2004-08-08 Andrew Cagney <cagney@gnu.org>
[external/binutils.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2    Copyright 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003,
3    2004 Free Software Foundation, Inc.
4    Contributed by Cygnus Support, using pieces from other GDB modules.
5
6    This file is part of GDB.
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 59 Temple Place - Suite 330,
21    Boston, MA 02111-1307, USA.  */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "bfd.h"
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbtypes.h"
30 #include "expression.h"
31 #include "language.h"
32 #include "target.h"
33 #include "value.h"
34 #include "demangle.h"
35 #include "complaints.h"
36 #include "gdbcmd.h"
37 #include "wrapper.h"
38 #include "cp-abi.h"
39 #include "gdb_assert.h"
40
41 /* These variables point to the objects
42    representing the predefined C data types.  */
43
44 struct type *builtin_type_void;
45 struct type *builtin_type_char;
46 struct type *builtin_type_true_char;
47 struct type *builtin_type_short;
48 struct type *builtin_type_int;
49 struct type *builtin_type_long;
50 struct type *builtin_type_long_long;
51 struct type *builtin_type_signed_char;
52 struct type *builtin_type_unsigned_char;
53 struct type *builtin_type_unsigned_short;
54 struct type *builtin_type_unsigned_int;
55 struct type *builtin_type_unsigned_long;
56 struct type *builtin_type_unsigned_long_long;
57 struct type *builtin_type_float;
58 struct type *builtin_type_double;
59 struct type *builtin_type_long_double;
60 struct type *builtin_type_complex;
61 struct type *builtin_type_double_complex;
62 struct type *builtin_type_string;
63 struct type *builtin_type_int0;
64 struct type *builtin_type_int8;
65 struct type *builtin_type_uint8;
66 struct type *builtin_type_int16;
67 struct type *builtin_type_uint16;
68 struct type *builtin_type_int32;
69 struct type *builtin_type_uint32;
70 struct type *builtin_type_int64;
71 struct type *builtin_type_uint64;
72 struct type *builtin_type_int128;
73 struct type *builtin_type_uint128;
74 struct type *builtin_type_bool;
75
76 /* 128 bit long vector types */
77 struct type *builtin_type_v2_double;
78 struct type *builtin_type_v4_float;
79 struct type *builtin_type_v2_int64;
80 struct type *builtin_type_v4_int32;
81 struct type *builtin_type_v8_int16;
82 struct type *builtin_type_v16_int8;
83 /* 64 bit long vector types */
84 struct type *builtin_type_v2_float;
85 struct type *builtin_type_v2_int32;
86 struct type *builtin_type_v4_int16;
87 struct type *builtin_type_v8_int8;
88
89 struct type *builtin_type_v4sf;
90 struct type *builtin_type_v4si;
91 struct type *builtin_type_v16qi;
92 struct type *builtin_type_v8qi;
93 struct type *builtin_type_v8hi;
94 struct type *builtin_type_v4hi;
95 struct type *builtin_type_v2si;
96 struct type *builtin_type_vec64;
97 struct type *builtin_type_vec64i;
98 struct type *builtin_type_vec128;
99 struct type *builtin_type_vec128i;
100 struct type *builtin_type_ieee_single[BFD_ENDIAN_UNKNOWN];
101 struct type *builtin_type_ieee_single_big;
102 struct type *builtin_type_ieee_single_little;
103 struct type *builtin_type_ieee_double[BFD_ENDIAN_UNKNOWN];
104 struct type *builtin_type_ieee_double_big;
105 struct type *builtin_type_ieee_double_little;
106 struct type *builtin_type_ieee_double_littlebyte_bigword;
107 struct type *builtin_type_i387_ext;
108 struct type *builtin_type_m68881_ext;
109 struct type *builtin_type_i960_ext;
110 struct type *builtin_type_m88110_ext;
111 struct type *builtin_type_m88110_harris_ext;
112 struct type *builtin_type_arm_ext[BFD_ENDIAN_UNKNOWN];
113 struct type *builtin_type_arm_ext_big;
114 struct type *builtin_type_arm_ext_littlebyte_bigword;
115 struct type *builtin_type_ia64_spill[BFD_ENDIAN_UNKNOWN];
116 struct type *builtin_type_ia64_spill_big;
117 struct type *builtin_type_ia64_spill_little;
118 struct type *builtin_type_ia64_quad[BFD_ENDIAN_UNKNOWN];
119 struct type *builtin_type_ia64_quad_big;
120 struct type *builtin_type_ia64_quad_little;
121 struct type *builtin_type_void_data_ptr;
122 struct type *builtin_type_void_func_ptr;
123 struct type *builtin_type_CORE_ADDR;
124 struct type *builtin_type_bfd_vma;
125
126 int opaque_type_resolution = 1;
127 int overload_debug = 0;
128
129 struct extra
130   {
131     char str[128];
132     int len;
133   };                            /* maximum extension is 128! FIXME */
134
135 static void print_bit_vector (B_TYPE *, int);
136 static void print_arg_types (struct field *, int, int);
137 static void dump_fn_fieldlists (struct type *, int);
138 static void print_cplus_stuff (struct type *, int);
139 static void virtual_base_list_aux (struct type *dclass);
140
141
142 /* Alloc a new type structure and fill it with some defaults.  If
143    OBJFILE is non-NULL, then allocate the space for the type structure
144    in that objfile's objfile_obstack.  Otherwise allocate the new type structure
145    by xmalloc () (for permanent types).  */
146
147 struct type *
148 alloc_type (struct objfile *objfile)
149 {
150   struct type *type;
151
152   /* Alloc the structure and start off with all fields zeroed. */
153
154   if (objfile == NULL)
155     {
156       type = xmalloc (sizeof (struct type));
157       memset (type, 0, sizeof (struct type));
158       TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
159     }
160   else
161     {
162       type = obstack_alloc (&objfile->objfile_obstack,
163                             sizeof (struct type));
164       memset (type, 0, sizeof (struct type));
165       TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
166                                              sizeof (struct main_type));
167       OBJSTAT (objfile, n_types++);
168     }
169   memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
170
171   /* Initialize the fields that might not be zero. */
172
173   TYPE_CODE (type) = TYPE_CODE_UNDEF;
174   TYPE_OBJFILE (type) = objfile;
175   TYPE_VPTR_FIELDNO (type) = -1;
176   TYPE_CHAIN (type) = type;     /* Chain back to itself.  */
177
178   return (type);
179 }
180
181 /* Alloc a new type instance structure, fill it with some defaults,
182    and point it at OLDTYPE.  Allocate the new type instance from the
183    same place as OLDTYPE.  */
184
185 static struct type *
186 alloc_type_instance (struct type *oldtype)
187 {
188   struct type *type;
189
190   /* Allocate the structure.  */
191
192   if (TYPE_OBJFILE (oldtype) == NULL)
193     {
194       type = xmalloc (sizeof (struct type));
195       memset (type, 0, sizeof (struct type));
196     }
197   else
198     {
199       type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
200                             sizeof (struct type));
201       memset (type, 0, sizeof (struct type));
202     }
203   TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
204
205   TYPE_CHAIN (type) = type;     /* Chain back to itself for now.  */
206
207   return (type);
208 }
209
210 /* Clear all remnants of the previous type at TYPE, in preparation for
211    replacing it with something else.  */
212 static void
213 smash_type (struct type *type)
214 {
215   memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
216
217   /* For now, delete the rings.  */
218   TYPE_CHAIN (type) = type;
219
220   /* For now, leave the pointer/reference types alone.  */
221 }
222
223 /* Lookup a pointer to a type TYPE.  TYPEPTR, if nonzero, points
224    to a pointer to memory where the pointer type should be stored.
225    If *TYPEPTR is zero, update it to point to the pointer type we return.
226    We allocate new memory if needed.  */
227
228 struct type *
229 make_pointer_type (struct type *type, struct type **typeptr)
230 {
231   struct type *ntype;   /* New type */
232   struct objfile *objfile;
233
234   ntype = TYPE_POINTER_TYPE (type);
235
236   if (ntype)
237     {
238       if (typeptr == 0)
239         return ntype;           /* Don't care about alloc, and have new type.  */
240       else if (*typeptr == 0)
241         {
242           *typeptr = ntype;     /* Tracking alloc, and we have new type.  */
243           return ntype;
244         }
245     }
246
247   if (typeptr == 0 || *typeptr == 0)    /* We'll need to allocate one.  */
248     {
249       ntype = alloc_type (TYPE_OBJFILE (type));
250       if (typeptr)
251         *typeptr = ntype;
252     }
253   else
254     /* We have storage, but need to reset it.  */
255     {
256       ntype = *typeptr;
257       objfile = TYPE_OBJFILE (ntype);
258       smash_type (ntype);
259       TYPE_OBJFILE (ntype) = objfile;
260     }
261
262   TYPE_TARGET_TYPE (ntype) = type;
263   TYPE_POINTER_TYPE (type) = ntype;
264
265   /* FIXME!  Assume the machine has only one representation for pointers!  */
266
267   TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
268   TYPE_CODE (ntype) = TYPE_CODE_PTR;
269
270   /* Mark pointers as unsigned.  The target converts between pointers
271      and addresses (CORE_ADDRs) using POINTER_TO_ADDRESS() and
272      ADDRESS_TO_POINTER(). */
273   TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
274
275   if (!TYPE_POINTER_TYPE (type))        /* Remember it, if don't have one.  */
276     TYPE_POINTER_TYPE (type) = ntype;
277
278   return ntype;
279 }
280
281 /* Given a type TYPE, return a type of pointers to that type.
282    May need to construct such a type if this is the first use.  */
283
284 struct type *
285 lookup_pointer_type (struct type *type)
286 {
287   return make_pointer_type (type, (struct type **) 0);
288 }
289
290 /* Lookup a C++ `reference' to a type TYPE.  TYPEPTR, if nonzero, points
291    to a pointer to memory where the reference type should be stored.
292    If *TYPEPTR is zero, update it to point to the reference type we return.
293    We allocate new memory if needed.  */
294
295 struct type *
296 make_reference_type (struct type *type, struct type **typeptr)
297 {
298   struct type *ntype;   /* New type */
299   struct objfile *objfile;
300
301   ntype = TYPE_REFERENCE_TYPE (type);
302
303   if (ntype)
304     {
305       if (typeptr == 0)
306         return ntype;           /* Don't care about alloc, and have new type.  */
307       else if (*typeptr == 0)
308         {
309           *typeptr = ntype;     /* Tracking alloc, and we have new type.  */
310           return ntype;
311         }
312     }
313
314   if (typeptr == 0 || *typeptr == 0)    /* We'll need to allocate one.  */
315     {
316       ntype = alloc_type (TYPE_OBJFILE (type));
317       if (typeptr)
318         *typeptr = ntype;
319     }
320   else
321     /* We have storage, but need to reset it.  */
322     {
323       ntype = *typeptr;
324       objfile = TYPE_OBJFILE (ntype);
325       smash_type (ntype);
326       TYPE_OBJFILE (ntype) = objfile;
327     }
328
329   TYPE_TARGET_TYPE (ntype) = type;
330   TYPE_REFERENCE_TYPE (type) = ntype;
331
332   /* FIXME!  Assume the machine has only one representation for references,
333      and that it matches the (only) representation for pointers!  */
334
335   TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
336   TYPE_CODE (ntype) = TYPE_CODE_REF;
337
338   if (!TYPE_REFERENCE_TYPE (type))      /* Remember it, if don't have one.  */
339     TYPE_REFERENCE_TYPE (type) = ntype;
340
341   return ntype;
342 }
343
344 /* Same as above, but caller doesn't care about memory allocation details.  */
345
346 struct type *
347 lookup_reference_type (struct type *type)
348 {
349   return make_reference_type (type, (struct type **) 0);
350 }
351
352 /* Lookup a function type that returns type TYPE.  TYPEPTR, if nonzero, points
353    to a pointer to memory where the function type should be stored.
354    If *TYPEPTR is zero, update it to point to the function type we return.
355    We allocate new memory if needed.  */
356
357 struct type *
358 make_function_type (struct type *type, struct type **typeptr)
359 {
360   struct type *ntype;   /* New type */
361   struct objfile *objfile;
362
363   if (typeptr == 0 || *typeptr == 0)    /* We'll need to allocate one.  */
364     {
365       ntype = alloc_type (TYPE_OBJFILE (type));
366       if (typeptr)
367         *typeptr = ntype;
368     }
369   else
370     /* We have storage, but need to reset it.  */
371     {
372       ntype = *typeptr;
373       objfile = TYPE_OBJFILE (ntype);
374       smash_type (ntype);
375       TYPE_OBJFILE (ntype) = objfile;
376     }
377
378   TYPE_TARGET_TYPE (ntype) = type;
379
380   TYPE_LENGTH (ntype) = 1;
381   TYPE_CODE (ntype) = TYPE_CODE_FUNC;
382
383   return ntype;
384 }
385
386
387 /* Given a type TYPE, return a type of functions that return that type.
388    May need to construct such a type if this is the first use.  */
389
390 struct type *
391 lookup_function_type (struct type *type)
392 {
393   return make_function_type (type, (struct type **) 0);
394 }
395
396 /* Identify address space identifier by name --
397    return the integer flag defined in gdbtypes.h.  */
398 extern int
399 address_space_name_to_int (char *space_identifier)
400 {
401   struct gdbarch *gdbarch = current_gdbarch;
402   int type_flags;
403   /* Check for known address space delimiters. */
404   if (!strcmp (space_identifier, "code"))
405     return TYPE_FLAG_CODE_SPACE;
406   else if (!strcmp (space_identifier, "data"))
407     return TYPE_FLAG_DATA_SPACE;
408   else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
409            && gdbarch_address_class_name_to_type_flags (gdbarch,
410                                                         space_identifier,
411                                                         &type_flags))
412     return type_flags;
413   else
414     error ("Unknown address space specifier: \"%s\"", space_identifier);
415 }
416
417 /* Identify address space identifier by integer flag as defined in 
418    gdbtypes.h -- return the string version of the adress space name. */
419
420 const char *
421 address_space_int_to_name (int space_flag)
422 {
423   struct gdbarch *gdbarch = current_gdbarch;
424   if (space_flag & TYPE_FLAG_CODE_SPACE)
425     return "code";
426   else if (space_flag & TYPE_FLAG_DATA_SPACE)
427     return "data";
428   else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
429            && gdbarch_address_class_type_flags_to_name_p (gdbarch))
430     return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
431   else
432     return NULL;
433 }
434
435 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
436    If STORAGE is non-NULL, create the new type instance there.  */
437
438 static struct type *
439 make_qualified_type (struct type *type, int new_flags,
440                      struct type *storage)
441 {
442   struct type *ntype;
443
444   ntype = type;
445   do {
446     if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
447       return ntype;
448     ntype = TYPE_CHAIN (ntype);
449   } while (ntype != type);
450
451   /* Create a new type instance.  */
452   if (storage == NULL)
453     ntype = alloc_type_instance (type);
454   else
455     {
456       ntype = storage;
457       TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
458       TYPE_CHAIN (ntype) = ntype;
459     }
460
461   /* Pointers or references to the original type are not relevant to
462      the new type.  */
463   TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
464   TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
465
466   /* Chain the new qualified type to the old type.  */
467   TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
468   TYPE_CHAIN (type) = ntype;
469
470   /* Now set the instance flags and return the new type.  */
471   TYPE_INSTANCE_FLAGS (ntype) = new_flags;
472
473   /* Set length of new type to that of the original type.  */
474   TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
475
476   return ntype;
477 }
478
479 /* Make an address-space-delimited variant of a type -- a type that
480    is identical to the one supplied except that it has an address
481    space attribute attached to it (such as "code" or "data").
482
483    The space attributes "code" and "data" are for Harvard architectures.
484    The address space attributes are for architectures which have
485    alternately sized pointers or pointers with alternate representations.  */
486
487 struct type *
488 make_type_with_address_space (struct type *type, int space_flag)
489 {
490   struct type *ntype;
491   int new_flags = ((TYPE_INSTANCE_FLAGS (type)
492                     & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
493                         | TYPE_FLAG_ADDRESS_CLASS_ALL))
494                    | space_flag);
495
496   return make_qualified_type (type, new_flags, NULL);
497 }
498
499 /* Make a "c-v" variant of a type -- a type that is identical to the
500    one supplied except that it may have const or volatile attributes
501    CNST is a flag for setting the const attribute
502    VOLTL is a flag for setting the volatile attribute
503    TYPE is the base type whose variant we are creating.
504    TYPEPTR, if nonzero, points
505    to a pointer to memory where the reference type should be stored.
506    If *TYPEPTR is zero, update it to point to the reference type we return.
507    We allocate new memory if needed.  */
508
509 struct type *
510 make_cv_type (int cnst, int voltl, struct type *type, struct type **typeptr)
511 {
512   struct type *ntype;   /* New type */
513   struct type *tmp_type = type; /* tmp type */
514   struct objfile *objfile;
515
516   int new_flags = (TYPE_INSTANCE_FLAGS (type)
517                    & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
518
519   if (cnst)
520     new_flags |= TYPE_FLAG_CONST;
521
522   if (voltl)
523     new_flags |= TYPE_FLAG_VOLATILE;
524
525   if (typeptr && *typeptr != NULL)
526     {
527       /* Objfile is per-core-type.  This const-qualified type had best
528          belong to the same objfile as the type it is qualifying, unless
529          we are overwriting a stub type, in which case the safest thing
530          to do is to copy the core type into the new objfile.  */
531
532       gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type)
533                   || TYPE_STUB (*typeptr));
534       if (TYPE_OBJFILE (*typeptr) != TYPE_OBJFILE (type))
535         {
536           TYPE_MAIN_TYPE (*typeptr)
537             = TYPE_ALLOC (*typeptr, sizeof (struct main_type));
538           *TYPE_MAIN_TYPE (*typeptr)
539             = *TYPE_MAIN_TYPE (type);
540         }
541     }
542   
543   ntype = make_qualified_type (type, new_flags, typeptr ? *typeptr : NULL);
544
545   if (typeptr != NULL)
546     *typeptr = ntype;
547
548   return ntype;
549 }
550
551 /* Replace the contents of ntype with the type *type.  This changes the
552    contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
553    the changes are propogated to all types in the TYPE_CHAIN.
554
555    In order to build recursive types, it's inevitable that we'll need
556    to update types in place --- but this sort of indiscriminate
557    smashing is ugly, and needs to be replaced with something more
558    controlled.  TYPE_MAIN_TYPE is a step in this direction; it's not
559    clear if more steps are needed.  */
560 void
561 replace_type (struct type *ntype, struct type *type)
562 {
563   struct type *chain;
564
565   *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
566
567   /* The type length is not a part of the main type.  Update it for each
568      type on the variant chain.  */
569   chain = ntype;
570   do {
571     /* Assert that this element of the chain has no address-class bits
572        set in its flags.  Such type variants might have type lengths
573        which are supposed to be different from the non-address-class
574        variants.  This assertion shouldn't ever be triggered because
575        symbol readers which do construct address-class variants don't
576        call replace_type().  */
577     gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
578
579     TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
580     chain = TYPE_CHAIN (chain);
581   } while (ntype != chain);
582
583   /* Assert that the two types have equivalent instance qualifiers.
584      This should be true for at least all of our debug readers.  */
585   gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
586 }
587
588 /* Implement direct support for MEMBER_TYPE in GNU C++.
589    May need to construct such a type if this is the first use.
590    The TYPE is the type of the member.  The DOMAIN is the type
591    of the aggregate that the member belongs to.  */
592
593 struct type *
594 lookup_member_type (struct type *type, struct type *domain)
595 {
596   struct type *mtype;
597
598   mtype = alloc_type (TYPE_OBJFILE (type));
599   smash_to_member_type (mtype, domain, type);
600   return (mtype);
601 }
602
603 /* Allocate a stub method whose return type is TYPE.  
604    This apparently happens for speed of symbol reading, since parsing
605    out the arguments to the method is cpu-intensive, the way we are doing
606    it.  So, we will fill in arguments later.
607    This always returns a fresh type.   */
608
609 struct type *
610 allocate_stub_method (struct type *type)
611 {
612   struct type *mtype;
613
614   mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
615                      TYPE_OBJFILE (type));
616   TYPE_TARGET_TYPE (mtype) = type;
617   /*  _DOMAIN_TYPE (mtype) = unknown yet */
618   return (mtype);
619 }
620
621 /* Create a range type using either a blank type supplied in RESULT_TYPE,
622    or creating a new type, inheriting the objfile from INDEX_TYPE.
623
624    Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to
625    HIGH_BOUND, inclusive.
626
627    FIXME:  Maybe we should check the TYPE_CODE of RESULT_TYPE to make
628    sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
629
630 struct type *
631 create_range_type (struct type *result_type, struct type *index_type,
632                    int low_bound, int high_bound)
633 {
634   if (result_type == NULL)
635     {
636       result_type = alloc_type (TYPE_OBJFILE (index_type));
637     }
638   TYPE_CODE (result_type) = TYPE_CODE_RANGE;
639   TYPE_TARGET_TYPE (result_type) = index_type;
640   if (TYPE_STUB (index_type))
641     TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
642   else
643     TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
644   TYPE_NFIELDS (result_type) = 2;
645   TYPE_FIELDS (result_type) = (struct field *)
646     TYPE_ALLOC (result_type, 2 * sizeof (struct field));
647   memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
648   TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
649   TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
650   TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int;  /* FIXME */
651   TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int;  /* FIXME */
652
653   if (low_bound >= 0)
654     TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
655
656   return (result_type);
657 }
658
659 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type TYPE.
660    Return 1 of type is a range type, 0 if it is discrete (and bounds
661    will fit in LONGEST), or -1 otherwise. */
662
663 int
664 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
665 {
666   CHECK_TYPEDEF (type);
667   switch (TYPE_CODE (type))
668     {
669     case TYPE_CODE_RANGE:
670       *lowp = TYPE_LOW_BOUND (type);
671       *highp = TYPE_HIGH_BOUND (type);
672       return 1;
673     case TYPE_CODE_ENUM:
674       if (TYPE_NFIELDS (type) > 0)
675         {
676           /* The enums may not be sorted by value, so search all
677              entries */
678           int i;
679
680           *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
681           for (i = 0; i < TYPE_NFIELDS (type); i++)
682             {
683               if (TYPE_FIELD_BITPOS (type, i) < *lowp)
684                 *lowp = TYPE_FIELD_BITPOS (type, i);
685               if (TYPE_FIELD_BITPOS (type, i) > *highp)
686                 *highp = TYPE_FIELD_BITPOS (type, i);
687             }
688
689           /* Set unsigned indicator if warranted. */
690           if (*lowp >= 0)
691             {
692               TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
693             }
694         }
695       else
696         {
697           *lowp = 0;
698           *highp = -1;
699         }
700       return 0;
701     case TYPE_CODE_BOOL:
702       *lowp = 0;
703       *highp = 1;
704       return 0;
705     case TYPE_CODE_INT:
706       if (TYPE_LENGTH (type) > sizeof (LONGEST))        /* Too big */
707         return -1;
708       if (!TYPE_UNSIGNED (type))
709         {
710           *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
711           *highp = -*lowp - 1;
712           return 0;
713         }
714       /* ... fall through for unsigned ints ... */
715     case TYPE_CODE_CHAR:
716       *lowp = 0;
717       /* This round-about calculation is to avoid shifting by
718          TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
719          if TYPE_LENGTH (type) == sizeof (LONGEST). */
720       *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
721       *highp = (*highp - 1) | *highp;
722       return 0;
723     default:
724       return -1;
725     }
726 }
727
728 /* Create an array type using either a blank type supplied in RESULT_TYPE,
729    or creating a new type, inheriting the objfile from RANGE_TYPE.
730
731    Elements will be of type ELEMENT_TYPE, the indices will be of type
732    RANGE_TYPE.
733
734    FIXME:  Maybe we should check the TYPE_CODE of RESULT_TYPE to make
735    sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
736
737 struct type *
738 create_array_type (struct type *result_type, struct type *element_type,
739                    struct type *range_type)
740 {
741   LONGEST low_bound, high_bound;
742
743   if (result_type == NULL)
744     {
745       result_type = alloc_type (TYPE_OBJFILE (range_type));
746     }
747   TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
748   TYPE_TARGET_TYPE (result_type) = element_type;
749   if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
750     low_bound = high_bound = 0;
751   CHECK_TYPEDEF (element_type);
752   TYPE_LENGTH (result_type) =
753     TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
754   TYPE_NFIELDS (result_type) = 1;
755   TYPE_FIELDS (result_type) =
756     (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
757   memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
758   TYPE_FIELD_TYPE (result_type, 0) = range_type;
759   TYPE_VPTR_FIELDNO (result_type) = -1;
760
761   /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
762   if (TYPE_LENGTH (result_type) == 0)
763     TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
764
765   return (result_type);
766 }
767
768 /* Create a string type using either a blank type supplied in RESULT_TYPE,
769    or creating a new type.  String types are similar enough to array of
770    char types that we can use create_array_type to build the basic type
771    and then bash it into a string type.
772
773    For fixed length strings, the range type contains 0 as the lower
774    bound and the length of the string minus one as the upper bound.
775
776    FIXME:  Maybe we should check the TYPE_CODE of RESULT_TYPE to make
777    sure it is TYPE_CODE_UNDEF before we bash it into a string type? */
778
779 struct type *
780 create_string_type (struct type *result_type, struct type *range_type)
781 {
782   struct type *string_char_type;
783       
784   string_char_type = language_string_char_type (current_language,
785                                                 current_gdbarch);
786   result_type = create_array_type (result_type,
787                                    string_char_type,
788                                    range_type);
789   TYPE_CODE (result_type) = TYPE_CODE_STRING;
790   return (result_type);
791 }
792
793 struct type *
794 create_set_type (struct type *result_type, struct type *domain_type)
795 {
796   LONGEST low_bound, high_bound, bit_length;
797   if (result_type == NULL)
798     {
799       result_type = alloc_type (TYPE_OBJFILE (domain_type));
800     }
801   TYPE_CODE (result_type) = TYPE_CODE_SET;
802   TYPE_NFIELDS (result_type) = 1;
803   TYPE_FIELDS (result_type) = (struct field *)
804     TYPE_ALLOC (result_type, 1 * sizeof (struct field));
805   memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
806
807   if (!TYPE_STUB (domain_type))
808     {
809       if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
810         low_bound = high_bound = 0;
811       bit_length = high_bound - low_bound + 1;
812       TYPE_LENGTH (result_type)
813         = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
814     }
815   TYPE_FIELD_TYPE (result_type, 0) = domain_type;
816
817   if (low_bound >= 0)
818     TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
819
820   return (result_type);
821 }
822
823 /* Construct and return a type of the form:
824         struct NAME { ELT_TYPE ELT_NAME[N]; }
825    We use these types for SIMD registers.  For example, the type of
826    the SSE registers on the late x86-family processors is:
827         struct __builtin_v4sf { float f[4]; }
828    built by the function call:
829         init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4)
830    The type returned is a permanent type, allocated using malloc; it
831    doesn't live in any objfile's obstack.  */
832 static struct type *
833 init_simd_type (char *name,
834                 struct type *elt_type,
835                 char *elt_name,
836                 int n)
837 {
838   struct type *simd_type;
839   struct type *array_type;
840   
841   simd_type = init_composite_type (name, TYPE_CODE_STRUCT);
842   array_type = create_array_type (0, elt_type,
843                                   create_range_type (0, builtin_type_int,
844                                                      0, n-1));
845   append_composite_type_field (simd_type, elt_name, array_type);
846   return simd_type;
847 }
848
849 static struct type *
850 init_vector_type (struct type *elt_type, int n)
851 {
852   struct type *array_type;
853  
854   array_type = create_array_type (0, elt_type,
855                                   create_range_type (0, builtin_type_int,
856                                                      0, n-1));
857   TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
858   return array_type;
859 }
860
861 static struct type *
862 build_builtin_type_vec64 (void)
863 {
864   /* Construct a type for the 64 bit registers.  The type we're
865      building is this: */
866 #if 0
867   union __gdb_builtin_type_vec64
868   {
869     int64_t uint64;
870     float v2_float[2];
871     int32_t v2_int32[2];
872     int16_t v4_int16[4];
873     int8_t v8_int8[8];
874   };
875 #endif
876
877   struct type *t;
878
879   t = init_composite_type ("__gdb_builtin_type_vec64", TYPE_CODE_UNION);
880   append_composite_type_field (t, "uint64", builtin_type_int64);
881   append_composite_type_field (t, "v2_float", builtin_type_v2_float);
882   append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
883   append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
884   append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
885
886   TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
887   TYPE_NAME (t) = "builtin_type_vec64";
888   return t;
889 }
890
891 static struct type *
892 build_builtin_type_vec64i (void)
893 {
894   /* Construct a type for the 64 bit registers.  The type we're
895      building is this: */
896 #if 0
897   union __gdb_builtin_type_vec64i 
898   {
899     int64_t uint64;
900     int32_t v2_int32[2];
901     int16_t v4_int16[4];
902     int8_t v8_int8[8];
903   };
904 #endif
905
906   struct type *t;
907
908   t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
909   append_composite_type_field (t, "uint64", builtin_type_int64);
910   append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
911   append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
912   append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
913
914   TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
915   TYPE_NAME (t) = "builtin_type_vec64i";
916   return t;
917 }
918
919 static struct type *
920 build_builtin_type_vec128 (void)
921 {
922   /* Construct a type for the 128 bit registers.  The type we're
923      building is this: */
924 #if 0
925  union __gdb_builtin_type_vec128 
926   {
927     int128_t uint128;
928     float v4_float[4];
929     int32_t v4_int32[4];
930     int16_t v8_int16[8];
931     int8_t v16_int8[16];
932   };
933 #endif
934
935   struct type *t;
936
937   t = init_composite_type ("__gdb_builtin_type_vec128", TYPE_CODE_UNION);
938   append_composite_type_field (t, "uint128", builtin_type_int128);
939   append_composite_type_field (t, "v4_float", builtin_type_v4_float);
940   append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
941   append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
942   append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
943
944   TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
945   TYPE_NAME (t) = "builtin_type_vec128";
946   return t;
947 }
948
949 static struct type *
950 build_builtin_type_vec128i (void)
951 {
952   /* 128-bit Intel SIMD registers */
953   struct type *t;
954
955   t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
956   append_composite_type_field (t, "v4_float", builtin_type_v4_float);
957   append_composite_type_field (t, "v2_double", builtin_type_v2_double);
958   append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
959   append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
960   append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
961   append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
962   append_composite_type_field (t, "uint128", builtin_type_int128);
963
964   TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
965   TYPE_NAME (t) = "builtin_type_vec128i";
966   return t;
967 }
968
969 /* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE. 
970    A MEMBER is a wierd thing -- it amounts to a typed offset into
971    a struct, e.g. "an int at offset 8".  A MEMBER TYPE doesn't
972    include the offset (that's the value of the MEMBER itself), but does
973    include the structure type into which it points (for some reason).
974
975    When "smashing" the type, we preserve the objfile that the
976    old type pointed to, since we aren't changing where the type is actually
977    allocated.  */
978
979 void
980 smash_to_member_type (struct type *type, struct type *domain,
981                       struct type *to_type)
982 {
983   struct objfile *objfile;
984
985   objfile = TYPE_OBJFILE (type);
986
987   smash_type (type);
988   TYPE_OBJFILE (type) = objfile;
989   TYPE_TARGET_TYPE (type) = to_type;
990   TYPE_DOMAIN_TYPE (type) = domain;
991   TYPE_LENGTH (type) = 1;       /* In practice, this is never needed.  */
992   TYPE_CODE (type) = TYPE_CODE_MEMBER;
993 }
994
995 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
996    METHOD just means `function that gets an extra "this" argument'.
997
998    When "smashing" the type, we preserve the objfile that the
999    old type pointed to, since we aren't changing where the type is actually
1000    allocated.  */
1001
1002 void
1003 smash_to_method_type (struct type *type, struct type *domain,
1004                       struct type *to_type, struct field *args,
1005                       int nargs, int varargs)
1006 {
1007   struct objfile *objfile;
1008
1009   objfile = TYPE_OBJFILE (type);
1010
1011   smash_type (type);
1012   TYPE_OBJFILE (type) = objfile;
1013   TYPE_TARGET_TYPE (type) = to_type;
1014   TYPE_DOMAIN_TYPE (type) = domain;
1015   TYPE_FIELDS (type) = args;
1016   TYPE_NFIELDS (type) = nargs;
1017   if (varargs)
1018     TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
1019   TYPE_LENGTH (type) = 1;       /* In practice, this is never needed.  */
1020   TYPE_CODE (type) = TYPE_CODE_METHOD;
1021 }
1022
1023 /* Return a typename for a struct/union/enum type without "struct ",
1024    "union ", or "enum ".  If the type has a NULL name, return NULL.  */
1025
1026 char *
1027 type_name_no_tag (const struct type *type)
1028 {
1029   if (TYPE_TAG_NAME (type) != NULL)
1030     return TYPE_TAG_NAME (type);
1031
1032   /* Is there code which expects this to return the name if there is no
1033      tag name?  My guess is that this is mainly used for C++ in cases where
1034      the two will always be the same.  */
1035   return TYPE_NAME (type);
1036 }
1037
1038 /* Lookup a typedef or primitive type named NAME,
1039    visible in lexical block BLOCK.
1040    If NOERR is nonzero, return zero if NAME is not suitably defined.  */
1041
1042 struct type *
1043 lookup_typename (char *name, struct block *block, int noerr)
1044 {
1045   struct symbol *sym;
1046   struct type *tmp;
1047
1048   sym = lookup_symbol (name, block, VAR_DOMAIN, 0, (struct symtab **) NULL);
1049   if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1050     {
1051       tmp = language_lookup_primitive_type_by_name (current_language,
1052                                                     current_gdbarch,
1053                                                     name);
1054       if (tmp)
1055         {
1056           return (tmp);
1057         }
1058       else if (!tmp && noerr)
1059         {
1060           return (NULL);
1061         }
1062       else
1063         {
1064           error ("No type named %s.", name);
1065         }
1066     }
1067   return (SYMBOL_TYPE (sym));
1068 }
1069
1070 struct type *
1071 lookup_unsigned_typename (char *name)
1072 {
1073   char *uns = alloca (strlen (name) + 10);
1074
1075   strcpy (uns, "unsigned ");
1076   strcpy (uns + 9, name);
1077   return (lookup_typename (uns, (struct block *) NULL, 0));
1078 }
1079
1080 struct type *
1081 lookup_signed_typename (char *name)
1082 {
1083   struct type *t;
1084   char *uns = alloca (strlen (name) + 8);
1085
1086   strcpy (uns, "signed ");
1087   strcpy (uns + 7, name);
1088   t = lookup_typename (uns, (struct block *) NULL, 1);
1089   /* If we don't find "signed FOO" just try again with plain "FOO". */
1090   if (t != NULL)
1091     return t;
1092   return lookup_typename (name, (struct block *) NULL, 0);
1093 }
1094
1095 /* Lookup a structure type named "struct NAME",
1096    visible in lexical block BLOCK.  */
1097
1098 struct type *
1099 lookup_struct (char *name, struct block *block)
1100 {
1101   struct symbol *sym;
1102
1103   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1104                        (struct symtab **) NULL);
1105
1106   if (sym == NULL)
1107     {
1108       error ("No struct type named %s.", name);
1109     }
1110   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1111     {
1112       error ("This context has class, union or enum %s, not a struct.", name);
1113     }
1114   return (SYMBOL_TYPE (sym));
1115 }
1116
1117 /* Lookup a union type named "union NAME",
1118    visible in lexical block BLOCK.  */
1119
1120 struct type *
1121 lookup_union (char *name, struct block *block)
1122 {
1123   struct symbol *sym;
1124   struct type *t;
1125
1126   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1127                        (struct symtab **) NULL);
1128
1129   if (sym == NULL)
1130     error ("No union type named %s.", name);
1131
1132   t = SYMBOL_TYPE (sym);
1133
1134   if (TYPE_CODE (t) == TYPE_CODE_UNION)
1135     return (t);
1136
1137   /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1138    * a further "declared_type" field to discover it is really a union.
1139    */
1140   if (HAVE_CPLUS_STRUCT (t))
1141     if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1142       return (t);
1143
1144   /* If we get here, it's not a union */
1145   error ("This context has class, struct or enum %s, not a union.", name);
1146 }
1147
1148
1149 /* Lookup an enum type named "enum NAME",
1150    visible in lexical block BLOCK.  */
1151
1152 struct type *
1153 lookup_enum (char *name, struct block *block)
1154 {
1155   struct symbol *sym;
1156
1157   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1158                        (struct symtab **) NULL);
1159   if (sym == NULL)
1160     {
1161       error ("No enum type named %s.", name);
1162     }
1163   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1164     {
1165       error ("This context has class, struct or union %s, not an enum.", name);
1166     }
1167   return (SYMBOL_TYPE (sym));
1168 }
1169
1170 /* Lookup a template type named "template NAME<TYPE>",
1171    visible in lexical block BLOCK.  */
1172
1173 struct type *
1174 lookup_template_type (char *name, struct type *type, struct block *block)
1175 {
1176   struct symbol *sym;
1177   char *nam = (char *) alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1178   strcpy (nam, name);
1179   strcat (nam, "<");
1180   strcat (nam, TYPE_NAME (type));
1181   strcat (nam, " >");           /* FIXME, extra space still introduced in gcc? */
1182
1183   sym = lookup_symbol (nam, block, VAR_DOMAIN, 0, (struct symtab **) NULL);
1184
1185   if (sym == NULL)
1186     {
1187       error ("No template type named %s.", name);
1188     }
1189   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1190     {
1191       error ("This context has class, union or enum %s, not a struct.", name);
1192     }
1193   return (SYMBOL_TYPE (sym));
1194 }
1195
1196 /* Given a type TYPE, lookup the type of the component of type named NAME.  
1197
1198    TYPE can be either a struct or union, or a pointer or reference to a struct or
1199    union.  If it is a pointer or reference, its target type is automatically used.
1200    Thus '.' and '->' are interchangable, as specified for the definitions of the
1201    expression element types STRUCTOP_STRUCT and STRUCTOP_PTR.
1202
1203    If NOERR is nonzero, return zero if NAME is not suitably defined.
1204    If NAME is the name of a baseclass type, return that type.  */
1205
1206 struct type *
1207 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1208 {
1209   int i;
1210
1211   for (;;)
1212     {
1213       CHECK_TYPEDEF (type);
1214       if (TYPE_CODE (type) != TYPE_CODE_PTR
1215           && TYPE_CODE (type) != TYPE_CODE_REF)
1216         break;
1217       type = TYPE_TARGET_TYPE (type);
1218     }
1219
1220   if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
1221       TYPE_CODE (type) != TYPE_CODE_UNION)
1222     {
1223       target_terminal_ours ();
1224       gdb_flush (gdb_stdout);
1225       fprintf_unfiltered (gdb_stderr, "Type ");
1226       type_print (type, "", gdb_stderr, -1);
1227       error (" is not a structure or union type.");
1228     }
1229
1230 #if 0
1231   /* FIXME:  This change put in by Michael seems incorrect for the case where
1232      the structure tag name is the same as the member name.  I.E. when doing
1233      "ptype bell->bar" for "struct foo { int bar; int foo; } bell;"
1234      Disabled by fnf. */
1235   {
1236     char *typename;
1237
1238     typename = type_name_no_tag (type);
1239     if (typename != NULL && strcmp (typename, name) == 0)
1240       return type;
1241   }
1242 #endif
1243
1244   for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1245     {
1246       char *t_field_name = TYPE_FIELD_NAME (type, i);
1247
1248       if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1249         {
1250           return TYPE_FIELD_TYPE (type, i);
1251         }
1252     }
1253
1254   /* OK, it's not in this class.  Recursively check the baseclasses.  */
1255   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1256     {
1257       struct type *t;
1258
1259       t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr);
1260       if (t != NULL)
1261         {
1262           return t;
1263         }
1264     }
1265
1266   if (noerr)
1267     {
1268       return NULL;
1269     }
1270
1271   target_terminal_ours ();
1272   gdb_flush (gdb_stdout);
1273   fprintf_unfiltered (gdb_stderr, "Type ");
1274   type_print (type, "", gdb_stderr, -1);
1275   fprintf_unfiltered (gdb_stderr, " has no component named ");
1276   fputs_filtered (name, gdb_stderr);
1277   error (".");
1278   return (struct type *) -1;    /* For lint */
1279 }
1280
1281 /* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1282    valid.  Callers should be aware that in some cases (for example,
1283    the type or one of its baseclasses is a stub type and we are
1284    debugging a .o file), this function will not be able to find the virtual
1285    function table pointer, and vptr_fieldno will remain -1 and vptr_basetype
1286    will remain NULL.  */
1287
1288 void
1289 fill_in_vptr_fieldno (struct type *type)
1290 {
1291   CHECK_TYPEDEF (type);
1292
1293   if (TYPE_VPTR_FIELDNO (type) < 0)
1294     {
1295       int i;
1296
1297       /* We must start at zero in case the first (and only) baseclass is
1298          virtual (and hence we cannot share the table pointer).  */
1299       for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1300         {
1301           struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1302           fill_in_vptr_fieldno (baseclass);
1303           if (TYPE_VPTR_FIELDNO (baseclass) >= 0)
1304             {
1305               TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (baseclass);
1306               TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (baseclass);
1307               break;
1308             }
1309         }
1310     }
1311 }
1312
1313 /* Find the method and field indices for the destructor in class type T.
1314    Return 1 if the destructor was found, otherwise, return 0.  */
1315
1316 int
1317 get_destructor_fn_field (struct type *t, int *method_indexp, int *field_indexp)
1318 {
1319   int i;
1320
1321   for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1322     {
1323       int j;
1324       struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1325
1326       for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1327         {
1328           if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
1329             {
1330               *method_indexp = i;
1331               *field_indexp = j;
1332               return 1;
1333             }
1334         }
1335     }
1336   return 0;
1337 }
1338
1339 static void
1340 stub_noname_complaint (void)
1341 {
1342   complaint (&symfile_complaints, "stub type has NULL name");
1343 }
1344
1345 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1346
1347    If this is a stubbed struct (i.e. declared as struct foo *), see if
1348    we can find a full definition in some other file. If so, copy this
1349    definition, so we can use it in future.  There used to be a comment (but
1350    not any code) that if we don't find a full definition, we'd set a flag
1351    so we don't spend time in the future checking the same type.  That would
1352    be a mistake, though--we might load in more symbols which contain a
1353    full definition for the type.
1354
1355    This used to be coded as a macro, but I don't think it is called 
1356    often enough to merit such treatment.  */
1357
1358 /* Find the real type of TYPE.  This function returns the real type, after
1359    removing all layers of typedefs and completing opaque or stub types.
1360    Completion changes the TYPE argument, but stripping of typedefs does
1361    not.  */
1362
1363 struct type *
1364 check_typedef (struct type *type)
1365 {
1366   struct type *orig_type = type;
1367   int is_const, is_volatile;
1368
1369   while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1370     {
1371       if (!TYPE_TARGET_TYPE (type))
1372         {
1373           char *name;
1374           struct symbol *sym;
1375
1376           /* It is dangerous to call lookup_symbol if we are currently
1377              reading a symtab.  Infinite recursion is one danger. */
1378           if (currently_reading_symtab)
1379             return type;
1380
1381           name = type_name_no_tag (type);
1382           /* FIXME: shouldn't we separately check the TYPE_NAME and the
1383              TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1384              as appropriate?  (this code was written before TYPE_NAME and
1385              TYPE_TAG_NAME were separate).  */
1386           if (name == NULL)
1387             {
1388               stub_noname_complaint ();
1389               return type;
1390             }
1391           sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
1392                                (struct symtab **) NULL);
1393           if (sym)
1394             TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1395           else
1396             TYPE_TARGET_TYPE (type) = alloc_type (NULL);        /* TYPE_CODE_UNDEF */
1397         }
1398       type = TYPE_TARGET_TYPE (type);
1399     }
1400
1401   is_const = TYPE_CONST (type);
1402   is_volatile = TYPE_VOLATILE (type);
1403
1404   /* If this is a struct/class/union with no fields, then check whether a
1405      full definition exists somewhere else.  This is for systems where a
1406      type definition with no fields is issued for such types, instead of
1407      identifying them as stub types in the first place */
1408
1409   if (TYPE_IS_OPAQUE (type) && opaque_type_resolution && !currently_reading_symtab)
1410     {
1411       char *name = type_name_no_tag (type);
1412       struct type *newtype;
1413       if (name == NULL)
1414         {
1415           stub_noname_complaint ();
1416           return type;
1417         }
1418       newtype = lookup_transparent_type (name);
1419       if (newtype)
1420         make_cv_type (is_const, is_volatile, newtype, &type);
1421     }
1422   /* Otherwise, rely on the stub flag being set for opaque/stubbed types */
1423   else if (TYPE_STUB (type) && !currently_reading_symtab)
1424     {
1425       char *name = type_name_no_tag (type);
1426       /* FIXME: shouldn't we separately check the TYPE_NAME and the
1427          TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1428          as appropriate?  (this code was written before TYPE_NAME and
1429          TYPE_TAG_NAME were separate).  */
1430       struct symbol *sym;
1431       if (name == NULL)
1432         {
1433           stub_noname_complaint ();
1434           return type;
1435         }
1436       sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0, (struct symtab **) NULL);
1437       if (sym)
1438         make_cv_type (is_const, is_volatile, SYMBOL_TYPE (sym), &type);
1439     }
1440
1441   if (TYPE_TARGET_STUB (type))
1442     {
1443       struct type *range_type;
1444       struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1445
1446       if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1447         {
1448         }
1449       else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1450                && TYPE_NFIELDS (type) == 1
1451                && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1452                    == TYPE_CODE_RANGE))
1453         {
1454           /* Now recompute the length of the array type, based on its
1455              number of elements and the target type's length.  */
1456           TYPE_LENGTH (type) =
1457             ((TYPE_FIELD_BITPOS (range_type, 1)
1458               - TYPE_FIELD_BITPOS (range_type, 0)
1459               + 1)
1460              * TYPE_LENGTH (target_type));
1461           TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1462         }
1463       else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1464         {
1465           TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1466           TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1467         }
1468     }
1469   /* Cache TYPE_LENGTH for future use. */
1470   TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1471   return type;
1472 }
1473
1474 /* Parse a type expression in the string [P..P+LENGTH).  If an error occurs,
1475    silently return builtin_type_void. */
1476
1477 static struct type *
1478 safe_parse_type (char *p, int length)
1479 {
1480   struct ui_file *saved_gdb_stderr;
1481   struct type *type;
1482
1483   /* Suppress error messages. */
1484   saved_gdb_stderr = gdb_stderr;
1485   gdb_stderr = ui_file_new ();
1486
1487   /* Call parse_and_eval_type() without fear of longjmp()s. */
1488   if (!gdb_parse_and_eval_type (p, length, &type))
1489     type = builtin_type_void;
1490
1491   /* Stop suppressing error messages. */
1492   ui_file_delete (gdb_stderr);
1493   gdb_stderr = saved_gdb_stderr;
1494
1495   return type;
1496 }
1497
1498 /* Ugly hack to convert method stubs into method types.
1499
1500    He ain't kiddin'.  This demangles the name of the method into a string
1501    including argument types, parses out each argument type, generates
1502    a string casting a zero to that type, evaluates the string, and stuffs
1503    the resulting type into an argtype vector!!!  Then it knows the type
1504    of the whole function (including argument types for overloading),
1505    which info used to be in the stab's but was removed to hack back
1506    the space required for them.  */
1507
1508 static void
1509 check_stub_method (struct type *type, int method_id, int signature_id)
1510 {
1511   struct fn_field *f;
1512   char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1513   char *demangled_name = cplus_demangle (mangled_name,
1514                                          DMGL_PARAMS | DMGL_ANSI);
1515   char *argtypetext, *p;
1516   int depth = 0, argcount = 1;
1517   struct field *argtypes;
1518   struct type *mtype;
1519
1520   /* Make sure we got back a function string that we can use.  */
1521   if (demangled_name)
1522     p = strchr (demangled_name, '(');
1523   else
1524     p = NULL;
1525
1526   if (demangled_name == NULL || p == NULL)
1527     error ("Internal: Cannot demangle mangled name `%s'.", mangled_name);
1528
1529   /* Now, read in the parameters that define this type.  */
1530   p += 1;
1531   argtypetext = p;
1532   while (*p)
1533     {
1534       if (*p == '(' || *p == '<')
1535         {
1536           depth += 1;
1537         }
1538       else if (*p == ')' || *p == '>')
1539         {
1540           depth -= 1;
1541         }
1542       else if (*p == ',' && depth == 0)
1543         {
1544           argcount += 1;
1545         }
1546
1547       p += 1;
1548     }
1549
1550   /* If we read one argument and it was ``void'', don't count it.  */
1551   if (strncmp (argtypetext, "(void)", 6) == 0)
1552     argcount -= 1;
1553
1554   /* We need one extra slot, for the THIS pointer.  */
1555
1556   argtypes = (struct field *)
1557     TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1558   p = argtypetext;
1559
1560   /* Add THIS pointer for non-static methods.  */
1561   f = TYPE_FN_FIELDLIST1 (type, method_id);
1562   if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1563     argcount = 0;
1564   else
1565     {
1566       argtypes[0].type = lookup_pointer_type (type);
1567       argcount = 1;
1568     }
1569
1570   if (*p != ')')                /* () means no args, skip while */
1571     {
1572       depth = 0;
1573       while (*p)
1574         {
1575           if (depth <= 0 && (*p == ',' || *p == ')'))
1576             {
1577               /* Avoid parsing of ellipsis, they will be handled below.
1578                  Also avoid ``void'' as above.  */
1579               if (strncmp (argtypetext, "...", p - argtypetext) != 0
1580                   && strncmp (argtypetext, "void", p - argtypetext) != 0)
1581                 {
1582                   argtypes[argcount].type =
1583                     safe_parse_type (argtypetext, p - argtypetext);
1584                   argcount += 1;
1585                 }
1586               argtypetext = p + 1;
1587             }
1588
1589           if (*p == '(' || *p == '<')
1590             {
1591               depth += 1;
1592             }
1593           else if (*p == ')' || *p == '>')
1594             {
1595               depth -= 1;
1596             }
1597
1598           p += 1;
1599         }
1600     }
1601
1602   TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1603
1604   /* Now update the old "stub" type into a real type.  */
1605   mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1606   TYPE_DOMAIN_TYPE (mtype) = type;
1607   TYPE_FIELDS (mtype) = argtypes;
1608   TYPE_NFIELDS (mtype) = argcount;
1609   TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1610   TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1611   if (p[-2] == '.')
1612     TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
1613
1614   xfree (demangled_name);
1615 }
1616
1617 /* This is the external interface to check_stub_method, above.  This function
1618    unstubs all of the signatures for TYPE's METHOD_ID method name.  After
1619    calling this function TYPE_FN_FIELD_STUB will be cleared for each signature
1620    and TYPE_FN_FIELDLIST_NAME will be correct.
1621
1622    This function unfortunately can not die until stabs do.  */
1623
1624 void
1625 check_stub_method_group (struct type *type, int method_id)
1626 {
1627   int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1628   struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1629   int j, found_stub = 0;
1630
1631   for (j = 0; j < len; j++)
1632     if (TYPE_FN_FIELD_STUB (f, j))
1633       {
1634         found_stub = 1;
1635         check_stub_method (type, method_id, j);
1636       }
1637
1638   /* GNU v3 methods with incorrect names were corrected when we read in
1639      type information, because it was cheaper to do it then.  The only GNU v2
1640      methods with incorrect method names are operators and destructors;
1641      destructors were also corrected when we read in type information.
1642
1643      Therefore the only thing we need to handle here are v2 operator
1644      names.  */
1645   if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1646     {
1647       int ret;
1648       char dem_opname[256];
1649
1650       ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type, method_id),
1651                                    dem_opname, DMGL_ANSI);
1652       if (!ret)
1653         ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type, method_id),
1654                                      dem_opname, 0);
1655       if (ret)
1656         TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1657     }
1658 }
1659
1660 const struct cplus_struct_type cplus_struct_default;
1661
1662 void
1663 allocate_cplus_struct_type (struct type *type)
1664 {
1665   if (!HAVE_CPLUS_STRUCT (type))
1666     {
1667       TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1668         TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1669       *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1670     }
1671 }
1672
1673 /* Helper function to initialize the standard scalar types.
1674
1675    If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
1676    of the string pointed to by name in the objfile_obstack for that objfile,
1677    and initialize the type name to that copy.  There are places (mipsread.c
1678    in particular, where init_type is called with a NULL value for NAME). */
1679
1680 struct type *
1681 init_type (enum type_code code, int length, int flags, char *name,
1682            struct objfile *objfile)
1683 {
1684   struct type *type;
1685
1686   type = alloc_type (objfile);
1687   TYPE_CODE (type) = code;
1688   TYPE_LENGTH (type) = length;
1689   TYPE_FLAGS (type) |= flags;
1690   if ((name != NULL) && (objfile != NULL))
1691     {
1692       TYPE_NAME (type) =
1693         obsavestring (name, strlen (name), &objfile->objfile_obstack);
1694     }
1695   else
1696     {
1697       TYPE_NAME (type) = name;
1698     }
1699
1700   /* C++ fancies.  */
1701
1702   if (name && strcmp (name, "char") == 0)
1703     TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
1704
1705   if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1706       || code == TYPE_CODE_NAMESPACE)
1707     {
1708       INIT_CPLUS_SPECIFIC (type);
1709     }
1710   return (type);
1711 }
1712
1713 /* Helper function.  Create an empty composite type.  */
1714
1715 struct type *
1716 init_composite_type (char *name, enum type_code code)
1717 {
1718   struct type *t;
1719   gdb_assert (code == TYPE_CODE_STRUCT
1720               || code == TYPE_CODE_UNION);
1721   t = init_type (code, 0, 0, NULL, NULL);
1722   TYPE_TAG_NAME (t) = name;
1723   return t;
1724 }
1725
1726 /* Helper function.  Append a field to a composite type.  */
1727
1728 void
1729 append_composite_type_field (struct type *t, char *name, struct type *field)
1730 {
1731   struct field *f;
1732   TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1733   TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1734                               sizeof (struct field) * TYPE_NFIELDS (t));
1735   f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1736   memset (f, 0, sizeof f[0]);
1737   FIELD_TYPE (f[0]) = field;
1738   FIELD_NAME (f[0]) = name;
1739   if (TYPE_CODE (t) == TYPE_CODE_UNION)
1740     {
1741       if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
1742         TYPE_LENGTH (t) = TYPE_LENGTH (field);
1743     }
1744   else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1745     {
1746       TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1747       if (TYPE_NFIELDS (t) > 1)
1748         {
1749           FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1750                                  + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1751         }
1752     }
1753 }
1754
1755 /* Look up a fundamental type for the specified objfile.
1756    May need to construct such a type if this is the first use.
1757
1758    Some object file formats (ELF, COFF, etc) do not define fundamental
1759    types such as "int" or "double".  Others (stabs for example), do
1760    define fundamental types.
1761
1762    For the formats which don't provide fundamental types, gdb can create
1763    such types, using defaults reasonable for the current language and
1764    the current target machine.
1765
1766    NOTE:  This routine is obsolescent.  Each debugging format reader
1767    should manage it's own fundamental types, either creating them from
1768    suitable defaults or reading them from the debugging information,
1769    whichever is appropriate.  The DWARF reader has already been
1770    fixed to do this.  Once the other readers are fixed, this routine
1771    will go away.  Also note that fundamental types should be managed
1772    on a compilation unit basis in a multi-language environment, not
1773    on a linkage unit basis as is done here. */
1774
1775
1776 struct type *
1777 lookup_fundamental_type (struct objfile *objfile, int typeid)
1778 {
1779   struct type **typep;
1780   int nbytes;
1781
1782   if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1783     {
1784       error ("internal error - invalid fundamental type id %d", typeid);
1785     }
1786
1787   /* If this is the first time we need a fundamental type for this objfile
1788      then we need to initialize the vector of type pointers. */
1789
1790   if (objfile->fundamental_types == NULL)
1791     {
1792       nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
1793       objfile->fundamental_types = (struct type **)
1794         obstack_alloc (&objfile->objfile_obstack, nbytes);
1795       memset ((char *) objfile->fundamental_types, 0, nbytes);
1796       OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1797     }
1798
1799   /* Look for this particular type in the fundamental type vector.  If one is
1800      not found, create and install one appropriate for the current language. */
1801
1802   typep = objfile->fundamental_types + typeid;
1803   if (*typep == NULL)
1804     {
1805       *typep = create_fundamental_type (objfile, typeid);
1806     }
1807
1808   return (*typep);
1809 }
1810
1811 int
1812 can_dereference (struct type *t)
1813 {
1814   /* FIXME: Should we return true for references as well as pointers?  */
1815   CHECK_TYPEDEF (t);
1816   return
1817     (t != NULL
1818      && TYPE_CODE (t) == TYPE_CODE_PTR
1819      && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1820 }
1821
1822 int
1823 is_integral_type (struct type *t)
1824 {
1825   CHECK_TYPEDEF (t);
1826   return
1827     ((t != NULL)
1828      && ((TYPE_CODE (t) == TYPE_CODE_INT)
1829          || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1830          || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1831          || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1832          || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1833 }
1834
1835 /* Check whether BASE is an ancestor or base class or DCLASS 
1836    Return 1 if so, and 0 if not.
1837    Note: callers may want to check for identity of the types before
1838    calling this function -- identical types are considered to satisfy
1839    the ancestor relationship even if they're identical */
1840
1841 int
1842 is_ancestor (struct type *base, struct type *dclass)
1843 {
1844   int i;
1845
1846   CHECK_TYPEDEF (base);
1847   CHECK_TYPEDEF (dclass);
1848
1849   if (base == dclass)
1850     return 1;
1851   if (TYPE_NAME (base) && TYPE_NAME (dclass) &&
1852       !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1853     return 1;
1854
1855   for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1856     if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1857       return 1;
1858
1859   return 0;
1860 }
1861
1862
1863
1864 /* See whether DCLASS has a virtual table.  This routine is aimed at
1865    the HP/Taligent ANSI C++ runtime model, and may not work with other
1866    runtime models.  Return 1 => Yes, 0 => No.  */
1867
1868 int
1869 has_vtable (struct type *dclass)
1870 {
1871   /* In the HP ANSI C++ runtime model, a class has a vtable only if it
1872      has virtual functions or virtual bases.  */
1873
1874   int i;
1875
1876   if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1877     return 0;
1878
1879   /* First check for the presence of virtual bases */
1880   if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1881     for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1882       if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
1883         return 1;
1884
1885   /* Next check for virtual functions */
1886   if (TYPE_FN_FIELDLISTS (dclass))
1887     for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
1888       if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
1889         return 1;
1890
1891   /* Recurse on non-virtual bases to see if any of them needs a vtable */
1892   if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1893     for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1894       if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i)) &&
1895           (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
1896         return 1;
1897
1898   /* Well, maybe we don't need a virtual table */
1899   return 0;
1900 }
1901
1902 /* Return a pointer to the "primary base class" of DCLASS.
1903
1904    A NULL return indicates that DCLASS has no primary base, or that it
1905    couldn't be found (insufficient information).
1906
1907    This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1908    and may not work with other runtime models.  */
1909
1910 struct type *
1911 primary_base_class (struct type *dclass)
1912 {
1913   /* In HP ANSI C++'s runtime model, a "primary base class" of a class
1914      is the first directly inherited, non-virtual base class that
1915      requires a virtual table */
1916
1917   int i;
1918
1919   if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1920     return NULL;
1921
1922   for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1923     if (!TYPE_FIELD_VIRTUAL (dclass, i) &&
1924         has_vtable (TYPE_FIELD_TYPE (dclass, i)))
1925       return TYPE_FIELD_TYPE (dclass, i);
1926
1927   return NULL;
1928 }
1929
1930 /* Global manipulated by virtual_base_list[_aux]() */
1931
1932 static struct vbase *current_vbase_list = NULL;
1933
1934 /* Return a pointer to a null-terminated list of struct vbase
1935    items. The vbasetype pointer of each item in the list points to the
1936    type information for a virtual base of the argument DCLASS.
1937
1938    Helper function for virtual_base_list(). 
1939    Note: the list goes backward, right-to-left. virtual_base_list()
1940    copies the items out in reverse order.  */
1941
1942 static void
1943 virtual_base_list_aux (struct type *dclass)
1944 {
1945   struct vbase *tmp_vbase;
1946   int i;
1947
1948   if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1949     return;
1950
1951   for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1952     {
1953       /* Recurse on this ancestor, first */
1954       virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
1955
1956       /* If this current base is itself virtual, add it to the list */
1957       if (BASETYPE_VIA_VIRTUAL (dclass, i))
1958         {
1959           struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
1960
1961           /* Check if base already recorded */
1962           tmp_vbase = current_vbase_list;
1963           while (tmp_vbase)
1964             {
1965               if (tmp_vbase->vbasetype == basetype)
1966                 break;          /* found it */
1967               tmp_vbase = tmp_vbase->next;
1968             }
1969
1970           if (!tmp_vbase)       /* normal exit from loop */
1971             {
1972               /* Allocate new item for this virtual base */
1973               tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
1974
1975               /* Stick it on at the end of the list */
1976               tmp_vbase->vbasetype = basetype;
1977               tmp_vbase->next = current_vbase_list;
1978               current_vbase_list = tmp_vbase;
1979             }
1980         }                       /* if virtual */
1981     }                           /* for loop over bases */
1982 }
1983
1984
1985 /* Compute the list of virtual bases in the right order.  Virtual
1986    bases are laid out in the object's memory area in order of their
1987    occurrence in a depth-first, left-to-right search through the
1988    ancestors.
1989
1990    Argument DCLASS is the type whose virtual bases are required.
1991    Return value is the address of a null-terminated array of pointers
1992    to struct type items.
1993
1994    This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1995    and may not work with other runtime models.
1996
1997    This routine merely hands off the argument to virtual_base_list_aux()
1998    and then copies the result into an array to save space.  */
1999
2000 struct type **
2001 virtual_base_list (struct type *dclass)
2002 {
2003   struct vbase *tmp_vbase;
2004   struct vbase *tmp_vbase_2;
2005   int i;
2006   int count;
2007   struct type **vbase_array;
2008
2009   current_vbase_list = NULL;
2010   virtual_base_list_aux (dclass);
2011
2012   for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
2013     /* no body */ ;
2014
2015   count = i;
2016
2017   vbase_array = (struct type **) xmalloc ((count + 1) * sizeof (struct type *));
2018
2019   for (i = count - 1, tmp_vbase = current_vbase_list; i >= 0; i--, tmp_vbase = tmp_vbase->next)
2020     vbase_array[i] = tmp_vbase->vbasetype;
2021
2022   /* Get rid of constructed chain */
2023   tmp_vbase_2 = tmp_vbase = current_vbase_list;
2024   while (tmp_vbase)
2025     {
2026       tmp_vbase = tmp_vbase->next;
2027       xfree (tmp_vbase_2);
2028       tmp_vbase_2 = tmp_vbase;
2029     }
2030
2031   vbase_array[count] = NULL;
2032   return vbase_array;
2033 }
2034
2035 /* Return the length of the virtual base list of the type DCLASS.  */
2036
2037 int
2038 virtual_base_list_length (struct type *dclass)
2039 {
2040   int i;
2041   struct vbase *tmp_vbase;
2042
2043   current_vbase_list = NULL;
2044   virtual_base_list_aux (dclass);
2045
2046   for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
2047     /* no body */ ;
2048   return i;
2049 }
2050
2051 /* Return the number of elements of the virtual base list of the type
2052    DCLASS, ignoring those appearing in the primary base (and its
2053    primary base, recursively).  */
2054
2055 int
2056 virtual_base_list_length_skip_primaries (struct type *dclass)
2057 {
2058   int i;
2059   struct vbase *tmp_vbase;
2060   struct type *primary;
2061
2062   primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2063
2064   if (!primary)
2065     return virtual_base_list_length (dclass);
2066
2067   current_vbase_list = NULL;
2068   virtual_base_list_aux (dclass);
2069
2070   for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; tmp_vbase = tmp_vbase->next)
2071     {
2072       if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
2073         continue;
2074       i++;
2075     }
2076   return i;
2077 }
2078
2079
2080 /* Return the index (position) of type BASE, which is a virtual base
2081    class of DCLASS, in the latter's virtual base list.  A return of -1
2082    indicates "not found" or a problem.  */
2083
2084 int
2085 virtual_base_index (struct type *base, struct type *dclass)
2086 {
2087   struct type *vbase;
2088   int i;
2089
2090   if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2091       (TYPE_CODE (base) != TYPE_CODE_CLASS))
2092     return -1;
2093
2094   i = 0;
2095   vbase = virtual_base_list (dclass)[0];
2096   while (vbase)
2097     {
2098       if (vbase == base)
2099         break;
2100       vbase = virtual_base_list (dclass)[++i];
2101     }
2102
2103   return vbase ? i : -1;
2104 }
2105
2106
2107
2108 /* Return the index (position) of type BASE, which is a virtual base
2109    class of DCLASS, in the latter's virtual base list. Skip over all
2110    bases that may appear in the virtual base list of the primary base
2111    class of DCLASS (recursively).  A return of -1 indicates "not
2112    found" or a problem.  */
2113
2114 int
2115 virtual_base_index_skip_primaries (struct type *base, struct type *dclass)
2116 {
2117   struct type *vbase;
2118   int i, j;
2119   struct type *primary;
2120
2121   if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2122       (TYPE_CODE (base) != TYPE_CODE_CLASS))
2123     return -1;
2124
2125   primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2126
2127   j = -1;
2128   i = 0;
2129   vbase = virtual_base_list (dclass)[0];
2130   while (vbase)
2131     {
2132       if (!primary || (virtual_base_index_skip_primaries (vbase, primary) < 0))
2133         j++;
2134       if (vbase == base)
2135         break;
2136       vbase = virtual_base_list (dclass)[++i];
2137     }
2138
2139   return vbase ? j : -1;
2140 }
2141
2142 /* Return position of a derived class DCLASS in the list of
2143  * primary bases starting with the remotest ancestor.
2144  * Position returned is 0-based. */
2145
2146 int
2147 class_index_in_primary_list (struct type *dclass)
2148 {
2149   struct type *pbc;             /* primary base class */
2150
2151   /* Simply recurse on primary base */
2152   pbc = TYPE_PRIMARY_BASE (dclass);
2153   if (pbc)
2154     return 1 + class_index_in_primary_list (pbc);
2155   else
2156     return 0;
2157 }
2158
2159 /* Return a count of the number of virtual functions a type has.
2160  * This includes all the virtual functions it inherits from its
2161  * base classes too.
2162  */
2163
2164 /* pai: FIXME This doesn't do the right thing: count redefined virtual
2165  * functions only once (latest redefinition)
2166  */
2167
2168 int
2169 count_virtual_fns (struct type *dclass)
2170 {
2171   int fn, oi;                   /* function and overloaded instance indices */
2172   int vfuncs;                   /* count to return */
2173
2174   /* recurse on bases that can share virtual table */
2175   struct type *pbc = primary_base_class (dclass);
2176   if (pbc)
2177     vfuncs = count_virtual_fns (pbc);
2178   else
2179     vfuncs = 0;
2180
2181   for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
2182     for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
2183       if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
2184         vfuncs++;
2185
2186   return vfuncs;
2187 }
2188 \f
2189
2190
2191 /* Functions for overload resolution begin here */
2192
2193 /* Compare two badness vectors A and B and return the result.
2194  * 0 => A and B are identical
2195  * 1 => A and B are incomparable
2196  * 2 => A is better than B
2197  * 3 => A is worse than B */
2198
2199 int
2200 compare_badness (struct badness_vector *a, struct badness_vector *b)
2201 {
2202   int i;
2203   int tmp;
2204   short found_pos = 0;          /* any positives in c? */
2205   short found_neg = 0;          /* any negatives in c? */
2206
2207   /* differing lengths => incomparable */
2208   if (a->length != b->length)
2209     return 1;
2210
2211   /* Subtract b from a */
2212   for (i = 0; i < a->length; i++)
2213     {
2214       tmp = a->rank[i] - b->rank[i];
2215       if (tmp > 0)
2216         found_pos = 1;
2217       else if (tmp < 0)
2218         found_neg = 1;
2219     }
2220
2221   if (found_pos)
2222     {
2223       if (found_neg)
2224         return 1;               /* incomparable */
2225       else
2226         return 3;               /* A > B */
2227     }
2228   else
2229     /* no positives */
2230     {
2231       if (found_neg)
2232         return 2;               /* A < B */
2233       else
2234         return 0;               /* A == B */
2235     }
2236 }
2237
2238 /* Rank a function by comparing its parameter types (PARMS, length NPARMS),
2239  * to the types of an argument list (ARGS, length NARGS).
2240  * Return a pointer to a badness vector. This has NARGS + 1 entries. */
2241
2242 struct badness_vector *
2243 rank_function (struct type **parms, int nparms, struct type **args, int nargs)
2244 {
2245   int i;
2246   struct badness_vector *bv;
2247   int min_len = nparms < nargs ? nparms : nargs;
2248
2249   bv = xmalloc (sizeof (struct badness_vector));
2250   bv->length = nargs + 1;       /* add 1 for the length-match rank */
2251   bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2252
2253   /* First compare the lengths of the supplied lists.
2254    * If there is a mismatch, set it to a high value. */
2255
2256   /* pai/1997-06-03 FIXME: when we have debug info about default
2257    * arguments and ellipsis parameter lists, we should consider those
2258    * and rank the length-match more finely. */
2259
2260   LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2261
2262   /* Now rank all the parameters of the candidate function */
2263   for (i = 1; i <= min_len; i++)
2264     bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2265
2266   /* If more arguments than parameters, add dummy entries */
2267   for (i = min_len + 1; i <= nargs; i++)
2268     bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2269
2270   return bv;
2271 }
2272
2273 /* Compare the names of two integer types, assuming that any sign
2274    qualifiers have been checked already.  We do it this way because
2275    there may be an "int" in the name of one of the types.  */
2276
2277 static int
2278 integer_types_same_name_p (const char *first, const char *second)
2279 {
2280   int first_p, second_p;
2281
2282   /* If both are shorts, return 1; if neither is a short, keep checking.  */
2283   first_p = (strstr (first, "short") != NULL);
2284   second_p = (strstr (second, "short") != NULL);
2285   if (first_p && second_p)
2286     return 1;
2287   if (first_p || second_p)
2288     return 0;
2289
2290   /* Likewise for long.  */
2291   first_p = (strstr (first, "long") != NULL);
2292   second_p = (strstr (second, "long") != NULL);
2293   if (first_p && second_p)
2294     return 1;
2295   if (first_p || second_p)
2296     return 0;
2297
2298   /* Likewise for char.  */
2299   first_p = (strstr (first, "char") != NULL);
2300   second_p = (strstr (second, "char") != NULL);
2301   if (first_p && second_p)
2302     return 1;
2303   if (first_p || second_p)
2304     return 0;
2305
2306   /* They must both be ints.  */
2307   return 1;
2308 }
2309
2310 /* Compare one type (PARM) for compatibility with another (ARG).
2311  * PARM is intended to be the parameter type of a function; and
2312  * ARG is the supplied argument's type.  This function tests if
2313  * the latter can be converted to the former.
2314  *
2315  * Return 0 if they are identical types;
2316  * Otherwise, return an integer which corresponds to how compatible
2317  * PARM is to ARG. The higher the return value, the worse the match.
2318  * Generally the "bad" conversions are all uniformly assigned a 100 */
2319
2320 int
2321 rank_one_type (struct type *parm, struct type *arg)
2322 {
2323   /* Identical type pointers */
2324   /* However, this still doesn't catch all cases of same type for arg
2325    * and param. The reason is that builtin types are different from
2326    * the same ones constructed from the object. */
2327   if (parm == arg)
2328     return 0;
2329
2330   /* Resolve typedefs */
2331   if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2332     parm = check_typedef (parm);
2333   if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2334     arg = check_typedef (arg);
2335
2336   /*
2337      Well, damnit, if the names are exactly the same,
2338      i'll say they are exactly the same. This happens when we generate
2339      method stubs. The types won't point to the same address, but they
2340      really are the same.
2341   */
2342
2343   if (TYPE_NAME (parm) && TYPE_NAME (arg) &&
2344       !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2345       return 0;
2346
2347   /* Check if identical after resolving typedefs */
2348   if (parm == arg)
2349     return 0;
2350
2351   /* See through references, since we can almost make non-references
2352      references. */
2353   if (TYPE_CODE (arg) == TYPE_CODE_REF)
2354     return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2355             + REFERENCE_CONVERSION_BADNESS);
2356   if (TYPE_CODE (parm) == TYPE_CODE_REF)
2357     return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2358             + REFERENCE_CONVERSION_BADNESS);
2359   if (overload_debug)
2360   /* Debugging only. */
2361     fprintf_filtered (gdb_stderr,"------ Arg is %s [%d], parm is %s [%d]\n",
2362         TYPE_NAME (arg), TYPE_CODE (arg), TYPE_NAME (parm), TYPE_CODE (parm));
2363
2364   /* x -> y means arg of type x being supplied for parameter of type y */
2365
2366   switch (TYPE_CODE (parm))
2367     {
2368     case TYPE_CODE_PTR:
2369       switch (TYPE_CODE (arg))
2370         {
2371         case TYPE_CODE_PTR:
2372           if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2373             return VOID_PTR_CONVERSION_BADNESS;
2374           else
2375             return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2376         case TYPE_CODE_ARRAY:
2377           return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2378         case TYPE_CODE_FUNC:
2379           return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2380         case TYPE_CODE_INT:
2381         case TYPE_CODE_ENUM:
2382         case TYPE_CODE_CHAR:
2383         case TYPE_CODE_RANGE:
2384         case TYPE_CODE_BOOL:
2385           return POINTER_CONVERSION_BADNESS;
2386         default:
2387           return INCOMPATIBLE_TYPE_BADNESS;
2388         }
2389     case TYPE_CODE_ARRAY:
2390       switch (TYPE_CODE (arg))
2391         {
2392         case TYPE_CODE_PTR:
2393         case TYPE_CODE_ARRAY:
2394           return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2395         default:
2396           return INCOMPATIBLE_TYPE_BADNESS;
2397         }
2398     case TYPE_CODE_FUNC:
2399       switch (TYPE_CODE (arg))
2400         {
2401         case TYPE_CODE_PTR:     /* funcptr -> func */
2402           return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2403         default:
2404           return INCOMPATIBLE_TYPE_BADNESS;
2405         }
2406     case TYPE_CODE_INT:
2407       switch (TYPE_CODE (arg))
2408         {
2409         case TYPE_CODE_INT:
2410           if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2411             {
2412               /* Deal with signed, unsigned, and plain chars and
2413                  signed and unsigned ints */
2414               if (TYPE_NOSIGN (parm))
2415                 {
2416                   /* This case only for character types */
2417                   if (TYPE_NOSIGN (arg))        /* plain char -> plain char */
2418                     return 0;
2419                   else
2420                     return INTEGER_CONVERSION_BADNESS;  /* signed/unsigned char -> plain char */
2421                 }
2422               else if (TYPE_UNSIGNED (parm))
2423                 {
2424                   if (TYPE_UNSIGNED (arg))
2425                     {
2426                       /* unsigned int -> unsigned int, or unsigned long -> unsigned long */
2427                       if (integer_types_same_name_p (TYPE_NAME (parm), TYPE_NAME (arg)))
2428                         return 0;
2429                       else if (integer_types_same_name_p (TYPE_NAME (arg), "int")
2430                                && integer_types_same_name_p (TYPE_NAME (parm), "long"))
2431                         return INTEGER_PROMOTION_BADNESS;       /* unsigned int -> unsigned long */
2432                       else
2433                         return INTEGER_CONVERSION_BADNESS;      /* unsigned long -> unsigned int */
2434                     }
2435                   else
2436                     {
2437                       if (integer_types_same_name_p (TYPE_NAME (arg), "long")
2438                           && integer_types_same_name_p (TYPE_NAME (parm), "int"))
2439                         return INTEGER_CONVERSION_BADNESS;      /* signed long -> unsigned int */
2440                       else
2441                         return INTEGER_CONVERSION_BADNESS;      /* signed int/long -> unsigned int/long */
2442                     }
2443                 }
2444               else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2445                 {
2446                   if (integer_types_same_name_p (TYPE_NAME (parm), TYPE_NAME (arg)))
2447                     return 0;
2448                   else if (integer_types_same_name_p (TYPE_NAME (arg), "int")
2449                            && integer_types_same_name_p (TYPE_NAME (parm), "long"))
2450                     return INTEGER_PROMOTION_BADNESS;
2451                   else
2452                     return INTEGER_CONVERSION_BADNESS;
2453                 }
2454               else
2455                 return INTEGER_CONVERSION_BADNESS;
2456             }
2457           else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2458             return INTEGER_PROMOTION_BADNESS;
2459           else
2460             return INTEGER_CONVERSION_BADNESS;
2461         case TYPE_CODE_ENUM:
2462         case TYPE_CODE_CHAR:
2463         case TYPE_CODE_RANGE:
2464         case TYPE_CODE_BOOL:
2465           return INTEGER_PROMOTION_BADNESS;
2466         case TYPE_CODE_FLT:
2467           return INT_FLOAT_CONVERSION_BADNESS;
2468         case TYPE_CODE_PTR:
2469           return NS_POINTER_CONVERSION_BADNESS;
2470         default:
2471           return INCOMPATIBLE_TYPE_BADNESS;
2472         }
2473       break;
2474     case TYPE_CODE_ENUM:
2475       switch (TYPE_CODE (arg))
2476         {
2477         case TYPE_CODE_INT:
2478         case TYPE_CODE_CHAR:
2479         case TYPE_CODE_RANGE:
2480         case TYPE_CODE_BOOL:
2481         case TYPE_CODE_ENUM:
2482           return INTEGER_CONVERSION_BADNESS;
2483         case TYPE_CODE_FLT:
2484           return INT_FLOAT_CONVERSION_BADNESS;
2485         default:
2486           return INCOMPATIBLE_TYPE_BADNESS;
2487         }
2488       break;
2489     case TYPE_CODE_CHAR:
2490       switch (TYPE_CODE (arg))
2491         {
2492         case TYPE_CODE_RANGE:
2493         case TYPE_CODE_BOOL:
2494         case TYPE_CODE_ENUM:
2495           return INTEGER_CONVERSION_BADNESS;
2496         case TYPE_CODE_FLT:
2497           return INT_FLOAT_CONVERSION_BADNESS;
2498         case TYPE_CODE_INT:
2499           if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2500             return INTEGER_CONVERSION_BADNESS;
2501           else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2502             return INTEGER_PROMOTION_BADNESS;
2503           /* >>> !! else fall through !! <<< */
2504         case TYPE_CODE_CHAR:
2505           /* Deal with signed, unsigned, and plain chars for C++
2506              and with int cases falling through from previous case */
2507           if (TYPE_NOSIGN (parm))
2508             {
2509               if (TYPE_NOSIGN (arg))
2510                 return 0;
2511               else
2512                 return INTEGER_CONVERSION_BADNESS;
2513             }
2514           else if (TYPE_UNSIGNED (parm))
2515             {
2516               if (TYPE_UNSIGNED (arg))
2517                 return 0;
2518               else
2519                 return INTEGER_PROMOTION_BADNESS;
2520             }
2521           else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2522             return 0;
2523           else
2524             return INTEGER_CONVERSION_BADNESS;
2525         default:
2526           return INCOMPATIBLE_TYPE_BADNESS;
2527         }
2528       break;
2529     case TYPE_CODE_RANGE:
2530       switch (TYPE_CODE (arg))
2531         {
2532         case TYPE_CODE_INT:
2533         case TYPE_CODE_CHAR:
2534         case TYPE_CODE_RANGE:
2535         case TYPE_CODE_BOOL:
2536         case TYPE_CODE_ENUM:
2537           return INTEGER_CONVERSION_BADNESS;
2538         case TYPE_CODE_FLT:
2539           return INT_FLOAT_CONVERSION_BADNESS;
2540         default:
2541           return INCOMPATIBLE_TYPE_BADNESS;
2542         }
2543       break;
2544     case TYPE_CODE_BOOL:
2545       switch (TYPE_CODE (arg))
2546         {
2547         case TYPE_CODE_INT:
2548         case TYPE_CODE_CHAR:
2549         case TYPE_CODE_RANGE:
2550         case TYPE_CODE_ENUM:
2551         case TYPE_CODE_FLT:
2552         case TYPE_CODE_PTR:
2553           return BOOLEAN_CONVERSION_BADNESS;
2554         case TYPE_CODE_BOOL:
2555           return 0;
2556         default:
2557           return INCOMPATIBLE_TYPE_BADNESS;
2558         }
2559       break;
2560     case TYPE_CODE_FLT:
2561       switch (TYPE_CODE (arg))
2562         {
2563         case TYPE_CODE_FLT:
2564           if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2565             return FLOAT_PROMOTION_BADNESS;
2566           else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2567             return 0;
2568           else
2569             return FLOAT_CONVERSION_BADNESS;
2570         case TYPE_CODE_INT:
2571         case TYPE_CODE_BOOL:
2572         case TYPE_CODE_ENUM:
2573         case TYPE_CODE_RANGE:
2574         case TYPE_CODE_CHAR:
2575           return INT_FLOAT_CONVERSION_BADNESS;
2576         default:
2577           return INCOMPATIBLE_TYPE_BADNESS;
2578         }
2579       break;
2580     case TYPE_CODE_COMPLEX:
2581       switch (TYPE_CODE (arg))
2582         {                       /* Strictly not needed for C++, but... */
2583         case TYPE_CODE_FLT:
2584           return FLOAT_PROMOTION_BADNESS;
2585         case TYPE_CODE_COMPLEX:
2586           return 0;
2587         default:
2588           return INCOMPATIBLE_TYPE_BADNESS;
2589         }
2590       break;
2591     case TYPE_CODE_STRUCT:
2592       /* currently same as TYPE_CODE_CLASS */
2593       switch (TYPE_CODE (arg))
2594         {
2595         case TYPE_CODE_STRUCT:
2596           /* Check for derivation */
2597           if (is_ancestor (parm, arg))
2598             return BASE_CONVERSION_BADNESS;
2599           /* else fall through */
2600         default:
2601           return INCOMPATIBLE_TYPE_BADNESS;
2602         }
2603       break;
2604     case TYPE_CODE_UNION:
2605       switch (TYPE_CODE (arg))
2606         {
2607         case TYPE_CODE_UNION:
2608         default:
2609           return INCOMPATIBLE_TYPE_BADNESS;
2610         }
2611       break;
2612     case TYPE_CODE_MEMBER:
2613       switch (TYPE_CODE (arg))
2614         {
2615         default:
2616           return INCOMPATIBLE_TYPE_BADNESS;
2617         }
2618       break;
2619     case TYPE_CODE_METHOD:
2620       switch (TYPE_CODE (arg))
2621         {
2622
2623         default:
2624           return INCOMPATIBLE_TYPE_BADNESS;
2625         }
2626       break;
2627     case TYPE_CODE_REF:
2628       switch (TYPE_CODE (arg))
2629         {
2630
2631         default:
2632           return INCOMPATIBLE_TYPE_BADNESS;
2633         }
2634
2635       break;
2636     case TYPE_CODE_SET:
2637       switch (TYPE_CODE (arg))
2638         {
2639           /* Not in C++ */
2640         case TYPE_CODE_SET:
2641           return rank_one_type (TYPE_FIELD_TYPE (parm, 0), TYPE_FIELD_TYPE (arg, 0));
2642         default:
2643           return INCOMPATIBLE_TYPE_BADNESS;
2644         }
2645       break;
2646     case TYPE_CODE_VOID:
2647     default:
2648       return INCOMPATIBLE_TYPE_BADNESS;
2649     }                           /* switch (TYPE_CODE (arg)) */
2650 }
2651
2652
2653 /* End of functions for overload resolution */
2654
2655 static void
2656 print_bit_vector (B_TYPE *bits, int nbits)
2657 {
2658   int bitno;
2659
2660   for (bitno = 0; bitno < nbits; bitno++)
2661     {
2662       if ((bitno % 8) == 0)
2663         {
2664           puts_filtered (" ");
2665         }
2666       if (B_TST (bits, bitno))
2667         {
2668           printf_filtered ("1");
2669         }
2670       else
2671         {
2672           printf_filtered ("0");
2673         }
2674     }
2675 }
2676
2677 /* Note the first arg should be the "this" pointer, we may not want to
2678    include it since we may get into a infinitely recursive situation.  */
2679
2680 static void
2681 print_arg_types (struct field *args, int nargs, int spaces)
2682 {
2683   if (args != NULL)
2684     {
2685       int i;
2686
2687       for (i = 0; i < nargs; i++)
2688         recursive_dump_type (args[i].type, spaces + 2);
2689     }
2690 }
2691
2692 static void
2693 dump_fn_fieldlists (struct type *type, int spaces)
2694 {
2695   int method_idx;
2696   int overload_idx;
2697   struct fn_field *f;
2698
2699   printfi_filtered (spaces, "fn_fieldlists ");
2700   gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2701   printf_filtered ("\n");
2702   for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2703     {
2704       f = TYPE_FN_FIELDLIST1 (type, method_idx);
2705       printfi_filtered (spaces + 2, "[%d] name '%s' (",
2706                         method_idx,
2707                         TYPE_FN_FIELDLIST_NAME (type, method_idx));
2708       gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2709                               gdb_stdout);
2710       printf_filtered (") length %d\n",
2711                        TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2712       for (overload_idx = 0;
2713            overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2714            overload_idx++)
2715         {
2716           printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2717                             overload_idx,
2718                             TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2719           gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2720                                   gdb_stdout);
2721           printf_filtered (")\n");
2722           printfi_filtered (spaces + 8, "type ");
2723           gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout);
2724           printf_filtered ("\n");
2725
2726           recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2727                                spaces + 8 + 2);
2728
2729           printfi_filtered (spaces + 8, "args ");
2730           gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout);
2731           printf_filtered ("\n");
2732
2733           print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2734                            TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
2735                            spaces);
2736           printfi_filtered (spaces + 8, "fcontext ");
2737           gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2738                                   gdb_stdout);
2739           printf_filtered ("\n");
2740
2741           printfi_filtered (spaces + 8, "is_const %d\n",
2742                             TYPE_FN_FIELD_CONST (f, overload_idx));
2743           printfi_filtered (spaces + 8, "is_volatile %d\n",
2744                             TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2745           printfi_filtered (spaces + 8, "is_private %d\n",
2746                             TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2747           printfi_filtered (spaces + 8, "is_protected %d\n",
2748                             TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2749           printfi_filtered (spaces + 8, "is_stub %d\n",
2750                             TYPE_FN_FIELD_STUB (f, overload_idx));
2751           printfi_filtered (spaces + 8, "voffset %u\n",
2752                             TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2753         }
2754     }
2755 }
2756
2757 static void
2758 print_cplus_stuff (struct type *type, int spaces)
2759 {
2760   printfi_filtered (spaces, "n_baseclasses %d\n",
2761                     TYPE_N_BASECLASSES (type));
2762   printfi_filtered (spaces, "nfn_fields %d\n",
2763                     TYPE_NFN_FIELDS (type));
2764   printfi_filtered (spaces, "nfn_fields_total %d\n",
2765                     TYPE_NFN_FIELDS_TOTAL (type));
2766   if (TYPE_N_BASECLASSES (type) > 0)
2767     {
2768       printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2769                         TYPE_N_BASECLASSES (type));
2770       gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout);
2771       printf_filtered (")");
2772
2773       print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2774                         TYPE_N_BASECLASSES (type));
2775       puts_filtered ("\n");
2776     }
2777   if (TYPE_NFIELDS (type) > 0)
2778     {
2779       if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2780         {
2781           printfi_filtered (spaces, "private_field_bits (%d bits at *",
2782                             TYPE_NFIELDS (type));
2783           gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout);
2784           printf_filtered (")");
2785           print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2786                             TYPE_NFIELDS (type));
2787           puts_filtered ("\n");
2788         }
2789       if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2790         {
2791           printfi_filtered (spaces, "protected_field_bits (%d bits at *",
2792                             TYPE_NFIELDS (type));
2793           gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout);
2794           printf_filtered (")");
2795           print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2796                             TYPE_NFIELDS (type));
2797           puts_filtered ("\n");
2798         }
2799     }
2800   if (TYPE_NFN_FIELDS (type) > 0)
2801     {
2802       dump_fn_fieldlists (type, spaces);
2803     }
2804 }
2805
2806 static void
2807 print_bound_type (int bt)
2808 {
2809   switch (bt)
2810     {
2811     case BOUND_CANNOT_BE_DETERMINED:
2812       printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2813       break;
2814     case BOUND_BY_REF_ON_STACK:
2815       printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2816       break;
2817     case BOUND_BY_VALUE_ON_STACK:
2818       printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2819       break;
2820     case BOUND_BY_REF_IN_REG:
2821       printf_filtered ("(BOUND_BY_REF_IN_REG)");
2822       break;
2823     case BOUND_BY_VALUE_IN_REG:
2824       printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2825       break;
2826     case BOUND_SIMPLE:
2827       printf_filtered ("(BOUND_SIMPLE)");
2828       break;
2829     default:
2830       printf_filtered ("(unknown bound type)");
2831       break;
2832     }
2833 }
2834
2835 static struct obstack dont_print_type_obstack;
2836
2837 void
2838 recursive_dump_type (struct type *type, int spaces)
2839 {
2840   int idx;
2841
2842   if (spaces == 0)
2843     obstack_begin (&dont_print_type_obstack, 0);
2844
2845   if (TYPE_NFIELDS (type) > 0
2846       || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2847     {
2848       struct type **first_dont_print
2849       = (struct type **) obstack_base (&dont_print_type_obstack);
2850
2851       int i = (struct type **) obstack_next_free (&dont_print_type_obstack)
2852       - first_dont_print;
2853
2854       while (--i >= 0)
2855         {
2856           if (type == first_dont_print[i])
2857             {
2858               printfi_filtered (spaces, "type node ");
2859               gdb_print_host_address (type, gdb_stdout);
2860               printf_filtered (" <same as already seen type>\n");
2861               return;
2862             }
2863         }
2864
2865       obstack_ptr_grow (&dont_print_type_obstack, type);
2866     }
2867
2868   printfi_filtered (spaces, "type node ");
2869   gdb_print_host_address (type, gdb_stdout);
2870   printf_filtered ("\n");
2871   printfi_filtered (spaces, "name '%s' (",
2872                     TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2873   gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2874   printf_filtered (")\n");
2875   printfi_filtered (spaces, "tagname '%s' (",
2876                     TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2877   gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2878   printf_filtered (")\n");
2879   printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2880   switch (TYPE_CODE (type))
2881     {
2882     case TYPE_CODE_UNDEF:
2883       printf_filtered ("(TYPE_CODE_UNDEF)");
2884       break;
2885     case TYPE_CODE_PTR:
2886       printf_filtered ("(TYPE_CODE_PTR)");
2887       break;
2888     case TYPE_CODE_ARRAY:
2889       printf_filtered ("(TYPE_CODE_ARRAY)");
2890       break;
2891     case TYPE_CODE_STRUCT:
2892       printf_filtered ("(TYPE_CODE_STRUCT)");
2893       break;
2894     case TYPE_CODE_UNION:
2895       printf_filtered ("(TYPE_CODE_UNION)");
2896       break;
2897     case TYPE_CODE_ENUM:
2898       printf_filtered ("(TYPE_CODE_ENUM)");
2899       break;
2900     case TYPE_CODE_FUNC:
2901       printf_filtered ("(TYPE_CODE_FUNC)");
2902       break;
2903     case TYPE_CODE_INT:
2904       printf_filtered ("(TYPE_CODE_INT)");
2905       break;
2906     case TYPE_CODE_FLT:
2907       printf_filtered ("(TYPE_CODE_FLT)");
2908       break;
2909     case TYPE_CODE_VOID:
2910       printf_filtered ("(TYPE_CODE_VOID)");
2911       break;
2912     case TYPE_CODE_SET:
2913       printf_filtered ("(TYPE_CODE_SET)");
2914       break;
2915     case TYPE_CODE_RANGE:
2916       printf_filtered ("(TYPE_CODE_RANGE)");
2917       break;
2918     case TYPE_CODE_STRING:
2919       printf_filtered ("(TYPE_CODE_STRING)");
2920       break;
2921     case TYPE_CODE_BITSTRING:
2922       printf_filtered ("(TYPE_CODE_BITSTRING)");
2923       break;
2924     case TYPE_CODE_ERROR:
2925       printf_filtered ("(TYPE_CODE_ERROR)");
2926       break;
2927     case TYPE_CODE_MEMBER:
2928       printf_filtered ("(TYPE_CODE_MEMBER)");
2929       break;
2930     case TYPE_CODE_METHOD:
2931       printf_filtered ("(TYPE_CODE_METHOD)");
2932       break;
2933     case TYPE_CODE_REF:
2934       printf_filtered ("(TYPE_CODE_REF)");
2935       break;
2936     case TYPE_CODE_CHAR:
2937       printf_filtered ("(TYPE_CODE_CHAR)");
2938       break;
2939     case TYPE_CODE_BOOL:
2940       printf_filtered ("(TYPE_CODE_BOOL)");
2941       break;
2942     case TYPE_CODE_COMPLEX:
2943       printf_filtered ("(TYPE_CODE_COMPLEX)");
2944       break;
2945     case TYPE_CODE_TYPEDEF:
2946       printf_filtered ("(TYPE_CODE_TYPEDEF)");
2947       break;
2948     case TYPE_CODE_TEMPLATE:
2949       printf_filtered ("(TYPE_CODE_TEMPLATE)");
2950       break;
2951     case TYPE_CODE_TEMPLATE_ARG:
2952       printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2953       break;
2954     case TYPE_CODE_NAMESPACE:
2955       printf_filtered ("(TYPE_CODE_NAMESPACE)");
2956       break;
2957     default:
2958       printf_filtered ("(UNKNOWN TYPE CODE)");
2959       break;
2960     }
2961   puts_filtered ("\n");
2962   printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2963   printfi_filtered (spaces, "upper_bound_type 0x%x ",
2964                     TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2965   print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2966   puts_filtered ("\n");
2967   printfi_filtered (spaces, "lower_bound_type 0x%x ",
2968                     TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2969   print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2970   puts_filtered ("\n");
2971   printfi_filtered (spaces, "objfile ");
2972   gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
2973   printf_filtered ("\n");
2974   printfi_filtered (spaces, "target_type ");
2975   gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2976   printf_filtered ("\n");
2977   if (TYPE_TARGET_TYPE (type) != NULL)
2978     {
2979       recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2980     }
2981   printfi_filtered (spaces, "pointer_type ");
2982   gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2983   printf_filtered ("\n");
2984   printfi_filtered (spaces, "reference_type ");
2985   gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2986   printf_filtered ("\n");
2987   printfi_filtered (spaces, "type_chain ");
2988   gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2989   printf_filtered ("\n");
2990   printfi_filtered (spaces, "instance_flags 0x%x", TYPE_INSTANCE_FLAGS (type));
2991   if (TYPE_CONST (type))
2992     {
2993       puts_filtered (" TYPE_FLAG_CONST");
2994     }
2995   if (TYPE_VOLATILE (type))
2996     {
2997       puts_filtered (" TYPE_FLAG_VOLATILE");
2998     }
2999   if (TYPE_CODE_SPACE (type))
3000     {
3001       puts_filtered (" TYPE_FLAG_CODE_SPACE");
3002     }
3003   if (TYPE_DATA_SPACE (type))
3004     {
3005       puts_filtered (" TYPE_FLAG_DATA_SPACE");
3006     }
3007   if (TYPE_ADDRESS_CLASS_1 (type))
3008     {
3009       puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3010     }
3011   if (TYPE_ADDRESS_CLASS_2 (type))
3012     {
3013       puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3014     }
3015   puts_filtered ("\n");
3016   printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
3017   if (TYPE_UNSIGNED (type))
3018     {
3019       puts_filtered (" TYPE_FLAG_UNSIGNED");
3020     }
3021   if (TYPE_NOSIGN (type))
3022     {
3023       puts_filtered (" TYPE_FLAG_NOSIGN");
3024     }
3025   if (TYPE_STUB (type))
3026     {
3027       puts_filtered (" TYPE_FLAG_STUB");
3028     }
3029   if (TYPE_TARGET_STUB (type))
3030     {
3031       puts_filtered (" TYPE_FLAG_TARGET_STUB");
3032     }
3033   if (TYPE_STATIC (type))
3034     {
3035       puts_filtered (" TYPE_FLAG_STATIC");
3036     }
3037   if (TYPE_PROTOTYPED (type))
3038     {
3039       puts_filtered (" TYPE_FLAG_PROTOTYPED");
3040     }
3041   if (TYPE_INCOMPLETE (type))
3042     {
3043       puts_filtered (" TYPE_FLAG_INCOMPLETE");
3044     }
3045   if (TYPE_VARARGS (type))
3046     {
3047       puts_filtered (" TYPE_FLAG_VARARGS");
3048     }
3049   /* This is used for things like AltiVec registers on ppc.  Gcc emits
3050      an attribute for the array type, which tells whether or not we
3051      have a vector, instead of a regular array.  */
3052   if (TYPE_VECTOR (type))
3053     {
3054       puts_filtered (" TYPE_FLAG_VECTOR");
3055     }
3056   puts_filtered ("\n");
3057   printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3058   gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3059   puts_filtered ("\n");
3060   for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3061     {
3062       printfi_filtered (spaces + 2,
3063                         "[%d] bitpos %d bitsize %d type ",
3064                         idx, TYPE_FIELD_BITPOS (type, idx),
3065                         TYPE_FIELD_BITSIZE (type, idx));
3066       gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3067       printf_filtered (" name '%s' (",
3068                        TYPE_FIELD_NAME (type, idx) != NULL
3069                        ? TYPE_FIELD_NAME (type, idx)
3070                        : "<NULL>");
3071       gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3072       printf_filtered (")\n");
3073       if (TYPE_FIELD_TYPE (type, idx) != NULL)
3074         {
3075           recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3076         }
3077     }
3078   printfi_filtered (spaces, "vptr_basetype ");
3079   gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3080   puts_filtered ("\n");
3081   if (TYPE_VPTR_BASETYPE (type) != NULL)
3082     {
3083       recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3084     }
3085   printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3086   switch (TYPE_CODE (type))
3087     {
3088     case TYPE_CODE_STRUCT:
3089       printfi_filtered (spaces, "cplus_stuff ");
3090       gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
3091       puts_filtered ("\n");
3092       print_cplus_stuff (type, spaces);
3093       break;
3094
3095     case TYPE_CODE_FLT:
3096       printfi_filtered (spaces, "floatformat ");
3097       if (TYPE_FLOATFORMAT (type) == NULL
3098           || TYPE_FLOATFORMAT (type)->name == NULL)
3099         puts_filtered ("(null)");
3100       else
3101         puts_filtered (TYPE_FLOATFORMAT (type)->name);
3102       puts_filtered ("\n");
3103       break;
3104
3105     default:
3106       /* We have to pick one of the union types to be able print and test
3107          the value.  Pick cplus_struct_type, even though we know it isn't
3108          any particular one. */
3109       printfi_filtered (spaces, "type_specific ");
3110       gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
3111       if (TYPE_CPLUS_SPECIFIC (type) != NULL)
3112         {
3113           printf_filtered (" (unknown data form)");
3114         }
3115       printf_filtered ("\n");
3116       break;
3117
3118     }
3119   if (spaces == 0)
3120     obstack_free (&dont_print_type_obstack, NULL);
3121 }
3122
3123 static void build_gdbtypes (void);
3124 static void
3125 build_gdbtypes (void)
3126 {
3127   builtin_type_void =
3128     init_type (TYPE_CODE_VOID, 1,
3129                0,
3130                "void", (struct objfile *) NULL);
3131   builtin_type_char =
3132     init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3133                (TYPE_FLAG_NOSIGN
3134                 | (TARGET_CHAR_SIGNED ? 0 : TYPE_FLAG_UNSIGNED)),
3135                "char", (struct objfile *) NULL);
3136   builtin_type_true_char =
3137     init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3138                0,
3139                "true character", (struct objfile *) NULL);
3140   builtin_type_signed_char =
3141     init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3142                0,
3143                "signed char", (struct objfile *) NULL);
3144   builtin_type_unsigned_char =
3145     init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3146                TYPE_FLAG_UNSIGNED,
3147                "unsigned char", (struct objfile *) NULL);
3148   builtin_type_short =
3149     init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3150                0,
3151                "short", (struct objfile *) NULL);
3152   builtin_type_unsigned_short =
3153     init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3154                TYPE_FLAG_UNSIGNED,
3155                "unsigned short", (struct objfile *) NULL);
3156   builtin_type_int =
3157     init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3158                0,
3159                "int", (struct objfile *) NULL);
3160   builtin_type_unsigned_int =
3161     init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3162                TYPE_FLAG_UNSIGNED,
3163                "unsigned int", (struct objfile *) NULL);
3164   builtin_type_long =
3165     init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3166                0,
3167                "long", (struct objfile *) NULL);
3168   builtin_type_unsigned_long =
3169     init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3170                TYPE_FLAG_UNSIGNED,
3171                "unsigned long", (struct objfile *) NULL);
3172   builtin_type_long_long =
3173     init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3174                0,
3175                "long long", (struct objfile *) NULL);
3176   builtin_type_unsigned_long_long =
3177     init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3178                TYPE_FLAG_UNSIGNED,
3179                "unsigned long long", (struct objfile *) NULL);
3180   builtin_type_float =
3181     init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3182                0,
3183                "float", (struct objfile *) NULL);
3184 /* vinschen@redhat.com 2002-02-08:
3185    The below lines are disabled since they are doing the wrong
3186    thing for non-multiarch targets.  They are setting the correct
3187    type of floats for the target but while on multiarch targets
3188    this is done everytime the architecture changes, it's done on
3189    non-multiarch targets only on startup, leaving the wrong values
3190    in even if the architecture changes (eg. from big-endian to
3191    little-endian).  */
3192 #if 0
3193   TYPE_FLOATFORMAT (builtin_type_float) = TARGET_FLOAT_FORMAT;
3194 #endif
3195   builtin_type_double =
3196     init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3197                0,
3198                "double", (struct objfile *) NULL);
3199 #if 0
3200   TYPE_FLOATFORMAT (builtin_type_double) = TARGET_DOUBLE_FORMAT;
3201 #endif
3202   builtin_type_long_double =
3203     init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
3204                0,
3205                "long double", (struct objfile *) NULL);
3206 #if 0
3207   TYPE_FLOATFORMAT (builtin_type_long_double) = TARGET_LONG_DOUBLE_FORMAT;
3208 #endif
3209   builtin_type_complex =
3210     init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3211                0,
3212                "complex", (struct objfile *) NULL);
3213   TYPE_TARGET_TYPE (builtin_type_complex) = builtin_type_float;
3214   builtin_type_double_complex =
3215     init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3216                0,
3217                "double complex", (struct objfile *) NULL);
3218   TYPE_TARGET_TYPE (builtin_type_double_complex) = builtin_type_double;
3219   builtin_type_string =
3220     init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3221                0,
3222                "string", (struct objfile *) NULL);
3223   builtin_type_bool =
3224     init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3225                0,
3226                "bool", (struct objfile *) NULL);
3227
3228   /* Add user knob for controlling resolution of opaque types */
3229   deprecated_add_show_from_set
3230     (add_set_cmd ("opaque-type-resolution", class_support, var_boolean, (char *) &opaque_type_resolution,
3231                   "Set resolution of opaque struct/class/union types (if set before loading symbols).",
3232                   &setlist),
3233      &showlist);
3234   opaque_type_resolution = 1;
3235
3236   /* Build SIMD types.  */
3237   builtin_type_v4sf
3238     = init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4);
3239   builtin_type_v4si
3240     = init_simd_type ("__builtin_v4si", builtin_type_int32, "f", 4);
3241   builtin_type_v16qi
3242     = init_simd_type ("__builtin_v16qi", builtin_type_int8, "f", 16);
3243   builtin_type_v8qi
3244     = init_simd_type ("__builtin_v8qi", builtin_type_int8, "f", 8);
3245   builtin_type_v8hi
3246     = init_simd_type ("__builtin_v8hi", builtin_type_int16, "f", 8);
3247   builtin_type_v4hi
3248     = init_simd_type ("__builtin_v4hi", builtin_type_int16, "f", 4);
3249   builtin_type_v2si
3250     = init_simd_type ("__builtin_v2si", builtin_type_int32, "f", 2);
3251
3252   /* 128 bit vectors.  */
3253   builtin_type_v2_double = init_vector_type (builtin_type_double, 2);
3254   builtin_type_v4_float = init_vector_type (builtin_type_float, 4);
3255   builtin_type_v2_int64 = init_vector_type (builtin_type_int64, 2);
3256   builtin_type_v4_int32 = init_vector_type (builtin_type_int32, 4);
3257   builtin_type_v8_int16 = init_vector_type (builtin_type_int16, 8);
3258   builtin_type_v16_int8 = init_vector_type (builtin_type_int8, 16);
3259   /* 64 bit vectors.  */
3260   builtin_type_v2_float = init_vector_type (builtin_type_float, 2);
3261   builtin_type_v2_int32 = init_vector_type (builtin_type_int32, 2);
3262   builtin_type_v4_int16 = init_vector_type (builtin_type_int16, 4);
3263   builtin_type_v8_int8 = init_vector_type (builtin_type_int8, 8);
3264
3265   /* Vector types.  */
3266   builtin_type_vec64 = build_builtin_type_vec64 ();
3267   builtin_type_vec64i = build_builtin_type_vec64i ();
3268   builtin_type_vec128 = build_builtin_type_vec128 ();
3269   builtin_type_vec128i = build_builtin_type_vec128i ();
3270
3271   /* Pointer/Address types. */
3272
3273   /* NOTE: on some targets, addresses and pointers are not necessarily
3274      the same --- for example, on the D10V, pointers are 16 bits long,
3275      but addresses are 32 bits long.  See doc/gdbint.texinfo,
3276      ``Pointers Are Not Always Addresses''.
3277
3278      The upshot is:
3279      - gdb's `struct type' always describes the target's
3280        representation.
3281      - gdb's `struct value' objects should always hold values in
3282        target form.
3283      - gdb's CORE_ADDR values are addresses in the unified virtual
3284        address space that the assembler and linker work with.  Thus,
3285        since target_read_memory takes a CORE_ADDR as an argument, it
3286        can access any memory on the target, even if the processor has
3287        separate code and data address spaces.
3288
3289      So, for example:
3290      - If v is a value holding a D10V code pointer, its contents are
3291        in target form: a big-endian address left-shifted two bits.
3292      - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3293        sizeof (void *) == 2 on the target.
3294
3295      In this context, builtin_type_CORE_ADDR is a bit odd: it's a
3296      target type for a value the target will never see.  It's only
3297      used to hold the values of (typeless) linker symbols, which are
3298      indeed in the unified virtual address space.  */
3299   builtin_type_void_data_ptr = make_pointer_type (builtin_type_void, NULL);
3300   builtin_type_void_func_ptr
3301     = lookup_pointer_type (lookup_function_type (builtin_type_void));
3302   builtin_type_CORE_ADDR =
3303     init_type (TYPE_CODE_INT, TARGET_ADDR_BIT / 8,
3304                TYPE_FLAG_UNSIGNED,
3305                "__CORE_ADDR", (struct objfile *) NULL);
3306   builtin_type_bfd_vma =
3307     init_type (TYPE_CODE_INT, TARGET_BFD_VMA_BIT / 8,
3308                TYPE_FLAG_UNSIGNED,
3309                "__bfd_vma", (struct objfile *) NULL);
3310 }
3311
3312 static struct gdbarch_data *gdbtypes_data;
3313
3314 const struct builtin_type *
3315 builtin_type (struct gdbarch *gdbarch)
3316 {
3317   return gdbarch_data (gdbarch, gdbtypes_data);
3318 }
3319
3320
3321 static struct type *
3322 build_flt (int bit, char *name, const struct floatformat *floatformat)
3323 {
3324   struct type *t;
3325   if (bit <= 0 || floatformat == NULL)
3326     {
3327       gdb_assert (builtin_type_error != NULL);
3328       return builtin_type_error;
3329     }
3330   t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT,
3331                  0, name, (struct objfile *) NULL);
3332   TYPE_FLOATFORMAT (t) = floatformat;
3333   return t;
3334 }
3335
3336 static struct type *
3337 build_complex (int bit, char *name, struct type *target_type)
3338 {
3339   struct type *t;
3340   if (bit <= 0 || target_type == builtin_type_error)
3341     {
3342       gdb_assert (builtin_type_error != NULL);
3343       return builtin_type_error;
3344     }
3345   t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3346                  0, name, (struct objfile *) NULL);
3347   TYPE_TARGET_TYPE (t) = target_type;
3348   return t;
3349 }
3350
3351 static void *
3352 gdbtypes_post_init (struct gdbarch *gdbarch)
3353 {
3354   struct builtin_type *builtin_type
3355     = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3356
3357   builtin_type->builtin_void =
3358     init_type (TYPE_CODE_VOID, 1,
3359                0,
3360                "void", (struct objfile *) NULL);
3361   builtin_type->builtin_char =
3362     init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3363                (TYPE_FLAG_NOSIGN
3364                 | (TARGET_CHAR_SIGNED ? 0 : TYPE_FLAG_UNSIGNED)),
3365                "char", (struct objfile *) NULL);
3366   builtin_type->builtin_true_char =
3367     init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3368                0,
3369                "true character", (struct objfile *) NULL);
3370   builtin_type->builtin_signed_char =
3371     init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3372                0,
3373                "signed char", (struct objfile *) NULL);
3374   builtin_type->builtin_unsigned_char =
3375     init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3376                TYPE_FLAG_UNSIGNED,
3377                "unsigned char", (struct objfile *) NULL);
3378   builtin_type->builtin_short =
3379     init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3380                0,
3381                "short", (struct objfile *) NULL);
3382   builtin_type->builtin_unsigned_short =
3383     init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3384                TYPE_FLAG_UNSIGNED,
3385                "unsigned short", (struct objfile *) NULL);
3386   builtin_type->builtin_int =
3387     init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3388                0,
3389                "int", (struct objfile *) NULL);
3390   builtin_type->builtin_unsigned_int =
3391     init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3392                TYPE_FLAG_UNSIGNED,
3393                "unsigned int", (struct objfile *) NULL);
3394   builtin_type->builtin_long =
3395     init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3396                0,
3397                "long", (struct objfile *) NULL);
3398   builtin_type->builtin_unsigned_long =
3399     init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3400                TYPE_FLAG_UNSIGNED,
3401                "unsigned long", (struct objfile *) NULL);
3402   builtin_type->builtin_long_long =
3403     init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3404                0,
3405                "long long", (struct objfile *) NULL);
3406   builtin_type->builtin_unsigned_long_long =
3407     init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3408                TYPE_FLAG_UNSIGNED,
3409                "unsigned long long", (struct objfile *) NULL);
3410   builtin_type->builtin_float
3411     = build_flt (gdbarch_float_bit (gdbarch), "float",
3412                  gdbarch_float_format (gdbarch));
3413   builtin_type->builtin_double
3414     = build_flt (gdbarch_double_bit (gdbarch), "double",
3415                  gdbarch_double_format (gdbarch));
3416   builtin_type->builtin_long_double
3417     = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3418                  gdbarch_long_double_format (gdbarch));
3419   builtin_type->builtin_complex
3420     = build_complex (gdbarch_float_bit (gdbarch), "complex",
3421                      builtin_type->builtin_float);
3422   builtin_type->builtin_double_complex
3423     = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3424                      builtin_type->builtin_double);
3425   builtin_type->builtin_string =
3426     init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3427                0,
3428                "string", (struct objfile *) NULL);
3429   builtin_type->builtin_bool =
3430     init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3431                0,
3432                "bool", (struct objfile *) NULL);
3433
3434   /* Pointer/Address types. */
3435
3436   /* NOTE: on some targets, addresses and pointers are not necessarily
3437      the same --- for example, on the D10V, pointers are 16 bits long,
3438      but addresses are 32 bits long.  See doc/gdbint.texinfo,
3439      ``Pointers Are Not Always Addresses''.
3440
3441      The upshot is:
3442      - gdb's `struct type' always describes the target's
3443        representation.
3444      - gdb's `struct value' objects should always hold values in
3445        target form.
3446      - gdb's CORE_ADDR values are addresses in the unified virtual
3447        address space that the assembler and linker work with.  Thus,
3448        since target_read_memory takes a CORE_ADDR as an argument, it
3449        can access any memory on the target, even if the processor has
3450        separate code and data address spaces.
3451
3452      So, for example:
3453      - If v is a value holding a D10V code pointer, its contents are
3454        in target form: a big-endian address left-shifted two bits.
3455      - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3456        sizeof (void *) == 2 on the target.
3457
3458      In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3459      target type for a value the target will never see.  It's only
3460      used to hold the values of (typeless) linker symbols, which are
3461      indeed in the unified virtual address space.  */
3462   builtin_type->builtin_data_ptr
3463     = make_pointer_type (builtin_type->builtin_void, NULL);
3464   builtin_type->builtin_func_ptr
3465     = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3466   builtin_type->builtin_core_addr =
3467     init_type (TYPE_CODE_INT, TARGET_ADDR_BIT / 8,
3468                TYPE_FLAG_UNSIGNED,
3469                "__CORE_ADDR", (struct objfile *) NULL);
3470
3471   return builtin_type;
3472 }
3473
3474 extern void _initialize_gdbtypes (void);
3475 void
3476 _initialize_gdbtypes (void)
3477 {
3478   struct cmd_list_element *c;
3479
3480   builtin_type_int0 =
3481     init_type (TYPE_CODE_INT, 0 / 8,
3482                0,
3483                "int0_t", (struct objfile *) NULL);
3484   builtin_type_int8 =
3485     init_type (TYPE_CODE_INT, 8 / 8,
3486                0,
3487                "int8_t", (struct objfile *) NULL);
3488   builtin_type_uint8 =
3489     init_type (TYPE_CODE_INT, 8 / 8,
3490                TYPE_FLAG_UNSIGNED,
3491                "uint8_t", (struct objfile *) NULL);
3492   builtin_type_int16 =
3493     init_type (TYPE_CODE_INT, 16 / 8,
3494                0,
3495                "int16_t", (struct objfile *) NULL);
3496   builtin_type_uint16 =
3497     init_type (TYPE_CODE_INT, 16 / 8,
3498                TYPE_FLAG_UNSIGNED,
3499                "uint16_t", (struct objfile *) NULL);
3500   builtin_type_int32 =
3501     init_type (TYPE_CODE_INT, 32 / 8,
3502                0,
3503                "int32_t", (struct objfile *) NULL);
3504   builtin_type_uint32 =
3505     init_type (TYPE_CODE_INT, 32 / 8,
3506                TYPE_FLAG_UNSIGNED,
3507                "uint32_t", (struct objfile *) NULL);
3508   builtin_type_int64 =
3509     init_type (TYPE_CODE_INT, 64 / 8,
3510                0,
3511                "int64_t", (struct objfile *) NULL);
3512   builtin_type_uint64 =
3513     init_type (TYPE_CODE_INT, 64 / 8,
3514                TYPE_FLAG_UNSIGNED,
3515                "uint64_t", (struct objfile *) NULL);
3516   builtin_type_int128 =
3517     init_type (TYPE_CODE_INT, 128 / 8,
3518                0,
3519                "int128_t", (struct objfile *) NULL);
3520   builtin_type_uint128 =
3521     init_type (TYPE_CODE_INT, 128 / 8,
3522                TYPE_FLAG_UNSIGNED,
3523                "uint128_t", (struct objfile *) NULL);
3524
3525   build_gdbtypes ();
3526
3527   gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3528
3529   /* FIXME - For the moment, handle types by swapping them in and out.
3530      Should be using the per-architecture data-pointer and a large
3531      struct. */
3532   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_void);
3533   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_char);
3534   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_short);
3535   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_int);
3536   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_long);
3537   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_long_long);
3538   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_signed_char);
3539   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_char);
3540   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_short);
3541   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_int);
3542   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_long);
3543   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_long_long);
3544   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_float);
3545   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_double);
3546   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_long_double);
3547   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_complex);
3548   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_double_complex);
3549   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_string);
3550   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4sf);
3551   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4si);
3552   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v16qi);
3553   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8qi);
3554   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8hi);
3555   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4hi);
3556   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2si);
3557   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_double);
3558   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4_float);
3559   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_int64);
3560   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4_int32);
3561   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8_int16);
3562   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v16_int8);
3563   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_float);
3564   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_int32);
3565   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8_int8);
3566   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4_int16);
3567   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_vec128);
3568   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_vec128i);
3569   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_void_data_ptr);
3570   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_void_func_ptr);
3571   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_CORE_ADDR);
3572   DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_bfd_vma);
3573   deprecated_register_gdbarch_swap (NULL, 0, build_gdbtypes);
3574
3575   /* Note: These types do not need to be swapped - they are target
3576      neutral.  */
3577   builtin_type_ieee_single_big =
3578     init_type (TYPE_CODE_FLT, floatformat_ieee_single_big.totalsize / 8,
3579                0, "builtin_type_ieee_single_big", NULL);
3580   TYPE_FLOATFORMAT (builtin_type_ieee_single_big) = &floatformat_ieee_single_big;
3581   builtin_type_ieee_single_little =
3582     init_type (TYPE_CODE_FLT, floatformat_ieee_single_little.totalsize / 8,
3583                0, "builtin_type_ieee_single_little", NULL);
3584   TYPE_FLOATFORMAT (builtin_type_ieee_single_little) = &floatformat_ieee_single_little;
3585   builtin_type_ieee_single[BFD_ENDIAN_BIG]
3586     = build_flt (floatformat_ieee_single_big.totalsize,
3587                  "builtin_type_ieee_single_big",
3588                  &floatformat_ieee_single_big);
3589   builtin_type_ieee_single[BFD_ENDIAN_LITTLE]
3590     = build_flt (floatformat_ieee_single_little.totalsize,
3591                  "builtin_type_ieee_single_little",
3592                  &floatformat_ieee_single_little);
3593   builtin_type_ieee_double_big =
3594     init_type (TYPE_CODE_FLT, floatformat_ieee_double_big.totalsize / 8,
3595                0, "builtin_type_ieee_double_big", NULL);
3596   TYPE_FLOATFORMAT (builtin_type_ieee_double_big) = &floatformat_ieee_double_big;
3597   builtin_type_ieee_double_little =
3598     init_type (TYPE_CODE_FLT, floatformat_ieee_double_little.totalsize / 8,
3599                0, "builtin_type_ieee_double_little", NULL);
3600   TYPE_FLOATFORMAT (builtin_type_ieee_double_little) = &floatformat_ieee_double_little;
3601   builtin_type_ieee_double[BFD_ENDIAN_BIG]
3602     = build_flt (floatformat_ieee_double_big.totalsize,
3603                  "builtin_type_ieee_double_big",
3604                  &floatformat_ieee_double_big);
3605   builtin_type_ieee_double[BFD_ENDIAN_LITTLE]
3606     = build_flt (floatformat_ieee_double_little.totalsize,
3607                  "builtin_type_ieee_double_little",
3608                  &floatformat_ieee_double_little);
3609   builtin_type_ieee_double_littlebyte_bigword =
3610     init_type (TYPE_CODE_FLT, floatformat_ieee_double_littlebyte_bigword.totalsize / 8,
3611                0, "builtin_type_ieee_double_littlebyte_bigword", NULL);
3612   TYPE_FLOATFORMAT (builtin_type_ieee_double_littlebyte_bigword) = &floatformat_ieee_double_littlebyte_bigword;
3613   builtin_type_i387_ext =
3614     init_type (TYPE_CODE_FLT, floatformat_i387_ext.totalsize / 8,
3615                0, "builtin_type_i387_ext", NULL);
3616   TYPE_FLOATFORMAT (builtin_type_i387_ext) = &floatformat_i387_ext;
3617   builtin_type_m68881_ext =
3618     init_type (TYPE_CODE_FLT, floatformat_m68881_ext.totalsize / 8,
3619                0, "builtin_type_m68881_ext", NULL);
3620   TYPE_FLOATFORMAT (builtin_type_m68881_ext) = &floatformat_m68881_ext;
3621   builtin_type_i960_ext =
3622     init_type (TYPE_CODE_FLT, floatformat_i960_ext.totalsize / 8,
3623                0, "builtin_type_i960_ext", NULL);
3624   TYPE_FLOATFORMAT (builtin_type_i960_ext) = &floatformat_i960_ext;
3625   builtin_type_m88110_ext =
3626     init_type (TYPE_CODE_FLT, floatformat_m88110_ext.totalsize / 8,
3627                0, "builtin_type_m88110_ext", NULL);
3628   TYPE_FLOATFORMAT (builtin_type_m88110_ext) = &floatformat_m88110_ext;
3629   builtin_type_m88110_harris_ext =
3630     init_type (TYPE_CODE_FLT, floatformat_m88110_harris_ext.totalsize / 8,
3631                0, "builtin_type_m88110_harris_ext", NULL);
3632   TYPE_FLOATFORMAT (builtin_type_m88110_harris_ext) = &floatformat_m88110_harris_ext;
3633   builtin_type_arm_ext_big =
3634     init_type (TYPE_CODE_FLT, floatformat_arm_ext_big.totalsize / 8,
3635                0, "builtin_type_arm_ext_big", NULL);
3636   TYPE_FLOATFORMAT (builtin_type_arm_ext_big) = &floatformat_arm_ext_big;
3637   builtin_type_arm_ext_littlebyte_bigword =
3638     init_type (TYPE_CODE_FLT, floatformat_arm_ext_littlebyte_bigword.totalsize / 8,
3639                0, "builtin_type_arm_ext_littlebyte_bigword", NULL);
3640   TYPE_FLOATFORMAT (builtin_type_arm_ext_littlebyte_bigword) = &floatformat_arm_ext_littlebyte_bigword;
3641   builtin_type_arm_ext[BFD_ENDIAN_BIG]
3642     = build_flt (floatformat_arm_ext_big.totalsize,
3643                  "builtin_type_arm_ext_big",
3644                  &floatformat_arm_ext_big);
3645   builtin_type_arm_ext[BFD_ENDIAN_LITTLE]
3646     = build_flt (floatformat_arm_ext_littlebyte_bigword.totalsize,
3647                  "builtin_type_arm_ext_littlebyte_bigword",
3648                  &floatformat_arm_ext_littlebyte_bigword);
3649   builtin_type_ia64_spill_big =
3650     init_type (TYPE_CODE_FLT, floatformat_ia64_spill_big.totalsize / 8,
3651                0, "builtin_type_ia64_spill_big", NULL);
3652   TYPE_FLOATFORMAT (builtin_type_ia64_spill_big) = &floatformat_ia64_spill_big;
3653   builtin_type_ia64_spill_little =
3654     init_type (TYPE_CODE_FLT, floatformat_ia64_spill_little.totalsize / 8,
3655                0, "builtin_type_ia64_spill_little", NULL);
3656   TYPE_FLOATFORMAT (builtin_type_ia64_spill_little) = &floatformat_ia64_spill_little;
3657   builtin_type_ia64_spill[BFD_ENDIAN_BIG]
3658     = build_flt (floatformat_ia64_spill_big.totalsize,
3659                  "builtin_type_ia64_spill_big",
3660                  &floatformat_ia64_spill_big);
3661   builtin_type_ia64_spill[BFD_ENDIAN_LITTLE]
3662     = build_flt (floatformat_ia64_spill_little.totalsize,
3663                  "builtin_type_ia64_spill_little",
3664                  &floatformat_ia64_spill_little);
3665   builtin_type_ia64_quad_big =
3666     init_type (TYPE_CODE_FLT, floatformat_ia64_quad_big.totalsize / 8,
3667                0, "builtin_type_ia64_quad_big", NULL);
3668   TYPE_FLOATFORMAT (builtin_type_ia64_quad_big) = &floatformat_ia64_quad_big;
3669   builtin_type_ia64_quad_little =
3670     init_type (TYPE_CODE_FLT, floatformat_ia64_quad_little.totalsize / 8,
3671                0, "builtin_type_ia64_quad_little", NULL);
3672   TYPE_FLOATFORMAT (builtin_type_ia64_quad_little) = &floatformat_ia64_quad_little;
3673   builtin_type_ia64_quad[BFD_ENDIAN_BIG]
3674     = build_flt (floatformat_ia64_quad_big.totalsize,
3675                  "builtin_type_ia64_quad_big",
3676                  &floatformat_ia64_quad_big);
3677   builtin_type_ia64_quad[BFD_ENDIAN_LITTLE]
3678     = build_flt (floatformat_ia64_quad_little.totalsize,
3679                  "builtin_type_ia64_quad_little",
3680                  &floatformat_ia64_quad_little);
3681
3682   deprecated_add_show_from_set
3683     (add_set_cmd ("overload", no_class, var_zinteger, (char *) &overload_debug,
3684                   "Set debugging of C++ overloading.\n\
3685 When enabled, ranking of the functions is displayed.", &setdebuglist),
3686      &showdebuglist);
3687 }