1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
91 #include "gdbthread.h"
92 #include "gdbsupport/gdb_wait.h"
96 #include "floatformat.h"
97 #include "buildsym-legacy.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "nat/x86-cpuid.h"
102 #include "regcache.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
109 #include <sys/utsname.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
121 #include <langinfo.h>
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
132 unsigned short exponent:15;
133 unsigned short sign:1;
139 unsigned int control;
144 unsigned int dataptr;
145 unsigned int datasel;
152 static void save_npx (void); /* Save the FPU of the debugged program. */
153 static void load_npx (void); /* Restore the FPU of the debugged program. */
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
187 asm ("frstor %0":"=m" (npx));
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
197 redir_cmdline_delete (cmdline_t *ptr)
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
209 redir_to_child (cmdline_t *ptr)
215 redir_to_debugger (cmdline_t *ptr)
221 redir_debug_init (cmdline_t *ptr)
225 #endif /* __DJGPP_MINOR < 3 */
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
234 static int prog_has_started = 0;
236 #define r_ofs(x) (offsetof(TSS,x))
245 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
246 {r_ofs (tss_ecx), 4},
247 {r_ofs (tss_edx), 4},
248 {r_ofs (tss_ebx), 4},
249 {r_ofs (tss_esp), 4},
250 {r_ofs (tss_ebp), 4},
251 {r_ofs (tss_esi), 4},
252 {r_ofs (tss_edi), 4},
253 {r_ofs (tss_eip), 4},
254 {r_ofs (tss_eflags), 4},
261 {0, 10}, /* 8 FP registers, from npx.reg[] */
269 /* The order of the next 7 registers must be consistent
270 with their numbering in config/i386/tm-i386.h, which see. */
271 {0, 2}, /* control word, from npx */
272 {4, 2}, /* status word, from npx */
273 {8, 2}, /* tag word, from npx */
274 {16, 2}, /* last FP exception CS from npx */
275 {12, 4}, /* last FP exception EIP from npx */
276 {24, 2}, /* last FP exception operand selector from npx */
277 {20, 4}, /* last FP exception operand offset from npx */
278 {18, 2} /* last FP opcode from npx */
284 enum gdb_signal gdb_sig;
289 {1, GDB_SIGNAL_TRAP},
290 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
291 but I think SIGBUS is better, since the NMI is usually activated
292 as a result of a memory parity check failure. */
294 {3, GDB_SIGNAL_TRAP},
296 {5, GDB_SIGNAL_SEGV},
298 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
299 {8, GDB_SIGNAL_SEGV},
300 {9, GDB_SIGNAL_SEGV},
301 {10, GDB_SIGNAL_BUS},
302 {11, GDB_SIGNAL_SEGV},
303 {12, GDB_SIGNAL_SEGV},
304 {13, GDB_SIGNAL_SEGV},
305 {14, GDB_SIGNAL_SEGV},
306 {16, GDB_SIGNAL_FPE},
307 {17, GDB_SIGNAL_BUS},
308 {31, GDB_SIGNAL_ILL},
309 {0x1b, GDB_SIGNAL_INT},
310 {0x75, GDB_SIGNAL_FPE},
311 {0x78, GDB_SIGNAL_ALRM},
312 {0x79, GDB_SIGNAL_INT},
313 {0x7a, GDB_SIGNAL_QUIT},
314 {-1, GDB_SIGNAL_LAST}
318 enum gdb_signal gdb_sig;
322 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
323 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
324 {GDB_SIGNAL_SEGV, 13}, /* GPF */
325 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
326 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
328 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
329 {GDB_SIGNAL_FPE, 0x75},
330 {GDB_SIGNAL_INT, 0x79},
331 {GDB_SIGNAL_QUIT, 0x7a},
332 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
333 {GDB_SIGNAL_PROF, 0x78},
334 {GDB_SIGNAL_LAST, -1}
337 /* The go32 target. */
339 struct go32_nat_target final : public x86_nat_target<inf_child_target>
341 void attach (const char *, int) override;
343 void resume (ptid_t, int, enum gdb_signal) override;
345 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
347 void fetch_registers (struct regcache *, int) override;
348 void store_registers (struct regcache *, int) override;
350 enum target_xfer_status xfer_partial (enum target_object object,
353 const gdb_byte *writebuf,
354 ULONGEST offset, ULONGEST len,
355 ULONGEST *xfered_len) override;
357 void files_info () override;
359 void terminal_init () override;
361 void terminal_inferior () override;
363 void terminal_ours_for_output () override;
365 void terminal_ours () override;
367 void terminal_info (const char *, int) override;
369 void pass_ctrlc () override;
371 void kill () override;
373 void create_inferior (const char *, const std::string &,
374 char **, int) override;
376 void mourn_inferior () override;
378 bool thread_alive (ptid_t ptid) override;
380 std::string pid_to_str (ptid_t) override;
383 static go32_nat_target the_go32_nat_target;
386 go32_nat_target::attach (const char *args, int from_tty)
389 You cannot attach to a running program on this platform.\n\
390 Use the `run' command to run DJGPP programs."));
393 static int resume_is_step;
394 static int resume_signal = -1;
397 go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
401 resume_is_step = step;
403 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
405 for (i = 0, resume_signal = -1;
406 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
407 if (excepn_map[i].gdb_sig == siggnal)
409 resume_signal = excepn_map[i].djgpp_excepno;
412 if (resume_signal == -1)
413 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
414 gdb_signal_to_name (siggnal));
418 static char child_cwd[FILENAME_MAX];
421 go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status,
425 unsigned char saved_opcode;
426 unsigned long INT3_addr = 0;
427 int stepping_over_INT = 0;
429 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
432 /* If the next instruction is INT xx or INTO, we need to handle
433 them specially. Intel manuals say that these instructions
434 reset the single-step flag (a.k.a. TF). However, it seems
435 that, at least in the DPMI environment, and at least when
436 stepping over the DPMI interrupt 31h, the problem is having
437 TF set at all when INT 31h is executed: the debuggee either
438 crashes (and takes the system with it) or is killed by a
441 So we need to emulate single-step mode: we put an INT3 opcode
442 right after the INT xx instruction, let the debuggee run
443 until it hits INT3 and stops, then restore the original
444 instruction which we overwrote with the INT3 opcode, and back
445 up the debuggee's EIP to that instruction. */
446 read_child (a_tss.tss_eip, &saved_opcode, 1);
447 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
449 unsigned char INT3_opcode = 0xCC;
452 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
453 stepping_over_INT = 1;
454 read_child (INT3_addr, &saved_opcode, 1);
455 write_child (INT3_addr, &INT3_opcode, 1);
458 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
461 /* The special value FFFFh in tss_trap indicates to run_child that
462 tss_irqn holds a signal to be delivered to the debuggee. */
463 if (resume_signal <= -1)
466 a_tss.tss_irqn = 0xff;
470 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
471 a_tss.tss_irqn = resume_signal;
474 /* The child might change working directory behind our back. The
475 GDB users won't like the side effects of that when they work with
476 relative file names, and GDB might be confused by its current
477 directory not being in sync with the truth. So we always make a
478 point of changing back to where GDB thinks is its cwd, when we
479 return control to the debugger, but restore child's cwd before we
481 /* Initialize child_cwd, before the first call to run_child and not
482 in the initialization, so the child get also the changed directory
483 set with the gdb-command "cd ..." */
485 /* Initialize child's cwd with the current one. */
486 getcwd (child_cwd, sizeof (child_cwd));
490 #if __DJGPP_MINOR__ < 3
494 #if __DJGPP_MINOR__ < 3
498 /* Did we step over an INT xx instruction? */
499 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
501 /* Restore the original opcode. */
502 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
503 write_child (a_tss.tss_eip, &saved_opcode, 1);
504 /* Simulate a TRAP exception. */
506 a_tss.tss_eflags |= 0x0100;
509 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
510 chdir (current_directory);
512 if (a_tss.tss_irqn == 0x21)
514 status->kind = TARGET_WAITKIND_EXITED;
515 status->value.integer = a_tss.tss_eax & 0xff;
519 status->value.sig = GDB_SIGNAL_UNKNOWN;
520 status->kind = TARGET_WAITKIND_STOPPED;
521 for (i = 0; sig_map[i].go32_sig != -1; i++)
523 if (a_tss.tss_irqn == sig_map[i].go32_sig)
525 #if __DJGPP_MINOR__ < 3
526 if ((status->value.sig = sig_map[i].gdb_sig) !=
528 status->kind = TARGET_WAITKIND_SIGNALLED;
530 status->value.sig = sig_map[i].gdb_sig;
536 return ptid_t (SOME_PID);
540 fetch_register (struct regcache *regcache, int regno)
542 struct gdbarch *gdbarch = regcache->arch ();
543 if (regno < gdbarch_fp0_regnum (gdbarch))
544 regcache->raw_supply (regno,
545 (char *) &a_tss + regno_mapping[regno].tss_ofs);
546 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
548 i387_supply_fsave (regcache, regno, &npx);
550 internal_error (__FILE__, __LINE__,
551 _("Invalid register no. %d in fetch_register."), regno);
555 go32_nat_target::fetch_registers (struct regcache *regcache, int regno)
558 fetch_register (regcache, regno);
562 regno < gdbarch_fp0_regnum (regcache->arch ());
564 fetch_register (regcache, regno);
565 i387_supply_fsave (regcache, -1, &npx);
570 store_register (const struct regcache *regcache, int regno)
572 struct gdbarch *gdbarch = regcache->arch ();
573 if (regno < gdbarch_fp0_regnum (gdbarch))
574 regcache->raw_collect (regno,
575 (char *) &a_tss + regno_mapping[regno].tss_ofs);
576 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
578 i387_collect_fsave (regcache, regno, &npx);
580 internal_error (__FILE__, __LINE__,
581 _("Invalid register no. %d in store_register."), regno);
585 go32_nat_target::store_registers (struct regcache *regcache, int regno)
590 store_register (regcache, regno);
593 for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++)
594 store_register (regcache, r);
595 i387_collect_fsave (regcache, -1, &npx);
599 /* Const-correct version of DJGPP's write_child, which unfortunately
600 takes a non-const buffer pointer. */
603 my_write_child (unsigned child_addr, const void *buf, unsigned len)
605 static void *buffer = NULL;
606 static unsigned buffer_len = 0;
609 if (buffer_len < len)
611 buffer = xrealloc (buffer, len);
615 memcpy (buffer, buf, len);
616 res = write_child (child_addr, buffer, len);
620 /* Helper for go32_xfer_partial that handles memory transfers.
621 Arguments are like target_xfer_partial. */
623 static enum target_xfer_status
624 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
625 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
629 if (writebuf != NULL)
630 res = my_write_child (memaddr, writebuf, len);
632 res = read_child (memaddr, readbuf, len);
634 /* read_child and write_child return zero on success, non-zero on
637 return TARGET_XFER_E_IO;
640 return TARGET_XFER_OK;
643 /* Target to_xfer_partial implementation. */
645 enum target_xfer_status
646 go32_nat_target::xfer_partial (enum target_object object,
647 const char *annex, gdb_byte *readbuf,
648 const gdb_byte *writebuf, ULONGEST offset,
650 ULONGEST *xfered_len)
654 case TARGET_OBJECT_MEMORY:
655 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
658 return this->beneath ()->xfer_partial (object, annex,
659 readbuf, writebuf, offset, len,
664 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
667 go32_nat_target::files_info ()
669 printf_unfiltered ("You are running a DJGPP V2 program.\n");
673 go32_nat_target::kill_inferior ()
679 go32_nat_target::create_inferior (const char *exec_file,
680 const std::string &allargs,
681 char **env, int from_tty)
683 extern char **environ;
686 char **env_save = environ;
688 struct inferior *inf;
690 const char *args = allargs.c_str ();
692 /* If no exec file handed to us, get it from the exec-file command -- with
693 a good, common error message if none is specified. */
695 exec_file = get_exec_file (1);
700 /* Initialize child's cwd as empty to be initialized when starting
704 /* Init command line storage. */
705 if (redir_debug_init (&child_cmd) == -1)
706 internal_error (__FILE__, __LINE__,
707 _("Cannot allocate redirection storage: "
708 "not enough memory.\n"));
710 /* Parse the command line and create redirections. */
711 if (strpbrk (args, "<>"))
713 if (redir_cmdline_parse (args, &child_cmd) == 0)
714 args = child_cmd.command;
716 error (_("Syntax error in command line."));
719 child_cmd.command = xstrdup (args);
721 cmdlen = strlen (args);
722 /* v2loadimage passes command lines via DOS memory, so it cannot
723 possibly handle commands longer than 1MB. */
724 if (cmdlen > 1024*1024)
725 error (_("Command line too long."));
727 cmdline = (char *) xmalloc (cmdlen + 4);
728 strcpy (cmdline + 1, args);
729 /* If the command-line length fits into DOS 126-char limits, use the
730 DOS command tail format; otherwise, tell v2loadimage to pass it
731 through a buffer in conventional memory. */
734 cmdline[0] = strlen (args);
735 cmdline[cmdlen + 1] = 13;
738 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
742 result = v2loadimage (exec_file, cmdline, start_state);
748 error (_("Load failed for image %s"), exec_file);
750 edi_init (start_state);
751 #if __DJGPP_MINOR__ < 3
755 inferior_ptid = ptid_t (SOME_PID);
756 inf = current_inferior ();
757 inferior_appeared (inf, SOME_PID);
759 if (!target_is_pushed (this))
762 add_thread_silent (inferior_ptid);
764 clear_proceed_status (0);
765 insert_breakpoints ();
766 prog_has_started = 1;
770 go32_nat_target::mourn_inferior ()
774 redir_cmdline_delete (&child_cmd);
780 /* We need to make sure all the breakpoint enable bits in the DR7
781 register are reset when the inferior exits. Otherwise, if they
782 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
783 failure to set more watchpoints, and other calamities. It would
784 be nice if GDB itself would take care to remove all breakpoints
785 at all times, but it doesn't, probably under an assumption that
786 the OS cleans up when the debuggee exits. */
787 x86_cleanup_dregs ();
789 ptid = inferior_ptid;
790 inferior_ptid = null_ptid;
791 prog_has_started = 0;
793 generic_mourn_inferior ();
794 maybe_unpush_target ();
797 /* Hardware watchpoint support. */
799 #define D_REGS edi.dr
800 #define CONTROL D_REGS[7]
801 #define STATUS D_REGS[6]
803 /* Pass the address ADDR to the inferior in the I'th debug register.
804 Here we just store the address in D_REGS, the watchpoint will be
805 actually set up when go32_wait runs the debuggee. */
807 go32_set_dr (int i, CORE_ADDR addr)
810 internal_error (__FILE__, __LINE__,
811 _("Invalid register %d in go32_set_dr.\n"), i);
815 /* Pass the value VAL to the inferior in the DR7 debug control
816 register. Here we just store the address in D_REGS, the watchpoint
817 will be actually set up when go32_wait runs the debuggee. */
819 go32_set_dr7 (unsigned long val)
824 /* Get the value of the DR6 debug status register from the inferior.
825 Here we just return the value stored in D_REGS, as we've got it
826 from the last go32_wait call. */
833 /* Get the value of the DR7 debug status register from the inferior.
834 Here we just return the value stored in D_REGS, as we've got it
835 from the last go32_wait call. */
843 /* Get the value of the DR debug register I from the inferior. Here
844 we just return the value stored in D_REGS, as we've got it from the
845 last go32_wait call. */
851 internal_error (__FILE__, __LINE__,
852 _("Invalid register %d in go32_get_dr.\n"), i);
856 /* Put the device open on handle FD into either raw or cooked
857 mode, return 1 if it was in raw mode, zero otherwise. */
860 device_mode (int fd, int raw_p)
862 int oldmode, newmode;
867 __dpmi_int (0x21, ®s);
868 if (regs.x.flags & 1)
870 newmode = oldmode = regs.x.dx;
877 if (oldmode & 0x80) /* Only for character dev. */
881 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
882 __dpmi_int (0x21, ®s);
883 if (regs.x.flags & 1)
886 return (oldmode & 0x20) == 0x20;
890 static int inf_mode_valid = 0;
891 static int inf_terminal_mode;
893 /* This semaphore is needed because, amazingly enough, GDB calls
894 target.to_terminal_ours more than once after the inferior stops.
895 But we need the information from the first call only, since the
896 second call will always see GDB's own cooked terminal. */
897 static int terminal_is_ours = 1;
900 go32_nat_target::terminal_init ()
902 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
903 terminal_is_ours = 1;
907 go32_nat_target::terminal_info (const char *args, int from_tty)
909 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
911 ? "default" : inf_terminal_mode ? "raw" : "cooked");
913 #if __DJGPP_MINOR__ > 2
914 if (child_cmd.redirection)
918 for (i = 0; i < DBG_HANDLES; i++)
920 if (child_cmd.redirection[i]->file_name)
921 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
922 i, child_cmd.redirection[i]->file_name);
923 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
925 ("\tFile handle %d appears to be closed by inferior.\n", i);
926 /* Mask off the raw/cooked bit when comparing device info words. */
927 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
928 != (_get_dev_info (i) & 0xdf))
930 ("\tFile handle %d appears to be redirected by inferior.\n", i);
937 go32_nat_target::terminal_inferior ()
939 /* Redirect standard handles as child wants them. */
941 if (redir_to_child (&child_cmd) == -1)
943 redir_to_debugger (&child_cmd);
944 error (_("Cannot redirect standard handles for program: %s."),
945 safe_strerror (errno));
947 /* Set the console device of the inferior to whatever mode
948 (raw or cooked) we found it last time. */
949 if (terminal_is_ours)
952 device_mode (0, inf_terminal_mode);
953 terminal_is_ours = 0;
958 go32_nat_target::terminal_ours ()
960 /* Switch to cooked mode on the gdb terminal and save the inferior
961 terminal mode to be restored when it is resumed. */
962 if (!terminal_is_ours)
964 inf_terminal_mode = device_mode (0, 0);
965 if (inf_terminal_mode != -1)
968 /* If device_mode returned -1, we don't know what happens with
969 handle 0 anymore, so make the info invalid. */
971 terminal_is_ours = 1;
973 /* Restore debugger's standard handles. */
975 if (redir_to_debugger (&child_cmd) == -1)
977 redir_to_child (&child_cmd);
978 error (_("Cannot redirect standard handles for debugger: %s."),
979 safe_strerror (errno));
985 go32_nat_target::pass_ctrlc ()
990 go32_nat_target::thread_alive (ptid_t ptid)
992 return ptid != null_ptid;
996 go32_nat_target::pid_to_str (ptid_t ptid)
998 return normal_pid_to_str (ptid);
1001 /* Return the current DOS codepage number. */
1008 __dpmi_int (0x21, ®s);
1009 if (!(regs.x.flags & 1))
1010 return regs.x.bx & 0xffff;
1012 return 437; /* default */
1015 /* Limited emulation of `nl_langinfo', for charset.c. */
1017 nl_langinfo (nl_item item)
1025 /* 8 is enough for SHORT_MAX + "CP" + null. */
1027 int blen = sizeof (buf);
1028 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1030 if (needed > blen) /* Should never happen. */
1032 retval = xstrdup (buf);
1036 retval = xstrdup ("");
1042 unsigned short windows_major, windows_minor;
1044 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1046 go32_get_windows_version(void)
1051 __dpmi_int(0x2f, &r);
1052 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1053 && (r.h.al > 3 || r.h.ah > 0))
1055 windows_major = r.h.al;
1056 windows_minor = r.h.ah;
1059 windows_major = 0xff; /* meaning no Windows */
1062 /* A subroutine of go32_sysinfo to display memory info. */
1064 print_mem (unsigned long datum, const char *header, int in_pages_p)
1066 if (datum != 0xffffffffUL)
1070 puts_filtered (header);
1073 printf_filtered ("%lu KB", datum >> 10);
1074 if (datum > 1024 * 1024)
1075 printf_filtered (" (%lu MB)", datum >> 20);
1078 printf_filtered ("%lu Bytes", datum);
1079 puts_filtered ("\n");
1083 /* Display assorted information about the underlying OS. */
1085 go32_sysinfo (const char *arg, int from_tty)
1087 static const char test_pattern[] =
1088 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1089 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1090 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1092 char cpuid_vendor[13];
1093 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1094 unsigned true_dos_version = _get_dos_version (1);
1095 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1097 char dpmi_vendor_info[129];
1098 int dpmi_vendor_available;
1099 __dpmi_version_ret dpmi_version_data;
1101 __dpmi_free_mem_info mem_info;
1104 cpuid_vendor[0] = '\0';
1106 strcpy (u.machine, "Unknown x86");
1107 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1109 /* CPUID with EAX = 0 returns the Vendor ID. */
1111 /* Ideally we would use x86_cpuid(), but it needs someone to run
1112 native tests first to make sure things actually work. They should.
1113 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1114 unsigned int eax, ebx, ecx, edx;
1116 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
1119 memcpy (&vendor[0], &ebx, 4);
1120 memcpy (&vendor[4], &ecx, 4);
1121 memcpy (&vendor[8], &edx, 4);
1122 cpuid_vendor[12] = '\0';
1125 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1126 "xorl %%ecx, %%ecx;"
1127 "xorl %%edx, %%edx;"
1134 : "=m" (cpuid_vendor[0]),
1135 "=m" (cpuid_vendor[4]),
1136 "=m" (cpuid_vendor[8]),
1139 : "%eax", "%ebx", "%ecx", "%edx");
1140 cpuid_vendor[12] = '\0';
1144 printf_filtered ("CPU Type.......................%s", u.machine);
1145 if (cpuid_vendor[0])
1146 printf_filtered (" (%s)", cpuid_vendor);
1147 puts_filtered ("\n");
1149 /* CPUID with EAX = 1 returns processor signature and features. */
1152 static const char *brand_name[] = {
1160 char cpu_string[80];
1163 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1164 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1165 int hygon_p = strcmp (cpuid_vendor, "HygonGenuine") == 0;
1166 unsigned cpu_family, cpu_model;
1169 /* See comment above about cpuid usage. */
1170 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1172 __asm__ __volatile__ ("movl $1, %%eax;"
1180 brand_idx = cpuid_ebx & 0xff;
1181 cpu_family = (cpuid_eax >> 8) & 0xf;
1182 cpu_model = (cpuid_eax >> 4) & 0xf;
1183 cpu_brand[0] = '\0';
1187 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1188 && *brand_name[brand_idx])
1189 strcpy (cpu_brand, brand_name[brand_idx]);
1190 else if (cpu_family == 5)
1192 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1193 strcpy (cpu_brand, " MMX");
1194 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1195 strcpy (cpu_brand, " OverDrive");
1196 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1197 strcpy (cpu_brand, " Dual");
1199 else if (cpu_family == 6 && cpu_model < 8)
1204 strcpy (cpu_brand, " Pro");
1207 strcpy (cpu_brand, " II");
1210 strcpy (cpu_brand, " II Xeon");
1213 strcpy (cpu_brand, " Celeron");
1216 strcpy (cpu_brand, " III");
1226 strcpy (cpu_brand, "486/5x86");
1235 strcpy (cpu_brand, "-K5");
1239 strcpy (cpu_brand, "-K6");
1242 strcpy (cpu_brand, "-K6-2");
1245 strcpy (cpu_brand, "-K6-III");
1255 strcpy (cpu_brand, " Athlon");
1258 strcpy (cpu_brand, " Duron");
1264 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1265 intel_p ? "Pentium" : (amd_p ? "AMD" : (hygon_p ? "Hygon" : "ix86")),
1266 cpu_brand, cpu_model, cpuid_eax & 0xf);
1267 printfi_filtered (31, "%s\n", cpu_string);
1268 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1269 || ((cpuid_edx & 1) == 0)
1270 || ((amd_p || hygon_p) && (cpuid_edx & (3 << 30)) != 0))
1272 puts_filtered ("CPU Features...................");
1273 /* We only list features which might be useful in the DPMI
1275 if ((cpuid_edx & 1) == 0)
1276 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1277 if ((cpuid_edx & (1 << 1)) != 0)
1278 puts_filtered ("VME ");
1279 if ((cpuid_edx & (1 << 2)) != 0)
1280 puts_filtered ("DE ");
1281 if ((cpuid_edx & (1 << 4)) != 0)
1282 puts_filtered ("TSC ");
1283 if ((cpuid_edx & (1 << 23)) != 0)
1284 puts_filtered ("MMX ");
1285 if ((cpuid_edx & (1 << 25)) != 0)
1286 puts_filtered ("SSE ");
1287 if ((cpuid_edx & (1 << 26)) != 0)
1288 puts_filtered ("SSE2 ");
1289 if (amd_p || hygon_p)
1291 if ((cpuid_edx & (1 << 31)) != 0)
1292 puts_filtered ("3DNow! ");
1293 if ((cpuid_edx & (1 << 30)) != 0)
1294 puts_filtered ("3DNow!Ext");
1296 puts_filtered ("\n");
1299 puts_filtered ("\n");
1300 printf_filtered ("DOS Version....................%s %s.%s",
1301 _os_flavor, u.release, u.version);
1302 if (true_dos_version != advertized_dos_version)
1303 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1304 puts_filtered ("\n");
1306 go32_get_windows_version ();
1307 if (windows_major != 0xff)
1309 const char *windows_flavor;
1311 printf_filtered ("Windows Version................%d.%02d (Windows ",
1312 windows_major, windows_minor);
1313 switch (windows_major)
1316 windows_flavor = "3.X";
1319 switch (windows_minor)
1322 windows_flavor = "95, 95A, or 95B";
1325 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1328 windows_flavor = "98 or 98 SE";
1331 windows_flavor = "ME";
1334 windows_flavor = "9X";
1339 windows_flavor = "??";
1342 printf_filtered ("%s)\n", windows_flavor);
1344 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1345 printf_filtered ("Windows Version................"
1346 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1347 puts_filtered ("\n");
1348 /* On some versions of Windows, __dpmi_get_capabilities returns
1349 zero, but the buffer is not filled with info, so we fill the
1350 buffer with a known pattern and test for it afterwards. */
1351 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1352 dpmi_vendor_available =
1353 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1354 if (dpmi_vendor_available == 0
1355 && memcmp (dpmi_vendor_info, test_pattern,
1356 sizeof(dpmi_vendor_info)) != 0)
1358 /* The DPMI spec says the vendor string should be ASCIIZ, but
1359 I don't trust the vendors to follow that... */
1360 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1361 dpmi_vendor_info[128] = '\0';
1362 printf_filtered ("DPMI Host......................"
1363 "%s v%d.%d (capabilities: %#x)\n",
1364 &dpmi_vendor_info[2],
1365 (unsigned)dpmi_vendor_info[0],
1366 (unsigned)dpmi_vendor_info[1],
1367 ((unsigned)dpmi_flags & 0x7f));
1370 printf_filtered ("DPMI Host......................(Info not available)\n");
1371 __dpmi_get_version (&dpmi_version_data);
1372 printf_filtered ("DPMI Version...................%d.%02d\n",
1373 dpmi_version_data.major, dpmi_version_data.minor);
1374 printf_filtered ("DPMI Info......................"
1375 "%s-bit DPMI, with%s Virtual Memory support\n",
1376 (dpmi_version_data.flags & 1) ? "32" : "16",
1377 (dpmi_version_data.flags & 4) ? "" : "out");
1378 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1379 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1380 printfi_filtered (31, "Processor type: i%d86\n",
1381 dpmi_version_data.cpu);
1382 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1383 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1385 /* a_tss is only initialized when the debuggee is first run. */
1386 if (prog_has_started)
1388 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1389 printf_filtered ("Protection....................."
1390 "Ring %d (in %s), with%s I/O protection\n",
1391 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1392 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1394 puts_filtered ("\n");
1395 __dpmi_get_free_memory_information (&mem_info);
1396 print_mem (mem_info.total_number_of_physical_pages,
1397 "DPMI Total Physical Memory.....", 1);
1398 print_mem (mem_info.total_number_of_free_pages,
1399 "DPMI Free Physical Memory......", 1);
1400 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1401 "DPMI Swap Space................", 1);
1402 print_mem (mem_info.linear_address_space_size_in_pages,
1403 "DPMI Total Linear Address Size.", 1);
1404 print_mem (mem_info.free_linear_address_space_in_pages,
1405 "DPMI Free Linear Address Size..", 1);
1406 print_mem (mem_info.largest_available_free_block_in_bytes,
1407 "DPMI Largest Free Memory Block.", 0);
1411 __dpmi_int (0x21, ®s);
1412 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1414 __dpmi_int (0x21, ®s);
1415 if ((regs.x.flags & 1) == 0)
1417 static const char *dos_hilo[] = {
1418 "Low", "", "", "", "High", "", "", "", "High, then Low"
1420 static const char *dos_fit[] = {
1421 "First", "Best", "Last"
1423 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1424 int fit_idx = regs.x.ax & 0x0f;
1430 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1431 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1433 __dpmi_int (0x21, ®s);
1434 if ((regs.x.flags & 1) != 0)
1436 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1437 regs.h.al == 0 ? "not " : "");
1442 unsigned short limit0;
1443 unsigned short base0;
1444 unsigned char base1;
1449 unsigned available:1;
1452 unsigned page_granular:1;
1453 unsigned char base2;
1454 } __attribute__ ((packed));
1457 unsigned short offset0;
1458 unsigned short selector;
1459 unsigned param_count:5;
1464 unsigned short offset1;
1465 } __attribute__ ((packed));
1467 /* Read LEN bytes starting at logical address ADDR, and put the result
1468 into DEST. Return 1 if success, zero if not. */
1470 read_memory_region (unsigned long addr, void *dest, size_t len)
1472 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1475 /* For the low memory, we can simply use _dos_ds. */
1476 if (addr <= dos_ds_limit - len)
1477 dosmemget (addr, len, dest);
1480 /* For memory above 1MB we need to set up a special segment to
1481 be able to access that memory. */
1482 int sel = __dpmi_allocate_ldt_descriptors (1);
1488 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1489 size_t segment_limit = len - 1;
1491 /* Make sure the crucial bits in the descriptor access
1492 rights are set correctly. Some DPMI providers might barf
1493 if we set the segment limit to something that is not an
1494 integral multiple of 4KB pages if the granularity bit is
1495 not set to byte-granular, even though the DPMI spec says
1496 it's the host's responsibility to set that bit correctly. */
1497 if (len > 1024 * 1024)
1499 access_rights |= 0x8000;
1500 /* Page-granular segments should have the low 12 bits of
1502 segment_limit |= 0xfff;
1505 access_rights &= ~0x8000;
1507 if (__dpmi_set_segment_base_address (sel, addr) != -1
1508 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1509 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1510 /* W2K silently fails to set the segment limit, leaving
1511 it at zero; this test avoids the resulting crash. */
1512 && __dpmi_get_segment_limit (sel) >= segment_limit)
1513 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1517 __dpmi_free_ldt_descriptor (sel);
1523 /* Get a segment descriptor stored at index IDX in the descriptor
1524 table whose base address is TABLE_BASE. Return the descriptor
1525 type, or -1 if failure. */
1527 get_descriptor (unsigned long table_base, int idx, void *descr)
1529 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1531 if (read_memory_region (addr, descr, 8))
1532 return (int)((struct seg_descr *)descr)->stype;
1537 unsigned short limit __attribute__((packed));
1538 unsigned long base __attribute__((packed));
1541 /* Display a segment descriptor stored at index IDX in a descriptor
1542 table whose type is TYPE and whose base address is BASE_ADDR. If
1543 FORCE is non-zero, display even invalid descriptors. */
1545 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1547 struct seg_descr descr;
1548 struct gate_descr gate;
1550 /* Get the descriptor from the table. */
1551 if (idx == 0 && type == 0)
1552 puts_filtered ("0x000: null descriptor\n");
1553 else if (get_descriptor (base_addr, idx, &descr) != -1)
1555 /* For each type of descriptor table, this has a bit set if the
1556 corresponding type of selectors is valid in that table. */
1557 static unsigned allowed_descriptors[] = {
1558 0xffffdafeL, /* GDT */
1559 0x0000c0e0L, /* IDT */
1560 0xffffdafaL /* LDT */
1563 /* If the program hasn't started yet, assume the debuggee will
1564 have the same CPL as the debugger. */
1565 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1566 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1569 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1571 printf_filtered ("0x%03x: ",
1573 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1574 if (descr.page_granular)
1575 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1576 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1577 || descr.stype == 9 || descr.stype == 11
1578 || (descr.stype >= 16 && descr.stype < 32))
1579 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1580 descr.base2, descr.base1, descr.base0, limit);
1582 switch (descr.stype)
1586 printf_filtered (" 16-bit TSS (task %sactive)",
1587 descr.stype == 3 ? "" : "in");
1590 puts_filtered (" LDT");
1593 memcpy (&gate, &descr, sizeof gate);
1594 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1595 gate.selector, gate.offset1, gate.offset0);
1596 printf_filtered (" 16-bit Call Gate (params=%d)",
1600 printf_filtered ("TSS selector=0x%04x", descr.base0);
1601 printfi_filtered (16, "Task Gate");
1605 memcpy (&gate, &descr, sizeof gate);
1606 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1607 gate.selector, gate.offset1, gate.offset0);
1608 printf_filtered (" 16-bit %s Gate",
1609 descr.stype == 6 ? "Interrupt" : "Trap");
1613 printf_filtered (" 32-bit TSS (task %sactive)",
1614 descr.stype == 3 ? "" : "in");
1617 memcpy (&gate, &descr, sizeof gate);
1618 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1619 gate.selector, gate.offset1, gate.offset0);
1620 printf_filtered (" 32-bit Call Gate (params=%d)",
1625 memcpy (&gate, &descr, sizeof gate);
1626 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1627 gate.selector, gate.offset1, gate.offset0);
1628 printf_filtered (" 32-bit %s Gate",
1629 descr.stype == 14 ? "Interrupt" : "Trap");
1631 case 16: /* data segments */
1639 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1640 descr.bit32 ? "32" : "16",
1642 ? "Read/Write," : "Read-Only, ",
1643 descr.stype & 4 ? "down" : "up",
1644 descr.stype & 1 ? "" : ", N.Acc");
1646 case 24: /* code segments */
1654 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1655 descr.bit32 ? "32" : "16",
1656 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1657 descr.stype & 4 ? "" : "N.",
1658 descr.stype & 1 ? "" : ", N.Acc");
1661 printf_filtered ("Unknown type 0x%02x", descr.stype);
1664 puts_filtered ("\n");
1668 printf_filtered ("0x%03x: ",
1670 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1672 puts_filtered ("Segment not present\n");
1674 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1679 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1683 go32_sldt (const char *arg, int from_tty)
1685 struct dtr_reg gdtr;
1686 unsigned short ldtr = 0;
1688 struct seg_descr ldt_descr;
1689 long ldt_entry = -1L;
1690 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1694 arg = skip_spaces (arg);
1698 ldt_entry = parse_and_eval_long (arg);
1700 || (ldt_entry & 4) == 0
1701 || (ldt_entry & 3) != (cpl & 3))
1702 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1706 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1707 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1710 puts_filtered ("There is no LDT.\n");
1711 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1712 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1713 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1715 | (ldt_descr.base1 << 16)
1716 | (ldt_descr.base2 << 24));
1721 | (ldt_descr.base1 << 16)
1722 | (ldt_descr.base2 << 24);
1723 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1726 if (ldt_descr.page_granular)
1727 /* Page-granular segments must have the low 12 bits of their
1729 limit = (limit << 12) | 0xfff;
1730 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1735 max_entry = (limit + 1) / 8;
1739 if (ldt_entry > limit)
1740 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1741 (unsigned long)ldt_entry, limit);
1743 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1749 for (i = 0; i < max_entry; i++)
1750 display_descriptor (ldt_descr.stype, base, i, 0);
1756 go32_sgdt (const char *arg, int from_tty)
1758 struct dtr_reg gdtr;
1759 long gdt_entry = -1L;
1764 arg = skip_spaces (arg);
1768 gdt_entry = parse_and_eval_long (arg);
1769 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1770 error (_("Invalid GDT entry 0x%03lx: "
1771 "not an integral multiple of 8."),
1772 (unsigned long)gdt_entry);
1776 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1777 max_entry = (gdtr.limit + 1) / 8;
1781 if (gdt_entry > gdtr.limit)
1782 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1783 (unsigned long)gdt_entry, gdtr.limit);
1785 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1791 for (i = 0; i < max_entry; i++)
1792 display_descriptor (0, gdtr.base, i, 0);
1797 go32_sidt (const char *arg, int from_tty)
1799 struct dtr_reg idtr;
1800 long idt_entry = -1L;
1805 arg = skip_spaces (arg);
1809 idt_entry = parse_and_eval_long (arg);
1811 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1815 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1816 max_entry = (idtr.limit + 1) / 8;
1817 if (max_entry > 0x100) /* No more than 256 entries. */
1822 if (idt_entry > idtr.limit)
1823 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1824 (unsigned long)idt_entry, idtr.limit);
1826 display_descriptor (1, idtr.base, idt_entry, 1);
1832 for (i = 0; i < max_entry; i++)
1833 display_descriptor (1, idtr.base, i, 0);
1837 /* Cached linear address of the base of the page directory. For
1838 now, available only under CWSDPMI. Code based on ideas and
1839 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1840 static unsigned long pdbr;
1842 static unsigned long
1847 unsigned long taskbase, cr3;
1848 struct dtr_reg gdtr;
1850 if (pdbr > 0 && pdbr <= 0xfffff)
1853 /* Get the linear address of GDT and the Task Register. */
1854 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1855 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1857 /* Task Register is a segment selector for the TSS of the current
1858 task. Therefore, it can be used as an index into the GDT to get
1859 at the segment descriptor for the TSS. To get the index, reset
1860 the low 3 bits of the selector (which give the CPL). Add 2 to the
1861 offset to point to the 3 low bytes of the base address. */
1862 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1865 /* CWSDPMI's task base is always under the 1MB mark. */
1866 if (offset > 0xfffff)
1869 _farsetsel (_dos_ds);
1870 taskbase = _farnspeekl (offset) & 0xffffffU;
1871 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1872 if (taskbase > 0xfffff)
1875 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1876 offset 1Ch in the TSS. */
1877 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1880 #if 0 /* Not fullly supported yet. */
1881 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1882 the first Page Table right below the Page Directory. Thus,
1883 the first Page Table's entry for its own address and the Page
1884 Directory entry for that Page Table will hold the same
1885 physical address. The loop below searches the entire UMB
1886 range of addresses for such an occurence. */
1887 unsigned long addr, pte_idx;
1889 for (addr = 0xb0000, pte_idx = 0xb0;
1891 addr += 0x1000, pte_idx++)
1893 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1894 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1895 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1897 cr3 = addr + 0x1000;
1910 /* Return the N'th Page Directory entry. */
1911 static unsigned long
1914 unsigned long pde = 0;
1916 if (pdbr && n >= 0 && n < 1024)
1918 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1923 /* Return the N'th entry of the Page Table whose Page Directory entry
1925 static unsigned long
1926 get_pte (unsigned long pde, int n)
1928 unsigned long pte = 0;
1930 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1931 page tables, for now. */
1932 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1934 pde &= ~0xfff; /* Clear non-address bits. */
1935 pte = _farpeekl (_dos_ds, pde + 4*n);
1940 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1941 says this is a Page Directory entry. If FORCE is non-zero, display
1942 the entry even if its Present flag is off. OFF is the offset of the
1943 address from the page's base address. */
1945 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1947 if ((entry & 1) != 0)
1949 printf_filtered ("Base=0x%05lx000", entry >> 12);
1950 if ((entry & 0x100) && !is_dir)
1951 puts_filtered (" Global");
1952 if ((entry & 0x40) && !is_dir)
1953 puts_filtered (" Dirty");
1954 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1955 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1956 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1957 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1958 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1960 printf_filtered (" +0x%x", off);
1961 puts_filtered ("\n");
1964 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1965 is_dir ? " Table" : "", entry >> 1);
1969 go32_pde (const char *arg, int from_tty)
1971 long pde_idx = -1, i;
1975 arg = skip_spaces (arg);
1979 pde_idx = parse_and_eval_long (arg);
1980 if (pde_idx < 0 || pde_idx >= 1024)
1981 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1987 puts_filtered ("Access to Page Directories is "
1988 "not supported on this system.\n");
1989 else if (pde_idx >= 0)
1990 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1992 for (i = 0; i < 1024; i++)
1993 display_ptable_entry (get_pde (i), 1, 0, 0);
1996 /* A helper function to display entries in a Page Table pointed to by
1997 the N'th entry in the Page Directory. If FORCE is non-zero, say
1998 something even if the Page Table is not accessible. */
2000 display_page_table (long n, int force)
2002 unsigned long pde = get_pde (n);
2008 printf_filtered ("Page Table pointed to by "
2009 "Page Directory entry 0x%lx:\n", n);
2010 for (i = 0; i < 1024; i++)
2011 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2012 puts_filtered ("\n");
2015 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2019 go32_pte (const char *arg, int from_tty)
2021 long pde_idx = -1L, i;
2025 arg = skip_spaces (arg);
2029 pde_idx = parse_and_eval_long (arg);
2030 if (pde_idx < 0 || pde_idx >= 1024)
2031 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2037 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2038 else if (pde_idx >= 0)
2039 display_page_table (pde_idx, 1);
2041 for (i = 0; i < 1024; i++)
2042 display_page_table (i, 0);
2046 go32_pte_for_address (const char *arg, int from_tty)
2048 CORE_ADDR addr = 0, i;
2052 arg = skip_spaces (arg);
2055 addr = parse_and_eval_address (arg);
2058 error_no_arg (_("linear address"));
2062 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2065 int pde_idx = (addr >> 22) & 0x3ff;
2066 int pte_idx = (addr >> 12) & 0x3ff;
2067 unsigned offs = addr & 0xfff;
2069 printf_filtered ("Page Table entry for address %s:\n",
2071 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2075 static struct cmd_list_element *info_dos_cmdlist = NULL;
2078 go32_info_dos_command (const char *args, int from_tty)
2080 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2084 _initialize_go32_nat (void)
2086 x86_dr_low.set_control = go32_set_dr7;
2087 x86_dr_low.set_addr = go32_set_dr;
2088 x86_dr_low.get_status = go32_get_dr6;
2089 x86_dr_low.get_control = go32_get_dr7;
2090 x86_dr_low.get_addr = go32_get_dr;
2091 x86_set_debug_register_length (4);
2093 add_inf_child_target (&the_go32_nat_target);
2095 /* Initialize child's cwd as empty to be initialized when starting
2099 /* Initialize child's command line storage. */
2100 if (redir_debug_init (&child_cmd) == -1)
2101 internal_error (__FILE__, __LINE__,
2102 _("Cannot allocate redirection storage: "
2103 "not enough memory.\n"));
2105 /* We are always processing GCC-compiled programs. */
2106 processing_gcc_compilation = 2;
2108 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2109 Print information specific to DJGPP (aka MS-DOS) debugging."),
2110 &info_dos_cmdlist, "info dos ", 0, &infolist);
2112 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2113 Display information about the target system, including CPU, OS, DPMI, etc."),
2115 add_cmd ("ldt", class_info, go32_sldt, _("\
2116 Display entries in the LDT (Local Descriptor Table).\n\
2117 Entry number (an expression) as an argument means display only that entry."),
2119 add_cmd ("gdt", class_info, go32_sgdt, _("\
2120 Display entries in the GDT (Global Descriptor Table).\n\
2121 Entry number (an expression) as an argument means display only that entry."),
2123 add_cmd ("idt", class_info, go32_sidt, _("\
2124 Display entries in the IDT (Interrupt Descriptor Table).\n\
2125 Entry number (an expression) as an argument means display only that entry."),
2127 add_cmd ("pde", class_info, go32_pde, _("\
2128 Display entries in the Page Directory.\n\
2129 Entry number (an expression) as an argument means display only that entry."),
2131 add_cmd ("pte", class_info, go32_pte, _("\
2132 Display entries in Page Tables.\n\
2133 Entry number (an expression) as an argument means display only entries\n\
2134 from the Page Table pointed to by the specified Page Directory entry."),
2136 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2137 Display a Page Table entry for a linear address.\n\
2138 The address argument must be a linear address, after adding to\n\
2139 it the base address of the appropriate segment.\n\
2140 The base address of variables and functions in the debuggee's data\n\
2141 or code segment is stored in the variable __djgpp_base_address,\n\
2142 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2143 For other segments, look up their base address in the output of\n\
2144 the `info dos ldt' command."),
2158 tcsetpgrp (int fd, pid_t pgid)
2160 if (isatty (fd) && pgid == SOME_PID)
2162 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;