* defs.h (extract_signed_integer, extract_unsigned_integer,
[external/binutils.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program.  If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31     file=$1
32     if test ! -r ${file}
33     then
34         echo "${file} missing? cp new-${file} ${file}" 1>&2
35     elif diff -u ${file} new-${file}
36     then
37         echo "${file} unchanged" 1>&2
38     else
39         echo "${file} has changed? cp new-${file} ${file}" 1>&2
40     fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49     comment=""
50     class=""
51     while read line
52     do
53         if test "${line}" = ""
54         then
55             continue
56         elif test "${line}" = "#" -a "${comment}" = ""
57         then
58             continue
59         elif expr "${line}" : "#" > /dev/null
60         then
61             comment="${comment}
62 ${line}"
63         else
64
65             # The semantics of IFS varies between different SH's.  Some
66             # treat ``::' as three fields while some treat it as just too.
67             # Work around this by eliminating ``::'' ....
68             line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70             OFS="${IFS}" ; IFS="[:]"
71             eval read ${read} <<EOF
72 ${line}
73 EOF
74             IFS="${OFS}"
75
76             if test -n "${garbage_at_eol}"
77             then
78                 echo "Garbage at end-of-line in ${line}" 1>&2
79                 kill $$
80                 exit 1
81             fi
82
83             # .... and then going back through each field and strip out those
84             # that ended up with just that space character.
85             for r in ${read}
86             do
87                 if eval test \"\${${r}}\" = \"\ \"
88                 then
89                     eval ${r}=""
90                 fi
91             done
92
93             case "${class}" in
94                 m ) staticdefault="${predefault}" ;;
95                 M ) staticdefault="0" ;;
96                 * ) test "${staticdefault}" || staticdefault=0 ;;
97             esac
98
99             case "${class}" in
100             F | V | M )
101                 case "${invalid_p}" in
102                 "" )
103                     if test -n "${predefault}"
104                     then
105                         #invalid_p="gdbarch->${function} == ${predefault}"
106                         predicate="gdbarch->${function} != ${predefault}"
107                     elif class_is_variable_p
108                     then
109                         predicate="gdbarch->${function} != 0"
110                     elif class_is_function_p
111                     then
112                         predicate="gdbarch->${function} != NULL"
113                     fi
114                     ;;
115                 * )
116                     echo "Predicate function ${function} with invalid_p." 1>&2
117                     kill $$
118                     exit 1
119                     ;;
120                 esac
121             esac
122
123             # PREDEFAULT is a valid fallback definition of MEMBER when
124             # multi-arch is not enabled.  This ensures that the
125             # default value, when multi-arch is the same as the
126             # default value when not multi-arch.  POSTDEFAULT is
127             # always a valid definition of MEMBER as this again
128             # ensures consistency.
129
130             if [ -n "${postdefault}" ]
131             then
132                 fallbackdefault="${postdefault}"
133             elif [ -n "${predefault}" ]
134             then
135                 fallbackdefault="${predefault}"
136             else
137                 fallbackdefault="0"
138             fi
139
140             #NOT YET: See gdbarch.log for basic verification of
141             # database
142
143             break
144         fi
145     done
146     if [ -n "${class}" ]
147     then
148         true
149     else
150         false
151     fi
152 }
153
154
155 fallback_default_p ()
156 {
157     [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158         || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163     case "${class}" in
164         *v* | *V* ) true ;;
165         * ) false ;;
166     esac
167 }
168
169 class_is_function_p ()
170 {
171     case "${class}" in
172         *f* | *F* | *m* | *M* ) true ;;
173         * ) false ;;
174     esac
175 }
176
177 class_is_multiarch_p ()
178 {
179     case "${class}" in
180         *m* | *M* ) true ;;
181         * ) false ;;
182     esac
183 }
184
185 class_is_predicate_p ()
186 {
187     case "${class}" in
188         *F* | *V* | *M* ) true ;;
189         * ) false ;;
190     esac
191 }
192
193 class_is_info_p ()
194 {
195     case "${class}" in
196         *i* ) true ;;
197         * ) false ;;
198     esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205   case ${field} in
206
207     class ) : ;;
208
209         # # -> line disable
210         # f -> function
211         #   hiding a function
212         # F -> function + predicate
213         #   hiding a function + predicate to test function validity
214         # v -> variable
215         #   hiding a variable
216         # V -> variable + predicate
217         #   hiding a variable + predicate to test variables validity
218         # i -> set from info
219         #   hiding something from the ``struct info'' object
220         # m -> multi-arch function
221         #   hiding a multi-arch function (parameterised with the architecture)
222         # M -> multi-arch function + predicate
223         #   hiding a multi-arch function + predicate to test function validity
224
225     returntype ) : ;;
226
227         # For functions, the return type; for variables, the data type
228
229     function ) : ;;
230
231         # For functions, the member function name; for variables, the
232         # variable name.  Member function names are always prefixed with
233         # ``gdbarch_'' for name-space purity.
234
235     formal ) : ;;
236
237         # The formal argument list.  It is assumed that the formal
238         # argument list includes the actual name of each list element.
239         # A function with no arguments shall have ``void'' as the
240         # formal argument list.
241
242     actual ) : ;;
243
244         # The list of actual arguments.  The arguments specified shall
245         # match the FORMAL list given above.  Functions with out
246         # arguments leave this blank.
247
248     staticdefault ) : ;;
249
250         # To help with the GDB startup a static gdbarch object is
251         # created.  STATICDEFAULT is the value to insert into that
252         # static gdbarch object.  Since this a static object only
253         # simple expressions can be used.
254
255         # If STATICDEFAULT is empty, zero is used.
256
257     predefault ) : ;;
258
259         # An initial value to assign to MEMBER of the freshly
260         # malloc()ed gdbarch object.  After initialization, the
261         # freshly malloc()ed object is passed to the target
262         # architecture code for further updates.
263
264         # If PREDEFAULT is empty, zero is used.
265
266         # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267         # INVALID_P are specified, PREDEFAULT will be used as the
268         # default for the non- multi-arch target.
269
270         # A zero PREDEFAULT function will force the fallback to call
271         # internal_error().
272
273         # Variable declarations can refer to ``gdbarch'' which will
274         # contain the current architecture.  Care should be taken.
275
276     postdefault ) : ;;
277
278         # A value to assign to MEMBER of the new gdbarch object should
279         # the target architecture code fail to change the PREDEFAULT
280         # value.
281
282         # If POSTDEFAULT is empty, no post update is performed.
283
284         # If both INVALID_P and POSTDEFAULT are non-empty then
285         # INVALID_P will be used to determine if MEMBER should be
286         # changed to POSTDEFAULT.
287
288         # If a non-empty POSTDEFAULT and a zero INVALID_P are
289         # specified, POSTDEFAULT will be used as the default for the
290         # non- multi-arch target (regardless of the value of
291         # PREDEFAULT).
292
293         # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295         # Variable declarations can refer to ``gdbarch'' which
296         # will contain the current architecture.  Care should be
297         # taken.
298
299     invalid_p ) : ;;
300
301         # A predicate equation that validates MEMBER.  Non-zero is
302         # returned if the code creating the new architecture failed to
303         # initialize MEMBER or the initialized the member is invalid.
304         # If POSTDEFAULT is non-empty then MEMBER will be updated to
305         # that value.  If POSTDEFAULT is empty then internal_error()
306         # is called.
307
308         # If INVALID_P is empty, a check that MEMBER is no longer
309         # equal to PREDEFAULT is used.
310
311         # The expression ``0'' disables the INVALID_P check making
312         # PREDEFAULT a legitimate value.
313
314         # See also PREDEFAULT and POSTDEFAULT.
315
316     print ) : ;;
317
318         # An optional expression that convers MEMBER to a value
319         # suitable for formatting using %s.
320
321         # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322         # or plongest (anything else) is used.
323
324     garbage_at_eol ) : ;;
325
326         # Catches stray fields.
327
328     *)
329         echo "Bad field ${field}"
330         exit 1;;
331   esac
332 done
333
334
335 function_list ()
336 {
337   # See below (DOCO) for description of each field
338   cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such.  Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double".  These bit/format pairs should eventually be combined into
368 # a single object.  For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same".  For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer.  FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers.  These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture.  Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo.  See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number.  See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE.  The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE.  FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register.  This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter.  gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register.  Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base.  Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes.  gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts.  It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two.  A target method that
538 # indicates if the target needs software single step.  An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards.  It should be asking if the
546 # target can single step.  If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints 
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler.  Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed.  This mostly happens
570 # as the first action in a funtion's epilogue.  in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr.  Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
580 v:int:cannot_step_breakpoint:::0:0::0
581 v:int:have_nonsteppable_watchpoint:::0:0::0
582 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
585 # Is a register in a group
586 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
587 # Fetch the pointer to the ith function argument.
588 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
589
590 # Return the appropriate register set for a core file section with
591 # name SECT_NAME and size SECT_SIZE.
592 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
593
594 # When creating core dumps, some systems encode the PID in addition
595 # to the LWP id in core file register section names.  In those cases, the
596 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID].  This setting
597 # is set to true for such architectures; false if "XXX" represents an LWP
598 # or thread id with no special encoding.
599 v:int:core_reg_section_encodes_pid:::0:0::0
600
601 # Supported register notes in a core file.
602 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
604 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605 # core file into buffer READBUF with length LEN.
606 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
607
608 # How the core_stratum layer converts a PTID from a core file to a
609 # string.
610 M:char *:core_pid_to_str:ptid_t ptid:ptid
611
612 # BFD target to use when generating a core file.
613 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
615 # If the elements of C++ vtables are in-place function descriptors rather
616 # than normal function pointers (which may point to code or a descriptor),
617 # set this to one.
618 v:int:vtable_function_descriptors:::0:0::0
619
620 # Set if the least significant bit of the delta is used instead of the least
621 # significant bit of the pfn for pointers to virtual member functions.
622 v:int:vbit_in_delta:::0:0::0
623
624 # Advance PC to next instruction in order to skip a permanent breakpoint.
625 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
626
627 # The maximum length of an instruction on this architecture.
628 V:ULONGEST:max_insn_length:::0:0
629
630 # Copy the instruction at FROM to TO, and make any adjustments
631 # necessary to single-step it at that address.
632 #
633 # REGS holds the state the thread's registers will have before
634 # executing the copied instruction; the PC in REGS will refer to FROM,
635 # not the copy at TO.  The caller should update it to point at TO later.
636 #
637 # Return a pointer to data of the architecture's choice to be passed
638 # to gdbarch_displaced_step_fixup.  Or, return NULL to indicate that
639 # the instruction's effects have been completely simulated, with the
640 # resulting state written back to REGS.
641 #
642 # For a general explanation of displaced stepping and how GDB uses it,
643 # see the comments in infrun.c.
644 #
645 # The TO area is only guaranteed to have space for
646 # gdbarch_max_insn_length (arch) bytes, so this function must not
647 # write more bytes than that to that area.
648 #
649 # If you do not provide this function, GDB assumes that the
650 # architecture does not support displaced stepping.
651 #
652 # If your architecture doesn't need to adjust instructions before
653 # single-stepping them, consider using simple_displaced_step_copy_insn
654 # here.
655 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
657 # Fix up the state resulting from successfully single-stepping a
658 # displaced instruction, to give the result we would have gotten from
659 # stepping the instruction in its original location.
660 #
661 # REGS is the register state resulting from single-stepping the
662 # displaced instruction.
663 #
664 # CLOSURE is the result from the matching call to
665 # gdbarch_displaced_step_copy_insn.
666 #
667 # If you provide gdbarch_displaced_step_copy_insn.but not this
668 # function, then GDB assumes that no fixup is needed after
669 # single-stepping the instruction.
670 #
671 # For a general explanation of displaced stepping and how GDB uses it,
672 # see the comments in infrun.c.
673 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
674
675 # Free a closure returned by gdbarch_displaced_step_copy_insn.
676 #
677 # If you provide gdbarch_displaced_step_copy_insn, you must provide
678 # this function as well.
679 #
680 # If your architecture uses closures that don't need to be freed, then
681 # you can use simple_displaced_step_free_closure here.
682 #
683 # For a general explanation of displaced stepping and how GDB uses it,
684 # see the comments in infrun.c.
685 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
686
687 # Return the address of an appropriate place to put displaced
688 # instructions while we step over them.  There need only be one such
689 # place, since we're only stepping one thread over a breakpoint at a
690 # time.
691 #
692 # For a general explanation of displaced stepping and how GDB uses it,
693 # see the comments in infrun.c.
694 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
695
696 # Refresh overlay mapped state for section OSECT.
697 F:void:overlay_update:struct obj_section *osect:osect
698
699 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
700
701 # Handle special encoding of static variables in stabs debug info.
702 F:char *:static_transform_name:char *name:name
703 # Set if the address in N_SO or N_FUN stabs may be zero.
704 v:int:sofun_address_maybe_missing:::0:0::0
705
706 # Parse the instruction at ADDR storing in the record execution log
707 # the registers REGCACHE and memory ranges that will be affected when
708 # the instruction executes, along with their current values.
709 # Return -1 if something goes wrong, 0 otherwise.
710 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
711
712 # Signal translation: translate inferior's signal (host's) number into
713 # GDB's representation.
714 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
715 # Signal translation: translate GDB's signal number into inferior's host
716 # signal number.
717 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
718
719 # Extra signal info inspection.
720 #
721 # Return a type suitable to inspect extra signal information.
722 M:struct type *:get_siginfo_type:void:
723
724 # Record architecture-specific information from the symbol table.
725 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
726
727 # True if the list of shared libraries is one and only for all
728 # processes, as opposed to a list of shared libraries per inferior.
729 # This usually means that all processes, although may or may not share
730 # an address space, will see the same set of symbols at the same
731 # addresses.
732 v:int:has_global_solist:::0:0::0
733
734 # On some targets, even though each inferior has its own private
735 # address space, the debug interface takes care of making breakpoints
736 # visible to all address spaces automatically.  For such cases,
737 # this property should be set to true.
738 v:int:has_global_breakpoints:::0:0::0
739 EOF
740 }
741
742 #
743 # The .log file
744 #
745 exec > new-gdbarch.log
746 function_list | while do_read
747 do
748     cat <<EOF
749 ${class} ${returntype} ${function} ($formal)
750 EOF
751     for r in ${read}
752     do
753         eval echo \"\ \ \ \ ${r}=\${${r}}\"
754     done
755     if class_is_predicate_p && fallback_default_p
756     then
757         echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
758         kill $$
759         exit 1
760     fi
761     if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
762     then
763         echo "Error: postdefault is useless when invalid_p=0" 1>&2
764         kill $$
765         exit 1
766     fi
767     if class_is_multiarch_p
768     then
769         if class_is_predicate_p ; then :
770         elif test "x${predefault}" = "x"
771         then
772             echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
773             kill $$
774             exit 1
775         fi
776     fi
777     echo ""
778 done
779
780 exec 1>&2
781 compare_new gdbarch.log
782
783
784 copyright ()
785 {
786 cat <<EOF
787 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
788
789 /* Dynamic architecture support for GDB, the GNU debugger.
790
791    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
792    Free Software Foundation, Inc.
793
794    This file is part of GDB.
795
796    This program is free software; you can redistribute it and/or modify
797    it under the terms of the GNU General Public License as published by
798    the Free Software Foundation; either version 3 of the License, or
799    (at your option) any later version.
800   
801    This program is distributed in the hope that it will be useful,
802    but WITHOUT ANY WARRANTY; without even the implied warranty of
803    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
804    GNU General Public License for more details.
805   
806    You should have received a copy of the GNU General Public License
807    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
808
809 /* This file was created with the aid of \`\`gdbarch.sh''.
810
811    The Bourne shell script \`\`gdbarch.sh'' creates the files
812    \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
813    against the existing \`\`gdbarch.[hc]''.  Any differences found
814    being reported.
815
816    If editing this file, please also run gdbarch.sh and merge any
817    changes into that script. Conversely, when making sweeping changes
818    to this file, modifying gdbarch.sh and using its output may prove
819    easier. */
820
821 EOF
822 }
823
824 #
825 # The .h file
826 #
827
828 exec > new-gdbarch.h
829 copyright
830 cat <<EOF
831 #ifndef GDBARCH_H
832 #define GDBARCH_H
833
834 struct floatformat;
835 struct ui_file;
836 struct frame_info;
837 struct value;
838 struct objfile;
839 struct obj_section;
840 struct minimal_symbol;
841 struct regcache;
842 struct reggroup;
843 struct regset;
844 struct disassemble_info;
845 struct target_ops;
846 struct obstack;
847 struct bp_target_info;
848 struct target_desc;
849 struct displaced_step_closure;
850 struct core_regset_section;
851
852 extern struct gdbarch *current_gdbarch;
853
854 /* The architecture associated with the connection to the target.
855  
856    The architecture vector provides some information that is really
857    a property of the target: The layout of certain packets, for instance;
858    or the solib_ops vector.  Etc.  To differentiate architecture accesses
859    to per-target properties from per-thread/per-frame/per-objfile properties,
860    accesses to per-target properties should be made through target_gdbarch.
861
862    Eventually, when support for multiple targets is implemented in
863    GDB, this global should be made target-specific.  */
864 extern struct gdbarch *target_gdbarch;
865 EOF
866
867 # function typedef's
868 printf "\n"
869 printf "\n"
870 printf "/* The following are pre-initialized by GDBARCH. */\n"
871 function_list | while do_read
872 do
873     if class_is_info_p
874     then
875         printf "\n"
876         printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
877         printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
878     fi
879 done
880
881 # function typedef's
882 printf "\n"
883 printf "\n"
884 printf "/* The following are initialized by the target dependent code. */\n"
885 function_list | while do_read
886 do
887     if [ -n "${comment}" ]
888     then
889         echo "${comment}" | sed \
890             -e '2 s,#,/*,' \
891             -e '3,$ s,#,  ,' \
892             -e '$ s,$, */,'
893     fi
894
895     if class_is_predicate_p
896     then
897         printf "\n"
898         printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
899     fi
900     if class_is_variable_p
901     then
902         printf "\n"
903         printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
904         printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
905     fi
906     if class_is_function_p
907     then
908         printf "\n"
909         if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
910         then
911             printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
912         elif class_is_multiarch_p
913         then
914             printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
915         else
916             printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
917         fi
918         if [ "x${formal}" = "xvoid" ]
919         then
920           printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
921         else
922           printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
923         fi
924         printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
925     fi
926 done
927
928 # close it off
929 cat <<EOF
930
931 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
932
933
934 /* Mechanism for co-ordinating the selection of a specific
935    architecture.
936
937    GDB targets (*-tdep.c) can register an interest in a specific
938    architecture.  Other GDB components can register a need to maintain
939    per-architecture data.
940
941    The mechanisms below ensures that there is only a loose connection
942    between the set-architecture command and the various GDB
943    components.  Each component can independently register their need
944    to maintain architecture specific data with gdbarch.
945
946    Pragmatics:
947
948    Previously, a single TARGET_ARCHITECTURE_HOOK was provided.  It
949    didn't scale.
950
951    The more traditional mega-struct containing architecture specific
952    data for all the various GDB components was also considered.  Since
953    GDB is built from a variable number of (fairly independent)
954    components it was determined that the global aproach was not
955    applicable. */
956
957
958 /* Register a new architectural family with GDB.
959
960    Register support for the specified ARCHITECTURE with GDB.  When
961    gdbarch determines that the specified architecture has been
962    selected, the corresponding INIT function is called.
963
964    --
965
966    The INIT function takes two parameters: INFO which contains the
967    information available to gdbarch about the (possibly new)
968    architecture; ARCHES which is a list of the previously created
969    \`\`struct gdbarch'' for this architecture.
970
971    The INFO parameter is, as far as possible, be pre-initialized with
972    information obtained from INFO.ABFD or the global defaults.
973
974    The ARCHES parameter is a linked list (sorted most recently used)
975    of all the previously created architures for this architecture
976    family.  The (possibly NULL) ARCHES->gdbarch can used to access
977    values from the previously selected architecture for this
978    architecture family.  The global \`\`current_gdbarch'' shall not be
979    used.
980
981    The INIT function shall return any of: NULL - indicating that it
982    doesn't recognize the selected architecture; an existing \`\`struct
983    gdbarch'' from the ARCHES list - indicating that the new
984    architecture is just a synonym for an earlier architecture (see
985    gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
986    - that describes the selected architecture (see gdbarch_alloc()).
987
988    The DUMP_TDEP function shall print out all target specific values.
989    Care should be taken to ensure that the function works in both the
990    multi-arch and non- multi-arch cases. */
991
992 struct gdbarch_list
993 {
994   struct gdbarch *gdbarch;
995   struct gdbarch_list *next;
996 };
997
998 struct gdbarch_info
999 {
1000   /* Use default: NULL (ZERO). */
1001   const struct bfd_arch_info *bfd_arch_info;
1002
1003   /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO).  */
1004   int byte_order;
1005
1006   int byte_order_for_code;
1007
1008   /* Use default: NULL (ZERO). */
1009   bfd *abfd;
1010
1011   /* Use default: NULL (ZERO). */
1012   struct gdbarch_tdep_info *tdep_info;
1013
1014   /* Use default: GDB_OSABI_UNINITIALIZED (-1).  */
1015   enum gdb_osabi osabi;
1016
1017   /* Use default: NULL (ZERO).  */
1018   const struct target_desc *target_desc;
1019 };
1020
1021 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1022 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1023
1024 /* DEPRECATED - use gdbarch_register() */
1025 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1026
1027 extern void gdbarch_register (enum bfd_architecture architecture,
1028                               gdbarch_init_ftype *,
1029                               gdbarch_dump_tdep_ftype *);
1030
1031
1032 /* Return a freshly allocated, NULL terminated, array of the valid
1033    architecture names.  Since architectures are registered during the
1034    _initialize phase this function only returns useful information
1035    once initialization has been completed. */
1036
1037 extern const char **gdbarch_printable_names (void);
1038
1039
1040 /* Helper function.  Search the list of ARCHES for a GDBARCH that
1041    matches the information provided by INFO. */
1042
1043 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1044
1045
1046 /* Helper function.  Create a preliminary \`\`struct gdbarch''.  Perform
1047    basic initialization using values obtained from the INFO and TDEP
1048    parameters.  set_gdbarch_*() functions are called to complete the
1049    initialization of the object. */
1050
1051 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1052
1053
1054 /* Helper function.  Free a partially-constructed \`\`struct gdbarch''.
1055    It is assumed that the caller freeds the \`\`struct
1056    gdbarch_tdep''. */
1057
1058 extern void gdbarch_free (struct gdbarch *);
1059
1060
1061 /* Helper function.  Allocate memory from the \`\`struct gdbarch''
1062    obstack.  The memory is freed when the corresponding architecture
1063    is also freed.  */
1064
1065 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1066 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1067 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1068
1069
1070 /* Helper function. Force an update of the current architecture.
1071
1072    The actual architecture selected is determined by INFO, \`\`(gdb) set
1073    architecture'' et.al., the existing architecture and BFD's default
1074    architecture.  INFO should be initialized to zero and then selected
1075    fields should be updated.
1076
1077    Returns non-zero if the update succeeds */
1078
1079 extern int gdbarch_update_p (struct gdbarch_info info);
1080
1081
1082 /* Helper function.  Find an architecture matching info.
1083
1084    INFO should be initialized using gdbarch_info_init, relevant fields
1085    set, and then finished using gdbarch_info_fill.
1086
1087    Returns the corresponding architecture, or NULL if no matching
1088    architecture was found.  "current_gdbarch" is not updated.  */
1089
1090 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1091
1092
1093 /* Helper function.  Set the global "current_gdbarch" to "gdbarch".
1094
1095    FIXME: kettenis/20031124: Of the functions that follow, only
1096    gdbarch_from_bfd is supposed to survive.  The others will
1097    dissappear since in the future GDB will (hopefully) be truly
1098    multi-arch.  However, for now we're still stuck with the concept of
1099    a single active architecture.  */
1100
1101 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1102
1103
1104 /* Register per-architecture data-pointer.
1105
1106    Reserve space for a per-architecture data-pointer.  An identifier
1107    for the reserved data-pointer is returned.  That identifer should
1108    be saved in a local static variable.
1109
1110    Memory for the per-architecture data shall be allocated using
1111    gdbarch_obstack_zalloc.  That memory will be deleted when the
1112    corresponding architecture object is deleted.
1113
1114    When a previously created architecture is re-selected, the
1115    per-architecture data-pointer for that previous architecture is
1116    restored.  INIT() is not re-called.
1117
1118    Multiple registrarants for any architecture are allowed (and
1119    strongly encouraged).  */
1120
1121 struct gdbarch_data;
1122
1123 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1124 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1125 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1126 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1127 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1128                                          struct gdbarch_data *data,
1129                                          void *pointer);
1130
1131 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1132
1133
1134 /* Set the dynamic target-system-dependent parameters (architecture,
1135    byte-order, ...) using information found in the BFD */
1136
1137 extern void set_gdbarch_from_file (bfd *);
1138
1139
1140 /* Initialize the current architecture to the "first" one we find on
1141    our list.  */
1142
1143 extern void initialize_current_architecture (void);
1144
1145 /* gdbarch trace variable */
1146 extern int gdbarch_debug;
1147
1148 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1149
1150 #endif
1151 EOF
1152 exec 1>&2
1153 #../move-if-change new-gdbarch.h gdbarch.h
1154 compare_new gdbarch.h
1155
1156
1157 #
1158 # C file
1159 #
1160
1161 exec > new-gdbarch.c
1162 copyright
1163 cat <<EOF
1164
1165 #include "defs.h"
1166 #include "arch-utils.h"
1167
1168 #include "gdbcmd.h"
1169 #include "inferior.h" 
1170 #include "symcat.h"
1171
1172 #include "floatformat.h"
1173
1174 #include "gdb_assert.h"
1175 #include "gdb_string.h"
1176 #include "reggroups.h"
1177 #include "osabi.h"
1178 #include "gdb_obstack.h"
1179 #include "observer.h"
1180 #include "regcache.h"
1181
1182 /* Static function declarations */
1183
1184 static void alloc_gdbarch_data (struct gdbarch *);
1185
1186 /* Non-zero if we want to trace architecture code.  */
1187
1188 #ifndef GDBARCH_DEBUG
1189 #define GDBARCH_DEBUG 0
1190 #endif
1191 int gdbarch_debug = GDBARCH_DEBUG;
1192 static void
1193 show_gdbarch_debug (struct ui_file *file, int from_tty,
1194                     struct cmd_list_element *c, const char *value)
1195 {
1196   fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1197 }
1198
1199 static const char *
1200 pformat (const struct floatformat **format)
1201 {
1202   if (format == NULL)
1203     return "(null)";
1204   else
1205     /* Just print out one of them - this is only for diagnostics.  */
1206     return format[0]->name;
1207 }
1208
1209 EOF
1210
1211 # gdbarch open the gdbarch object
1212 printf "\n"
1213 printf "/* Maintain the struct gdbarch object */\n"
1214 printf "\n"
1215 printf "struct gdbarch\n"
1216 printf "{\n"
1217 printf "  /* Has this architecture been fully initialized?  */\n"
1218 printf "  int initialized_p;\n"
1219 printf "\n"
1220 printf "  /* An obstack bound to the lifetime of the architecture.  */\n"
1221 printf "  struct obstack *obstack;\n"
1222 printf "\n"
1223 printf "  /* basic architectural information */\n"
1224 function_list | while do_read
1225 do
1226     if class_is_info_p
1227     then
1228         printf "  ${returntype} ${function};\n"
1229     fi
1230 done
1231 printf "\n"
1232 printf "  /* target specific vector. */\n"
1233 printf "  struct gdbarch_tdep *tdep;\n"
1234 printf "  gdbarch_dump_tdep_ftype *dump_tdep;\n"
1235 printf "\n"
1236 printf "  /* per-architecture data-pointers */\n"
1237 printf "  unsigned nr_data;\n"
1238 printf "  void **data;\n"
1239 printf "\n"
1240 printf "  /* per-architecture swap-regions */\n"
1241 printf "  struct gdbarch_swap *swap;\n"
1242 printf "\n"
1243 cat <<EOF
1244   /* Multi-arch values.
1245
1246      When extending this structure you must:
1247
1248      Add the field below.
1249
1250      Declare set/get functions and define the corresponding
1251      macro in gdbarch.h.
1252
1253      gdbarch_alloc(): If zero/NULL is not a suitable default,
1254      initialize the new field.
1255
1256      verify_gdbarch(): Confirm that the target updated the field
1257      correctly.
1258
1259      gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1260      field is dumped out
1261
1262      \`\`startup_gdbarch()'': Append an initial value to the static
1263      variable (base values on the host's c-type system).
1264
1265      get_gdbarch(): Implement the set/get functions (probably using
1266      the macro's as shortcuts).
1267
1268      */
1269
1270 EOF
1271 function_list | while do_read
1272 do
1273     if class_is_variable_p
1274     then
1275         printf "  ${returntype} ${function};\n"
1276     elif class_is_function_p
1277     then
1278         printf "  gdbarch_${function}_ftype *${function};\n"
1279     fi
1280 done
1281 printf "};\n"
1282
1283 # A pre-initialized vector
1284 printf "\n"
1285 printf "\n"
1286 cat <<EOF
1287 /* The default architecture uses host values (for want of a better
1288    choice). */
1289 EOF
1290 printf "\n"
1291 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1292 printf "\n"
1293 printf "struct gdbarch startup_gdbarch =\n"
1294 printf "{\n"
1295 printf "  1, /* Always initialized.  */\n"
1296 printf "  NULL, /* The obstack.  */\n"
1297 printf "  /* basic architecture information */\n"
1298 function_list | while do_read
1299 do
1300     if class_is_info_p
1301     then
1302         printf "  ${staticdefault},  /* ${function} */\n"
1303     fi
1304 done
1305 cat <<EOF
1306   /* target specific vector and its dump routine */
1307   NULL, NULL,
1308   /*per-architecture data-pointers and swap regions */
1309   0, NULL, NULL,
1310   /* Multi-arch values */
1311 EOF
1312 function_list | while do_read
1313 do
1314     if class_is_function_p || class_is_variable_p
1315     then
1316         printf "  ${staticdefault},  /* ${function} */\n"
1317     fi
1318 done
1319 cat <<EOF
1320   /* startup_gdbarch() */
1321 };
1322
1323 struct gdbarch *current_gdbarch = &startup_gdbarch;
1324 struct gdbarch *target_gdbarch = &startup_gdbarch;
1325 EOF
1326
1327 # Create a new gdbarch struct
1328 cat <<EOF
1329
1330 /* Create a new \`\`struct gdbarch'' based on information provided by
1331    \`\`struct gdbarch_info''. */
1332 EOF
1333 printf "\n"
1334 cat <<EOF
1335 struct gdbarch *
1336 gdbarch_alloc (const struct gdbarch_info *info,
1337                struct gdbarch_tdep *tdep)
1338 {
1339   struct gdbarch *gdbarch;
1340
1341   /* Create an obstack for allocating all the per-architecture memory,
1342      then use that to allocate the architecture vector.  */
1343   struct obstack *obstack = XMALLOC (struct obstack);
1344   obstack_init (obstack);
1345   gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1346   memset (gdbarch, 0, sizeof (*gdbarch));
1347   gdbarch->obstack = obstack;
1348
1349   alloc_gdbarch_data (gdbarch);
1350
1351   gdbarch->tdep = tdep;
1352 EOF
1353 printf "\n"
1354 function_list | while do_read
1355 do
1356     if class_is_info_p
1357     then
1358         printf "  gdbarch->${function} = info->${function};\n"
1359     fi
1360 done
1361 printf "\n"
1362 printf "  /* Force the explicit initialization of these. */\n"
1363 function_list | while do_read
1364 do
1365     if class_is_function_p || class_is_variable_p
1366     then
1367         if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1368         then
1369           printf "  gdbarch->${function} = ${predefault};\n"
1370         fi
1371     fi
1372 done
1373 cat <<EOF
1374   /* gdbarch_alloc() */
1375
1376   return gdbarch;
1377 }
1378 EOF
1379
1380 # Free a gdbarch struct.
1381 printf "\n"
1382 printf "\n"
1383 cat <<EOF
1384 /* Allocate extra space using the per-architecture obstack.  */
1385
1386 void *
1387 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1388 {
1389   void *data = obstack_alloc (arch->obstack, size);
1390   memset (data, 0, size);
1391   return data;
1392 }
1393
1394
1395 /* Free a gdbarch struct.  This should never happen in normal
1396    operation --- once you've created a gdbarch, you keep it around.
1397    However, if an architecture's init function encounters an error
1398    building the structure, it may need to clean up a partially
1399    constructed gdbarch.  */
1400
1401 void
1402 gdbarch_free (struct gdbarch *arch)
1403 {
1404   struct obstack *obstack;
1405   gdb_assert (arch != NULL);
1406   gdb_assert (!arch->initialized_p);
1407   obstack = arch->obstack;
1408   obstack_free (obstack, 0); /* Includes the ARCH.  */
1409   xfree (obstack);
1410 }
1411 EOF
1412
1413 # verify a new architecture
1414 cat <<EOF
1415
1416
1417 /* Ensure that all values in a GDBARCH are reasonable.  */
1418
1419 static void
1420 verify_gdbarch (struct gdbarch *gdbarch)
1421 {
1422   struct ui_file *log;
1423   struct cleanup *cleanups;
1424   long dummy;
1425   char *buf;
1426   log = mem_fileopen ();
1427   cleanups = make_cleanup_ui_file_delete (log);
1428   /* fundamental */
1429   if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1430     fprintf_unfiltered (log, "\n\tbyte-order");
1431   if (gdbarch->bfd_arch_info == NULL)
1432     fprintf_unfiltered (log, "\n\tbfd_arch_info");
1433   /* Check those that need to be defined for the given multi-arch level. */
1434 EOF
1435 function_list | while do_read
1436 do
1437     if class_is_function_p || class_is_variable_p
1438     then
1439         if [ "x${invalid_p}" = "x0" ]
1440         then
1441             printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1442         elif class_is_predicate_p
1443         then
1444             printf "  /* Skip verify of ${function}, has predicate */\n"
1445         # FIXME: See do_read for potential simplification
1446         elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1447         then
1448             printf "  if (${invalid_p})\n"
1449             printf "    gdbarch->${function} = ${postdefault};\n"
1450         elif [ -n "${predefault}" -a -n "${postdefault}" ]
1451         then
1452             printf "  if (gdbarch->${function} == ${predefault})\n"
1453             printf "    gdbarch->${function} = ${postdefault};\n"
1454         elif [ -n "${postdefault}" ]
1455         then
1456             printf "  if (gdbarch->${function} == 0)\n"
1457             printf "    gdbarch->${function} = ${postdefault};\n"
1458         elif [ -n "${invalid_p}" ]
1459         then
1460             printf "  if (${invalid_p})\n"
1461             printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1462         elif [ -n "${predefault}" ]
1463         then
1464             printf "  if (gdbarch->${function} == ${predefault})\n"
1465             printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1466         fi
1467     fi
1468 done
1469 cat <<EOF
1470   buf = ui_file_xstrdup (log, &dummy);
1471   make_cleanup (xfree, buf);
1472   if (strlen (buf) > 0)
1473     internal_error (__FILE__, __LINE__,
1474                     _("verify_gdbarch: the following are invalid ...%s"),
1475                     buf);
1476   do_cleanups (cleanups);
1477 }
1478 EOF
1479
1480 # dump the structure
1481 printf "\n"
1482 printf "\n"
1483 cat <<EOF
1484 /* Print out the details of the current architecture. */
1485
1486 void
1487 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1488 {
1489   const char *gdb_nm_file = "<not-defined>";
1490 #if defined (GDB_NM_FILE)
1491   gdb_nm_file = GDB_NM_FILE;
1492 #endif
1493   fprintf_unfiltered (file,
1494                       "gdbarch_dump: GDB_NM_FILE = %s\\n",
1495                       gdb_nm_file);
1496 EOF
1497 function_list | sort -t: -k 3 | while do_read
1498 do
1499     # First the predicate
1500     if class_is_predicate_p
1501     then
1502         printf "  fprintf_unfiltered (file,\n"
1503         printf "                      \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1504         printf "                      gdbarch_${function}_p (gdbarch));\n"
1505     fi
1506     # Print the corresponding value.
1507     if class_is_function_p
1508     then
1509         printf "  fprintf_unfiltered (file,\n"
1510         printf "                      \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1511         printf "                      host_address_to_string (gdbarch->${function}));\n"
1512     else
1513         # It is a variable
1514         case "${print}:${returntype}" in
1515             :CORE_ADDR )
1516                 fmt="%s"
1517                 print="core_addr_to_string_nz (gdbarch->${function})"
1518                 ;;
1519             :* )
1520                 fmt="%s"
1521                 print="plongest (gdbarch->${function})"
1522                 ;;
1523             * )
1524                 fmt="%s"
1525                 ;;
1526         esac
1527         printf "  fprintf_unfiltered (file,\n"
1528         printf "                      \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1529         printf "                      ${print});\n"
1530     fi
1531 done
1532 cat <<EOF
1533   if (gdbarch->dump_tdep != NULL)
1534     gdbarch->dump_tdep (gdbarch, file);
1535 }
1536 EOF
1537
1538
1539 # GET/SET
1540 printf "\n"
1541 cat <<EOF
1542 struct gdbarch_tdep *
1543 gdbarch_tdep (struct gdbarch *gdbarch)
1544 {
1545   if (gdbarch_debug >= 2)
1546     fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1547   return gdbarch->tdep;
1548 }
1549 EOF
1550 printf "\n"
1551 function_list | while do_read
1552 do
1553     if class_is_predicate_p
1554     then
1555         printf "\n"
1556         printf "int\n"
1557         printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1558         printf "{\n"
1559         printf "  gdb_assert (gdbarch != NULL);\n"
1560         printf "  return ${predicate};\n"
1561         printf "}\n"
1562     fi
1563     if class_is_function_p
1564     then
1565         printf "\n"
1566         printf "${returntype}\n"
1567         if [ "x${formal}" = "xvoid" ]
1568         then
1569           printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1570         else
1571           printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1572         fi
1573         printf "{\n"
1574         printf "  gdb_assert (gdbarch != NULL);\n"
1575         printf "  gdb_assert (gdbarch->${function} != NULL);\n"
1576         if class_is_predicate_p && test -n "${predefault}"
1577         then
1578             # Allow a call to a function with a predicate.
1579             printf "  /* Do not check predicate: ${predicate}, allow call.  */\n"
1580         fi
1581         printf "  if (gdbarch_debug >= 2)\n"
1582         printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1583         if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1584         then
1585             if class_is_multiarch_p
1586             then
1587                 params="gdbarch"
1588             else
1589                 params=""
1590             fi
1591         else
1592             if class_is_multiarch_p
1593             then
1594                 params="gdbarch, ${actual}"
1595             else
1596                 params="${actual}"
1597             fi
1598         fi
1599         if [ "x${returntype}" = "xvoid" ]
1600         then
1601           printf "  gdbarch->${function} (${params});\n"
1602         else
1603           printf "  return gdbarch->${function} (${params});\n"
1604         fi
1605         printf "}\n"
1606         printf "\n"
1607         printf "void\n"
1608         printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1609         printf "            `echo ${function} | sed -e 's/./ /g'`  gdbarch_${function}_ftype ${function})\n"
1610         printf "{\n"
1611         printf "  gdbarch->${function} = ${function};\n"
1612         printf "}\n"
1613     elif class_is_variable_p
1614     then
1615         printf "\n"
1616         printf "${returntype}\n"
1617         printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1618         printf "{\n"
1619         printf "  gdb_assert (gdbarch != NULL);\n"
1620         if [ "x${invalid_p}" = "x0" ]
1621         then
1622             printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1623         elif [ -n "${invalid_p}" ]
1624         then
1625             printf "  /* Check variable is valid.  */\n"
1626             printf "  gdb_assert (!(${invalid_p}));\n"
1627         elif [ -n "${predefault}" ]
1628         then
1629             printf "  /* Check variable changed from pre-default.  */\n"
1630             printf "  gdb_assert (gdbarch->${function} != ${predefault});\n"
1631         fi
1632         printf "  if (gdbarch_debug >= 2)\n"
1633         printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1634         printf "  return gdbarch->${function};\n"
1635         printf "}\n"
1636         printf "\n"
1637         printf "void\n"
1638         printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1639         printf "            `echo ${function} | sed -e 's/./ /g'`  ${returntype} ${function})\n"
1640         printf "{\n"
1641         printf "  gdbarch->${function} = ${function};\n"
1642         printf "}\n"
1643     elif class_is_info_p
1644     then
1645         printf "\n"
1646         printf "${returntype}\n"
1647         printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1648         printf "{\n"
1649         printf "  gdb_assert (gdbarch != NULL);\n"
1650         printf "  if (gdbarch_debug >= 2)\n"
1651         printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1652         printf "  return gdbarch->${function};\n"
1653         printf "}\n"
1654     fi
1655 done
1656
1657 # All the trailing guff
1658 cat <<EOF
1659
1660
1661 /* Keep a registry of per-architecture data-pointers required by GDB
1662    modules. */
1663
1664 struct gdbarch_data
1665 {
1666   unsigned index;
1667   int init_p;
1668   gdbarch_data_pre_init_ftype *pre_init;
1669   gdbarch_data_post_init_ftype *post_init;
1670 };
1671
1672 struct gdbarch_data_registration
1673 {
1674   struct gdbarch_data *data;
1675   struct gdbarch_data_registration *next;
1676 };
1677
1678 struct gdbarch_data_registry
1679 {
1680   unsigned nr;
1681   struct gdbarch_data_registration *registrations;
1682 };
1683
1684 struct gdbarch_data_registry gdbarch_data_registry =
1685 {
1686   0, NULL,
1687 };
1688
1689 static struct gdbarch_data *
1690 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1691                        gdbarch_data_post_init_ftype *post_init)
1692 {
1693   struct gdbarch_data_registration **curr;
1694   /* Append the new registraration.  */
1695   for (curr = &gdbarch_data_registry.registrations;
1696        (*curr) != NULL;
1697        curr = &(*curr)->next);
1698   (*curr) = XMALLOC (struct gdbarch_data_registration);
1699   (*curr)->next = NULL;
1700   (*curr)->data = XMALLOC (struct gdbarch_data);
1701   (*curr)->data->index = gdbarch_data_registry.nr++;
1702   (*curr)->data->pre_init = pre_init;
1703   (*curr)->data->post_init = post_init;
1704   (*curr)->data->init_p = 1;
1705   return (*curr)->data;
1706 }
1707
1708 struct gdbarch_data *
1709 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1710 {
1711   return gdbarch_data_register (pre_init, NULL);
1712 }
1713
1714 struct gdbarch_data *
1715 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1716 {
1717   return gdbarch_data_register (NULL, post_init);
1718 }
1719
1720 /* Create/delete the gdbarch data vector. */
1721
1722 static void
1723 alloc_gdbarch_data (struct gdbarch *gdbarch)
1724 {
1725   gdb_assert (gdbarch->data == NULL);
1726   gdbarch->nr_data = gdbarch_data_registry.nr;
1727   gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1728 }
1729
1730 /* Initialize the current value of the specified per-architecture
1731    data-pointer. */
1732
1733 void
1734 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1735                              struct gdbarch_data *data,
1736                              void *pointer)
1737 {
1738   gdb_assert (data->index < gdbarch->nr_data);
1739   gdb_assert (gdbarch->data[data->index] == NULL);
1740   gdb_assert (data->pre_init == NULL);
1741   gdbarch->data[data->index] = pointer;
1742 }
1743
1744 /* Return the current value of the specified per-architecture
1745    data-pointer. */
1746
1747 void *
1748 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1749 {
1750   gdb_assert (data->index < gdbarch->nr_data);
1751   if (gdbarch->data[data->index] == NULL)
1752     {
1753       /* The data-pointer isn't initialized, call init() to get a
1754          value.  */
1755       if (data->pre_init != NULL)
1756         /* Mid architecture creation: pass just the obstack, and not
1757            the entire architecture, as that way it isn't possible for
1758            pre-init code to refer to undefined architecture
1759            fields.  */
1760         gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1761       else if (gdbarch->initialized_p
1762                && data->post_init != NULL)
1763         /* Post architecture creation: pass the entire architecture
1764            (as all fields are valid), but be careful to also detect
1765            recursive references.  */
1766         {
1767           gdb_assert (data->init_p);
1768           data->init_p = 0;
1769           gdbarch->data[data->index] = data->post_init (gdbarch);
1770           data->init_p = 1;
1771         }
1772       else
1773         /* The architecture initialization hasn't completed - punt -
1774          hope that the caller knows what they are doing.  Once
1775          deprecated_set_gdbarch_data has been initialized, this can be
1776          changed to an internal error.  */
1777         return NULL;
1778       gdb_assert (gdbarch->data[data->index] != NULL);
1779     }
1780   return gdbarch->data[data->index];
1781 }
1782
1783
1784 /* Keep a registry of the architectures known by GDB. */
1785
1786 struct gdbarch_registration
1787 {
1788   enum bfd_architecture bfd_architecture;
1789   gdbarch_init_ftype *init;
1790   gdbarch_dump_tdep_ftype *dump_tdep;
1791   struct gdbarch_list *arches;
1792   struct gdbarch_registration *next;
1793 };
1794
1795 static struct gdbarch_registration *gdbarch_registry = NULL;
1796
1797 static void
1798 append_name (const char ***buf, int *nr, const char *name)
1799 {
1800   *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1801   (*buf)[*nr] = name;
1802   *nr += 1;
1803 }
1804
1805 const char **
1806 gdbarch_printable_names (void)
1807 {
1808   /* Accumulate a list of names based on the registed list of
1809      architectures. */
1810   enum bfd_architecture a;
1811   int nr_arches = 0;
1812   const char **arches = NULL;
1813   struct gdbarch_registration *rego;
1814   for (rego = gdbarch_registry;
1815        rego != NULL;
1816        rego = rego->next)
1817     {
1818       const struct bfd_arch_info *ap;
1819       ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1820       if (ap == NULL)
1821         internal_error (__FILE__, __LINE__,
1822                         _("gdbarch_architecture_names: multi-arch unknown"));
1823       do
1824         {
1825           append_name (&arches, &nr_arches, ap->printable_name);
1826           ap = ap->next;
1827         }
1828       while (ap != NULL);
1829     }
1830   append_name (&arches, &nr_arches, NULL);
1831   return arches;
1832 }
1833
1834
1835 void
1836 gdbarch_register (enum bfd_architecture bfd_architecture,
1837                   gdbarch_init_ftype *init,
1838                   gdbarch_dump_tdep_ftype *dump_tdep)
1839 {
1840   struct gdbarch_registration **curr;
1841   const struct bfd_arch_info *bfd_arch_info;
1842   /* Check that BFD recognizes this architecture */
1843   bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1844   if (bfd_arch_info == NULL)
1845     {
1846       internal_error (__FILE__, __LINE__,
1847                       _("gdbarch: Attempt to register unknown architecture (%d)"),
1848                       bfd_architecture);
1849     }
1850   /* Check that we haven't seen this architecture before */
1851   for (curr = &gdbarch_registry;
1852        (*curr) != NULL;
1853        curr = &(*curr)->next)
1854     {
1855       if (bfd_architecture == (*curr)->bfd_architecture)
1856         internal_error (__FILE__, __LINE__,
1857                         _("gdbarch: Duplicate registraration of architecture (%s)"),
1858                         bfd_arch_info->printable_name);
1859     }
1860   /* log it */
1861   if (gdbarch_debug)
1862     fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1863                         bfd_arch_info->printable_name,
1864                         host_address_to_string (init));
1865   /* Append it */
1866   (*curr) = XMALLOC (struct gdbarch_registration);
1867   (*curr)->bfd_architecture = bfd_architecture;
1868   (*curr)->init = init;
1869   (*curr)->dump_tdep = dump_tdep;
1870   (*curr)->arches = NULL;
1871   (*curr)->next = NULL;
1872 }
1873
1874 void
1875 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1876                        gdbarch_init_ftype *init)
1877 {
1878   gdbarch_register (bfd_architecture, init, NULL);
1879 }
1880
1881
1882 /* Look for an architecture using gdbarch_info.  */
1883
1884 struct gdbarch_list *
1885 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1886                              const struct gdbarch_info *info)
1887 {
1888   for (; arches != NULL; arches = arches->next)
1889     {
1890       if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1891         continue;
1892       if (info->byte_order != arches->gdbarch->byte_order)
1893         continue;
1894       if (info->osabi != arches->gdbarch->osabi)
1895         continue;
1896       if (info->target_desc != arches->gdbarch->target_desc)
1897         continue;
1898       return arches;
1899     }
1900   return NULL;
1901 }
1902
1903
1904 /* Find an architecture that matches the specified INFO.  Create a new
1905    architecture if needed.  Return that new architecture.  Assumes
1906    that there is no current architecture.  */
1907
1908 static struct gdbarch *
1909 find_arch_by_info (struct gdbarch_info info)
1910 {
1911   struct gdbarch *new_gdbarch;
1912   struct gdbarch_registration *rego;
1913
1914   /* The existing architecture has been swapped out - all this code
1915      works from a clean slate.  */
1916   gdb_assert (current_gdbarch == NULL);
1917
1918   /* Fill in missing parts of the INFO struct using a number of
1919      sources: "set ..."; INFOabfd supplied; and the global
1920      defaults.  */
1921   gdbarch_info_fill (&info);
1922
1923   /* Must have found some sort of architecture. */
1924   gdb_assert (info.bfd_arch_info != NULL);
1925
1926   if (gdbarch_debug)
1927     {
1928       fprintf_unfiltered (gdb_stdlog,
1929                           "find_arch_by_info: info.bfd_arch_info %s\n",
1930                           (info.bfd_arch_info != NULL
1931                            ? info.bfd_arch_info->printable_name
1932                            : "(null)"));
1933       fprintf_unfiltered (gdb_stdlog,
1934                           "find_arch_by_info: info.byte_order %d (%s)\n",
1935                           info.byte_order,
1936                           (info.byte_order == BFD_ENDIAN_BIG ? "big"
1937                            : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1938                            : "default"));
1939       fprintf_unfiltered (gdb_stdlog,
1940                           "find_arch_by_info: info.osabi %d (%s)\n",
1941                           info.osabi, gdbarch_osabi_name (info.osabi));
1942       fprintf_unfiltered (gdb_stdlog,
1943                           "find_arch_by_info: info.abfd %s\n",
1944                           host_address_to_string (info.abfd));
1945       fprintf_unfiltered (gdb_stdlog,
1946                           "find_arch_by_info: info.tdep_info %s\n",
1947                           host_address_to_string (info.tdep_info));
1948     }
1949
1950   /* Find the tdep code that knows about this architecture.  */
1951   for (rego = gdbarch_registry;
1952        rego != NULL;
1953        rego = rego->next)
1954     if (rego->bfd_architecture == info.bfd_arch_info->arch)
1955       break;
1956   if (rego == NULL)
1957     {
1958       if (gdbarch_debug)
1959         fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1960                             "No matching architecture\n");
1961       return 0;
1962     }
1963
1964   /* Ask the tdep code for an architecture that matches "info".  */
1965   new_gdbarch = rego->init (info, rego->arches);
1966
1967   /* Did the tdep code like it?  No.  Reject the change and revert to
1968      the old architecture.  */
1969   if (new_gdbarch == NULL)
1970     {
1971       if (gdbarch_debug)
1972         fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1973                             "Target rejected architecture\n");
1974       return NULL;
1975     }
1976
1977   /* Is this a pre-existing architecture (as determined by already
1978      being initialized)?  Move it to the front of the architecture
1979      list (keeping the list sorted Most Recently Used).  */
1980   if (new_gdbarch->initialized_p)
1981     {
1982       struct gdbarch_list **list;
1983       struct gdbarch_list *this;
1984       if (gdbarch_debug)
1985         fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1986                             "Previous architecture %s (%s) selected\n",
1987                             host_address_to_string (new_gdbarch),
1988                             new_gdbarch->bfd_arch_info->printable_name);
1989       /* Find the existing arch in the list.  */
1990       for (list = &rego->arches;
1991            (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1992            list = &(*list)->next);
1993       /* It had better be in the list of architectures.  */
1994       gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1995       /* Unlink THIS.  */
1996       this = (*list);
1997       (*list) = this->next;
1998       /* Insert THIS at the front.  */
1999       this->next = rego->arches;
2000       rego->arches = this;
2001       /* Return it.  */
2002       return new_gdbarch;
2003     }
2004
2005   /* It's a new architecture.  */
2006   if (gdbarch_debug)
2007     fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2008                         "New architecture %s (%s) selected\n",
2009                         host_address_to_string (new_gdbarch),
2010                         new_gdbarch->bfd_arch_info->printable_name);
2011   
2012   /* Insert the new architecture into the front of the architecture
2013      list (keep the list sorted Most Recently Used).  */
2014   {
2015     struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2016     this->next = rego->arches;
2017     this->gdbarch = new_gdbarch;
2018     rego->arches = this;
2019   }    
2020
2021   /* Check that the newly installed architecture is valid.  Plug in
2022      any post init values.  */
2023   new_gdbarch->dump_tdep = rego->dump_tdep;
2024   verify_gdbarch (new_gdbarch);
2025   new_gdbarch->initialized_p = 1;
2026
2027   if (gdbarch_debug)
2028     gdbarch_dump (new_gdbarch, gdb_stdlog);
2029
2030   return new_gdbarch;
2031 }
2032
2033 struct gdbarch *
2034 gdbarch_find_by_info (struct gdbarch_info info)
2035 {
2036   struct gdbarch *new_gdbarch;
2037
2038   /* Save the previously selected architecture, setting the global to
2039      NULL.  This stops things like gdbarch->init() trying to use the
2040      previous architecture's configuration.  The previous architecture
2041      may not even be of the same architecture family.  The most recent
2042      architecture of the same family is found at the head of the
2043      rego->arches list.  */
2044   struct gdbarch *old_gdbarch = current_gdbarch;
2045   current_gdbarch = NULL;
2046
2047   /* Find the specified architecture.  */
2048   new_gdbarch = find_arch_by_info (info);
2049
2050   /* Restore the existing architecture.  */
2051   gdb_assert (current_gdbarch == NULL);
2052   current_gdbarch = old_gdbarch;
2053
2054   return new_gdbarch;
2055 }
2056
2057 /* Make the specified architecture current.  */
2058
2059 void
2060 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2061 {
2062   gdb_assert (new_gdbarch != NULL);
2063   gdb_assert (current_gdbarch != NULL);
2064   gdb_assert (new_gdbarch->initialized_p);
2065   current_gdbarch = new_gdbarch;
2066   target_gdbarch = new_gdbarch;
2067   observer_notify_architecture_changed (new_gdbarch);
2068   registers_changed ();
2069 }
2070
2071 extern void _initialize_gdbarch (void);
2072
2073 void
2074 _initialize_gdbarch (void)
2075 {
2076   struct cmd_list_element *c;
2077
2078   add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2079 Set architecture debugging."), _("\\
2080 Show architecture debugging."), _("\\
2081 When non-zero, architecture debugging is enabled."),
2082                             NULL,
2083                             show_gdbarch_debug,
2084                             &setdebuglist, &showdebuglist);
2085 }
2086 EOF
2087
2088 # close things off
2089 exec 1>&2
2090 #../move-if-change new-gdbarch.c gdbarch.c
2091 compare_new gdbarch.c