, 1);
2040 for (i = 0; i < 1024; i++)
2041 display_page_table (i, 0);
2045 go32_pte_for_address (const char *arg, int from_tty)
2047 CORE_ADDR addr = 0, i;
2051 arg = skip_spaces (arg);
2054 addr = parse_and_eval_address (arg);
2057 error_no_arg (_("linear address"));
2061 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2064 int pde_idx = (addr >> 22) & 0x3ff;
2065 int pte_idx = (addr >> 12) & 0x3ff;
2066 unsigned offs = addr & 0xfff;
2068 printf_filtered ("Page Table entry for address %s:\n",
2070 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2074 static struct cmd_list_element *info_dos_cmdlist = NULL;
2077 go32_info_dos_command (const char *args, int from_tty)
2079 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2083 _initialize_go32_nat (void)
2085 x86_dr_low.set_control = go32_set_dr7;
2086 x86_dr_low.set_addr = go32_set_dr;
2087 x86_dr_low.get_status = go32_get_dr6;
2088 x86_dr_low.get_control = go32_get_dr7;
2089 x86_dr_low.get_addr = go32_get_dr;
2090 x86_set_debug_register_length (4);
2092 add_inf_child_target (&the_go32_nat_target);
2094 /* Initialize child's cwd as empty to be initialized when starting
2098 /* Initialize child's command line storage. */
2099 if (redir_debug_init (&child_cmd) == -1)
2100 internal_error (__FILE__, __LINE__,
2101 _("Cannot allocate redirection storage: "
2102 "not enough memory.\n"));
2104 /* We are always processing GCC-compiled programs. */
2105 processing_gcc_compilation = 2;
2107 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2108 Print information specific to DJGPP (aka MS-DOS) debugging."),
2109 &info_dos_cmdlist, "info dos ", 0, &infolist);
2111 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2112 Display information about the target system, including CPU, OS, DPMI, etc."),
2114 add_cmd ("ldt", class_info, go32_sldt, _("\
2115 Display entries in the LDT (Local Descriptor Table).\n\
2116 Entry number (an expression) as an argument means display only that entry."),
2118 add_cmd ("gdt", class_info, go32_sgdt, _("\
2119 Display entries in the GDT (Global Descriptor Table).\n\
2120 Entry number (an expression) as an argument means display only that entry."),
2122 add_cmd ("idt", class_info, go32_sidt, _("\
2123 Display entries in the IDT (Interrupt Descriptor Table).\n\
2124 Entry number (an expression) as an argument means display only that entry."),
2126 add_cmd ("pde", class_info, go32_pde, _("\
2127 Display entries in the Page Directory.\n\
2128 Entry number (an expression) as an argument means display only that entry."),
2130 add_cmd ("pte", class_info, go32_pte, _("\
2131 Display entries in Page Tables.\n\
2132 Entry number (an expression) as an argument means display only entries\n\
2133 from the Page Table pointed to by the specified Page Directory entry."),
2135 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2136 Display a Page Table entry for a linear address.\n\
2137 The address argument must be a linear address, after adding to\n\
2138 it the base address of the appropriate segment.\n\
2139 The base address of variables and functions in the debuggee's data\n\
2140 or code segment is stored in the variable __djgpp_base_address,\n\
2141 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2142 For other segments, look up their base address in the output of\n\
2143 the `info dos ldt' command."),
2157 tcsetpgrp (int fd, pid_t pgid)
2159 if (isatty (fd) && pgid == SOME_PID)
2161 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;