3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 if test -n "${garbage_at_eol}"
77 echo "Garbage at end-of-line in ${line}" 1>&2
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
86 if eval test \"\${${r}}\" = \"\ \"
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
100 case "${invalid_p}" in
102 if test -n "${predefault}"
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
111 predicate="gdbarch->${function} != NULL"
115 echo "Predicate function ${function} with invalid_p." 1>&2
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
129 if [ -n "${postdefault}" ]
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
134 fallbackdefault="${predefault}"
139 #NOT YET: See gdbarch.log for basic verification of
154 fallback_default_p ()
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
160 class_is_variable_p ()
168 class_is_function_p ()
171 *f* | *F* | *m* | *M* ) true ;;
176 class_is_multiarch_p ()
184 class_is_predicate_p ()
187 *F* | *V* | *M* ) true ;;
201 # dump out/verify the doco
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
226 # For functions, the return type; for variables, the data type
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
254 # If STATICDEFAULT is empty, zero is used.
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
263 # If PREDEFAULT is empty, zero is used.
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
269 # A zero PREDEFAULT function will force the fallback to call
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
281 # If POSTDEFAULT is empty, no post update is performed.
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
313 # See also PREDEFAULT and POSTDEFAULT.
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
323 garbage_at_eol ) : ;;
325 # Catches stray fields.
328 echo "Bad field ${field}"
336 # See below (DOCO) for description of each field
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
491 v:int:believe_pcc_promotion:::::::
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
518 # Return true if the return value of function is stored in the first hidden
519 # parameter. In theory, this feature should be language-dependent, specified
520 # by language and its ABI, such as C++. Unfortunately, compiler may
521 # implement it to a target-dependent feature. So that we need such hook here
522 # to be aware of this in GDB.
523 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
525 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
526 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
527 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
528 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
529 # Return the adjusted address and kind to use for Z0/Z1 packets.
530 # KIND is usually the memory length of the breakpoint, but may have a
531 # different target-specific meaning.
532 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
533 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
534 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
535 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
536 v:CORE_ADDR:decr_pc_after_break:::0:::0
538 # A function can be addressed by either it's "pointer" (possibly a
539 # descriptor address) or "entry point" (first executable instruction).
540 # The method "convert_from_func_ptr_addr" converting the former to the
541 # latter. gdbarch_deprecated_function_start_offset is being used to implement
542 # a simplified subset of that functionality - the function's address
543 # corresponds to the "function pointer" and the function's start
544 # corresponds to the "function entry point" - and hence is redundant.
546 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
548 # Return the remote protocol register number associated with this
549 # register. Normally the identity mapping.
550 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
552 # Fetch the target specific address used to represent a load module.
553 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
555 v:CORE_ADDR:frame_args_skip:::0:::0
556 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
557 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
558 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
559 # frame-base. Enable frame-base before frame-unwind.
560 F:int:frame_num_args:struct frame_info *frame:frame
562 M:CORE_ADDR:frame_align:CORE_ADDR address:address
563 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
564 v:int:frame_red_zone_size
566 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
567 # On some machines there are bits in addresses which are not really
568 # part of the address, but are used by the kernel, the hardware, etc.
569 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
570 # we get a "real" address such as one would find in a symbol table.
571 # This is used only for addresses of instructions, and even then I'm
572 # not sure it's used in all contexts. It exists to deal with there
573 # being a few stray bits in the PC which would mislead us, not as some
574 # sort of generic thing to handle alignment or segmentation (it's
575 # possible it should be in TARGET_READ_PC instead).
576 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
578 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
579 # indicates if the target needs software single step. An ISA method to
582 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
583 # breakpoints using the breakpoint system instead of blatting memory directly
586 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
587 # target can single step. If not, then implement single step using breakpoints.
589 # A return value of 1 means that the software_single_step breakpoints
590 # were inserted; 0 means they were not.
591 F:int:software_single_step:struct frame_info *frame:frame
593 # Return non-zero if the processor is executing a delay slot and a
594 # further single-step is needed before the instruction finishes.
595 M:int:single_step_through_delay:struct frame_info *frame:frame
596 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
597 # disassembler. Perhaps objdump can handle it?
598 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
599 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
602 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
603 # evaluates non-zero, this is the address where the debugger will place
604 # a step-resume breakpoint to get us past the dynamic linker.
605 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
606 # Some systems also have trampoline code for returning from shared libs.
607 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
609 # A target might have problems with watchpoints as soon as the stack
610 # frame of the current function has been destroyed. This mostly happens
611 # as the first action in a funtion's epilogue. in_function_epilogue_p()
612 # is defined to return a non-zero value if either the given addr is one
613 # instruction after the stack destroying instruction up to the trailing
614 # return instruction or if we can figure out that the stack frame has
615 # already been invalidated regardless of the value of addr. Targets
616 # which don't suffer from that problem could just let this functionality
618 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
619 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
620 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
621 v:int:cannot_step_breakpoint:::0:0::0
622 v:int:have_nonsteppable_watchpoint:::0:0::0
623 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
624 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
625 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
626 # Is a register in a group
627 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
628 # Fetch the pointer to the ith function argument.
629 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
631 # Return the appropriate register set for a core file section with
632 # name SECT_NAME and size SECT_SIZE.
633 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
635 # Supported register notes in a core file.
636 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
638 # Create core file notes
639 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
641 # Find core file memory regions
642 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
644 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
645 # core file into buffer READBUF with length LEN.
646 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
648 # How the core target converts a PTID from a core file to a string.
649 M:char *:core_pid_to_str:ptid_t ptid:ptid
651 # BFD target to use when generating a core file.
652 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
654 # If the elements of C++ vtables are in-place function descriptors rather
655 # than normal function pointers (which may point to code or a descriptor),
657 v:int:vtable_function_descriptors:::0:0::0
659 # Set if the least significant bit of the delta is used instead of the least
660 # significant bit of the pfn for pointers to virtual member functions.
661 v:int:vbit_in_delta:::0:0::0
663 # Advance PC to next instruction in order to skip a permanent breakpoint.
664 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
666 # The maximum length of an instruction on this architecture in bytes.
667 V:ULONGEST:max_insn_length:::0:0
669 # Copy the instruction at FROM to TO, and make any adjustments
670 # necessary to single-step it at that address.
672 # REGS holds the state the thread's registers will have before
673 # executing the copied instruction; the PC in REGS will refer to FROM,
674 # not the copy at TO. The caller should update it to point at TO later.
676 # Return a pointer to data of the architecture's choice to be passed
677 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
678 # the instruction's effects have been completely simulated, with the
679 # resulting state written back to REGS.
681 # For a general explanation of displaced stepping and how GDB uses it,
682 # see the comments in infrun.c.
684 # The TO area is only guaranteed to have space for
685 # gdbarch_max_insn_length (arch) bytes, so this function must not
686 # write more bytes than that to that area.
688 # If you do not provide this function, GDB assumes that the
689 # architecture does not support displaced stepping.
691 # If your architecture doesn't need to adjust instructions before
692 # single-stepping them, consider using simple_displaced_step_copy_insn
694 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
696 # Return true if GDB should use hardware single-stepping to execute
697 # the displaced instruction identified by CLOSURE. If false,
698 # GDB will simply restart execution at the displaced instruction
699 # location, and it is up to the target to ensure GDB will receive
700 # control again (e.g. by placing a software breakpoint instruction
701 # into the displaced instruction buffer).
703 # The default implementation returns false on all targets that
704 # provide a gdbarch_software_single_step routine, and true otherwise.
705 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
707 # Fix up the state resulting from successfully single-stepping a
708 # displaced instruction, to give the result we would have gotten from
709 # stepping the instruction in its original location.
711 # REGS is the register state resulting from single-stepping the
712 # displaced instruction.
714 # CLOSURE is the result from the matching call to
715 # gdbarch_displaced_step_copy_insn.
717 # If you provide gdbarch_displaced_step_copy_insn.but not this
718 # function, then GDB assumes that no fixup is needed after
719 # single-stepping the instruction.
721 # For a general explanation of displaced stepping and how GDB uses it,
722 # see the comments in infrun.c.
723 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
725 # Free a closure returned by gdbarch_displaced_step_copy_insn.
727 # If you provide gdbarch_displaced_step_copy_insn, you must provide
728 # this function as well.
730 # If your architecture uses closures that don't need to be freed, then
731 # you can use simple_displaced_step_free_closure here.
733 # For a general explanation of displaced stepping and how GDB uses it,
734 # see the comments in infrun.c.
735 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
737 # Return the address of an appropriate place to put displaced
738 # instructions while we step over them. There need only be one such
739 # place, since we're only stepping one thread over a breakpoint at a
742 # For a general explanation of displaced stepping and how GDB uses it,
743 # see the comments in infrun.c.
744 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
746 # Relocate an instruction to execute at a different address. OLDLOC
747 # is the address in the inferior memory where the instruction to
748 # relocate is currently at. On input, TO points to the destination
749 # where we want the instruction to be copied (and possibly adjusted)
750 # to. On output, it points to one past the end of the resulting
751 # instruction(s). The effect of executing the instruction at TO shall
752 # be the same as if executing it at FROM. For example, call
753 # instructions that implicitly push the return address on the stack
754 # should be adjusted to return to the instruction after OLDLOC;
755 # relative branches, and other PC-relative instructions need the
756 # offset adjusted; etc.
757 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
759 # Refresh overlay mapped state for section OSECT.
760 F:void:overlay_update:struct obj_section *osect:osect
762 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
764 # Handle special encoding of static variables in stabs debug info.
765 F:const char *:static_transform_name:const char *name:name
766 # Set if the address in N_SO or N_FUN stabs may be zero.
767 v:int:sofun_address_maybe_missing:::0:0::0
769 # Parse the instruction at ADDR storing in the record execution log
770 # the registers REGCACHE and memory ranges that will be affected when
771 # the instruction executes, along with their current values.
772 # Return -1 if something goes wrong, 0 otherwise.
773 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
775 # Save process state after a signal.
776 # Return -1 if something goes wrong, 0 otherwise.
777 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
779 # Signal translation: translate inferior's signal (target's) number
780 # into GDB's representation. The implementation of this method must
781 # be host independent. IOW, don't rely on symbols of the NAT_FILE
782 # header (the nm-*.h files), the host <signal.h> header, or similar
783 # headers. This is mainly used when cross-debugging core files ---
784 # "Live" targets hide the translation behind the target interface
785 # (target_wait, target_resume, etc.).
786 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
788 # Extra signal info inspection.
790 # Return a type suitable to inspect extra signal information.
791 M:struct type *:get_siginfo_type:void:
793 # Record architecture-specific information from the symbol table.
794 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
796 # Function for the 'catch syscall' feature.
798 # Get architecture-specific system calls information from registers.
799 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
801 # SystemTap related fields and functions.
803 # Prefix used to mark an integer constant on the architecture's assembly
804 # For example, on x86 integer constants are written as:
806 # \$10 ;; integer constant 10
808 # in this case, this prefix would be the character \`\$\'.
809 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
811 # Suffix used to mark an integer constant on the architecture's assembly.
812 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
814 # Prefix used to mark a register name on the architecture's assembly.
815 # For example, on x86 the register name is written as:
817 # \%eax ;; register eax
819 # in this case, this prefix would be the character \`\%\'.
820 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
822 # Suffix used to mark a register name on the architecture's assembly
823 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
825 # Prefix used to mark a register indirection on the architecture's assembly.
826 # For example, on x86 the register indirection is written as:
828 # \(\%eax\) ;; indirecting eax
830 # in this case, this prefix would be the charater \`\(\'.
832 # Please note that we use the indirection prefix also for register
833 # displacement, e.g., \`4\(\%eax\)\' on x86.
834 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
836 # Suffix used to mark a register indirection on the architecture's assembly.
837 # For example, on x86 the register indirection is written as:
839 # \(\%eax\) ;; indirecting eax
841 # in this case, this prefix would be the charater \`\)\'.
843 # Please note that we use the indirection suffix also for register
844 # displacement, e.g., \`4\(\%eax\)\' on x86.
845 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
847 # Prefix used to name a register using GDB's nomenclature.
849 # For example, on PPC a register is represented by a number in the assembly
850 # language (e.g., \`10\' is the 10th general-purpose register). However,
851 # inside GDB this same register has an \`r\' appended to its name, so the 10th
852 # register would be represented as \`r10\' internally.
853 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
855 # Suffix used to name a register using GDB's nomenclature.
856 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
858 # Check if S is a single operand.
860 # Single operands can be:
861 # \- Literal integers, e.g. \`\$10\' on x86
862 # \- Register access, e.g. \`\%eax\' on x86
863 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
864 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
866 # This function should check for these patterns on the string
867 # and return 1 if some were found, or zero otherwise. Please try to match
868 # as much info as you can from the string, i.e., if you have to match
869 # something like \`\(\%\', do not match just the \`\(\'.
870 M:int:stap_is_single_operand:const char *s:s
872 # Function used to handle a "special case" in the parser.
874 # A "special case" is considered to be an unknown token, i.e., a token
875 # that the parser does not know how to parse. A good example of special
876 # case would be ARM's register displacement syntax:
878 # [R0, #4] ;; displacing R0 by 4
880 # Since the parser assumes that a register displacement is of the form:
882 # <number> <indirection_prefix> <register_name> <indirection_suffix>
884 # it means that it will not be able to recognize and parse this odd syntax.
885 # Therefore, we should add a special case function that will handle this token.
887 # This function should generate the proper expression form of the expression
888 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
889 # and so on). It should also return 1 if the parsing was successful, or zero
890 # if the token was not recognized as a special token (in this case, returning
891 # zero means that the special parser is deferring the parsing to the generic
892 # parser), and should advance the buffer pointer (p->arg).
893 M:int:stap_parse_special_token:struct stap_parse_info *p:p
896 # True if the list of shared libraries is one and only for all
897 # processes, as opposed to a list of shared libraries per inferior.
898 # This usually means that all processes, although may or may not share
899 # an address space, will see the same set of symbols at the same
901 v:int:has_global_solist:::0:0::0
903 # On some targets, even though each inferior has its own private
904 # address space, the debug interface takes care of making breakpoints
905 # visible to all address spaces automatically. For such cases,
906 # this property should be set to true.
907 v:int:has_global_breakpoints:::0:0::0
909 # True if inferiors share an address space (e.g., uClinux).
910 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
912 # True if a fast tracepoint can be set at an address.
913 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
915 # Return the "auto" target charset.
916 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
917 # Return the "auto" target wide charset.
918 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
920 # If non-empty, this is a file extension that will be opened in place
921 # of the file extension reported by the shared library list.
923 # This is most useful for toolchains that use a post-linker tool,
924 # where the names of the files run on the target differ in extension
925 # compared to the names of the files GDB should load for debug info.
926 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
928 # If true, the target OS has DOS-based file system semantics. That
929 # is, absolute paths include a drive name, and the backslash is
930 # considered a directory separator.
931 v:int:has_dos_based_file_system:::0:0::0
933 # Generate bytecodes to collect the return address in a frame.
934 # Since the bytecodes run on the target, possibly with GDB not even
935 # connected, the full unwinding machinery is not available, and
936 # typically this function will issue bytecodes for one or more likely
937 # places that the return address may be found.
938 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
940 # Implement the "info proc" command.
941 M:void:info_proc:char *args, enum info_proc_what what:args, what
943 # Iterate over all objfiles in the order that makes the most sense
944 # for the architecture to make global symbol searches.
946 # CB is a callback function where OBJFILE is the objfile to be searched,
947 # and CB_DATA a pointer to user-defined data (the same data that is passed
948 # when calling this gdbarch method). The iteration stops if this function
951 # CB_DATA is a pointer to some user-defined data to be passed to
954 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
955 # inspected when the symbol search was requested.
956 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
964 exec > new-gdbarch.log
965 function_list | while do_read
968 ${class} ${returntype} ${function} ($formal)
972 eval echo \"\ \ \ \ ${r}=\${${r}}\"
974 if class_is_predicate_p && fallback_default_p
976 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
980 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
982 echo "Error: postdefault is useless when invalid_p=0" 1>&2
986 if class_is_multiarch_p
988 if class_is_predicate_p ; then :
989 elif test "x${predefault}" = "x"
991 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1000 compare_new gdbarch.log
1006 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1009 /* Dynamic architecture support for GDB, the GNU debugger.
1011 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1012 2007, 2008, 2009 Free Software Foundation, Inc.
1014 This file is part of GDB.
1016 This program is free software; you can redistribute it and/or modify
1017 it under the terms of the GNU General Public License as published by
1018 the Free Software Foundation; either version 3 of the License, or
1019 (at your option) any later version.
1021 This program is distributed in the hope that it will be useful,
1022 but WITHOUT ANY WARRANTY; without even the implied warranty of
1023 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1024 GNU General Public License for more details.
1026 You should have received a copy of the GNU General Public License
1027 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1029 /* This file was created with the aid of \`\`gdbarch.sh''.
1031 The Bourne shell script \`\`gdbarch.sh'' creates the files
1032 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1033 against the existing \`\`gdbarch.[hc]''. Any differences found
1036 If editing this file, please also run gdbarch.sh and merge any
1037 changes into that script. Conversely, when making sweeping changes
1038 to this file, modifying gdbarch.sh and using its output may prove
1048 exec > new-gdbarch.h
1060 struct minimal_symbol;
1064 struct disassemble_info;
1067 struct bp_target_info;
1069 struct displaced_step_closure;
1070 struct core_regset_section;
1074 struct stap_parse_info;
1076 /* The architecture associated with the inferior through the
1077 connection to the target.
1079 The architecture vector provides some information that is really a
1080 property of the inferior, accessed through a particular target:
1081 ptrace operations; the layout of certain RSP packets; the solib_ops
1082 vector; etc. To differentiate architecture accesses to
1083 per-inferior/target properties from
1084 per-thread/per-frame/per-objfile properties, accesses to
1085 per-inferior/target properties should be made through this
1088 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1089 extern struct gdbarch *target_gdbarch (void);
1091 /* The initial, default architecture. It uses host values (for want of a better
1093 extern struct gdbarch startup_gdbarch;
1096 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1099 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1100 (struct objfile *objfile, void *cb_data);
1103 # function typedef's
1106 printf "/* The following are pre-initialized by GDBARCH. */\n"
1107 function_list | while do_read
1112 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1113 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1117 # function typedef's
1120 printf "/* The following are initialized by the target dependent code. */\n"
1121 function_list | while do_read
1123 if [ -n "${comment}" ]
1125 echo "${comment}" | sed \
1131 if class_is_predicate_p
1134 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1136 if class_is_variable_p
1139 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1140 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1142 if class_is_function_p
1145 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1147 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1148 elif class_is_multiarch_p
1150 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1152 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1154 if [ "x${formal}" = "xvoid" ]
1156 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1158 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1160 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1167 /* Definition for an unknown syscall, used basically in error-cases. */
1168 #define UNKNOWN_SYSCALL (-1)
1170 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1173 /* Mechanism for co-ordinating the selection of a specific
1176 GDB targets (*-tdep.c) can register an interest in a specific
1177 architecture. Other GDB components can register a need to maintain
1178 per-architecture data.
1180 The mechanisms below ensures that there is only a loose connection
1181 between the set-architecture command and the various GDB
1182 components. Each component can independently register their need
1183 to maintain architecture specific data with gdbarch.
1187 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1190 The more traditional mega-struct containing architecture specific
1191 data for all the various GDB components was also considered. Since
1192 GDB is built from a variable number of (fairly independent)
1193 components it was determined that the global aproach was not
1197 /* Register a new architectural family with GDB.
1199 Register support for the specified ARCHITECTURE with GDB. When
1200 gdbarch determines that the specified architecture has been
1201 selected, the corresponding INIT function is called.
1205 The INIT function takes two parameters: INFO which contains the
1206 information available to gdbarch about the (possibly new)
1207 architecture; ARCHES which is a list of the previously created
1208 \`\`struct gdbarch'' for this architecture.
1210 The INFO parameter is, as far as possible, be pre-initialized with
1211 information obtained from INFO.ABFD or the global defaults.
1213 The ARCHES parameter is a linked list (sorted most recently used)
1214 of all the previously created architures for this architecture
1215 family. The (possibly NULL) ARCHES->gdbarch can used to access
1216 values from the previously selected architecture for this
1217 architecture family.
1219 The INIT function shall return any of: NULL - indicating that it
1220 doesn't recognize the selected architecture; an existing \`\`struct
1221 gdbarch'' from the ARCHES list - indicating that the new
1222 architecture is just a synonym for an earlier architecture (see
1223 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1224 - that describes the selected architecture (see gdbarch_alloc()).
1226 The DUMP_TDEP function shall print out all target specific values.
1227 Care should be taken to ensure that the function works in both the
1228 multi-arch and non- multi-arch cases. */
1232 struct gdbarch *gdbarch;
1233 struct gdbarch_list *next;
1238 /* Use default: NULL (ZERO). */
1239 const struct bfd_arch_info *bfd_arch_info;
1241 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1244 int byte_order_for_code;
1246 /* Use default: NULL (ZERO). */
1249 /* Use default: NULL (ZERO). */
1250 struct gdbarch_tdep_info *tdep_info;
1252 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1253 enum gdb_osabi osabi;
1255 /* Use default: NULL (ZERO). */
1256 const struct target_desc *target_desc;
1259 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1260 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1262 /* DEPRECATED - use gdbarch_register() */
1263 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1265 extern void gdbarch_register (enum bfd_architecture architecture,
1266 gdbarch_init_ftype *,
1267 gdbarch_dump_tdep_ftype *);
1270 /* Return a freshly allocated, NULL terminated, array of the valid
1271 architecture names. Since architectures are registered during the
1272 _initialize phase this function only returns useful information
1273 once initialization has been completed. */
1275 extern const char **gdbarch_printable_names (void);
1278 /* Helper function. Search the list of ARCHES for a GDBARCH that
1279 matches the information provided by INFO. */
1281 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1284 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1285 basic initialization using values obtained from the INFO and TDEP
1286 parameters. set_gdbarch_*() functions are called to complete the
1287 initialization of the object. */
1289 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1292 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1293 It is assumed that the caller freeds the \`\`struct
1296 extern void gdbarch_free (struct gdbarch *);
1299 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1300 obstack. The memory is freed when the corresponding architecture
1303 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1304 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1305 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1308 /* Helper function. Force an update of the current architecture.
1310 The actual architecture selected is determined by INFO, \`\`(gdb) set
1311 architecture'' et.al., the existing architecture and BFD's default
1312 architecture. INFO should be initialized to zero and then selected
1313 fields should be updated.
1315 Returns non-zero if the update succeeds. */
1317 extern int gdbarch_update_p (struct gdbarch_info info);
1320 /* Helper function. Find an architecture matching info.
1322 INFO should be initialized using gdbarch_info_init, relevant fields
1323 set, and then finished using gdbarch_info_fill.
1325 Returns the corresponding architecture, or NULL if no matching
1326 architecture was found. */
1328 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1331 /* Helper function. Set the target gdbarch to "gdbarch". */
1333 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1336 /* Register per-architecture data-pointer.
1338 Reserve space for a per-architecture data-pointer. An identifier
1339 for the reserved data-pointer is returned. That identifer should
1340 be saved in a local static variable.
1342 Memory for the per-architecture data shall be allocated using
1343 gdbarch_obstack_zalloc. That memory will be deleted when the
1344 corresponding architecture object is deleted.
1346 When a previously created architecture is re-selected, the
1347 per-architecture data-pointer for that previous architecture is
1348 restored. INIT() is not re-called.
1350 Multiple registrarants for any architecture are allowed (and
1351 strongly encouraged). */
1353 struct gdbarch_data;
1355 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1356 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1357 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1358 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1359 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1360 struct gdbarch_data *data,
1363 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1366 /* Set the dynamic target-system-dependent parameters (architecture,
1367 byte-order, ...) using information found in the BFD. */
1369 extern void set_gdbarch_from_file (bfd *);
1372 /* Initialize the current architecture to the "first" one we find on
1375 extern void initialize_current_architecture (void);
1377 /* gdbarch trace variable */
1378 extern unsigned int gdbarch_debug;
1380 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1385 #../move-if-change new-gdbarch.h gdbarch.h
1386 compare_new gdbarch.h
1393 exec > new-gdbarch.c
1398 #include "arch-utils.h"
1401 #include "inferior.h"
1404 #include "floatformat.h"
1406 #include "gdb_assert.h"
1407 #include "gdb_string.h"
1408 #include "reggroups.h"
1410 #include "gdb_obstack.h"
1411 #include "observer.h"
1412 #include "regcache.h"
1413 #include "objfiles.h"
1415 /* Static function declarations */
1417 static void alloc_gdbarch_data (struct gdbarch *);
1419 /* Non-zero if we want to trace architecture code. */
1421 #ifndef GDBARCH_DEBUG
1422 #define GDBARCH_DEBUG 0
1424 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1426 show_gdbarch_debug (struct ui_file *file, int from_tty,
1427 struct cmd_list_element *c, const char *value)
1429 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1433 pformat (const struct floatformat **format)
1438 /* Just print out one of them - this is only for diagnostics. */
1439 return format[0]->name;
1443 pstring (const char *string)
1452 # gdbarch open the gdbarch object
1454 printf "/* Maintain the struct gdbarch object. */\n"
1456 printf "struct gdbarch\n"
1458 printf " /* Has this architecture been fully initialized? */\n"
1459 printf " int initialized_p;\n"
1461 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1462 printf " struct obstack *obstack;\n"
1464 printf " /* basic architectural information. */\n"
1465 function_list | while do_read
1469 printf " ${returntype} ${function};\n"
1473 printf " /* target specific vector. */\n"
1474 printf " struct gdbarch_tdep *tdep;\n"
1475 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1477 printf " /* per-architecture data-pointers. */\n"
1478 printf " unsigned nr_data;\n"
1479 printf " void **data;\n"
1482 /* Multi-arch values.
1484 When extending this structure you must:
1486 Add the field below.
1488 Declare set/get functions and define the corresponding
1491 gdbarch_alloc(): If zero/NULL is not a suitable default,
1492 initialize the new field.
1494 verify_gdbarch(): Confirm that the target updated the field
1497 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1500 \`\`startup_gdbarch()'': Append an initial value to the static
1501 variable (base values on the host's c-type system).
1503 get_gdbarch(): Implement the set/get functions (probably using
1504 the macro's as shortcuts).
1509 function_list | while do_read
1511 if class_is_variable_p
1513 printf " ${returntype} ${function};\n"
1514 elif class_is_function_p
1516 printf " gdbarch_${function}_ftype *${function};\n"
1521 # A pre-initialized vector
1525 /* The default architecture uses host values (for want of a better
1529 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1531 printf "struct gdbarch startup_gdbarch =\n"
1533 printf " 1, /* Always initialized. */\n"
1534 printf " NULL, /* The obstack. */\n"
1535 printf " /* basic architecture information. */\n"
1536 function_list | while do_read
1540 printf " ${staticdefault}, /* ${function} */\n"
1544 /* target specific vector and its dump routine. */
1546 /*per-architecture data-pointers. */
1548 /* Multi-arch values */
1550 function_list | while do_read
1552 if class_is_function_p || class_is_variable_p
1554 printf " ${staticdefault}, /* ${function} */\n"
1558 /* startup_gdbarch() */
1563 # Create a new gdbarch struct
1566 /* Create a new \`\`struct gdbarch'' based on information provided by
1567 \`\`struct gdbarch_info''. */
1572 gdbarch_alloc (const struct gdbarch_info *info,
1573 struct gdbarch_tdep *tdep)
1575 struct gdbarch *gdbarch;
1577 /* Create an obstack for allocating all the per-architecture memory,
1578 then use that to allocate the architecture vector. */
1579 struct obstack *obstack = XMALLOC (struct obstack);
1580 obstack_init (obstack);
1581 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1582 memset (gdbarch, 0, sizeof (*gdbarch));
1583 gdbarch->obstack = obstack;
1585 alloc_gdbarch_data (gdbarch);
1587 gdbarch->tdep = tdep;
1590 function_list | while do_read
1594 printf " gdbarch->${function} = info->${function};\n"
1598 printf " /* Force the explicit initialization of these. */\n"
1599 function_list | while do_read
1601 if class_is_function_p || class_is_variable_p
1603 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1605 printf " gdbarch->${function} = ${predefault};\n"
1610 /* gdbarch_alloc() */
1616 # Free a gdbarch struct.
1620 /* Allocate extra space using the per-architecture obstack. */
1623 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1625 void *data = obstack_alloc (arch->obstack, size);
1627 memset (data, 0, size);
1632 /* Free a gdbarch struct. This should never happen in normal
1633 operation --- once you've created a gdbarch, you keep it around.
1634 However, if an architecture's init function encounters an error
1635 building the structure, it may need to clean up a partially
1636 constructed gdbarch. */
1639 gdbarch_free (struct gdbarch *arch)
1641 struct obstack *obstack;
1643 gdb_assert (arch != NULL);
1644 gdb_assert (!arch->initialized_p);
1645 obstack = arch->obstack;
1646 obstack_free (obstack, 0); /* Includes the ARCH. */
1651 # verify a new architecture
1655 /* Ensure that all values in a GDBARCH are reasonable. */
1658 verify_gdbarch (struct gdbarch *gdbarch)
1660 struct ui_file *log;
1661 struct cleanup *cleanups;
1665 log = mem_fileopen ();
1666 cleanups = make_cleanup_ui_file_delete (log);
1668 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1669 fprintf_unfiltered (log, "\n\tbyte-order");
1670 if (gdbarch->bfd_arch_info == NULL)
1671 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1672 /* Check those that need to be defined for the given multi-arch level. */
1674 function_list | while do_read
1676 if class_is_function_p || class_is_variable_p
1678 if [ "x${invalid_p}" = "x0" ]
1680 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1681 elif class_is_predicate_p
1683 printf " /* Skip verify of ${function}, has predicate. */\n"
1684 # FIXME: See do_read for potential simplification
1685 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1687 printf " if (${invalid_p})\n"
1688 printf " gdbarch->${function} = ${postdefault};\n"
1689 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1691 printf " if (gdbarch->${function} == ${predefault})\n"
1692 printf " gdbarch->${function} = ${postdefault};\n"
1693 elif [ -n "${postdefault}" ]
1695 printf " if (gdbarch->${function} == 0)\n"
1696 printf " gdbarch->${function} = ${postdefault};\n"
1697 elif [ -n "${invalid_p}" ]
1699 printf " if (${invalid_p})\n"
1700 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1701 elif [ -n "${predefault}" ]
1703 printf " if (gdbarch->${function} == ${predefault})\n"
1704 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1709 buf = ui_file_xstrdup (log, &length);
1710 make_cleanup (xfree, buf);
1712 internal_error (__FILE__, __LINE__,
1713 _("verify_gdbarch: the following are invalid ...%s"),
1715 do_cleanups (cleanups);
1719 # dump the structure
1723 /* Print out the details of the current architecture. */
1726 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1728 const char *gdb_nm_file = "<not-defined>";
1730 #if defined (GDB_NM_FILE)
1731 gdb_nm_file = GDB_NM_FILE;
1733 fprintf_unfiltered (file,
1734 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1737 function_list | sort -t: -k 3 | while do_read
1739 # First the predicate
1740 if class_is_predicate_p
1742 printf " fprintf_unfiltered (file,\n"
1743 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1744 printf " gdbarch_${function}_p (gdbarch));\n"
1746 # Print the corresponding value.
1747 if class_is_function_p
1749 printf " fprintf_unfiltered (file,\n"
1750 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1751 printf " host_address_to_string (gdbarch->${function}));\n"
1754 case "${print}:${returntype}" in
1757 print="core_addr_to_string_nz (gdbarch->${function})"
1761 print="plongest (gdbarch->${function})"
1767 printf " fprintf_unfiltered (file,\n"
1768 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1769 printf " ${print});\n"
1773 if (gdbarch->dump_tdep != NULL)
1774 gdbarch->dump_tdep (gdbarch, file);
1782 struct gdbarch_tdep *
1783 gdbarch_tdep (struct gdbarch *gdbarch)
1785 if (gdbarch_debug >= 2)
1786 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1787 return gdbarch->tdep;
1791 function_list | while do_read
1793 if class_is_predicate_p
1797 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1799 printf " gdb_assert (gdbarch != NULL);\n"
1800 printf " return ${predicate};\n"
1803 if class_is_function_p
1806 printf "${returntype}\n"
1807 if [ "x${formal}" = "xvoid" ]
1809 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1811 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1814 printf " gdb_assert (gdbarch != NULL);\n"
1815 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1816 if class_is_predicate_p && test -n "${predefault}"
1818 # Allow a call to a function with a predicate.
1819 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1821 printf " if (gdbarch_debug >= 2)\n"
1822 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1823 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1825 if class_is_multiarch_p
1832 if class_is_multiarch_p
1834 params="gdbarch, ${actual}"
1839 if [ "x${returntype}" = "xvoid" ]
1841 printf " gdbarch->${function} (${params});\n"
1843 printf " return gdbarch->${function} (${params});\n"
1848 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1849 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1851 printf " gdbarch->${function} = ${function};\n"
1853 elif class_is_variable_p
1856 printf "${returntype}\n"
1857 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1859 printf " gdb_assert (gdbarch != NULL);\n"
1860 if [ "x${invalid_p}" = "x0" ]
1862 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1863 elif [ -n "${invalid_p}" ]
1865 printf " /* Check variable is valid. */\n"
1866 printf " gdb_assert (!(${invalid_p}));\n"
1867 elif [ -n "${predefault}" ]
1869 printf " /* Check variable changed from pre-default. */\n"
1870 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1872 printf " if (gdbarch_debug >= 2)\n"
1873 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1874 printf " return gdbarch->${function};\n"
1878 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1879 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1881 printf " gdbarch->${function} = ${function};\n"
1883 elif class_is_info_p
1886 printf "${returntype}\n"
1887 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1889 printf " gdb_assert (gdbarch != NULL);\n"
1890 printf " if (gdbarch_debug >= 2)\n"
1891 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1892 printf " return gdbarch->${function};\n"
1897 # All the trailing guff
1901 /* Keep a registry of per-architecture data-pointers required by GDB
1908 gdbarch_data_pre_init_ftype *pre_init;
1909 gdbarch_data_post_init_ftype *post_init;
1912 struct gdbarch_data_registration
1914 struct gdbarch_data *data;
1915 struct gdbarch_data_registration *next;
1918 struct gdbarch_data_registry
1921 struct gdbarch_data_registration *registrations;
1924 struct gdbarch_data_registry gdbarch_data_registry =
1929 static struct gdbarch_data *
1930 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1931 gdbarch_data_post_init_ftype *post_init)
1933 struct gdbarch_data_registration **curr;
1935 /* Append the new registration. */
1936 for (curr = &gdbarch_data_registry.registrations;
1938 curr = &(*curr)->next);
1939 (*curr) = XMALLOC (struct gdbarch_data_registration);
1940 (*curr)->next = NULL;
1941 (*curr)->data = XMALLOC (struct gdbarch_data);
1942 (*curr)->data->index = gdbarch_data_registry.nr++;
1943 (*curr)->data->pre_init = pre_init;
1944 (*curr)->data->post_init = post_init;
1945 (*curr)->data->init_p = 1;
1946 return (*curr)->data;
1949 struct gdbarch_data *
1950 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1952 return gdbarch_data_register (pre_init, NULL);
1955 struct gdbarch_data *
1956 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1958 return gdbarch_data_register (NULL, post_init);
1961 /* Create/delete the gdbarch data vector. */
1964 alloc_gdbarch_data (struct gdbarch *gdbarch)
1966 gdb_assert (gdbarch->data == NULL);
1967 gdbarch->nr_data = gdbarch_data_registry.nr;
1968 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1971 /* Initialize the current value of the specified per-architecture
1975 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1976 struct gdbarch_data *data,
1979 gdb_assert (data->index < gdbarch->nr_data);
1980 gdb_assert (gdbarch->data[data->index] == NULL);
1981 gdb_assert (data->pre_init == NULL);
1982 gdbarch->data[data->index] = pointer;
1985 /* Return the current value of the specified per-architecture
1989 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1991 gdb_assert (data->index < gdbarch->nr_data);
1992 if (gdbarch->data[data->index] == NULL)
1994 /* The data-pointer isn't initialized, call init() to get a
1996 if (data->pre_init != NULL)
1997 /* Mid architecture creation: pass just the obstack, and not
1998 the entire architecture, as that way it isn't possible for
1999 pre-init code to refer to undefined architecture
2001 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2002 else if (gdbarch->initialized_p
2003 && data->post_init != NULL)
2004 /* Post architecture creation: pass the entire architecture
2005 (as all fields are valid), but be careful to also detect
2006 recursive references. */
2008 gdb_assert (data->init_p);
2010 gdbarch->data[data->index] = data->post_init (gdbarch);
2014 /* The architecture initialization hasn't completed - punt -
2015 hope that the caller knows what they are doing. Once
2016 deprecated_set_gdbarch_data has been initialized, this can be
2017 changed to an internal error. */
2019 gdb_assert (gdbarch->data[data->index] != NULL);
2021 return gdbarch->data[data->index];
2025 /* Keep a registry of the architectures known by GDB. */
2027 struct gdbarch_registration
2029 enum bfd_architecture bfd_architecture;
2030 gdbarch_init_ftype *init;
2031 gdbarch_dump_tdep_ftype *dump_tdep;
2032 struct gdbarch_list *arches;
2033 struct gdbarch_registration *next;
2036 static struct gdbarch_registration *gdbarch_registry = NULL;
2039 append_name (const char ***buf, int *nr, const char *name)
2041 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2047 gdbarch_printable_names (void)
2049 /* Accumulate a list of names based on the registed list of
2052 const char **arches = NULL;
2053 struct gdbarch_registration *rego;
2055 for (rego = gdbarch_registry;
2059 const struct bfd_arch_info *ap;
2060 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2062 internal_error (__FILE__, __LINE__,
2063 _("gdbarch_architecture_names: multi-arch unknown"));
2066 append_name (&arches, &nr_arches, ap->printable_name);
2071 append_name (&arches, &nr_arches, NULL);
2077 gdbarch_register (enum bfd_architecture bfd_architecture,
2078 gdbarch_init_ftype *init,
2079 gdbarch_dump_tdep_ftype *dump_tdep)
2081 struct gdbarch_registration **curr;
2082 const struct bfd_arch_info *bfd_arch_info;
2084 /* Check that BFD recognizes this architecture */
2085 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2086 if (bfd_arch_info == NULL)
2088 internal_error (__FILE__, __LINE__,
2089 _("gdbarch: Attempt to register "
2090 "unknown architecture (%d)"),
2093 /* Check that we haven't seen this architecture before. */
2094 for (curr = &gdbarch_registry;
2096 curr = &(*curr)->next)
2098 if (bfd_architecture == (*curr)->bfd_architecture)
2099 internal_error (__FILE__, __LINE__,
2100 _("gdbarch: Duplicate registration "
2101 "of architecture (%s)"),
2102 bfd_arch_info->printable_name);
2106 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2107 bfd_arch_info->printable_name,
2108 host_address_to_string (init));
2110 (*curr) = XMALLOC (struct gdbarch_registration);
2111 (*curr)->bfd_architecture = bfd_architecture;
2112 (*curr)->init = init;
2113 (*curr)->dump_tdep = dump_tdep;
2114 (*curr)->arches = NULL;
2115 (*curr)->next = NULL;
2119 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2120 gdbarch_init_ftype *init)
2122 gdbarch_register (bfd_architecture, init, NULL);
2126 /* Look for an architecture using gdbarch_info. */
2128 struct gdbarch_list *
2129 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2130 const struct gdbarch_info *info)
2132 for (; arches != NULL; arches = arches->next)
2134 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2136 if (info->byte_order != arches->gdbarch->byte_order)
2138 if (info->osabi != arches->gdbarch->osabi)
2140 if (info->target_desc != arches->gdbarch->target_desc)
2148 /* Find an architecture that matches the specified INFO. Create a new
2149 architecture if needed. Return that new architecture. */
2152 gdbarch_find_by_info (struct gdbarch_info info)
2154 struct gdbarch *new_gdbarch;
2155 struct gdbarch_registration *rego;
2157 /* Fill in missing parts of the INFO struct using a number of
2158 sources: "set ..."; INFOabfd supplied; and the global
2160 gdbarch_info_fill (&info);
2162 /* Must have found some sort of architecture. */
2163 gdb_assert (info.bfd_arch_info != NULL);
2167 fprintf_unfiltered (gdb_stdlog,
2168 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2169 (info.bfd_arch_info != NULL
2170 ? info.bfd_arch_info->printable_name
2172 fprintf_unfiltered (gdb_stdlog,
2173 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2175 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2176 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2178 fprintf_unfiltered (gdb_stdlog,
2179 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2180 info.osabi, gdbarch_osabi_name (info.osabi));
2181 fprintf_unfiltered (gdb_stdlog,
2182 "gdbarch_find_by_info: info.abfd %s\n",
2183 host_address_to_string (info.abfd));
2184 fprintf_unfiltered (gdb_stdlog,
2185 "gdbarch_find_by_info: info.tdep_info %s\n",
2186 host_address_to_string (info.tdep_info));
2189 /* Find the tdep code that knows about this architecture. */
2190 for (rego = gdbarch_registry;
2193 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2198 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2199 "No matching architecture\n");
2203 /* Ask the tdep code for an architecture that matches "info". */
2204 new_gdbarch = rego->init (info, rego->arches);
2206 /* Did the tdep code like it? No. Reject the change and revert to
2207 the old architecture. */
2208 if (new_gdbarch == NULL)
2211 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2212 "Target rejected architecture\n");
2216 /* Is this a pre-existing architecture (as determined by already
2217 being initialized)? Move it to the front of the architecture
2218 list (keeping the list sorted Most Recently Used). */
2219 if (new_gdbarch->initialized_p)
2221 struct gdbarch_list **list;
2222 struct gdbarch_list *this;
2224 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2225 "Previous architecture %s (%s) selected\n",
2226 host_address_to_string (new_gdbarch),
2227 new_gdbarch->bfd_arch_info->printable_name);
2228 /* Find the existing arch in the list. */
2229 for (list = ®o->arches;
2230 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2231 list = &(*list)->next);
2232 /* It had better be in the list of architectures. */
2233 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2236 (*list) = this->next;
2237 /* Insert THIS at the front. */
2238 this->next = rego->arches;
2239 rego->arches = this;
2244 /* It's a new architecture. */
2246 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2247 "New architecture %s (%s) selected\n",
2248 host_address_to_string (new_gdbarch),
2249 new_gdbarch->bfd_arch_info->printable_name);
2251 /* Insert the new architecture into the front of the architecture
2252 list (keep the list sorted Most Recently Used). */
2254 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2255 this->next = rego->arches;
2256 this->gdbarch = new_gdbarch;
2257 rego->arches = this;
2260 /* Check that the newly installed architecture is valid. Plug in
2261 any post init values. */
2262 new_gdbarch->dump_tdep = rego->dump_tdep;
2263 verify_gdbarch (new_gdbarch);
2264 new_gdbarch->initialized_p = 1;
2267 gdbarch_dump (new_gdbarch, gdb_stdlog);
2272 /* Make the specified architecture current. */
2275 set_target_gdbarch (struct gdbarch *new_gdbarch)
2277 gdb_assert (new_gdbarch != NULL);
2278 gdb_assert (new_gdbarch->initialized_p);
2279 current_inferior ()->gdbarch = new_gdbarch;
2280 observer_notify_architecture_changed (new_gdbarch);
2281 registers_changed ();
2284 /* Return the current inferior's arch. */
2287 target_gdbarch (void)
2289 return current_inferior ()->gdbarch;
2292 extern void _initialize_gdbarch (void);
2295 _initialize_gdbarch (void)
2297 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2298 Set architecture debugging."), _("\\
2299 Show architecture debugging."), _("\\
2300 When non-zero, architecture debugging is enabled."),
2303 &setdebuglist, &showdebuglist);
2309 #../move-if-change new-gdbarch.c gdbarch.c
2310 compare_new gdbarch.c