1 /* Machine independent variables that describe the core file under GDB.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Interface routines for core, executable, etc. */
22 #if !defined (GDBCORE_H)
32 /* Nonzero if there is a core file. */
34 extern int have_core_file_p (void);
36 /* Report a memory error with error(). */
38 extern void memory_error (enum target_xfer_status status, CORE_ADDR memaddr);
40 /* The string 'memory_error' would use as exception message. */
42 extern std::string memory_error_message (enum target_xfer_status err,
43 struct gdbarch *gdbarch,
46 /* Like target_read_memory, but report an error if can't read. */
48 extern void read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
50 /* Like target_read_stack, but report an error if can't read. */
52 extern void read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
54 /* Like target_read_code, but report an error if can't read. */
56 extern void read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
58 /* Read an integer from debugged memory, given address and number of
61 extern LONGEST read_memory_integer (CORE_ADDR memaddr,
62 int len, enum bfd_endian byte_order);
63 extern int safe_read_memory_integer (CORE_ADDR memaddr, int len,
64 enum bfd_endian byte_order,
65 LONGEST *return_value);
67 /* Read an unsigned integer from debugged memory, given address and
70 extern ULONGEST read_memory_unsigned_integer (CORE_ADDR memaddr,
72 enum bfd_endian byte_order);
73 extern int safe_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
74 enum bfd_endian byte_order,
75 ULONGEST *return_value);
77 /* Read an integer from debugged code memory, given address,
78 number of bytes, and byte order for code. */
80 extern LONGEST read_code_integer (CORE_ADDR memaddr, int len,
81 enum bfd_endian byte_order);
83 /* Read an unsigned integer from debugged code memory, given address,
84 number of bytes, and byte order for code. */
86 extern ULONGEST read_code_unsigned_integer (CORE_ADDR memaddr,
88 enum bfd_endian byte_order);
90 /* Read a null-terminated string from the debuggee's memory, given
91 address, a buffer into which to place the string, and the maximum
94 extern void read_memory_string (CORE_ADDR, char *, int);
96 /* Read the pointer of type TYPE at ADDR, and return the address it
99 CORE_ADDR read_memory_typed_address (CORE_ADDR addr, struct type *type);
101 /* Same as target_write_memory, but report an error if can't
104 extern void write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
107 /* Same as write_memory, but notify 'memory_changed' observers. */
109 extern void write_memory_with_notification (CORE_ADDR memaddr,
110 const bfd_byte *myaddr,
113 /* Store VALUE at ADDR in the inferior as a LEN-byte unsigned integer. */
114 extern void write_memory_unsigned_integer (CORE_ADDR addr, int len,
115 enum bfd_endian byte_order,
118 /* Store VALUE at ADDR in the inferior as a LEN-byte unsigned integer. */
119 extern void write_memory_signed_integer (CORE_ADDR addr, int len,
120 enum bfd_endian byte_order,
123 /* Hook for `exec_file_command' command to call. */
125 extern void (*deprecated_exec_file_display_hook) (const char *filename);
127 /* Hook for "file_command", which is more useful than above
128 (because it is invoked AFTER symbols are read, not before). */
130 extern void (*deprecated_file_changed_hook) (const char *filename);
132 extern void specify_exec_file_hook (void (*hook) (const char *filename));
134 /* Binary File Diddler for the core file. */
136 #define core_bfd (current_program_space->cbfd.get ())
138 /* Whether to open exec and core files read-only or read-write. */
140 extern int write_files;
142 /* Open and set up the core file bfd. */
144 extern void core_target_open (const char *arg, int from_tty);
146 extern void core_file_command (const char *filename, int from_tty);
148 extern void exec_file_attach (const char *filename, int from_tty);
150 /* If the filename of the main executable is unknown, attempt to
151 determine it. If a filename is determined, proceed as though
152 it was just specified with the "file" command. Do nothing if
153 the filename of the main executable is already known.
154 DEFER_BP_RESET uses SYMFILE_DEFER_BP_RESET for the main symbol file. */
156 extern void exec_file_locate_attach (int pid, int defer_bp_reset, int from_tty);
158 extern void validate_files (void);
160 /* The current default bfd target. */
162 extern char *gnutarget;
164 extern void set_gnutarget (const char *);
166 /* Structure to keep track of core register reading functions for
167 various core file types. */
172 /* BFD flavour that a core file handler is prepared to read. This
173 can be used by the handler's core tasting function as a first
174 level filter to reject BFD's that don't have the right
177 enum bfd_flavour core_flavour;
179 /* Core file handler function to call to recognize corefile
180 formats that BFD rejects. Some core file format just don't fit
181 into the BFD model, or may require other resources to identify
182 them, that simply aren't available to BFD (such as symbols from
183 another file). Returns nonzero if the handler recognizes the
184 format, zero otherwise. */
186 int (*check_format) (bfd *);
188 /* Core file handler function to call to ask if it can handle a
189 given core file format or not. Returns zero if it can't,
190 nonzero otherwise. */
192 int (*core_sniffer) (struct core_fns *, bfd *);
194 /* Extract the register values out of the core file and supply them
197 CORE_REG_SECT points to the register values themselves, read into
200 CORE_REG_SIZE is the size of that area.
202 WHICH says which set of registers we are handling:
203 0 --- integer registers
204 2 --- floating-point registers, on machines where they are
206 3 --- extended floating-point registers, on machines where
207 these are present in yet a third area. (GNU/Linux uses
208 this to get at the SSE registers.)
210 REG_ADDR is the offset from u.u_ar0 to the register values relative to
211 core_reg_sect. This is used with old-fashioned core files to locate the
212 registers in a large upage-plus-stack ".reg" section. Original upage
213 address X is at location core_reg_sect+x+reg_addr. */
215 void (*core_read_registers) (struct regcache *regcache,
217 unsigned core_reg_size,
218 int which, CORE_ADDR reg_addr);
220 /* Finds the next struct core_fns. They are allocated and
221 initialized in whatever module implements the functions pointed
222 to; an initializer calls deprecated_add_core_fns to add them to
225 struct core_fns *next;
229 /* Build either a single-thread or multi-threaded section name for
232 If ptid's lwp member is zero, we want to do the single-threaded
233 thing: look for a section named NAME (as passed to the
234 constructor). If ptid's lwp member is non-zero, we'll want do the
235 multi-threaded thing: look for a section named "NAME/LWP", where
236 LWP is the shortest ASCII decimal representation of ptid's lwp
239 class thread_section_name
242 /* NAME is the single-threaded section name. If PTID represents an
243 LWP, then the build section name is "NAME/LWP", otherwise it's
244 just "NAME" unmodified. */
245 thread_section_name (const char *name, ptid_t ptid)
249 m_storage = string_printf ("%s/%ld", name, ptid.lwp ());
250 m_section_name = m_storage.c_str ();
253 m_section_name = name;
256 /* Return the computed section name. The result is valid as long as
257 this thread_section_name object is live. */
258 const char *c_str () const
259 { return m_section_name; }
261 DISABLE_COPY_AND_ASSIGN (thread_section_name);
264 /* Either a pointer into M_STORAGE, or a pointer to the name passed
265 as parameter to the constructor. */
266 const char *m_section_name;
267 /* If we need to build a new section name, this is where we store
269 std::string m_storage;
272 /* NOTE: cagney/2004-04-05: Replaced by "regset.h" and
273 regset_from_core_section(). */
274 extern void deprecated_add_core_fns (struct core_fns *cf);
275 extern int default_core_sniffer (struct core_fns *cf, bfd * abfd);
276 extern int default_check_format (bfd * abfd);
278 #endif /* !defined (GDBCORE_H) */