1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
4 Copyright (C) 2001-2013 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "cp-support.h"
29 #include "exceptions.h"
30 #include "typeprint.h"
32 #include "gdb_assert.h"
33 #include "gdb_string.h"
35 static struct cp_abi_ops gnu_v3_abi_ops;
38 gnuv3_is_vtable_name (const char *name)
40 return strncmp (name, "_ZTV", 4) == 0;
44 gnuv3_is_operator_name (const char *name)
46 return strncmp (name, "operator", 8) == 0;
50 /* To help us find the components of a vtable, we build ourselves a
51 GDB type object representing the vtable structure. Following the
52 V3 ABI, it goes something like this:
54 struct gdb_gnu_v3_abi_vtable {
56 / * An array of virtual call and virtual base offsets. The real
57 length of this array depends on the class hierarchy; we use
58 negative subscripts to access the elements. Yucky, but
59 better than the alternatives. * /
60 ptrdiff_t vcall_and_vbase_offsets[0];
62 / * The offset from a virtual pointer referring to this table
63 to the top of the complete object. * /
64 ptrdiff_t offset_to_top;
66 / * The type_info pointer for this class. This is really a
67 std::type_info *, but GDB doesn't really look at the
68 type_info object itself, so we don't bother to get the type
72 / * Virtual table pointers in objects point here. * /
74 / * Virtual function pointers. Like the vcall/vbase array, the
75 real length of this table depends on the class hierarchy. * /
76 void (*virtual_functions[0]) ();
80 The catch, of course, is that the exact layout of this table
81 depends on the ABI --- word size, endianness, alignment, etc. So
82 the GDB type object is actually a per-architecture kind of thing.
84 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
85 which refers to the struct type * for this structure, laid out
86 appropriately for the architecture. */
87 static struct gdbarch_data *vtable_type_gdbarch_data;
90 /* Human-readable names for the numbers of the fields above. */
92 vtable_field_vcall_and_vbase_offsets,
93 vtable_field_offset_to_top,
94 vtable_field_type_info,
95 vtable_field_virtual_functions
99 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
100 described above, laid out appropriately for ARCH.
102 We use this function as the gdbarch per-architecture data
103 initialization function. */
105 build_gdb_vtable_type (struct gdbarch *arch)
108 struct field *field_list, *field;
111 struct type *void_ptr_type
112 = builtin_type (arch)->builtin_data_ptr;
113 struct type *ptr_to_void_fn_type
114 = builtin_type (arch)->builtin_func_ptr;
116 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
117 struct type *ptrdiff_type
118 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
120 /* We assume no padding is necessary, since GDB doesn't know
121 anything about alignment at the moment. If this assumption bites
122 us, we should add a gdbarch method which, given a type, returns
123 the alignment that type requires, and then use that here. */
125 /* Build the field list. */
126 field_list = xmalloc (sizeof (struct field [4]));
127 memset (field_list, 0, sizeof (struct field [4]));
128 field = &field_list[0];
131 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
132 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
133 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
134 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
135 offset += TYPE_LENGTH (FIELD_TYPE (*field));
138 /* ptrdiff_t offset_to_top; */
139 FIELD_NAME (*field) = "offset_to_top";
140 FIELD_TYPE (*field) = ptrdiff_type;
141 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
142 offset += TYPE_LENGTH (FIELD_TYPE (*field));
145 /* void *type_info; */
146 FIELD_NAME (*field) = "type_info";
147 FIELD_TYPE (*field) = void_ptr_type;
148 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
149 offset += TYPE_LENGTH (FIELD_TYPE (*field));
152 /* void (*virtual_functions[0]) (); */
153 FIELD_NAME (*field) = "virtual_functions";
154 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
155 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
156 offset += TYPE_LENGTH (FIELD_TYPE (*field));
159 /* We assumed in the allocation above that there were four fields. */
160 gdb_assert (field == (field_list + 4));
162 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
163 TYPE_NFIELDS (t) = field - field_list;
164 TYPE_FIELDS (t) = field_list;
165 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
166 INIT_CPLUS_SPECIFIC (t);
172 /* Return the ptrdiff_t type used in the vtable type. */
174 vtable_ptrdiff_type (struct gdbarch *gdbarch)
176 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
178 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
179 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
182 /* Return the offset from the start of the imaginary `struct
183 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
184 (i.e., where objects' virtual table pointers point). */
186 vtable_address_point_offset (struct gdbarch *gdbarch)
188 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
190 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
195 /* Determine whether structure TYPE is a dynamic class. Cache the
199 gnuv3_dynamic_class (struct type *type)
201 int fieldnum, fieldelem;
203 if (TYPE_CPLUS_DYNAMIC (type))
204 return TYPE_CPLUS_DYNAMIC (type) == 1;
206 ALLOCATE_CPLUS_STRUCT_TYPE (type);
208 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
209 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
210 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
212 TYPE_CPLUS_DYNAMIC (type) = 1;
216 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
217 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
220 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
222 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
224 TYPE_CPLUS_DYNAMIC (type) = 1;
229 TYPE_CPLUS_DYNAMIC (type) = -1;
233 /* Find the vtable for a value of CONTAINER_TYPE located at
234 CONTAINER_ADDR. Return a value of the correct vtable type for this
235 architecture, or NULL if CONTAINER does not have a vtable. */
237 static struct value *
238 gnuv3_get_vtable (struct gdbarch *gdbarch,
239 struct type *container_type, CORE_ADDR container_addr)
241 struct type *vtable_type = gdbarch_data (gdbarch,
242 vtable_type_gdbarch_data);
243 struct type *vtable_pointer_type;
244 struct value *vtable_pointer;
245 CORE_ADDR vtable_address;
247 /* If this type does not have a virtual table, don't read the first
249 if (!gnuv3_dynamic_class (check_typedef (container_type)))
252 /* We do not consult the debug information to find the virtual table.
253 The ABI specifies that it is always at offset zero in any class,
254 and debug information may not represent it.
256 We avoid using value_contents on principle, because the object might
259 /* Find the type "pointer to virtual table". */
260 vtable_pointer_type = lookup_pointer_type (vtable_type);
262 /* Load it from the start of the class. */
263 vtable_pointer = value_at (vtable_pointer_type, container_addr);
264 vtable_address = value_as_address (vtable_pointer);
266 /* Correct it to point at the start of the virtual table, rather
267 than the address point. */
268 return value_at_lazy (vtable_type,
270 - vtable_address_point_offset (gdbarch));
275 gnuv3_rtti_type (struct value *value,
276 int *full_p, int *top_p, int *using_enc_p)
278 struct gdbarch *gdbarch;
279 struct type *values_type = check_typedef (value_type (value));
280 struct value *vtable;
281 struct minimal_symbol *vtable_symbol;
282 const char *vtable_symbol_name;
283 const char *class_name;
284 struct type *run_time_type;
285 LONGEST offset_to_top;
287 /* We only have RTTI for class objects. */
288 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
291 /* Java doesn't have RTTI following the C++ ABI. */
292 if (TYPE_CPLUS_REALLY_JAVA (values_type))
295 /* Determine architecture. */
296 gdbarch = get_type_arch (values_type);
301 vtable = gnuv3_get_vtable (gdbarch, value_type (value),
302 value_as_address (value_addr (value)));
306 /* Find the linker symbol for this vtable. */
308 = lookup_minimal_symbol_by_pc (value_address (vtable)
309 + value_embedded_offset (vtable));
313 /* The symbol's demangled name should be something like "vtable for
314 CLASS", where CLASS is the name of the run-time type of VALUE.
315 If we didn't like this approach, we could instead look in the
316 type_info object itself to get the class name. But this way
317 should work just as well, and doesn't read target memory. */
318 vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
319 if (vtable_symbol_name == NULL
320 || strncmp (vtable_symbol_name, "vtable for ", 11))
322 warning (_("can't find linker symbol for virtual table for `%s' value"),
323 TYPE_SAFE_NAME (values_type));
324 if (vtable_symbol_name)
325 warning (_(" found `%s' instead"), vtable_symbol_name);
328 class_name = vtable_symbol_name + 11;
330 /* Try to look up the class name as a type name. */
331 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
332 run_time_type = cp_lookup_rtti_type (class_name, NULL);
333 if (run_time_type == NULL)
336 /* Get the offset from VALUE to the top of the complete object.
337 NOTE: this is the reverse of the meaning of *TOP_P. */
339 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
342 *full_p = (- offset_to_top == value_embedded_offset (value)
343 && (TYPE_LENGTH (value_enclosing_type (value))
344 >= TYPE_LENGTH (run_time_type)));
346 *top_p = - offset_to_top;
347 return run_time_type;
350 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
351 function, of type FNTYPE. */
353 static struct value *
354 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
355 struct type *fntype, int vtable_index)
357 struct value *vtable, *vfn;
359 /* Every class with virtual functions must have a vtable. */
360 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
361 value_as_address (value_addr (container)));
362 gdb_assert (vtable != NULL);
364 /* Fetch the appropriate function pointer from the vtable. */
365 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
368 /* If this architecture uses function descriptors directly in the vtable,
369 then the address of the vtable entry is actually a "function pointer"
370 (i.e. points to the descriptor). We don't need to scale the index
371 by the size of a function descriptor; GCC does that before outputing
372 debug information. */
373 if (gdbarch_vtable_function_descriptors (gdbarch))
374 vfn = value_addr (vfn);
376 /* Cast the function pointer to the appropriate type. */
377 vfn = value_cast (lookup_pointer_type (fntype), vfn);
382 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
383 for a description of the arguments. */
385 static struct value *
386 gnuv3_virtual_fn_field (struct value **value_p,
387 struct fn_field *f, int j,
388 struct type *vfn_base, int offset)
390 struct type *values_type = check_typedef (value_type (*value_p));
391 struct gdbarch *gdbarch;
393 /* Some simple sanity checks. */
394 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
395 error (_("Only classes can have virtual functions."));
397 /* Determine architecture. */
398 gdbarch = get_type_arch (values_type);
400 /* Cast our value to the base class which defines this virtual
401 function. This takes care of any necessary `this'
403 if (vfn_base != values_type)
404 *value_p = value_cast (vfn_base, *value_p);
406 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
407 TYPE_FN_FIELD_VOFFSET (f, j));
410 /* Compute the offset of the baseclass which is
411 the INDEXth baseclass of class TYPE,
412 for value at VALADDR (in host) at ADDRESS (in target).
413 The result is the offset of the baseclass value relative
414 to (the address of)(ARG) + OFFSET.
416 -1 is returned on error. */
419 gnuv3_baseclass_offset (struct type *type, int index,
420 const bfd_byte *valaddr, int embedded_offset,
421 CORE_ADDR address, const struct value *val)
423 struct gdbarch *gdbarch;
424 struct type *ptr_type;
425 struct value *vtable;
426 struct value *vbase_array;
427 long int cur_base_offset, base_offset;
429 /* Determine architecture. */
430 gdbarch = get_type_arch (type);
431 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
433 /* If it isn't a virtual base, this is easy. The offset is in the
434 type definition. Likewise for Java, which doesn't really have
435 virtual inheritance in the C++ sense. */
436 if (!BASETYPE_VIA_VIRTUAL (type, index) || TYPE_CPLUS_REALLY_JAVA (type))
437 return TYPE_BASECLASS_BITPOS (type, index) / 8;
439 /* To access a virtual base, we need to use the vbase offset stored in
440 our vtable. Recent GCC versions provide this information. If it isn't
441 available, we could get what we needed from RTTI, or from drawing the
442 complete inheritance graph based on the debug info. Neither is
444 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
445 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
446 error (_("Expected a negative vbase offset (old compiler?)"));
448 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
449 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
450 error (_("Misaligned vbase offset."));
451 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
453 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
454 gdb_assert (vtable != NULL);
455 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
456 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
460 /* Locate a virtual method in DOMAIN or its non-virtual base classes
461 which has virtual table index VOFFSET. The method has an associated
462 "this" adjustment of ADJUSTMENT bytes. */
465 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
470 /* Search this class first. */
475 len = TYPE_NFN_FIELDS (domain);
476 for (i = 0; i < len; i++)
481 f = TYPE_FN_FIELDLIST1 (domain, i);
482 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
484 check_stub_method_group (domain, i);
485 for (j = 0; j < len2; j++)
486 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
487 return TYPE_FN_FIELD_PHYSNAME (f, j);
491 /* Next search non-virtual bases. If it's in a virtual base,
492 we're out of luck. */
493 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
496 struct type *basetype;
498 if (BASETYPE_VIA_VIRTUAL (domain, i))
501 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
502 basetype = TYPE_FIELD_TYPE (domain, i);
503 /* Recurse with a modified adjustment. We don't need to adjust
505 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
506 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
512 /* Decode GNU v3 method pointer. */
515 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
516 const gdb_byte *contents,
518 LONGEST *adjustment_p)
520 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
521 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
524 LONGEST voffset, adjustment;
527 /* Extract the pointer to member. The first element is either a pointer
528 or a vtable offset. For pointers, we need to use extract_typed_address
529 to allow the back-end to convert the pointer to a GDB address -- but
530 vtable offsets we must handle as integers. At this point, we do not
531 yet know which case we have, so we extract the value under both
532 interpretations and choose the right one later on. */
533 ptr_value = extract_typed_address (contents, funcptr_type);
534 voffset = extract_signed_integer (contents,
535 TYPE_LENGTH (funcptr_type), byte_order);
536 contents += TYPE_LENGTH (funcptr_type);
537 adjustment = extract_signed_integer (contents,
538 TYPE_LENGTH (offset_type), byte_order);
540 if (!gdbarch_vbit_in_delta (gdbarch))
543 voffset = voffset ^ vbit;
547 vbit = adjustment & 1;
548 adjustment = adjustment >> 1;
551 *value_p = vbit? voffset : ptr_value;
552 *adjustment_p = adjustment;
556 /* GNU v3 implementation of cplus_print_method_ptr. */
559 gnuv3_print_method_ptr (const gdb_byte *contents,
561 struct ui_file *stream)
563 struct type *domain = TYPE_DOMAIN_TYPE (type);
564 struct gdbarch *gdbarch = get_type_arch (domain);
569 /* Extract the pointer to member. */
570 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
572 /* Check for NULL. */
573 if (ptr_value == 0 && vbit == 0)
575 fprintf_filtered (stream, "NULL");
579 /* Search for a virtual method. */
583 const char *physname;
585 /* It's a virtual table offset, maybe in this class. Search
586 for a field with the correct vtable offset. First convert it
587 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
588 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
590 physname = gnuv3_find_method_in (domain, voffset, adjustment);
592 /* If we found a method, print that. We don't bother to disambiguate
593 possible paths to the method based on the adjustment. */
596 char *demangled_name = cplus_demangle (physname,
597 DMGL_ANSI | DMGL_PARAMS);
599 fprintf_filtered (stream, "&virtual ");
600 if (demangled_name == NULL)
601 fputs_filtered (physname, stream);
604 fputs_filtered (demangled_name, stream);
605 xfree (demangled_name);
610 else if (ptr_value != 0)
612 /* Found a non-virtual function: print out the type. */
613 fputs_filtered ("(", stream);
614 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
615 fputs_filtered (") ", stream);
618 /* We didn't find it; print the raw data. */
621 fprintf_filtered (stream, "&virtual table offset ");
622 print_longest (stream, 'd', 1, ptr_value);
626 struct value_print_options opts;
628 get_user_print_options (&opts);
629 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
634 fprintf_filtered (stream, ", this adjustment ");
635 print_longest (stream, 'd', 1, adjustment);
639 /* GNU v3 implementation of cplus_method_ptr_size. */
642 gnuv3_method_ptr_size (struct type *type)
644 struct gdbarch *gdbarch = get_type_arch (type);
646 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
649 /* GNU v3 implementation of cplus_make_method_ptr. */
652 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
653 CORE_ADDR value, int is_virtual)
655 struct gdbarch *gdbarch = get_type_arch (type);
656 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
657 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
659 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
660 always zero, since the method pointer is of the correct type.
661 But if the method pointer came from a base class, this is
662 incorrect - it should be the offset to the base. The best
663 fix might be to create the pointer to member pointing at the
664 base class and cast it to the derived class, but that requires
665 support for adjusting pointers to members when casting them -
666 not currently supported by GDB. */
668 if (!gdbarch_vbit_in_delta (gdbarch))
670 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
671 store_unsigned_integer (contents + size, size, byte_order, 0);
675 store_unsigned_integer (contents, size, byte_order, value);
676 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
680 /* GNU v3 implementation of cplus_method_ptr_to_value. */
682 static struct value *
683 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
685 struct gdbarch *gdbarch;
686 const gdb_byte *contents = value_contents (method_ptr);
688 struct type *domain_type, *final_type, *method_type;
692 domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
693 final_type = lookup_pointer_type (domain_type);
695 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
697 /* Extract the pointer to member. */
698 gdbarch = get_type_arch (domain_type);
699 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
701 /* First convert THIS to match the containing type of the pointer to
702 member. This cast may adjust the value of THIS. */
703 *this_p = value_cast (final_type, *this_p);
705 /* Then apply whatever adjustment is necessary. This creates a somewhat
706 strange pointer: it claims to have type FINAL_TYPE, but in fact it
707 might not be a valid FINAL_TYPE. For instance, it might be a
708 base class of FINAL_TYPE. And if it's not the primary base class,
709 then printing it out as a FINAL_TYPE object would produce some pretty
712 But we don't really know the type of the first argument in
713 METHOD_TYPE either, which is why this happens. We can't
714 dereference this later as a FINAL_TYPE, but once we arrive in the
715 called method we'll have debugging information for the type of
716 "this" - and that'll match the value we produce here.
718 You can provoke this case by casting a Base::* to a Derived::*, for
720 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
721 *this_p = value_ptradd (*this_p, adjustment);
722 *this_p = value_cast (final_type, *this_p);
728 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
729 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
730 method_type, voffset);
733 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
736 /* Objects of this type are stored in a hash table and a vector when
737 printing the vtables for a class. */
739 struct value_and_voffset
741 /* The value representing the object. */
744 /* The maximum vtable offset we've found for any object at this
745 offset in the outermost object. */
749 typedef struct value_and_voffset *value_and_voffset_p;
750 DEF_VEC_P (value_and_voffset_p);
752 /* Hash function for value_and_voffset. */
755 hash_value_and_voffset (const void *p)
757 const struct value_and_voffset *o = p;
759 return value_address (o->value) + value_embedded_offset (o->value);
762 /* Equality function for value_and_voffset. */
765 eq_value_and_voffset (const void *a, const void *b)
767 const struct value_and_voffset *ova = a;
768 const struct value_and_voffset *ovb = b;
770 return (value_address (ova->value) + value_embedded_offset (ova->value)
771 == value_address (ovb->value) + value_embedded_offset (ovb->value));
774 /* qsort comparison function for value_and_voffset. */
777 compare_value_and_voffset (const void *a, const void *b)
779 const struct value_and_voffset * const *ova = a;
780 CORE_ADDR addra = (value_address ((*ova)->value)
781 + value_embedded_offset ((*ova)->value));
782 const struct value_and_voffset * const *ovb = b;
783 CORE_ADDR addrb = (value_address ((*ovb)->value)
784 + value_embedded_offset ((*ovb)->value));
793 /* A helper function used when printing vtables. This determines the
794 key (most derived) sub-object at each address and also computes the
795 maximum vtable offset seen for the corresponding vtable. Updates
796 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
797 needed. VALUE is the object to examine. */
800 compute_vtable_size (htab_t offset_hash,
801 VEC (value_and_voffset_p) **offset_vec,
805 struct type *type = check_typedef (value_type (value));
807 struct value_and_voffset search_vo, *current_vo;
808 CORE_ADDR addr = value_address (value) + value_embedded_offset (value);
810 /* If the object is not dynamic, then we are done; as it cannot have
811 dynamic base types either. */
812 if (!gnuv3_dynamic_class (type))
815 /* Update the hash and the vec, if needed. */
816 search_vo.value = value;
817 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
822 current_vo = XNEW (struct value_and_voffset);
823 current_vo->value = value;
824 current_vo->max_voffset = -1;
826 VEC_safe_push (value_and_voffset_p, *offset_vec, current_vo);
829 /* Update the value_and_voffset object with the highest vtable
830 offset from this class. */
831 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
834 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
836 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
838 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
840 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
842 if (voffset > current_vo->max_voffset)
843 current_vo->max_voffset = voffset;
848 /* Recurse into base classes. */
849 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
850 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
853 /* Helper for gnuv3_print_vtable that prints a single vtable. */
856 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
858 struct value_print_options *opts)
861 struct type *type = check_typedef (value_type (value));
862 struct value *vtable;
865 vtable = gnuv3_get_vtable (gdbarch, type,
866 value_address (value)
867 + value_embedded_offset (value));
868 vt_addr = value_address (value_field (vtable,
869 vtable_field_virtual_functions));
871 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
872 TYPE_SAFE_NAME (type),
873 paddress (gdbarch, vt_addr),
874 paddress (gdbarch, (value_address (value)
875 + value_embedded_offset (value))));
877 for (i = 0; i <= max_voffset; ++i)
879 /* Initialize it just to avoid a GCC false warning. */
882 volatile struct gdb_exception ex;
884 printf_filtered ("[%d]: ", i);
886 vfn = value_subscript (value_field (vtable,
887 vtable_field_virtual_functions),
890 if (gdbarch_vtable_function_descriptors (gdbarch))
891 vfn = value_addr (vfn);
893 TRY_CATCH (ex, RETURN_MASK_ERROR)
895 addr = value_as_address (vfn);
898 printf_filtered (_("<error: %s>"), ex.message);
900 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
901 printf_filtered ("\n");
905 /* Implementation of the print_vtable method. */
908 gnuv3_print_vtable (struct value *value)
910 struct gdbarch *gdbarch;
912 struct value *vtable;
913 struct value_print_options opts;
915 struct cleanup *cleanup;
916 VEC (value_and_voffset_p) *result_vec = NULL;
917 struct value_and_voffset *iter;
920 value = coerce_ref (value);
921 type = check_typedef (value_type (value));
922 if (TYPE_CODE (type) == TYPE_CODE_PTR)
924 value = value_ind (value);
925 type = check_typedef (value_type (value));
928 get_user_print_options (&opts);
930 /* Respect 'set print object'. */
931 if (opts.objectprint)
933 value = value_full_object (value, NULL, 0, 0, 0);
934 type = check_typedef (value_type (value));
937 gdbarch = get_type_arch (type);
938 vtable = gnuv3_get_vtable (gdbarch, type,
939 value_as_address (value_addr (value)));
943 printf_filtered (_("This object does not have a virtual function table\n"));
947 offset_hash = htab_create_alloc (1, hash_value_and_voffset,
948 eq_value_and_voffset,
949 xfree, xcalloc, xfree);
950 cleanup = make_cleanup_htab_delete (offset_hash);
951 make_cleanup (VEC_cleanup (value_and_voffset_p), &result_vec);
953 compute_vtable_size (offset_hash, &result_vec, value);
955 qsort (VEC_address (value_and_voffset_p, result_vec),
956 VEC_length (value_and_voffset_p, result_vec),
957 sizeof (value_and_voffset_p),
958 compare_value_and_voffset);
961 for (i = 0; VEC_iterate (value_and_voffset_p, result_vec, i, iter); ++i)
963 if (iter->max_voffset >= 0)
966 printf_filtered ("\n");
967 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
972 do_cleanups (cleanup);
975 /* Determine if we are currently in a C++ thunk. If so, get the address
976 of the routine we are thunking to and continue to there instead. */
979 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
981 CORE_ADDR real_stop_pc, method_stop_pc;
982 struct gdbarch *gdbarch = get_frame_arch (frame);
983 struct minimal_symbol *thunk_sym, *fn_sym;
984 struct obj_section *section;
985 const char *thunk_name, *fn_name;
987 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
988 if (real_stop_pc == 0)
989 real_stop_pc = stop_pc;
991 /* Find the linker symbol for this potential thunk. */
992 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
993 section = find_pc_section (real_stop_pc);
994 if (thunk_sym == NULL || section == NULL)
997 /* The symbol's demangled name should be something like "virtual
998 thunk to FUNCTION", where FUNCTION is the name of the function
1000 thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
1001 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1004 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1005 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1009 method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
1010 real_stop_pc = gdbarch_skip_trampoline_code
1011 (gdbarch, frame, method_stop_pc);
1012 if (real_stop_pc == 0)
1013 real_stop_pc = method_stop_pc;
1015 return real_stop_pc;
1018 /* Return nonzero if a type should be passed by reference.
1020 The rule in the v3 ABI document comes from section 3.1.1. If the
1021 type has a non-trivial copy constructor or destructor, then the
1022 caller must make a copy (by calling the copy constructor if there
1023 is one or perform the copy itself otherwise), pass the address of
1024 the copy, and then destroy the temporary (if necessary).
1026 For return values with non-trivial copy constructors or
1027 destructors, space will be allocated in the caller, and a pointer
1028 will be passed as the first argument (preceding "this").
1030 We don't have a bulletproof mechanism for determining whether a
1031 constructor or destructor is trivial. For GCC and DWARF2 debug
1032 information, we can check the artificial flag.
1034 We don't do anything with the constructors or destructors,
1035 but we have to get the argument passing right anyway. */
1037 gnuv3_pass_by_reference (struct type *type)
1039 int fieldnum, fieldelem;
1041 CHECK_TYPEDEF (type);
1043 /* We're only interested in things that can have methods. */
1044 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1045 && TYPE_CODE (type) != TYPE_CODE_CLASS
1046 && TYPE_CODE (type) != TYPE_CODE_UNION)
1049 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1050 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1053 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1054 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1055 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1057 /* If this function is marked as artificial, it is compiler-generated,
1058 and we assume it is trivial. */
1059 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1062 /* If we've found a destructor, we must pass this by reference. */
1066 /* If the mangled name of this method doesn't indicate that it
1067 is a constructor, we're not interested.
1069 FIXME drow/2007-09-23: We could do this using the name of
1070 the method and the name of the class instead of dealing
1071 with the mangled name. We don't have a convenient function
1072 to strip off both leading scope qualifiers and trailing
1073 template arguments yet. */
1074 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1075 && !TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1078 /* If this method takes two arguments, and the second argument is
1079 a reference to this class, then it is a copy constructor. */
1080 if (TYPE_NFIELDS (fieldtype) == 2
1081 && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
1082 && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype,
1087 /* Even if all the constructors and destructors were artificial, one
1088 of them may have invoked a non-artificial constructor or
1089 destructor in a base class. If any base class needs to be passed
1090 by reference, so does this class. Similarly for members, which
1091 are constructed whenever this class is. We do not need to worry
1092 about recursive loops here, since we are only looking at members
1093 of complete class type. Also ignore any static members. */
1094 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
1095 if (! field_is_static (&TYPE_FIELD (type, fieldnum))
1096 && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
1103 init_gnuv3_ops (void)
1105 vtable_type_gdbarch_data
1106 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1108 gnu_v3_abi_ops.shortname = "gnu-v3";
1109 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1110 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1111 gnu_v3_abi_ops.is_destructor_name =
1112 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1113 gnu_v3_abi_ops.is_constructor_name =
1114 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1115 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1116 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1117 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1118 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1119 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1120 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1121 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1122 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1123 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1124 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1125 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1126 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1129 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
1132 _initialize_gnu_v3_abi (void)
1136 register_cp_abi (&gnu_v3_abi_ops);
1137 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);