3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 if test -n "${garbage_at_eol}"
77 echo "Garbage at end-of-line in ${line}" 1>&2
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
86 if eval test \"\${${r}}\" = \"\ \"
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
100 case "${invalid_p}" in
102 if test -n "${predefault}"
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
111 predicate="gdbarch->${function} != NULL"
115 echo "Predicate function ${function} with invalid_p." 1>&2
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
129 if [ -n "${postdefault}" ]
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
134 fallbackdefault="${predefault}"
139 #NOT YET: See gdbarch.log for basic verification of
154 fallback_default_p ()
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
160 class_is_variable_p ()
168 class_is_function_p ()
171 *f* | *F* | *m* | *M* ) true ;;
176 class_is_multiarch_p ()
184 class_is_predicate_p ()
187 *F* | *V* | *M* ) true ;;
201 # dump out/verify the doco
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
226 # For functions, the return type; for variables, the data type
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
254 # If STATICDEFAULT is empty, zero is used.
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
263 # If PREDEFAULT is empty, zero is used.
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
269 # A zero PREDEFAULT function will force the fallback to call
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
281 # If POSTDEFAULT is empty, no post update is performed.
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
313 # See also PREDEFAULT and POSTDEFAULT.
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
323 garbage_at_eol ) : ;;
325 # Catches stray fields.
328 echo "Bad field ${field}"
336 # See below (DOCO) for description of each field
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
491 v:int:believe_pcc_promotion:::::::
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
518 # Return true if the return value of function is stored in the first hidden
519 # parameter. In theory, this feature should be language-dependent, specified
520 # by language and its ABI, such as C++. Unfortunately, compiler may
521 # implement it to a target-dependent feature. So that we need such hook here
522 # to be aware of this in GDB.
523 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
525 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
526 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
527 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
528 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
529 # Return the adjusted address and kind to use for Z0/Z1 packets.
530 # KIND is usually the memory length of the breakpoint, but may have a
531 # different target-specific meaning.
532 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
533 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
534 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
535 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
536 v:CORE_ADDR:decr_pc_after_break:::0:::0
538 # A function can be addressed by either it's "pointer" (possibly a
539 # descriptor address) or "entry point" (first executable instruction).
540 # The method "convert_from_func_ptr_addr" converting the former to the
541 # latter. gdbarch_deprecated_function_start_offset is being used to implement
542 # a simplified subset of that functionality - the function's address
543 # corresponds to the "function pointer" and the function's start
544 # corresponds to the "function entry point" - and hence is redundant.
546 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
548 # Return the remote protocol register number associated with this
549 # register. Normally the identity mapping.
550 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
552 # Fetch the target specific address used to represent a load module.
553 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
555 v:CORE_ADDR:frame_args_skip:::0:::0
556 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
557 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
558 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
559 # frame-base. Enable frame-base before frame-unwind.
560 F:int:frame_num_args:struct frame_info *frame:frame
562 M:CORE_ADDR:frame_align:CORE_ADDR address:address
563 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
564 v:int:frame_red_zone_size
566 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
567 # On some machines there are bits in addresses which are not really
568 # part of the address, but are used by the kernel, the hardware, etc.
569 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
570 # we get a "real" address such as one would find in a symbol table.
571 # This is used only for addresses of instructions, and even then I'm
572 # not sure it's used in all contexts. It exists to deal with there
573 # being a few stray bits in the PC which would mislead us, not as some
574 # sort of generic thing to handle alignment or segmentation (it's
575 # possible it should be in TARGET_READ_PC instead).
576 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
577 # It is not at all clear why gdbarch_smash_text_address is not folded into
578 # gdbarch_addr_bits_remove.
579 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
644 # Find core file memory regions
645 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
647 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
648 # core file into buffer READBUF with length LEN.
649 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
651 # How the core target converts a PTID from a core file to a string.
652 M:char *:core_pid_to_str:ptid_t ptid:ptid
654 # BFD target to use when generating a core file.
655 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
657 # If the elements of C++ vtables are in-place function descriptors rather
658 # than normal function pointers (which may point to code or a descriptor),
660 v:int:vtable_function_descriptors:::0:0::0
662 # Set if the least significant bit of the delta is used instead of the least
663 # significant bit of the pfn for pointers to virtual member functions.
664 v:int:vbit_in_delta:::0:0::0
666 # Advance PC to next instruction in order to skip a permanent breakpoint.
667 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
669 # The maximum length of an instruction on this architecture in bytes.
670 V:ULONGEST:max_insn_length:::0:0
672 # Copy the instruction at FROM to TO, and make any adjustments
673 # necessary to single-step it at that address.
675 # REGS holds the state the thread's registers will have before
676 # executing the copied instruction; the PC in REGS will refer to FROM,
677 # not the copy at TO. The caller should update it to point at TO later.
679 # Return a pointer to data of the architecture's choice to be passed
680 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
681 # the instruction's effects have been completely simulated, with the
682 # resulting state written back to REGS.
684 # For a general explanation of displaced stepping and how GDB uses it,
685 # see the comments in infrun.c.
687 # The TO area is only guaranteed to have space for
688 # gdbarch_max_insn_length (arch) bytes, so this function must not
689 # write more bytes than that to that area.
691 # If you do not provide this function, GDB assumes that the
692 # architecture does not support displaced stepping.
694 # If your architecture doesn't need to adjust instructions before
695 # single-stepping them, consider using simple_displaced_step_copy_insn
697 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
699 # Return true if GDB should use hardware single-stepping to execute
700 # the displaced instruction identified by CLOSURE. If false,
701 # GDB will simply restart execution at the displaced instruction
702 # location, and it is up to the target to ensure GDB will receive
703 # control again (e.g. by placing a software breakpoint instruction
704 # into the displaced instruction buffer).
706 # The default implementation returns false on all targets that
707 # provide a gdbarch_software_single_step routine, and true otherwise.
708 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
710 # Fix up the state resulting from successfully single-stepping a
711 # displaced instruction, to give the result we would have gotten from
712 # stepping the instruction in its original location.
714 # REGS is the register state resulting from single-stepping the
715 # displaced instruction.
717 # CLOSURE is the result from the matching call to
718 # gdbarch_displaced_step_copy_insn.
720 # If you provide gdbarch_displaced_step_copy_insn.but not this
721 # function, then GDB assumes that no fixup is needed after
722 # single-stepping the instruction.
724 # For a general explanation of displaced stepping and how GDB uses it,
725 # see the comments in infrun.c.
726 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
728 # Free a closure returned by gdbarch_displaced_step_copy_insn.
730 # If you provide gdbarch_displaced_step_copy_insn, you must provide
731 # this function as well.
733 # If your architecture uses closures that don't need to be freed, then
734 # you can use simple_displaced_step_free_closure here.
736 # For a general explanation of displaced stepping and how GDB uses it,
737 # see the comments in infrun.c.
738 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
740 # Return the address of an appropriate place to put displaced
741 # instructions while we step over them. There need only be one such
742 # place, since we're only stepping one thread over a breakpoint at a
745 # For a general explanation of displaced stepping and how GDB uses it,
746 # see the comments in infrun.c.
747 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
749 # Relocate an instruction to execute at a different address. OLDLOC
750 # is the address in the inferior memory where the instruction to
751 # relocate is currently at. On input, TO points to the destination
752 # where we want the instruction to be copied (and possibly adjusted)
753 # to. On output, it points to one past the end of the resulting
754 # instruction(s). The effect of executing the instruction at TO shall
755 # be the same as if executing it at FROM. For example, call
756 # instructions that implicitly push the return address on the stack
757 # should be adjusted to return to the instruction after OLDLOC;
758 # relative branches, and other PC-relative instructions need the
759 # offset adjusted; etc.
760 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
762 # Refresh overlay mapped state for section OSECT.
763 F:void:overlay_update:struct obj_section *osect:osect
765 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
767 # Handle special encoding of static variables in stabs debug info.
768 F:const char *:static_transform_name:const char *name:name
769 # Set if the address in N_SO or N_FUN stabs may be zero.
770 v:int:sofun_address_maybe_missing:::0:0::0
772 # Parse the instruction at ADDR storing in the record execution log
773 # the registers REGCACHE and memory ranges that will be affected when
774 # the instruction executes, along with their current values.
775 # Return -1 if something goes wrong, 0 otherwise.
776 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
778 # Save process state after a signal.
779 # Return -1 if something goes wrong, 0 otherwise.
780 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
782 # Signal translation: translate inferior's signal (target's) number
783 # into GDB's representation. The implementation of this method must
784 # be host independent. IOW, don't rely on symbols of the NAT_FILE
785 # header (the nm-*.h files), the host <signal.h> header, or similar
786 # headers. This is mainly used when cross-debugging core files ---
787 # "Live" targets hide the translation behind the target interface
788 # (target_wait, target_resume, etc.).
789 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
791 # Extra signal info inspection.
793 # Return a type suitable to inspect extra signal information.
794 M:struct type *:get_siginfo_type:void:
796 # Record architecture-specific information from the symbol table.
797 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
799 # Function for the 'catch syscall' feature.
801 # Get architecture-specific system calls information from registers.
802 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
804 # SystemTap related fields and functions.
806 # Prefix used to mark an integer constant on the architecture's assembly
807 # For example, on x86 integer constants are written as:
809 # \$10 ;; integer constant 10
811 # in this case, this prefix would be the character \`\$\'.
812 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
814 # Suffix used to mark an integer constant on the architecture's assembly.
815 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
817 # Prefix used to mark a register name on the architecture's assembly.
818 # For example, on x86 the register name is written as:
820 # \%eax ;; register eax
822 # in this case, this prefix would be the character \`\%\'.
823 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
825 # Suffix used to mark a register name on the architecture's assembly
826 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
828 # Prefix used to mark a register indirection on the architecture's assembly.
829 # For example, on x86 the register indirection is written as:
831 # \(\%eax\) ;; indirecting eax
833 # in this case, this prefix would be the charater \`\(\'.
835 # Please note that we use the indirection prefix also for register
836 # displacement, e.g., \`4\(\%eax\)\' on x86.
837 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
839 # Suffix used to mark a register indirection on the architecture's assembly.
840 # For example, on x86 the register indirection is written as:
842 # \(\%eax\) ;; indirecting eax
844 # in this case, this prefix would be the charater \`\)\'.
846 # Please note that we use the indirection suffix also for register
847 # displacement, e.g., \`4\(\%eax\)\' on x86.
848 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
850 # Prefix used to name a register using GDB's nomenclature.
852 # For example, on PPC a register is represented by a number in the assembly
853 # language (e.g., \`10\' is the 10th general-purpose register). However,
854 # inside GDB this same register has an \`r\' appended to its name, so the 10th
855 # register would be represented as \`r10\' internally.
856 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
858 # Suffix used to name a register using GDB's nomenclature.
859 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
861 # Check if S is a single operand.
863 # Single operands can be:
864 # \- Literal integers, e.g. \`\$10\' on x86
865 # \- Register access, e.g. \`\%eax\' on x86
866 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
867 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
869 # This function should check for these patterns on the string
870 # and return 1 if some were found, or zero otherwise. Please try to match
871 # as much info as you can from the string, i.e., if you have to match
872 # something like \`\(\%\', do not match just the \`\(\'.
873 M:int:stap_is_single_operand:const char *s:s
875 # Function used to handle a "special case" in the parser.
877 # A "special case" is considered to be an unknown token, i.e., a token
878 # that the parser does not know how to parse. A good example of special
879 # case would be ARM's register displacement syntax:
881 # [R0, #4] ;; displacing R0 by 4
883 # Since the parser assumes that a register displacement is of the form:
885 # <number> <indirection_prefix> <register_name> <indirection_suffix>
887 # it means that it will not be able to recognize and parse this odd syntax.
888 # Therefore, we should add a special case function that will handle this token.
890 # This function should generate the proper expression form of the expression
891 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
892 # and so on). It should also return 1 if the parsing was successful, or zero
893 # if the token was not recognized as a special token (in this case, returning
894 # zero means that the special parser is deferring the parsing to the generic
895 # parser), and should advance the buffer pointer (p->arg).
896 M:int:stap_parse_special_token:struct stap_parse_info *p:p
899 # True if the list of shared libraries is one and only for all
900 # processes, as opposed to a list of shared libraries per inferior.
901 # This usually means that all processes, although may or may not share
902 # an address space, will see the same set of symbols at the same
904 v:int:has_global_solist:::0:0::0
906 # On some targets, even though each inferior has its own private
907 # address space, the debug interface takes care of making breakpoints
908 # visible to all address spaces automatically. For such cases,
909 # this property should be set to true.
910 v:int:has_global_breakpoints:::0:0::0
912 # True if inferiors share an address space (e.g., uClinux).
913 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
915 # True if a fast tracepoint can be set at an address.
916 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
918 # Return the "auto" target charset.
919 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
920 # Return the "auto" target wide charset.
921 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
923 # If non-empty, this is a file extension that will be opened in place
924 # of the file extension reported by the shared library list.
926 # This is most useful for toolchains that use a post-linker tool,
927 # where the names of the files run on the target differ in extension
928 # compared to the names of the files GDB should load for debug info.
929 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
931 # If true, the target OS has DOS-based file system semantics. That
932 # is, absolute paths include a drive name, and the backslash is
933 # considered a directory separator.
934 v:int:has_dos_based_file_system:::0:0::0
936 # Generate bytecodes to collect the return address in a frame.
937 # Since the bytecodes run on the target, possibly with GDB not even
938 # connected, the full unwinding machinery is not available, and
939 # typically this function will issue bytecodes for one or more likely
940 # places that the return address may be found.
941 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
943 # Implement the "info proc" command.
944 M:void:info_proc:char *args, enum info_proc_what what:args, what
946 # Iterate over all objfiles in the order that makes the most sense
947 # for the architecture to make global symbol searches.
949 # CB is a callback function where OBJFILE is the objfile to be searched,
950 # and CB_DATA a pointer to user-defined data (the same data that is passed
951 # when calling this gdbarch method). The iteration stops if this function
954 # CB_DATA is a pointer to some user-defined data to be passed to
957 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
958 # inspected when the symbol search was requested.
959 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
967 exec > new-gdbarch.log
968 function_list | while do_read
971 ${class} ${returntype} ${function} ($formal)
975 eval echo \"\ \ \ \ ${r}=\${${r}}\"
977 if class_is_predicate_p && fallback_default_p
979 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
983 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
985 echo "Error: postdefault is useless when invalid_p=0" 1>&2
989 if class_is_multiarch_p
991 if class_is_predicate_p ; then :
992 elif test "x${predefault}" = "x"
994 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1003 compare_new gdbarch.log
1009 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1012 /* Dynamic architecture support for GDB, the GNU debugger.
1014 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1015 2007, 2008, 2009 Free Software Foundation, Inc.
1017 This file is part of GDB.
1019 This program is free software; you can redistribute it and/or modify
1020 it under the terms of the GNU General Public License as published by
1021 the Free Software Foundation; either version 3 of the License, or
1022 (at your option) any later version.
1024 This program is distributed in the hope that it will be useful,
1025 but WITHOUT ANY WARRANTY; without even the implied warranty of
1026 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1027 GNU General Public License for more details.
1029 You should have received a copy of the GNU General Public License
1030 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1032 /* This file was created with the aid of \`\`gdbarch.sh''.
1034 The Bourne shell script \`\`gdbarch.sh'' creates the files
1035 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1036 against the existing \`\`gdbarch.[hc]''. Any differences found
1039 If editing this file, please also run gdbarch.sh and merge any
1040 changes into that script. Conversely, when making sweeping changes
1041 to this file, modifying gdbarch.sh and using its output may prove
1051 exec > new-gdbarch.h
1063 struct minimal_symbol;
1067 struct disassemble_info;
1070 struct bp_target_info;
1072 struct displaced_step_closure;
1073 struct core_regset_section;
1077 struct stap_parse_info;
1079 /* The architecture associated with the inferior through the
1080 connection to the target.
1082 The architecture vector provides some information that is really a
1083 property of the inferior, accessed through a particular target:
1084 ptrace operations; the layout of certain RSP packets; the solib_ops
1085 vector; etc. To differentiate architecture accesses to
1086 per-inferior/target properties from
1087 per-thread/per-frame/per-objfile properties, accesses to
1088 per-inferior/target properties should be made through this
1091 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1092 extern struct gdbarch *target_gdbarch (void);
1094 /* The initial, default architecture. It uses host values (for want of a better
1096 extern struct gdbarch startup_gdbarch;
1099 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1102 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1103 (struct objfile *objfile, void *cb_data);
1106 # function typedef's
1109 printf "/* The following are pre-initialized by GDBARCH. */\n"
1110 function_list | while do_read
1115 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1116 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1120 # function typedef's
1123 printf "/* The following are initialized by the target dependent code. */\n"
1124 function_list | while do_read
1126 if [ -n "${comment}" ]
1128 echo "${comment}" | sed \
1134 if class_is_predicate_p
1137 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1139 if class_is_variable_p
1142 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1143 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1145 if class_is_function_p
1148 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1150 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1151 elif class_is_multiarch_p
1153 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1155 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1157 if [ "x${formal}" = "xvoid" ]
1159 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1161 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1163 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1170 /* Definition for an unknown syscall, used basically in error-cases. */
1171 #define UNKNOWN_SYSCALL (-1)
1173 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1176 /* Mechanism for co-ordinating the selection of a specific
1179 GDB targets (*-tdep.c) can register an interest in a specific
1180 architecture. Other GDB components can register a need to maintain
1181 per-architecture data.
1183 The mechanisms below ensures that there is only a loose connection
1184 between the set-architecture command and the various GDB
1185 components. Each component can independently register their need
1186 to maintain architecture specific data with gdbarch.
1190 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1193 The more traditional mega-struct containing architecture specific
1194 data for all the various GDB components was also considered. Since
1195 GDB is built from a variable number of (fairly independent)
1196 components it was determined that the global aproach was not
1200 /* Register a new architectural family with GDB.
1202 Register support for the specified ARCHITECTURE with GDB. When
1203 gdbarch determines that the specified architecture has been
1204 selected, the corresponding INIT function is called.
1208 The INIT function takes two parameters: INFO which contains the
1209 information available to gdbarch about the (possibly new)
1210 architecture; ARCHES which is a list of the previously created
1211 \`\`struct gdbarch'' for this architecture.
1213 The INFO parameter is, as far as possible, be pre-initialized with
1214 information obtained from INFO.ABFD or the global defaults.
1216 The ARCHES parameter is a linked list (sorted most recently used)
1217 of all the previously created architures for this architecture
1218 family. The (possibly NULL) ARCHES->gdbarch can used to access
1219 values from the previously selected architecture for this
1220 architecture family.
1222 The INIT function shall return any of: NULL - indicating that it
1223 doesn't recognize the selected architecture; an existing \`\`struct
1224 gdbarch'' from the ARCHES list - indicating that the new
1225 architecture is just a synonym for an earlier architecture (see
1226 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1227 - that describes the selected architecture (see gdbarch_alloc()).
1229 The DUMP_TDEP function shall print out all target specific values.
1230 Care should be taken to ensure that the function works in both the
1231 multi-arch and non- multi-arch cases. */
1235 struct gdbarch *gdbarch;
1236 struct gdbarch_list *next;
1241 /* Use default: NULL (ZERO). */
1242 const struct bfd_arch_info *bfd_arch_info;
1244 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1247 int byte_order_for_code;
1249 /* Use default: NULL (ZERO). */
1252 /* Use default: NULL (ZERO). */
1253 struct gdbarch_tdep_info *tdep_info;
1255 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1256 enum gdb_osabi osabi;
1258 /* Use default: NULL (ZERO). */
1259 const struct target_desc *target_desc;
1262 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1263 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1265 /* DEPRECATED - use gdbarch_register() */
1266 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1268 extern void gdbarch_register (enum bfd_architecture architecture,
1269 gdbarch_init_ftype *,
1270 gdbarch_dump_tdep_ftype *);
1273 /* Return a freshly allocated, NULL terminated, array of the valid
1274 architecture names. Since architectures are registered during the
1275 _initialize phase this function only returns useful information
1276 once initialization has been completed. */
1278 extern const char **gdbarch_printable_names (void);
1281 /* Helper function. Search the list of ARCHES for a GDBARCH that
1282 matches the information provided by INFO. */
1284 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1287 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1288 basic initialization using values obtained from the INFO and TDEP
1289 parameters. set_gdbarch_*() functions are called to complete the
1290 initialization of the object. */
1292 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1295 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1296 It is assumed that the caller freeds the \`\`struct
1299 extern void gdbarch_free (struct gdbarch *);
1302 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1303 obstack. The memory is freed when the corresponding architecture
1306 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1307 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1308 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1311 /* Helper function. Force an update of the current architecture.
1313 The actual architecture selected is determined by INFO, \`\`(gdb) set
1314 architecture'' et.al., the existing architecture and BFD's default
1315 architecture. INFO should be initialized to zero and then selected
1316 fields should be updated.
1318 Returns non-zero if the update succeeds. */
1320 extern int gdbarch_update_p (struct gdbarch_info info);
1323 /* Helper function. Find an architecture matching info.
1325 INFO should be initialized using gdbarch_info_init, relevant fields
1326 set, and then finished using gdbarch_info_fill.
1328 Returns the corresponding architecture, or NULL if no matching
1329 architecture was found. */
1331 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1334 /* Helper function. Set the target gdbarch to "gdbarch". */
1336 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1339 /* Register per-architecture data-pointer.
1341 Reserve space for a per-architecture data-pointer. An identifier
1342 for the reserved data-pointer is returned. That identifer should
1343 be saved in a local static variable.
1345 Memory for the per-architecture data shall be allocated using
1346 gdbarch_obstack_zalloc. That memory will be deleted when the
1347 corresponding architecture object is deleted.
1349 When a previously created architecture is re-selected, the
1350 per-architecture data-pointer for that previous architecture is
1351 restored. INIT() is not re-called.
1353 Multiple registrarants for any architecture are allowed (and
1354 strongly encouraged). */
1356 struct gdbarch_data;
1358 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1359 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1360 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1361 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1362 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1363 struct gdbarch_data *data,
1366 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1369 /* Set the dynamic target-system-dependent parameters (architecture,
1370 byte-order, ...) using information found in the BFD. */
1372 extern void set_gdbarch_from_file (bfd *);
1375 /* Initialize the current architecture to the "first" one we find on
1378 extern void initialize_current_architecture (void);
1380 /* gdbarch trace variable */
1381 extern unsigned int gdbarch_debug;
1383 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1388 #../move-if-change new-gdbarch.h gdbarch.h
1389 compare_new gdbarch.h
1396 exec > new-gdbarch.c
1401 #include "arch-utils.h"
1404 #include "inferior.h"
1407 #include "floatformat.h"
1409 #include "gdb_assert.h"
1410 #include "gdb_string.h"
1411 #include "reggroups.h"
1413 #include "gdb_obstack.h"
1414 #include "observer.h"
1415 #include "regcache.h"
1416 #include "objfiles.h"
1418 /* Static function declarations */
1420 static void alloc_gdbarch_data (struct gdbarch *);
1422 /* Non-zero if we want to trace architecture code. */
1424 #ifndef GDBARCH_DEBUG
1425 #define GDBARCH_DEBUG 0
1427 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1429 show_gdbarch_debug (struct ui_file *file, int from_tty,
1430 struct cmd_list_element *c, const char *value)
1432 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1436 pformat (const struct floatformat **format)
1441 /* Just print out one of them - this is only for diagnostics. */
1442 return format[0]->name;
1446 pstring (const char *string)
1455 # gdbarch open the gdbarch object
1457 printf "/* Maintain the struct gdbarch object. */\n"
1459 printf "struct gdbarch\n"
1461 printf " /* Has this architecture been fully initialized? */\n"
1462 printf " int initialized_p;\n"
1464 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1465 printf " struct obstack *obstack;\n"
1467 printf " /* basic architectural information. */\n"
1468 function_list | while do_read
1472 printf " ${returntype} ${function};\n"
1476 printf " /* target specific vector. */\n"
1477 printf " struct gdbarch_tdep *tdep;\n"
1478 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1480 printf " /* per-architecture data-pointers. */\n"
1481 printf " unsigned nr_data;\n"
1482 printf " void **data;\n"
1485 /* Multi-arch values.
1487 When extending this structure you must:
1489 Add the field below.
1491 Declare set/get functions and define the corresponding
1494 gdbarch_alloc(): If zero/NULL is not a suitable default,
1495 initialize the new field.
1497 verify_gdbarch(): Confirm that the target updated the field
1500 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1503 \`\`startup_gdbarch()'': Append an initial value to the static
1504 variable (base values on the host's c-type system).
1506 get_gdbarch(): Implement the set/get functions (probably using
1507 the macro's as shortcuts).
1512 function_list | while do_read
1514 if class_is_variable_p
1516 printf " ${returntype} ${function};\n"
1517 elif class_is_function_p
1519 printf " gdbarch_${function}_ftype *${function};\n"
1524 # A pre-initialized vector
1528 /* The default architecture uses host values (for want of a better
1532 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1534 printf "struct gdbarch startup_gdbarch =\n"
1536 printf " 1, /* Always initialized. */\n"
1537 printf " NULL, /* The obstack. */\n"
1538 printf " /* basic architecture information. */\n"
1539 function_list | while do_read
1543 printf " ${staticdefault}, /* ${function} */\n"
1547 /* target specific vector and its dump routine. */
1549 /*per-architecture data-pointers. */
1551 /* Multi-arch values */
1553 function_list | while do_read
1555 if class_is_function_p || class_is_variable_p
1557 printf " ${staticdefault}, /* ${function} */\n"
1561 /* startup_gdbarch() */
1566 # Create a new gdbarch struct
1569 /* Create a new \`\`struct gdbarch'' based on information provided by
1570 \`\`struct gdbarch_info''. */
1575 gdbarch_alloc (const struct gdbarch_info *info,
1576 struct gdbarch_tdep *tdep)
1578 struct gdbarch *gdbarch;
1580 /* Create an obstack for allocating all the per-architecture memory,
1581 then use that to allocate the architecture vector. */
1582 struct obstack *obstack = XMALLOC (struct obstack);
1583 obstack_init (obstack);
1584 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1585 memset (gdbarch, 0, sizeof (*gdbarch));
1586 gdbarch->obstack = obstack;
1588 alloc_gdbarch_data (gdbarch);
1590 gdbarch->tdep = tdep;
1593 function_list | while do_read
1597 printf " gdbarch->${function} = info->${function};\n"
1601 printf " /* Force the explicit initialization of these. */\n"
1602 function_list | while do_read
1604 if class_is_function_p || class_is_variable_p
1606 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1608 printf " gdbarch->${function} = ${predefault};\n"
1613 /* gdbarch_alloc() */
1619 # Free a gdbarch struct.
1623 /* Allocate extra space using the per-architecture obstack. */
1626 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1628 void *data = obstack_alloc (arch->obstack, size);
1630 memset (data, 0, size);
1635 /* Free a gdbarch struct. This should never happen in normal
1636 operation --- once you've created a gdbarch, you keep it around.
1637 However, if an architecture's init function encounters an error
1638 building the structure, it may need to clean up a partially
1639 constructed gdbarch. */
1642 gdbarch_free (struct gdbarch *arch)
1644 struct obstack *obstack;
1646 gdb_assert (arch != NULL);
1647 gdb_assert (!arch->initialized_p);
1648 obstack = arch->obstack;
1649 obstack_free (obstack, 0); /* Includes the ARCH. */
1654 # verify a new architecture
1658 /* Ensure that all values in a GDBARCH are reasonable. */
1661 verify_gdbarch (struct gdbarch *gdbarch)
1663 struct ui_file *log;
1664 struct cleanup *cleanups;
1668 log = mem_fileopen ();
1669 cleanups = make_cleanup_ui_file_delete (log);
1671 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1672 fprintf_unfiltered (log, "\n\tbyte-order");
1673 if (gdbarch->bfd_arch_info == NULL)
1674 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1675 /* Check those that need to be defined for the given multi-arch level. */
1677 function_list | while do_read
1679 if class_is_function_p || class_is_variable_p
1681 if [ "x${invalid_p}" = "x0" ]
1683 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1684 elif class_is_predicate_p
1686 printf " /* Skip verify of ${function}, has predicate. */\n"
1687 # FIXME: See do_read for potential simplification
1688 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1690 printf " if (${invalid_p})\n"
1691 printf " gdbarch->${function} = ${postdefault};\n"
1692 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1694 printf " if (gdbarch->${function} == ${predefault})\n"
1695 printf " gdbarch->${function} = ${postdefault};\n"
1696 elif [ -n "${postdefault}" ]
1698 printf " if (gdbarch->${function} == 0)\n"
1699 printf " gdbarch->${function} = ${postdefault};\n"
1700 elif [ -n "${invalid_p}" ]
1702 printf " if (${invalid_p})\n"
1703 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1704 elif [ -n "${predefault}" ]
1706 printf " if (gdbarch->${function} == ${predefault})\n"
1707 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1712 buf = ui_file_xstrdup (log, &length);
1713 make_cleanup (xfree, buf);
1715 internal_error (__FILE__, __LINE__,
1716 _("verify_gdbarch: the following are invalid ...%s"),
1718 do_cleanups (cleanups);
1722 # dump the structure
1726 /* Print out the details of the current architecture. */
1729 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1731 const char *gdb_nm_file = "<not-defined>";
1733 #if defined (GDB_NM_FILE)
1734 gdb_nm_file = GDB_NM_FILE;
1736 fprintf_unfiltered (file,
1737 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1740 function_list | sort -t: -k 3 | while do_read
1742 # First the predicate
1743 if class_is_predicate_p
1745 printf " fprintf_unfiltered (file,\n"
1746 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1747 printf " gdbarch_${function}_p (gdbarch));\n"
1749 # Print the corresponding value.
1750 if class_is_function_p
1752 printf " fprintf_unfiltered (file,\n"
1753 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1754 printf " host_address_to_string (gdbarch->${function}));\n"
1757 case "${print}:${returntype}" in
1760 print="core_addr_to_string_nz (gdbarch->${function})"
1764 print="plongest (gdbarch->${function})"
1770 printf " fprintf_unfiltered (file,\n"
1771 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1772 printf " ${print});\n"
1776 if (gdbarch->dump_tdep != NULL)
1777 gdbarch->dump_tdep (gdbarch, file);
1785 struct gdbarch_tdep *
1786 gdbarch_tdep (struct gdbarch *gdbarch)
1788 if (gdbarch_debug >= 2)
1789 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1790 return gdbarch->tdep;
1794 function_list | while do_read
1796 if class_is_predicate_p
1800 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1802 printf " gdb_assert (gdbarch != NULL);\n"
1803 printf " return ${predicate};\n"
1806 if class_is_function_p
1809 printf "${returntype}\n"
1810 if [ "x${formal}" = "xvoid" ]
1812 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1814 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1817 printf " gdb_assert (gdbarch != NULL);\n"
1818 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1819 if class_is_predicate_p && test -n "${predefault}"
1821 # Allow a call to a function with a predicate.
1822 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1824 printf " if (gdbarch_debug >= 2)\n"
1825 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1826 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1828 if class_is_multiarch_p
1835 if class_is_multiarch_p
1837 params="gdbarch, ${actual}"
1842 if [ "x${returntype}" = "xvoid" ]
1844 printf " gdbarch->${function} (${params});\n"
1846 printf " return gdbarch->${function} (${params});\n"
1851 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1852 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1854 printf " gdbarch->${function} = ${function};\n"
1856 elif class_is_variable_p
1859 printf "${returntype}\n"
1860 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1862 printf " gdb_assert (gdbarch != NULL);\n"
1863 if [ "x${invalid_p}" = "x0" ]
1865 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1866 elif [ -n "${invalid_p}" ]
1868 printf " /* Check variable is valid. */\n"
1869 printf " gdb_assert (!(${invalid_p}));\n"
1870 elif [ -n "${predefault}" ]
1872 printf " /* Check variable changed from pre-default. */\n"
1873 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1875 printf " if (gdbarch_debug >= 2)\n"
1876 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1877 printf " return gdbarch->${function};\n"
1881 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1882 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1884 printf " gdbarch->${function} = ${function};\n"
1886 elif class_is_info_p
1889 printf "${returntype}\n"
1890 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1892 printf " gdb_assert (gdbarch != NULL);\n"
1893 printf " if (gdbarch_debug >= 2)\n"
1894 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1895 printf " return gdbarch->${function};\n"
1900 # All the trailing guff
1904 /* Keep a registry of per-architecture data-pointers required by GDB
1911 gdbarch_data_pre_init_ftype *pre_init;
1912 gdbarch_data_post_init_ftype *post_init;
1915 struct gdbarch_data_registration
1917 struct gdbarch_data *data;
1918 struct gdbarch_data_registration *next;
1921 struct gdbarch_data_registry
1924 struct gdbarch_data_registration *registrations;
1927 struct gdbarch_data_registry gdbarch_data_registry =
1932 static struct gdbarch_data *
1933 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1934 gdbarch_data_post_init_ftype *post_init)
1936 struct gdbarch_data_registration **curr;
1938 /* Append the new registration. */
1939 for (curr = &gdbarch_data_registry.registrations;
1941 curr = &(*curr)->next);
1942 (*curr) = XMALLOC (struct gdbarch_data_registration);
1943 (*curr)->next = NULL;
1944 (*curr)->data = XMALLOC (struct gdbarch_data);
1945 (*curr)->data->index = gdbarch_data_registry.nr++;
1946 (*curr)->data->pre_init = pre_init;
1947 (*curr)->data->post_init = post_init;
1948 (*curr)->data->init_p = 1;
1949 return (*curr)->data;
1952 struct gdbarch_data *
1953 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1955 return gdbarch_data_register (pre_init, NULL);
1958 struct gdbarch_data *
1959 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1961 return gdbarch_data_register (NULL, post_init);
1964 /* Create/delete the gdbarch data vector. */
1967 alloc_gdbarch_data (struct gdbarch *gdbarch)
1969 gdb_assert (gdbarch->data == NULL);
1970 gdbarch->nr_data = gdbarch_data_registry.nr;
1971 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1974 /* Initialize the current value of the specified per-architecture
1978 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1979 struct gdbarch_data *data,
1982 gdb_assert (data->index < gdbarch->nr_data);
1983 gdb_assert (gdbarch->data[data->index] == NULL);
1984 gdb_assert (data->pre_init == NULL);
1985 gdbarch->data[data->index] = pointer;
1988 /* Return the current value of the specified per-architecture
1992 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1994 gdb_assert (data->index < gdbarch->nr_data);
1995 if (gdbarch->data[data->index] == NULL)
1997 /* The data-pointer isn't initialized, call init() to get a
1999 if (data->pre_init != NULL)
2000 /* Mid architecture creation: pass just the obstack, and not
2001 the entire architecture, as that way it isn't possible for
2002 pre-init code to refer to undefined architecture
2004 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2005 else if (gdbarch->initialized_p
2006 && data->post_init != NULL)
2007 /* Post architecture creation: pass the entire architecture
2008 (as all fields are valid), but be careful to also detect
2009 recursive references. */
2011 gdb_assert (data->init_p);
2013 gdbarch->data[data->index] = data->post_init (gdbarch);
2017 /* The architecture initialization hasn't completed - punt -
2018 hope that the caller knows what they are doing. Once
2019 deprecated_set_gdbarch_data has been initialized, this can be
2020 changed to an internal error. */
2022 gdb_assert (gdbarch->data[data->index] != NULL);
2024 return gdbarch->data[data->index];
2028 /* Keep a registry of the architectures known by GDB. */
2030 struct gdbarch_registration
2032 enum bfd_architecture bfd_architecture;
2033 gdbarch_init_ftype *init;
2034 gdbarch_dump_tdep_ftype *dump_tdep;
2035 struct gdbarch_list *arches;
2036 struct gdbarch_registration *next;
2039 static struct gdbarch_registration *gdbarch_registry = NULL;
2042 append_name (const char ***buf, int *nr, const char *name)
2044 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2050 gdbarch_printable_names (void)
2052 /* Accumulate a list of names based on the registed list of
2055 const char **arches = NULL;
2056 struct gdbarch_registration *rego;
2058 for (rego = gdbarch_registry;
2062 const struct bfd_arch_info *ap;
2063 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2065 internal_error (__FILE__, __LINE__,
2066 _("gdbarch_architecture_names: multi-arch unknown"));
2069 append_name (&arches, &nr_arches, ap->printable_name);
2074 append_name (&arches, &nr_arches, NULL);
2080 gdbarch_register (enum bfd_architecture bfd_architecture,
2081 gdbarch_init_ftype *init,
2082 gdbarch_dump_tdep_ftype *dump_tdep)
2084 struct gdbarch_registration **curr;
2085 const struct bfd_arch_info *bfd_arch_info;
2087 /* Check that BFD recognizes this architecture */
2088 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2089 if (bfd_arch_info == NULL)
2091 internal_error (__FILE__, __LINE__,
2092 _("gdbarch: Attempt to register "
2093 "unknown architecture (%d)"),
2096 /* Check that we haven't seen this architecture before. */
2097 for (curr = &gdbarch_registry;
2099 curr = &(*curr)->next)
2101 if (bfd_architecture == (*curr)->bfd_architecture)
2102 internal_error (__FILE__, __LINE__,
2103 _("gdbarch: Duplicate registration "
2104 "of architecture (%s)"),
2105 bfd_arch_info->printable_name);
2109 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2110 bfd_arch_info->printable_name,
2111 host_address_to_string (init));
2113 (*curr) = XMALLOC (struct gdbarch_registration);
2114 (*curr)->bfd_architecture = bfd_architecture;
2115 (*curr)->init = init;
2116 (*curr)->dump_tdep = dump_tdep;
2117 (*curr)->arches = NULL;
2118 (*curr)->next = NULL;
2122 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2123 gdbarch_init_ftype *init)
2125 gdbarch_register (bfd_architecture, init, NULL);
2129 /* Look for an architecture using gdbarch_info. */
2131 struct gdbarch_list *
2132 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2133 const struct gdbarch_info *info)
2135 for (; arches != NULL; arches = arches->next)
2137 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2139 if (info->byte_order != arches->gdbarch->byte_order)
2141 if (info->osabi != arches->gdbarch->osabi)
2143 if (info->target_desc != arches->gdbarch->target_desc)
2151 /* Find an architecture that matches the specified INFO. Create a new
2152 architecture if needed. Return that new architecture. */
2155 gdbarch_find_by_info (struct gdbarch_info info)
2157 struct gdbarch *new_gdbarch;
2158 struct gdbarch_registration *rego;
2160 /* Fill in missing parts of the INFO struct using a number of
2161 sources: "set ..."; INFOabfd supplied; and the global
2163 gdbarch_info_fill (&info);
2165 /* Must have found some sort of architecture. */
2166 gdb_assert (info.bfd_arch_info != NULL);
2170 fprintf_unfiltered (gdb_stdlog,
2171 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2172 (info.bfd_arch_info != NULL
2173 ? info.bfd_arch_info->printable_name
2175 fprintf_unfiltered (gdb_stdlog,
2176 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2178 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2179 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2181 fprintf_unfiltered (gdb_stdlog,
2182 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2183 info.osabi, gdbarch_osabi_name (info.osabi));
2184 fprintf_unfiltered (gdb_stdlog,
2185 "gdbarch_find_by_info: info.abfd %s\n",
2186 host_address_to_string (info.abfd));
2187 fprintf_unfiltered (gdb_stdlog,
2188 "gdbarch_find_by_info: info.tdep_info %s\n",
2189 host_address_to_string (info.tdep_info));
2192 /* Find the tdep code that knows about this architecture. */
2193 for (rego = gdbarch_registry;
2196 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2201 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2202 "No matching architecture\n");
2206 /* Ask the tdep code for an architecture that matches "info". */
2207 new_gdbarch = rego->init (info, rego->arches);
2209 /* Did the tdep code like it? No. Reject the change and revert to
2210 the old architecture. */
2211 if (new_gdbarch == NULL)
2214 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2215 "Target rejected architecture\n");
2219 /* Is this a pre-existing architecture (as determined by already
2220 being initialized)? Move it to the front of the architecture
2221 list (keeping the list sorted Most Recently Used). */
2222 if (new_gdbarch->initialized_p)
2224 struct gdbarch_list **list;
2225 struct gdbarch_list *this;
2227 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2228 "Previous architecture %s (%s) selected\n",
2229 host_address_to_string (new_gdbarch),
2230 new_gdbarch->bfd_arch_info->printable_name);
2231 /* Find the existing arch in the list. */
2232 for (list = ®o->arches;
2233 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2234 list = &(*list)->next);
2235 /* It had better be in the list of architectures. */
2236 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2239 (*list) = this->next;
2240 /* Insert THIS at the front. */
2241 this->next = rego->arches;
2242 rego->arches = this;
2247 /* It's a new architecture. */
2249 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2250 "New architecture %s (%s) selected\n",
2251 host_address_to_string (new_gdbarch),
2252 new_gdbarch->bfd_arch_info->printable_name);
2254 /* Insert the new architecture into the front of the architecture
2255 list (keep the list sorted Most Recently Used). */
2257 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2258 this->next = rego->arches;
2259 this->gdbarch = new_gdbarch;
2260 rego->arches = this;
2263 /* Check that the newly installed architecture is valid. Plug in
2264 any post init values. */
2265 new_gdbarch->dump_tdep = rego->dump_tdep;
2266 verify_gdbarch (new_gdbarch);
2267 new_gdbarch->initialized_p = 1;
2270 gdbarch_dump (new_gdbarch, gdb_stdlog);
2275 /* Make the specified architecture current. */
2278 set_target_gdbarch (struct gdbarch *new_gdbarch)
2280 gdb_assert (new_gdbarch != NULL);
2281 gdb_assert (new_gdbarch->initialized_p);
2282 current_inferior ()->gdbarch = new_gdbarch;
2283 observer_notify_architecture_changed (new_gdbarch);
2284 registers_changed ();
2287 /* Return the current inferior's arch. */
2290 target_gdbarch (void)
2292 return current_inferior ()->gdbarch;
2295 extern void _initialize_gdbarch (void);
2298 _initialize_gdbarch (void)
2300 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2301 Set architecture debugging."), _("\\
2302 Show architecture debugging."), _("\\
2303 When non-zero, architecture debugging is enabled."),
2306 &setdebuglist, &showdebuglist);
2312 #../move-if-change new-gdbarch.c gdbarch.c
2313 compare_new gdbarch.c