3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 if test -n "${garbage_at_eol}"
77 echo "Garbage at end-of-line in ${line}" 1>&2
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
86 if eval test \"\${${r}}\" = \"\ \"
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
100 case "${invalid_p}" in
102 if test -n "${predefault}"
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
111 predicate="gdbarch->${function} != NULL"
115 echo "Predicate function ${function} with invalid_p." 1>&2
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
129 if [ -n "${postdefault}" ]
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
134 fallbackdefault="${predefault}"
139 #NOT YET: See gdbarch.log for basic verification of
154 fallback_default_p ()
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
160 class_is_variable_p ()
168 class_is_function_p ()
171 *f* | *F* | *m* | *M* ) true ;;
176 class_is_multiarch_p ()
184 class_is_predicate_p ()
187 *F* | *V* | *M* ) true ;;
201 # dump out/verify the doco
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
226 # For functions, the return type; for variables, the data type
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
254 # If STATICDEFAULT is empty, zero is used.
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
263 # If PREDEFAULT is empty, zero is used.
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
269 # A zero PREDEFAULT function will force the fallback to call
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
281 # If POSTDEFAULT is empty, no post update is performed.
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
313 # See also PREDEFAULT and POSTDEFAULT.
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
323 garbage_at_eol ) : ;;
325 # Catches stray fields.
328 echo "Bad field ${field}"
336 # See below (DOCO) for description of each field
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
491 v:int:believe_pcc_promotion:::::::
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
634 # Create core file notes
635 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
637 # Find core file memory regions
638 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
640 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641 # core file into buffer READBUF with length LEN.
642 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
644 # How the core target converts a PTID from a core file to a string.
645 M:char *:core_pid_to_str:ptid_t ptid:ptid
647 # BFD target to use when generating a core file.
648 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
650 # If the elements of C++ vtables are in-place function descriptors rather
651 # than normal function pointers (which may point to code or a descriptor),
653 v:int:vtable_function_descriptors:::0:0::0
655 # Set if the least significant bit of the delta is used instead of the least
656 # significant bit of the pfn for pointers to virtual member functions.
657 v:int:vbit_in_delta:::0:0::0
659 # Advance PC to next instruction in order to skip a permanent breakpoint.
660 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
662 # The maximum length of an instruction on this architecture in bytes.
663 V:ULONGEST:max_insn_length:::0:0
665 # Copy the instruction at FROM to TO, and make any adjustments
666 # necessary to single-step it at that address.
668 # REGS holds the state the thread's registers will have before
669 # executing the copied instruction; the PC in REGS will refer to FROM,
670 # not the copy at TO. The caller should update it to point at TO later.
672 # Return a pointer to data of the architecture's choice to be passed
673 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674 # the instruction's effects have been completely simulated, with the
675 # resulting state written back to REGS.
677 # For a general explanation of displaced stepping and how GDB uses it,
678 # see the comments in infrun.c.
680 # The TO area is only guaranteed to have space for
681 # gdbarch_max_insn_length (arch) bytes, so this function must not
682 # write more bytes than that to that area.
684 # If you do not provide this function, GDB assumes that the
685 # architecture does not support displaced stepping.
687 # If your architecture doesn't need to adjust instructions before
688 # single-stepping them, consider using simple_displaced_step_copy_insn
690 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
692 # Return true if GDB should use hardware single-stepping to execute
693 # the displaced instruction identified by CLOSURE. If false,
694 # GDB will simply restart execution at the displaced instruction
695 # location, and it is up to the target to ensure GDB will receive
696 # control again (e.g. by placing a software breakpoint instruction
697 # into the displaced instruction buffer).
699 # The default implementation returns false on all targets that
700 # provide a gdbarch_software_single_step routine, and true otherwise.
701 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
703 # Fix up the state resulting from successfully single-stepping a
704 # displaced instruction, to give the result we would have gotten from
705 # stepping the instruction in its original location.
707 # REGS is the register state resulting from single-stepping the
708 # displaced instruction.
710 # CLOSURE is the result from the matching call to
711 # gdbarch_displaced_step_copy_insn.
713 # If you provide gdbarch_displaced_step_copy_insn.but not this
714 # function, then GDB assumes that no fixup is needed after
715 # single-stepping the instruction.
717 # For a general explanation of displaced stepping and how GDB uses it,
718 # see the comments in infrun.c.
719 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
721 # Free a closure returned by gdbarch_displaced_step_copy_insn.
723 # If you provide gdbarch_displaced_step_copy_insn, you must provide
724 # this function as well.
726 # If your architecture uses closures that don't need to be freed, then
727 # you can use simple_displaced_step_free_closure here.
729 # For a general explanation of displaced stepping and how GDB uses it,
730 # see the comments in infrun.c.
731 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
733 # Return the address of an appropriate place to put displaced
734 # instructions while we step over them. There need only be one such
735 # place, since we're only stepping one thread over a breakpoint at a
738 # For a general explanation of displaced stepping and how GDB uses it,
739 # see the comments in infrun.c.
740 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
742 # Relocate an instruction to execute at a different address. OLDLOC
743 # is the address in the inferior memory where the instruction to
744 # relocate is currently at. On input, TO points to the destination
745 # where we want the instruction to be copied (and possibly adjusted)
746 # to. On output, it points to one past the end of the resulting
747 # instruction(s). The effect of executing the instruction at TO shall
748 # be the same as if executing it at FROM. For example, call
749 # instructions that implicitly push the return address on the stack
750 # should be adjusted to return to the instruction after OLDLOC;
751 # relative branches, and other PC-relative instructions need the
752 # offset adjusted; etc.
753 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
755 # Refresh overlay mapped state for section OSECT.
756 F:void:overlay_update:struct obj_section *osect:osect
758 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
760 # Handle special encoding of static variables in stabs debug info.
761 F:const char *:static_transform_name:const char *name:name
762 # Set if the address in N_SO or N_FUN stabs may be zero.
763 v:int:sofun_address_maybe_missing:::0:0::0
765 # Parse the instruction at ADDR storing in the record execution log
766 # the registers REGCACHE and memory ranges that will be affected when
767 # the instruction executes, along with their current values.
768 # Return -1 if something goes wrong, 0 otherwise.
769 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
771 # Save process state after a signal.
772 # Return -1 if something goes wrong, 0 otherwise.
773 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
775 # Signal translation: translate inferior's signal (target's) number
776 # into GDB's representation. The implementation of this method must
777 # be host independent. IOW, don't rely on symbols of the NAT_FILE
778 # header (the nm-*.h files), the host <signal.h> header, or similar
779 # headers. This is mainly used when cross-debugging core files ---
780 # "Live" targets hide the translation behind the target interface
781 # (target_wait, target_resume, etc.). The default is to do the
782 # translation using host signal numbers.
783 m:enum gdb_signal:gdb_signal_from_target:int signo:signo::default_gdb_signal_from_target::0
785 # Extra signal info inspection.
787 # Return a type suitable to inspect extra signal information.
788 M:struct type *:get_siginfo_type:void:
790 # Record architecture-specific information from the symbol table.
791 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
793 # Function for the 'catch syscall' feature.
795 # Get architecture-specific system calls information from registers.
796 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
798 # SystemTap related fields and functions.
800 # Prefix used to mark an integer constant on the architecture's assembly
801 # For example, on x86 integer constants are written as:
803 # \$10 ;; integer constant 10
805 # in this case, this prefix would be the character \`\$\'.
806 v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
808 # Suffix used to mark an integer constant on the architecture's assembly.
809 v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
811 # Prefix used to mark a register name on the architecture's assembly.
812 # For example, on x86 the register name is written as:
814 # \%eax ;; register eax
816 # in this case, this prefix would be the character \`\%\'.
817 v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
819 # Suffix used to mark a register name on the architecture's assembly
820 v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
822 # Prefix used to mark a register indirection on the architecture's assembly.
823 # For example, on x86 the register indirection is written as:
825 # \(\%eax\) ;; indirecting eax
827 # in this case, this prefix would be the charater \`\(\'.
829 # Please note that we use the indirection prefix also for register
830 # displacement, e.g., \`4\(\%eax\)\' on x86.
831 v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
833 # Suffix used to mark a register indirection on the architecture's assembly.
834 # For example, on x86 the register indirection is written as:
836 # \(\%eax\) ;; indirecting eax
838 # in this case, this prefix would be the charater \`\)\'.
840 # Please note that we use the indirection suffix also for register
841 # displacement, e.g., \`4\(\%eax\)\' on x86.
842 v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
844 # Prefix used to name a register using GDB's nomenclature.
846 # For example, on PPC a register is represented by a number in the assembly
847 # language (e.g., \`10\' is the 10th general-purpose register). However,
848 # inside GDB this same register has an \`r\' appended to its name, so the 10th
849 # register would be represented as \`r10\' internally.
850 v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
852 # Suffix used to name a register using GDB's nomenclature.
853 v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
855 # Check if S is a single operand.
857 # Single operands can be:
858 # \- Literal integers, e.g. \`\$10\' on x86
859 # \- Register access, e.g. \`\%eax\' on x86
860 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
861 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
863 # This function should check for these patterns on the string
864 # and return 1 if some were found, or zero otherwise. Please try to match
865 # as much info as you can from the string, i.e., if you have to match
866 # something like \`\(\%\', do not match just the \`\(\'.
867 M:int:stap_is_single_operand:const char *s:s
869 # Function used to handle a "special case" in the parser.
871 # A "special case" is considered to be an unknown token, i.e., a token
872 # that the parser does not know how to parse. A good example of special
873 # case would be ARM's register displacement syntax:
875 # [R0, #4] ;; displacing R0 by 4
877 # Since the parser assumes that a register displacement is of the form:
879 # <number> <indirection_prefix> <register_name> <indirection_suffix>
881 # it means that it will not be able to recognize and parse this odd syntax.
882 # Therefore, we should add a special case function that will handle this token.
884 # This function should generate the proper expression form of the expression
885 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
886 # and so on). It should also return 1 if the parsing was successful, or zero
887 # if the token was not recognized as a special token (in this case, returning
888 # zero means that the special parser is deferring the parsing to the generic
889 # parser), and should advance the buffer pointer (p->arg).
890 M:int:stap_parse_special_token:struct stap_parse_info *p:p
893 # True if the list of shared libraries is one and only for all
894 # processes, as opposed to a list of shared libraries per inferior.
895 # This usually means that all processes, although may or may not share
896 # an address space, will see the same set of symbols at the same
898 v:int:has_global_solist:::0:0::0
900 # On some targets, even though each inferior has its own private
901 # address space, the debug interface takes care of making breakpoints
902 # visible to all address spaces automatically. For such cases,
903 # this property should be set to true.
904 v:int:has_global_breakpoints:::0:0::0
906 # True if inferiors share an address space (e.g., uClinux).
907 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
909 # True if a fast tracepoint can be set at an address.
910 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
912 # Return the "auto" target charset.
913 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
914 # Return the "auto" target wide charset.
915 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
917 # If non-empty, this is a file extension that will be opened in place
918 # of the file extension reported by the shared library list.
920 # This is most useful for toolchains that use a post-linker tool,
921 # where the names of the files run on the target differ in extension
922 # compared to the names of the files GDB should load for debug info.
923 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
925 # If true, the target OS has DOS-based file system semantics. That
926 # is, absolute paths include a drive name, and the backslash is
927 # considered a directory separator.
928 v:int:has_dos_based_file_system:::0:0::0
930 # Generate bytecodes to collect the return address in a frame.
931 # Since the bytecodes run on the target, possibly with GDB not even
932 # connected, the full unwinding machinery is not available, and
933 # typically this function will issue bytecodes for one or more likely
934 # places that the return address may be found.
935 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
937 # Implement the "info proc" command.
938 M:void:info_proc:char *args, enum info_proc_what what:args, what
946 exec > new-gdbarch.log
947 function_list | while do_read
950 ${class} ${returntype} ${function} ($formal)
954 eval echo \"\ \ \ \ ${r}=\${${r}}\"
956 if class_is_predicate_p && fallback_default_p
958 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
962 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
964 echo "Error: postdefault is useless when invalid_p=0" 1>&2
968 if class_is_multiarch_p
970 if class_is_predicate_p ; then :
971 elif test "x${predefault}" = "x"
973 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
982 compare_new gdbarch.log
988 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
990 /* Dynamic architecture support for GDB, the GNU debugger.
992 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
993 2007, 2008, 2009 Free Software Foundation, Inc.
995 This file is part of GDB.
997 This program is free software; you can redistribute it and/or modify
998 it under the terms of the GNU General Public License as published by
999 the Free Software Foundation; either version 3 of the License, or
1000 (at your option) any later version.
1002 This program is distributed in the hope that it will be useful,
1003 but WITHOUT ANY WARRANTY; without even the implied warranty of
1004 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1005 GNU General Public License for more details.
1007 You should have received a copy of the GNU General Public License
1008 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1010 /* This file was created with the aid of \`\`gdbarch.sh''.
1012 The Bourne shell script \`\`gdbarch.sh'' creates the files
1013 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1014 against the existing \`\`gdbarch.[hc]''. Any differences found
1017 If editing this file, please also run gdbarch.sh and merge any
1018 changes into that script. Conversely, when making sweeping changes
1019 to this file, modifying gdbarch.sh and using its output may prove
1029 exec > new-gdbarch.h
1041 struct minimal_symbol;
1045 struct disassemble_info;
1048 struct bp_target_info;
1050 struct displaced_step_closure;
1051 struct core_regset_section;
1055 struct stap_parse_info;
1057 /* The architecture associated with the connection to the target.
1059 The architecture vector provides some information that is really
1060 a property of the target: The layout of certain packets, for instance;
1061 or the solib_ops vector. Etc. To differentiate architecture accesses
1062 to per-target properties from per-thread/per-frame/per-objfile properties,
1063 accesses to per-target properties should be made through target_gdbarch.
1065 Eventually, when support for multiple targets is implemented in
1066 GDB, this global should be made target-specific. */
1067 extern struct gdbarch *target_gdbarch;
1070 # function typedef's
1073 printf "/* The following are pre-initialized by GDBARCH. */\n"
1074 function_list | while do_read
1079 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1080 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1084 # function typedef's
1087 printf "/* The following are initialized by the target dependent code. */\n"
1088 function_list | while do_read
1090 if [ -n "${comment}" ]
1092 echo "${comment}" | sed \
1098 if class_is_predicate_p
1101 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1103 if class_is_variable_p
1106 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1107 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1109 if class_is_function_p
1112 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1114 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1115 elif class_is_multiarch_p
1117 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1119 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1121 if [ "x${formal}" = "xvoid" ]
1123 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1125 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1127 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1134 /* Definition for an unknown syscall, used basically in error-cases. */
1135 #define UNKNOWN_SYSCALL (-1)
1137 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1140 /* Mechanism for co-ordinating the selection of a specific
1143 GDB targets (*-tdep.c) can register an interest in a specific
1144 architecture. Other GDB components can register a need to maintain
1145 per-architecture data.
1147 The mechanisms below ensures that there is only a loose connection
1148 between the set-architecture command and the various GDB
1149 components. Each component can independently register their need
1150 to maintain architecture specific data with gdbarch.
1154 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1157 The more traditional mega-struct containing architecture specific
1158 data for all the various GDB components was also considered. Since
1159 GDB is built from a variable number of (fairly independent)
1160 components it was determined that the global aproach was not
1164 /* Register a new architectural family with GDB.
1166 Register support for the specified ARCHITECTURE with GDB. When
1167 gdbarch determines that the specified architecture has been
1168 selected, the corresponding INIT function is called.
1172 The INIT function takes two parameters: INFO which contains the
1173 information available to gdbarch about the (possibly new)
1174 architecture; ARCHES which is a list of the previously created
1175 \`\`struct gdbarch'' for this architecture.
1177 The INFO parameter is, as far as possible, be pre-initialized with
1178 information obtained from INFO.ABFD or the global defaults.
1180 The ARCHES parameter is a linked list (sorted most recently used)
1181 of all the previously created architures for this architecture
1182 family. The (possibly NULL) ARCHES->gdbarch can used to access
1183 values from the previously selected architecture for this
1184 architecture family.
1186 The INIT function shall return any of: NULL - indicating that it
1187 doesn't recognize the selected architecture; an existing \`\`struct
1188 gdbarch'' from the ARCHES list - indicating that the new
1189 architecture is just a synonym for an earlier architecture (see
1190 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1191 - that describes the selected architecture (see gdbarch_alloc()).
1193 The DUMP_TDEP function shall print out all target specific values.
1194 Care should be taken to ensure that the function works in both the
1195 multi-arch and non- multi-arch cases. */
1199 struct gdbarch *gdbarch;
1200 struct gdbarch_list *next;
1205 /* Use default: NULL (ZERO). */
1206 const struct bfd_arch_info *bfd_arch_info;
1208 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1211 int byte_order_for_code;
1213 /* Use default: NULL (ZERO). */
1216 /* Use default: NULL (ZERO). */
1217 struct gdbarch_tdep_info *tdep_info;
1219 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1220 enum gdb_osabi osabi;
1222 /* Use default: NULL (ZERO). */
1223 const struct target_desc *target_desc;
1226 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1227 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1229 /* DEPRECATED - use gdbarch_register() */
1230 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1232 extern void gdbarch_register (enum bfd_architecture architecture,
1233 gdbarch_init_ftype *,
1234 gdbarch_dump_tdep_ftype *);
1237 /* Return a freshly allocated, NULL terminated, array of the valid
1238 architecture names. Since architectures are registered during the
1239 _initialize phase this function only returns useful information
1240 once initialization has been completed. */
1242 extern const char **gdbarch_printable_names (void);
1245 /* Helper function. Search the list of ARCHES for a GDBARCH that
1246 matches the information provided by INFO. */
1248 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1251 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1252 basic initialization using values obtained from the INFO and TDEP
1253 parameters. set_gdbarch_*() functions are called to complete the
1254 initialization of the object. */
1256 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1259 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1260 It is assumed that the caller freeds the \`\`struct
1263 extern void gdbarch_free (struct gdbarch *);
1266 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1267 obstack. The memory is freed when the corresponding architecture
1270 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1271 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1272 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1275 /* Helper function. Force an update of the current architecture.
1277 The actual architecture selected is determined by INFO, \`\`(gdb) set
1278 architecture'' et.al., the existing architecture and BFD's default
1279 architecture. INFO should be initialized to zero and then selected
1280 fields should be updated.
1282 Returns non-zero if the update succeeds. */
1284 extern int gdbarch_update_p (struct gdbarch_info info);
1287 /* Helper function. Find an architecture matching info.
1289 INFO should be initialized using gdbarch_info_init, relevant fields
1290 set, and then finished using gdbarch_info_fill.
1292 Returns the corresponding architecture, or NULL if no matching
1293 architecture was found. */
1295 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1298 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1300 FIXME: kettenis/20031124: Of the functions that follow, only
1301 gdbarch_from_bfd is supposed to survive. The others will
1302 dissappear since in the future GDB will (hopefully) be truly
1303 multi-arch. However, for now we're still stuck with the concept of
1304 a single active architecture. */
1306 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1309 /* Register per-architecture data-pointer.
1311 Reserve space for a per-architecture data-pointer. An identifier
1312 for the reserved data-pointer is returned. That identifer should
1313 be saved in a local static variable.
1315 Memory for the per-architecture data shall be allocated using
1316 gdbarch_obstack_zalloc. That memory will be deleted when the
1317 corresponding architecture object is deleted.
1319 When a previously created architecture is re-selected, the
1320 per-architecture data-pointer for that previous architecture is
1321 restored. INIT() is not re-called.
1323 Multiple registrarants for any architecture are allowed (and
1324 strongly encouraged). */
1326 struct gdbarch_data;
1328 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1329 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1330 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1331 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1332 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1333 struct gdbarch_data *data,
1336 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1339 /* Set the dynamic target-system-dependent parameters (architecture,
1340 byte-order, ...) using information found in the BFD. */
1342 extern void set_gdbarch_from_file (bfd *);
1345 /* Initialize the current architecture to the "first" one we find on
1348 extern void initialize_current_architecture (void);
1350 /* gdbarch trace variable */
1351 extern int gdbarch_debug;
1353 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1358 #../move-if-change new-gdbarch.h gdbarch.h
1359 compare_new gdbarch.h
1366 exec > new-gdbarch.c
1371 #include "arch-utils.h"
1374 #include "inferior.h"
1377 #include "floatformat.h"
1379 #include "gdb_assert.h"
1380 #include "gdb_string.h"
1381 #include "reggroups.h"
1383 #include "gdb_obstack.h"
1384 #include "observer.h"
1385 #include "regcache.h"
1387 /* Static function declarations */
1389 static void alloc_gdbarch_data (struct gdbarch *);
1391 /* Non-zero if we want to trace architecture code. */
1393 #ifndef GDBARCH_DEBUG
1394 #define GDBARCH_DEBUG 0
1396 int gdbarch_debug = GDBARCH_DEBUG;
1398 show_gdbarch_debug (struct ui_file *file, int from_tty,
1399 struct cmd_list_element *c, const char *value)
1401 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1405 pformat (const struct floatformat **format)
1410 /* Just print out one of them - this is only for diagnostics. */
1411 return format[0]->name;
1415 pstring (const char *string)
1424 # gdbarch open the gdbarch object
1426 printf "/* Maintain the struct gdbarch object. */\n"
1428 printf "struct gdbarch\n"
1430 printf " /* Has this architecture been fully initialized? */\n"
1431 printf " int initialized_p;\n"
1433 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1434 printf " struct obstack *obstack;\n"
1436 printf " /* basic architectural information. */\n"
1437 function_list | while do_read
1441 printf " ${returntype} ${function};\n"
1445 printf " /* target specific vector. */\n"
1446 printf " struct gdbarch_tdep *tdep;\n"
1447 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1449 printf " /* per-architecture data-pointers. */\n"
1450 printf " unsigned nr_data;\n"
1451 printf " void **data;\n"
1453 printf " /* per-architecture swap-regions. */\n"
1454 printf " struct gdbarch_swap *swap;\n"
1457 /* Multi-arch values.
1459 When extending this structure you must:
1461 Add the field below.
1463 Declare set/get functions and define the corresponding
1466 gdbarch_alloc(): If zero/NULL is not a suitable default,
1467 initialize the new field.
1469 verify_gdbarch(): Confirm that the target updated the field
1472 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1475 \`\`startup_gdbarch()'': Append an initial value to the static
1476 variable (base values on the host's c-type system).
1478 get_gdbarch(): Implement the set/get functions (probably using
1479 the macro's as shortcuts).
1484 function_list | while do_read
1486 if class_is_variable_p
1488 printf " ${returntype} ${function};\n"
1489 elif class_is_function_p
1491 printf " gdbarch_${function}_ftype *${function};\n"
1496 # A pre-initialized vector
1500 /* The default architecture uses host values (for want of a better
1504 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1506 printf "struct gdbarch startup_gdbarch =\n"
1508 printf " 1, /* Always initialized. */\n"
1509 printf " NULL, /* The obstack. */\n"
1510 printf " /* basic architecture information. */\n"
1511 function_list | while do_read
1515 printf " ${staticdefault}, /* ${function} */\n"
1519 /* target specific vector and its dump routine. */
1521 /*per-architecture data-pointers and swap regions. */
1523 /* Multi-arch values */
1525 function_list | while do_read
1527 if class_is_function_p || class_is_variable_p
1529 printf " ${staticdefault}, /* ${function} */\n"
1533 /* startup_gdbarch() */
1536 struct gdbarch *target_gdbarch = &startup_gdbarch;
1539 # Create a new gdbarch struct
1542 /* Create a new \`\`struct gdbarch'' based on information provided by
1543 \`\`struct gdbarch_info''. */
1548 gdbarch_alloc (const struct gdbarch_info *info,
1549 struct gdbarch_tdep *tdep)
1551 struct gdbarch *gdbarch;
1553 /* Create an obstack for allocating all the per-architecture memory,
1554 then use that to allocate the architecture vector. */
1555 struct obstack *obstack = XMALLOC (struct obstack);
1556 obstack_init (obstack);
1557 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1558 memset (gdbarch, 0, sizeof (*gdbarch));
1559 gdbarch->obstack = obstack;
1561 alloc_gdbarch_data (gdbarch);
1563 gdbarch->tdep = tdep;
1566 function_list | while do_read
1570 printf " gdbarch->${function} = info->${function};\n"
1574 printf " /* Force the explicit initialization of these. */\n"
1575 function_list | while do_read
1577 if class_is_function_p || class_is_variable_p
1579 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1581 printf " gdbarch->${function} = ${predefault};\n"
1586 /* gdbarch_alloc() */
1592 # Free a gdbarch struct.
1596 /* Allocate extra space using the per-architecture obstack. */
1599 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1601 void *data = obstack_alloc (arch->obstack, size);
1603 memset (data, 0, size);
1608 /* Free a gdbarch struct. This should never happen in normal
1609 operation --- once you've created a gdbarch, you keep it around.
1610 However, if an architecture's init function encounters an error
1611 building the structure, it may need to clean up a partially
1612 constructed gdbarch. */
1615 gdbarch_free (struct gdbarch *arch)
1617 struct obstack *obstack;
1619 gdb_assert (arch != NULL);
1620 gdb_assert (!arch->initialized_p);
1621 obstack = arch->obstack;
1622 obstack_free (obstack, 0); /* Includes the ARCH. */
1627 # verify a new architecture
1631 /* Ensure that all values in a GDBARCH are reasonable. */
1634 verify_gdbarch (struct gdbarch *gdbarch)
1636 struct ui_file *log;
1637 struct cleanup *cleanups;
1641 log = mem_fileopen ();
1642 cleanups = make_cleanup_ui_file_delete (log);
1644 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1645 fprintf_unfiltered (log, "\n\tbyte-order");
1646 if (gdbarch->bfd_arch_info == NULL)
1647 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1648 /* Check those that need to be defined for the given multi-arch level. */
1650 function_list | while do_read
1652 if class_is_function_p || class_is_variable_p
1654 if [ "x${invalid_p}" = "x0" ]
1656 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1657 elif class_is_predicate_p
1659 printf " /* Skip verify of ${function}, has predicate. */\n"
1660 # FIXME: See do_read for potential simplification
1661 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1663 printf " if (${invalid_p})\n"
1664 printf " gdbarch->${function} = ${postdefault};\n"
1665 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1667 printf " if (gdbarch->${function} == ${predefault})\n"
1668 printf " gdbarch->${function} = ${postdefault};\n"
1669 elif [ -n "${postdefault}" ]
1671 printf " if (gdbarch->${function} == 0)\n"
1672 printf " gdbarch->${function} = ${postdefault};\n"
1673 elif [ -n "${invalid_p}" ]
1675 printf " if (${invalid_p})\n"
1676 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1677 elif [ -n "${predefault}" ]
1679 printf " if (gdbarch->${function} == ${predefault})\n"
1680 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1685 buf = ui_file_xstrdup (log, &length);
1686 make_cleanup (xfree, buf);
1688 internal_error (__FILE__, __LINE__,
1689 _("verify_gdbarch: the following are invalid ...%s"),
1691 do_cleanups (cleanups);
1695 # dump the structure
1699 /* Print out the details of the current architecture. */
1702 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1704 const char *gdb_nm_file = "<not-defined>";
1706 #if defined (GDB_NM_FILE)
1707 gdb_nm_file = GDB_NM_FILE;
1709 fprintf_unfiltered (file,
1710 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1713 function_list | sort -t: -k 3 | while do_read
1715 # First the predicate
1716 if class_is_predicate_p
1718 printf " fprintf_unfiltered (file,\n"
1719 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1720 printf " gdbarch_${function}_p (gdbarch));\n"
1722 # Print the corresponding value.
1723 if class_is_function_p
1725 printf " fprintf_unfiltered (file,\n"
1726 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1727 printf " host_address_to_string (gdbarch->${function}));\n"
1730 case "${print}:${returntype}" in
1733 print="core_addr_to_string_nz (gdbarch->${function})"
1737 print="plongest (gdbarch->${function})"
1743 printf " fprintf_unfiltered (file,\n"
1744 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1745 printf " ${print});\n"
1749 if (gdbarch->dump_tdep != NULL)
1750 gdbarch->dump_tdep (gdbarch, file);
1758 struct gdbarch_tdep *
1759 gdbarch_tdep (struct gdbarch *gdbarch)
1761 if (gdbarch_debug >= 2)
1762 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1763 return gdbarch->tdep;
1767 function_list | while do_read
1769 if class_is_predicate_p
1773 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1775 printf " gdb_assert (gdbarch != NULL);\n"
1776 printf " return ${predicate};\n"
1779 if class_is_function_p
1782 printf "${returntype}\n"
1783 if [ "x${formal}" = "xvoid" ]
1785 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1787 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1790 printf " gdb_assert (gdbarch != NULL);\n"
1791 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1792 if class_is_predicate_p && test -n "${predefault}"
1794 # Allow a call to a function with a predicate.
1795 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1797 printf " if (gdbarch_debug >= 2)\n"
1798 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1799 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1801 if class_is_multiarch_p
1808 if class_is_multiarch_p
1810 params="gdbarch, ${actual}"
1815 if [ "x${returntype}" = "xvoid" ]
1817 printf " gdbarch->${function} (${params});\n"
1819 printf " return gdbarch->${function} (${params});\n"
1824 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1825 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1827 printf " gdbarch->${function} = ${function};\n"
1829 elif class_is_variable_p
1832 printf "${returntype}\n"
1833 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1835 printf " gdb_assert (gdbarch != NULL);\n"
1836 if [ "x${invalid_p}" = "x0" ]
1838 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1839 elif [ -n "${invalid_p}" ]
1841 printf " /* Check variable is valid. */\n"
1842 printf " gdb_assert (!(${invalid_p}));\n"
1843 elif [ -n "${predefault}" ]
1845 printf " /* Check variable changed from pre-default. */\n"
1846 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1848 printf " if (gdbarch_debug >= 2)\n"
1849 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1850 printf " return gdbarch->${function};\n"
1854 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1855 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1857 printf " gdbarch->${function} = ${function};\n"
1859 elif class_is_info_p
1862 printf "${returntype}\n"
1863 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1865 printf " gdb_assert (gdbarch != NULL);\n"
1866 printf " if (gdbarch_debug >= 2)\n"
1867 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1868 printf " return gdbarch->${function};\n"
1873 # All the trailing guff
1877 /* Keep a registry of per-architecture data-pointers required by GDB
1884 gdbarch_data_pre_init_ftype *pre_init;
1885 gdbarch_data_post_init_ftype *post_init;
1888 struct gdbarch_data_registration
1890 struct gdbarch_data *data;
1891 struct gdbarch_data_registration *next;
1894 struct gdbarch_data_registry
1897 struct gdbarch_data_registration *registrations;
1900 struct gdbarch_data_registry gdbarch_data_registry =
1905 static struct gdbarch_data *
1906 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1907 gdbarch_data_post_init_ftype *post_init)
1909 struct gdbarch_data_registration **curr;
1911 /* Append the new registration. */
1912 for (curr = &gdbarch_data_registry.registrations;
1914 curr = &(*curr)->next);
1915 (*curr) = XMALLOC (struct gdbarch_data_registration);
1916 (*curr)->next = NULL;
1917 (*curr)->data = XMALLOC (struct gdbarch_data);
1918 (*curr)->data->index = gdbarch_data_registry.nr++;
1919 (*curr)->data->pre_init = pre_init;
1920 (*curr)->data->post_init = post_init;
1921 (*curr)->data->init_p = 1;
1922 return (*curr)->data;
1925 struct gdbarch_data *
1926 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1928 return gdbarch_data_register (pre_init, NULL);
1931 struct gdbarch_data *
1932 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1934 return gdbarch_data_register (NULL, post_init);
1937 /* Create/delete the gdbarch data vector. */
1940 alloc_gdbarch_data (struct gdbarch *gdbarch)
1942 gdb_assert (gdbarch->data == NULL);
1943 gdbarch->nr_data = gdbarch_data_registry.nr;
1944 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1947 /* Initialize the current value of the specified per-architecture
1951 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1952 struct gdbarch_data *data,
1955 gdb_assert (data->index < gdbarch->nr_data);
1956 gdb_assert (gdbarch->data[data->index] == NULL);
1957 gdb_assert (data->pre_init == NULL);
1958 gdbarch->data[data->index] = pointer;
1961 /* Return the current value of the specified per-architecture
1965 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1967 gdb_assert (data->index < gdbarch->nr_data);
1968 if (gdbarch->data[data->index] == NULL)
1970 /* The data-pointer isn't initialized, call init() to get a
1972 if (data->pre_init != NULL)
1973 /* Mid architecture creation: pass just the obstack, and not
1974 the entire architecture, as that way it isn't possible for
1975 pre-init code to refer to undefined architecture
1977 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1978 else if (gdbarch->initialized_p
1979 && data->post_init != NULL)
1980 /* Post architecture creation: pass the entire architecture
1981 (as all fields are valid), but be careful to also detect
1982 recursive references. */
1984 gdb_assert (data->init_p);
1986 gdbarch->data[data->index] = data->post_init (gdbarch);
1990 /* The architecture initialization hasn't completed - punt -
1991 hope that the caller knows what they are doing. Once
1992 deprecated_set_gdbarch_data has been initialized, this can be
1993 changed to an internal error. */
1995 gdb_assert (gdbarch->data[data->index] != NULL);
1997 return gdbarch->data[data->index];
2001 /* Keep a registry of the architectures known by GDB. */
2003 struct gdbarch_registration
2005 enum bfd_architecture bfd_architecture;
2006 gdbarch_init_ftype *init;
2007 gdbarch_dump_tdep_ftype *dump_tdep;
2008 struct gdbarch_list *arches;
2009 struct gdbarch_registration *next;
2012 static struct gdbarch_registration *gdbarch_registry = NULL;
2015 append_name (const char ***buf, int *nr, const char *name)
2017 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2023 gdbarch_printable_names (void)
2025 /* Accumulate a list of names based on the registed list of
2028 const char **arches = NULL;
2029 struct gdbarch_registration *rego;
2031 for (rego = gdbarch_registry;
2035 const struct bfd_arch_info *ap;
2036 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2038 internal_error (__FILE__, __LINE__,
2039 _("gdbarch_architecture_names: multi-arch unknown"));
2042 append_name (&arches, &nr_arches, ap->printable_name);
2047 append_name (&arches, &nr_arches, NULL);
2053 gdbarch_register (enum bfd_architecture bfd_architecture,
2054 gdbarch_init_ftype *init,
2055 gdbarch_dump_tdep_ftype *dump_tdep)
2057 struct gdbarch_registration **curr;
2058 const struct bfd_arch_info *bfd_arch_info;
2060 /* Check that BFD recognizes this architecture */
2061 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2062 if (bfd_arch_info == NULL)
2064 internal_error (__FILE__, __LINE__,
2065 _("gdbarch: Attempt to register "
2066 "unknown architecture (%d)"),
2069 /* Check that we haven't seen this architecture before. */
2070 for (curr = &gdbarch_registry;
2072 curr = &(*curr)->next)
2074 if (bfd_architecture == (*curr)->bfd_architecture)
2075 internal_error (__FILE__, __LINE__,
2076 _("gdbarch: Duplicate registration "
2077 "of architecture (%s)"),
2078 bfd_arch_info->printable_name);
2082 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2083 bfd_arch_info->printable_name,
2084 host_address_to_string (init));
2086 (*curr) = XMALLOC (struct gdbarch_registration);
2087 (*curr)->bfd_architecture = bfd_architecture;
2088 (*curr)->init = init;
2089 (*curr)->dump_tdep = dump_tdep;
2090 (*curr)->arches = NULL;
2091 (*curr)->next = NULL;
2095 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2096 gdbarch_init_ftype *init)
2098 gdbarch_register (bfd_architecture, init, NULL);
2102 /* Look for an architecture using gdbarch_info. */
2104 struct gdbarch_list *
2105 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2106 const struct gdbarch_info *info)
2108 for (; arches != NULL; arches = arches->next)
2110 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2112 if (info->byte_order != arches->gdbarch->byte_order)
2114 if (info->osabi != arches->gdbarch->osabi)
2116 if (info->target_desc != arches->gdbarch->target_desc)
2124 /* Find an architecture that matches the specified INFO. Create a new
2125 architecture if needed. Return that new architecture. */
2128 gdbarch_find_by_info (struct gdbarch_info info)
2130 struct gdbarch *new_gdbarch;
2131 struct gdbarch_registration *rego;
2133 /* Fill in missing parts of the INFO struct using a number of
2134 sources: "set ..."; INFOabfd supplied; and the global
2136 gdbarch_info_fill (&info);
2138 /* Must have found some sort of architecture. */
2139 gdb_assert (info.bfd_arch_info != NULL);
2143 fprintf_unfiltered (gdb_stdlog,
2144 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2145 (info.bfd_arch_info != NULL
2146 ? info.bfd_arch_info->printable_name
2148 fprintf_unfiltered (gdb_stdlog,
2149 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2151 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2152 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2154 fprintf_unfiltered (gdb_stdlog,
2155 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2156 info.osabi, gdbarch_osabi_name (info.osabi));
2157 fprintf_unfiltered (gdb_stdlog,
2158 "gdbarch_find_by_info: info.abfd %s\n",
2159 host_address_to_string (info.abfd));
2160 fprintf_unfiltered (gdb_stdlog,
2161 "gdbarch_find_by_info: info.tdep_info %s\n",
2162 host_address_to_string (info.tdep_info));
2165 /* Find the tdep code that knows about this architecture. */
2166 for (rego = gdbarch_registry;
2169 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2174 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2175 "No matching architecture\n");
2179 /* Ask the tdep code for an architecture that matches "info". */
2180 new_gdbarch = rego->init (info, rego->arches);
2182 /* Did the tdep code like it? No. Reject the change and revert to
2183 the old architecture. */
2184 if (new_gdbarch == NULL)
2187 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2188 "Target rejected architecture\n");
2192 /* Is this a pre-existing architecture (as determined by already
2193 being initialized)? Move it to the front of the architecture
2194 list (keeping the list sorted Most Recently Used). */
2195 if (new_gdbarch->initialized_p)
2197 struct gdbarch_list **list;
2198 struct gdbarch_list *this;
2200 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2201 "Previous architecture %s (%s) selected\n",
2202 host_address_to_string (new_gdbarch),
2203 new_gdbarch->bfd_arch_info->printable_name);
2204 /* Find the existing arch in the list. */
2205 for (list = ®o->arches;
2206 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2207 list = &(*list)->next);
2208 /* It had better be in the list of architectures. */
2209 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2212 (*list) = this->next;
2213 /* Insert THIS at the front. */
2214 this->next = rego->arches;
2215 rego->arches = this;
2220 /* It's a new architecture. */
2222 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2223 "New architecture %s (%s) selected\n",
2224 host_address_to_string (new_gdbarch),
2225 new_gdbarch->bfd_arch_info->printable_name);
2227 /* Insert the new architecture into the front of the architecture
2228 list (keep the list sorted Most Recently Used). */
2230 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2231 this->next = rego->arches;
2232 this->gdbarch = new_gdbarch;
2233 rego->arches = this;
2236 /* Check that the newly installed architecture is valid. Plug in
2237 any post init values. */
2238 new_gdbarch->dump_tdep = rego->dump_tdep;
2239 verify_gdbarch (new_gdbarch);
2240 new_gdbarch->initialized_p = 1;
2243 gdbarch_dump (new_gdbarch, gdb_stdlog);
2248 /* Make the specified architecture current. */
2251 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2253 gdb_assert (new_gdbarch != NULL);
2254 gdb_assert (new_gdbarch->initialized_p);
2255 target_gdbarch = new_gdbarch;
2256 observer_notify_architecture_changed (new_gdbarch);
2257 registers_changed ();
2260 extern void _initialize_gdbarch (void);
2263 _initialize_gdbarch (void)
2265 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2266 Set architecture debugging."), _("\\
2267 Show architecture debugging."), _("\\
2268 When non-zero, architecture debugging is enabled."),
2271 &setdebuglist, &showdebuglist);
2277 #../move-if-change new-gdbarch.c gdbarch.c
2278 compare_new gdbarch.c