3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2013 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
103 case "${invalid_p}" in
105 if test -n "${predefault}"
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
114 predicate="gdbarch->${function} != NULL"
118 echo "Predicate function ${function} with invalid_p." 1>&2
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
132 if [ -n "${postdefault}" ]
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
137 fallbackdefault="${predefault}"
142 #NOT YET: See gdbarch.log for basic verification of
157 fallback_default_p ()
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 class_is_variable_p ()
171 class_is_function_p ()
174 *f* | *F* | *m* | *M* ) true ;;
179 class_is_multiarch_p ()
187 class_is_predicate_p ()
190 *F* | *V* | *M* ) true ;;
204 # dump out/verify the doco
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
229 # For functions, the return type; for variables, the data type
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
257 # If STATICDEFAULT is empty, zero is used.
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
266 # If PREDEFAULT is empty, zero is used.
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
272 # A zero PREDEFAULT function will force the fallback to call
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
284 # If POSTDEFAULT is empty, no post update is performed.
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
316 # See also PREDEFAULT and POSTDEFAULT.
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
326 garbage_at_eol ) : ;;
328 # Catches stray fields.
331 echo "Bad field ${field}"
339 # See below (DOCO) for description of each field
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
343 i:int:byte_order:::BFD_ENDIAN_BIG
344 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
472 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
473 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
475 # deprecated_fp_regnum.
476 v:int:deprecated_fp_regnum:::-1:-1::0
478 # See gdbint.texinfo. See infcall.c.
479 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
480 v:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
483 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
494 v:int:believe_pcc_promotion:::::::
496 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
498 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 # Construct a value representing the contents of register REGNUM in
500 # frame FRAME, interpreted as type TYPE. The routine needs to
501 # allocate and return a struct value with all value attributes
502 # (but not the value contents) filled in.
503 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
505 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
507 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
509 # Return the return-value convention that will be used by FUNCTION
510 # to return a value of type VALTYPE. FUNCTION may be NULL in which
511 # case the return convention is computed based only on VALTYPE.
513 # If READBUF is not NULL, extract the return value and save it in this buffer.
515 # If WRITEBUF is not NULL, it contains a return value which will be
516 # stored into the appropriate register. This can be used when we want
517 # to force the value returned by a function (see the "return" command
519 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
521 # Return true if the return value of function is stored in the first hidden
522 # parameter. In theory, this feature should be language-dependent, specified
523 # by language and its ABI, such as C++. Unfortunately, compiler may
524 # implement it to a target-dependent feature. So that we need such hook here
525 # to be aware of this in GDB.
526 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
528 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
529 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
530 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
531 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
532 # Return the adjusted address and kind to use for Z0/Z1 packets.
533 # KIND is usually the memory length of the breakpoint, but may have a
534 # different target-specific meaning.
535 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
536 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
537 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
538 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
539 v:CORE_ADDR:decr_pc_after_break:::0:::0
541 # A function can be addressed by either it's "pointer" (possibly a
542 # descriptor address) or "entry point" (first executable instruction).
543 # The method "convert_from_func_ptr_addr" converting the former to the
544 # latter. gdbarch_deprecated_function_start_offset is being used to implement
545 # a simplified subset of that functionality - the function's address
546 # corresponds to the "function pointer" and the function's start
547 # corresponds to the "function entry point" - and hence is redundant.
549 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
551 # Return the remote protocol register number associated with this
552 # register. Normally the identity mapping.
553 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
555 # Fetch the target specific address used to represent a load module.
556 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
558 v:CORE_ADDR:frame_args_skip:::0:::0
559 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
560 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
561 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
562 # frame-base. Enable frame-base before frame-unwind.
563 F:int:frame_num_args:struct frame_info *frame:frame
565 M:CORE_ADDR:frame_align:CORE_ADDR address:address
566 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
567 v:int:frame_red_zone_size
569 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
570 # On some machines there are bits in addresses which are not really
571 # part of the address, but are used by the kernel, the hardware, etc.
572 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
573 # we get a "real" address such as one would find in a symbol table.
574 # This is used only for addresses of instructions, and even then I'm
575 # not sure it's used in all contexts. It exists to deal with there
576 # being a few stray bits in the PC which would mislead us, not as some
577 # sort of generic thing to handle alignment or segmentation (it's
578 # possible it should be in TARGET_READ_PC instead).
579 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
644 # Find core file memory regions
645 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
647 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
648 # core file into buffer READBUF with length LEN.
649 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
651 # How the core target converts a PTID from a core file to a string.
652 M:char *:core_pid_to_str:ptid_t ptid:ptid
654 # BFD target to use when generating a core file.
655 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
657 # If the elements of C++ vtables are in-place function descriptors rather
658 # than normal function pointers (which may point to code or a descriptor),
660 v:int:vtable_function_descriptors:::0:0::0
662 # Set if the least significant bit of the delta is used instead of the least
663 # significant bit of the pfn for pointers to virtual member functions.
664 v:int:vbit_in_delta:::0:0::0
666 # Advance PC to next instruction in order to skip a permanent breakpoint.
667 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
669 # The maximum length of an instruction on this architecture in bytes.
670 V:ULONGEST:max_insn_length:::0:0
672 # Copy the instruction at FROM to TO, and make any adjustments
673 # necessary to single-step it at that address.
675 # REGS holds the state the thread's registers will have before
676 # executing the copied instruction; the PC in REGS will refer to FROM,
677 # not the copy at TO. The caller should update it to point at TO later.
679 # Return a pointer to data of the architecture's choice to be passed
680 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
681 # the instruction's effects have been completely simulated, with the
682 # resulting state written back to REGS.
684 # For a general explanation of displaced stepping and how GDB uses it,
685 # see the comments in infrun.c.
687 # The TO area is only guaranteed to have space for
688 # gdbarch_max_insn_length (arch) bytes, so this function must not
689 # write more bytes than that to that area.
691 # If you do not provide this function, GDB assumes that the
692 # architecture does not support displaced stepping.
694 # If your architecture doesn't need to adjust instructions before
695 # single-stepping them, consider using simple_displaced_step_copy_insn
697 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
699 # Return true if GDB should use hardware single-stepping to execute
700 # the displaced instruction identified by CLOSURE. If false,
701 # GDB will simply restart execution at the displaced instruction
702 # location, and it is up to the target to ensure GDB will receive
703 # control again (e.g. by placing a software breakpoint instruction
704 # into the displaced instruction buffer).
706 # The default implementation returns false on all targets that
707 # provide a gdbarch_software_single_step routine, and true otherwise.
708 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
710 # Fix up the state resulting from successfully single-stepping a
711 # displaced instruction, to give the result we would have gotten from
712 # stepping the instruction in its original location.
714 # REGS is the register state resulting from single-stepping the
715 # displaced instruction.
717 # CLOSURE is the result from the matching call to
718 # gdbarch_displaced_step_copy_insn.
720 # If you provide gdbarch_displaced_step_copy_insn.but not this
721 # function, then GDB assumes that no fixup is needed after
722 # single-stepping the instruction.
724 # For a general explanation of displaced stepping and how GDB uses it,
725 # see the comments in infrun.c.
726 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
728 # Free a closure returned by gdbarch_displaced_step_copy_insn.
730 # If you provide gdbarch_displaced_step_copy_insn, you must provide
731 # this function as well.
733 # If your architecture uses closures that don't need to be freed, then
734 # you can use simple_displaced_step_free_closure here.
736 # For a general explanation of displaced stepping and how GDB uses it,
737 # see the comments in infrun.c.
738 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
740 # Return the address of an appropriate place to put displaced
741 # instructions while we step over them. There need only be one such
742 # place, since we're only stepping one thread over a breakpoint at a
745 # For a general explanation of displaced stepping and how GDB uses it,
746 # see the comments in infrun.c.
747 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
749 # Relocate an instruction to execute at a different address. OLDLOC
750 # is the address in the inferior memory where the instruction to
751 # relocate is currently at. On input, TO points to the destination
752 # where we want the instruction to be copied (and possibly adjusted)
753 # to. On output, it points to one past the end of the resulting
754 # instruction(s). The effect of executing the instruction at TO shall
755 # be the same as if executing it at FROM. For example, call
756 # instructions that implicitly push the return address on the stack
757 # should be adjusted to return to the instruction after OLDLOC;
758 # relative branches, and other PC-relative instructions need the
759 # offset adjusted; etc.
760 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
762 # Refresh overlay mapped state for section OSECT.
763 F:void:overlay_update:struct obj_section *osect:osect
765 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
767 # Handle special encoding of static variables in stabs debug info.
768 F:const char *:static_transform_name:const char *name:name
769 # Set if the address in N_SO or N_FUN stabs may be zero.
770 v:int:sofun_address_maybe_missing:::0:0::0
772 # Parse the instruction at ADDR storing in the record execution log
773 # the registers REGCACHE and memory ranges that will be affected when
774 # the instruction executes, along with their current values.
775 # Return -1 if something goes wrong, 0 otherwise.
776 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
778 # Save process state after a signal.
779 # Return -1 if something goes wrong, 0 otherwise.
780 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
782 # Signal translation: translate inferior's signal (target's) number
783 # into GDB's representation. The implementation of this method must
784 # be host independent. IOW, don't rely on symbols of the NAT_FILE
785 # header (the nm-*.h files), the host <signal.h> header, or similar
786 # headers. This is mainly used when cross-debugging core files ---
787 # "Live" targets hide the translation behind the target interface
788 # (target_wait, target_resume, etc.).
789 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
791 # Extra signal info inspection.
793 # Return a type suitable to inspect extra signal information.
794 M:struct type *:get_siginfo_type:void:
796 # Record architecture-specific information from the symbol table.
797 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
799 # Function for the 'catch syscall' feature.
801 # Get architecture-specific system calls information from registers.
802 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
804 # SystemTap related fields and functions.
806 # Prefix used to mark an integer constant on the architecture's assembly
807 # For example, on x86 integer constants are written as:
809 # \$10 ;; integer constant 10
811 # in this case, this prefix would be the character \`\$\'.
812 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
814 # Suffix used to mark an integer constant on the architecture's assembly.
815 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
817 # Prefix used to mark a register name on the architecture's assembly.
818 # For example, on x86 the register name is written as:
820 # \%eax ;; register eax
822 # in this case, this prefix would be the character \`\%\'.
823 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
825 # Suffix used to mark a register name on the architecture's assembly
826 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
828 # Prefix used to mark a register indirection on the architecture's assembly.
829 # For example, on x86 the register indirection is written as:
831 # \(\%eax\) ;; indirecting eax
833 # in this case, this prefix would be the charater \`\(\'.
835 # Please note that we use the indirection prefix also for register
836 # displacement, e.g., \`4\(\%eax\)\' on x86.
837 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
839 # Suffix used to mark a register indirection on the architecture's assembly.
840 # For example, on x86 the register indirection is written as:
842 # \(\%eax\) ;; indirecting eax
844 # in this case, this prefix would be the charater \`\)\'.
846 # Please note that we use the indirection suffix also for register
847 # displacement, e.g., \`4\(\%eax\)\' on x86.
848 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
850 # Prefix used to name a register using GDB's nomenclature.
852 # For example, on PPC a register is represented by a number in the assembly
853 # language (e.g., \`10\' is the 10th general-purpose register). However,
854 # inside GDB this same register has an \`r\' appended to its name, so the 10th
855 # register would be represented as \`r10\' internally.
856 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
858 # Suffix used to name a register using GDB's nomenclature.
859 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
861 # Check if S is a single operand.
863 # Single operands can be:
864 # \- Literal integers, e.g. \`\$10\' on x86
865 # \- Register access, e.g. \`\%eax\' on x86
866 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
867 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
869 # This function should check for these patterns on the string
870 # and return 1 if some were found, or zero otherwise. Please try to match
871 # as much info as you can from the string, i.e., if you have to match
872 # something like \`\(\%\', do not match just the \`\(\'.
873 M:int:stap_is_single_operand:const char *s:s
875 # Function used to handle a "special case" in the parser.
877 # A "special case" is considered to be an unknown token, i.e., a token
878 # that the parser does not know how to parse. A good example of special
879 # case would be ARM's register displacement syntax:
881 # [R0, #4] ;; displacing R0 by 4
883 # Since the parser assumes that a register displacement is of the form:
885 # <number> <indirection_prefix> <register_name> <indirection_suffix>
887 # it means that it will not be able to recognize and parse this odd syntax.
888 # Therefore, we should add a special case function that will handle this token.
890 # This function should generate the proper expression form of the expression
891 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
892 # and so on). It should also return 1 if the parsing was successful, or zero
893 # if the token was not recognized as a special token (in this case, returning
894 # zero means that the special parser is deferring the parsing to the generic
895 # parser), and should advance the buffer pointer (p->arg).
896 M:int:stap_parse_special_token:struct stap_parse_info *p:p
899 # True if the list of shared libraries is one and only for all
900 # processes, as opposed to a list of shared libraries per inferior.
901 # This usually means that all processes, although may or may not share
902 # an address space, will see the same set of symbols at the same
904 v:int:has_global_solist:::0:0::0
906 # On some targets, even though each inferior has its own private
907 # address space, the debug interface takes care of making breakpoints
908 # visible to all address spaces automatically. For such cases,
909 # this property should be set to true.
910 v:int:has_global_breakpoints:::0:0::0
912 # True if inferiors share an address space (e.g., uClinux).
913 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
915 # True if a fast tracepoint can be set at an address.
916 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
918 # Return the "auto" target charset.
919 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
920 # Return the "auto" target wide charset.
921 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
923 # If non-empty, this is a file extension that will be opened in place
924 # of the file extension reported by the shared library list.
926 # This is most useful for toolchains that use a post-linker tool,
927 # where the names of the files run on the target differ in extension
928 # compared to the names of the files GDB should load for debug info.
929 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
931 # If true, the target OS has DOS-based file system semantics. That
932 # is, absolute paths include a drive name, and the backslash is
933 # considered a directory separator.
934 v:int:has_dos_based_file_system:::0:0::0
936 # Generate bytecodes to collect the return address in a frame.
937 # Since the bytecodes run on the target, possibly with GDB not even
938 # connected, the full unwinding machinery is not available, and
939 # typically this function will issue bytecodes for one or more likely
940 # places that the return address may be found.
941 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
943 # Implement the "info proc" command.
944 M:void:info_proc:char *args, enum info_proc_what what:args, what
946 # Implement the "info proc" command for core files. Noe that there
947 # are two "info_proc"-like methods on gdbarch -- one for core files,
948 # one for live targets.
949 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
951 # Iterate over all objfiles in the order that makes the most sense
952 # for the architecture to make global symbol searches.
954 # CB is a callback function where OBJFILE is the objfile to be searched,
955 # and CB_DATA a pointer to user-defined data (the same data that is passed
956 # when calling this gdbarch method). The iteration stops if this function
959 # CB_DATA is a pointer to some user-defined data to be passed to
962 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
963 # inspected when the symbol search was requested.
964 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
966 # Ravenscar arch-dependent ops.
967 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
974 exec > new-gdbarch.log
975 function_list | while do_read
978 ${class} ${returntype} ${function} ($formal)
982 eval echo \"\ \ \ \ ${r}=\${${r}}\"
984 if class_is_predicate_p && fallback_default_p
986 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
990 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
992 echo "Error: postdefault is useless when invalid_p=0" 1>&2
996 if class_is_multiarch_p
998 if class_is_predicate_p ; then :
999 elif test "x${predefault}" = "x"
1001 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1010 compare_new gdbarch.log
1016 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1019 /* Dynamic architecture support for GDB, the GNU debugger.
1021 Copyright (C) 1998-2013 Free Software Foundation, Inc.
1023 This file is part of GDB.
1025 This program is free software; you can redistribute it and/or modify
1026 it under the terms of the GNU General Public License as published by
1027 the Free Software Foundation; either version 3 of the License, or
1028 (at your option) any later version.
1030 This program is distributed in the hope that it will be useful,
1031 but WITHOUT ANY WARRANTY; without even the implied warranty of
1032 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1033 GNU General Public License for more details.
1035 You should have received a copy of the GNU General Public License
1036 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1038 /* This file was created with the aid of \`\`gdbarch.sh''.
1040 The Bourne shell script \`\`gdbarch.sh'' creates the files
1041 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1042 against the existing \`\`gdbarch.[hc]''. Any differences found
1045 If editing this file, please also run gdbarch.sh and merge any
1046 changes into that script. Conversely, when making sweeping changes
1047 to this file, modifying gdbarch.sh and using its output may prove
1057 exec > new-gdbarch.h
1069 struct minimal_symbol;
1073 struct disassemble_info;
1076 struct bp_target_info;
1078 struct displaced_step_closure;
1079 struct core_regset_section;
1083 struct stap_parse_info;
1084 struct ravenscar_arch_ops;
1086 /* The architecture associated with the inferior through the
1087 connection to the target.
1089 The architecture vector provides some information that is really a
1090 property of the inferior, accessed through a particular target:
1091 ptrace operations; the layout of certain RSP packets; the solib_ops
1092 vector; etc. To differentiate architecture accesses to
1093 per-inferior/target properties from
1094 per-thread/per-frame/per-objfile properties, accesses to
1095 per-inferior/target properties should be made through this
1098 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1099 extern struct gdbarch *target_gdbarch (void);
1101 /* The initial, default architecture. It uses host values (for want of a better
1103 extern struct gdbarch startup_gdbarch;
1106 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1109 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1110 (struct objfile *objfile, void *cb_data);
1113 # function typedef's
1116 printf "/* The following are pre-initialized by GDBARCH. */\n"
1117 function_list | while do_read
1122 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1123 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1127 # function typedef's
1130 printf "/* The following are initialized by the target dependent code. */\n"
1131 function_list | while do_read
1133 if [ -n "${comment}" ]
1135 echo "${comment}" | sed \
1141 if class_is_predicate_p
1144 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1146 if class_is_variable_p
1149 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1150 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1152 if class_is_function_p
1155 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1157 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1158 elif class_is_multiarch_p
1160 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1162 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1164 if [ "x${formal}" = "xvoid" ]
1166 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1168 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1170 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1177 /* Definition for an unknown syscall, used basically in error-cases. */
1178 #define UNKNOWN_SYSCALL (-1)
1180 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1183 /* Mechanism for co-ordinating the selection of a specific
1186 GDB targets (*-tdep.c) can register an interest in a specific
1187 architecture. Other GDB components can register a need to maintain
1188 per-architecture data.
1190 The mechanisms below ensures that there is only a loose connection
1191 between the set-architecture command and the various GDB
1192 components. Each component can independently register their need
1193 to maintain architecture specific data with gdbarch.
1197 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1200 The more traditional mega-struct containing architecture specific
1201 data for all the various GDB components was also considered. Since
1202 GDB is built from a variable number of (fairly independent)
1203 components it was determined that the global aproach was not
1207 /* Register a new architectural family with GDB.
1209 Register support for the specified ARCHITECTURE with GDB. When
1210 gdbarch determines that the specified architecture has been
1211 selected, the corresponding INIT function is called.
1215 The INIT function takes two parameters: INFO which contains the
1216 information available to gdbarch about the (possibly new)
1217 architecture; ARCHES which is a list of the previously created
1218 \`\`struct gdbarch'' for this architecture.
1220 The INFO parameter is, as far as possible, be pre-initialized with
1221 information obtained from INFO.ABFD or the global defaults.
1223 The ARCHES parameter is a linked list (sorted most recently used)
1224 of all the previously created architures for this architecture
1225 family. The (possibly NULL) ARCHES->gdbarch can used to access
1226 values from the previously selected architecture for this
1227 architecture family.
1229 The INIT function shall return any of: NULL - indicating that it
1230 doesn't recognize the selected architecture; an existing \`\`struct
1231 gdbarch'' from the ARCHES list - indicating that the new
1232 architecture is just a synonym for an earlier architecture (see
1233 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1234 - that describes the selected architecture (see gdbarch_alloc()).
1236 The DUMP_TDEP function shall print out all target specific values.
1237 Care should be taken to ensure that the function works in both the
1238 multi-arch and non- multi-arch cases. */
1242 struct gdbarch *gdbarch;
1243 struct gdbarch_list *next;
1248 /* Use default: NULL (ZERO). */
1249 const struct bfd_arch_info *bfd_arch_info;
1251 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1254 int byte_order_for_code;
1256 /* Use default: NULL (ZERO). */
1259 /* Use default: NULL (ZERO). */
1260 struct gdbarch_tdep_info *tdep_info;
1262 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1263 enum gdb_osabi osabi;
1265 /* Use default: NULL (ZERO). */
1266 const struct target_desc *target_desc;
1269 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1270 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1272 /* DEPRECATED - use gdbarch_register() */
1273 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1275 extern void gdbarch_register (enum bfd_architecture architecture,
1276 gdbarch_init_ftype *,
1277 gdbarch_dump_tdep_ftype *);
1280 /* Return a freshly allocated, NULL terminated, array of the valid
1281 architecture names. Since architectures are registered during the
1282 _initialize phase this function only returns useful information
1283 once initialization has been completed. */
1285 extern const char **gdbarch_printable_names (void);
1288 /* Helper function. Search the list of ARCHES for a GDBARCH that
1289 matches the information provided by INFO. */
1291 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1294 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1295 basic initialization using values obtained from the INFO and TDEP
1296 parameters. set_gdbarch_*() functions are called to complete the
1297 initialization of the object. */
1299 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1302 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1303 It is assumed that the caller freeds the \`\`struct
1306 extern void gdbarch_free (struct gdbarch *);
1309 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1310 obstack. The memory is freed when the corresponding architecture
1313 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1314 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1315 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1318 /* Helper function. Force an update of the current architecture.
1320 The actual architecture selected is determined by INFO, \`\`(gdb) set
1321 architecture'' et.al., the existing architecture and BFD's default
1322 architecture. INFO should be initialized to zero and then selected
1323 fields should be updated.
1325 Returns non-zero if the update succeeds. */
1327 extern int gdbarch_update_p (struct gdbarch_info info);
1330 /* Helper function. Find an architecture matching info.
1332 INFO should be initialized using gdbarch_info_init, relevant fields
1333 set, and then finished using gdbarch_info_fill.
1335 Returns the corresponding architecture, or NULL if no matching
1336 architecture was found. */
1338 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1341 /* Helper function. Set the target gdbarch to "gdbarch". */
1343 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1346 /* Register per-architecture data-pointer.
1348 Reserve space for a per-architecture data-pointer. An identifier
1349 for the reserved data-pointer is returned. That identifer should
1350 be saved in a local static variable.
1352 Memory for the per-architecture data shall be allocated using
1353 gdbarch_obstack_zalloc. That memory will be deleted when the
1354 corresponding architecture object is deleted.
1356 When a previously created architecture is re-selected, the
1357 per-architecture data-pointer for that previous architecture is
1358 restored. INIT() is not re-called.
1360 Multiple registrarants for any architecture are allowed (and
1361 strongly encouraged). */
1363 struct gdbarch_data;
1365 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1366 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1367 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1368 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1369 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1370 struct gdbarch_data *data,
1373 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1376 /* Set the dynamic target-system-dependent parameters (architecture,
1377 byte-order, ...) using information found in the BFD. */
1379 extern void set_gdbarch_from_file (bfd *);
1382 /* Initialize the current architecture to the "first" one we find on
1385 extern void initialize_current_architecture (void);
1387 /* gdbarch trace variable */
1388 extern unsigned int gdbarch_debug;
1390 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1395 #../move-if-change new-gdbarch.h gdbarch.h
1396 compare_new gdbarch.h
1403 exec > new-gdbarch.c
1408 #include "arch-utils.h"
1411 #include "inferior.h"
1414 #include "floatformat.h"
1416 #include "gdb_assert.h"
1417 #include "gdb_string.h"
1418 #include "reggroups.h"
1420 #include "gdb_obstack.h"
1421 #include "observer.h"
1422 #include "regcache.h"
1423 #include "objfiles.h"
1425 /* Static function declarations */
1427 static void alloc_gdbarch_data (struct gdbarch *);
1429 /* Non-zero if we want to trace architecture code. */
1431 #ifndef GDBARCH_DEBUG
1432 #define GDBARCH_DEBUG 0
1434 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1436 show_gdbarch_debug (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1439 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1443 pformat (const struct floatformat **format)
1448 /* Just print out one of them - this is only for diagnostics. */
1449 return format[0]->name;
1453 pstring (const char *string)
1462 # gdbarch open the gdbarch object
1464 printf "/* Maintain the struct gdbarch object. */\n"
1466 printf "struct gdbarch\n"
1468 printf " /* Has this architecture been fully initialized? */\n"
1469 printf " int initialized_p;\n"
1471 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1472 printf " struct obstack *obstack;\n"
1474 printf " /* basic architectural information. */\n"
1475 function_list | while do_read
1479 printf " ${returntype} ${function};\n"
1483 printf " /* target specific vector. */\n"
1484 printf " struct gdbarch_tdep *tdep;\n"
1485 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1487 printf " /* per-architecture data-pointers. */\n"
1488 printf " unsigned nr_data;\n"
1489 printf " void **data;\n"
1492 /* Multi-arch values.
1494 When extending this structure you must:
1496 Add the field below.
1498 Declare set/get functions and define the corresponding
1501 gdbarch_alloc(): If zero/NULL is not a suitable default,
1502 initialize the new field.
1504 verify_gdbarch(): Confirm that the target updated the field
1507 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1510 \`\`startup_gdbarch()'': Append an initial value to the static
1511 variable (base values on the host's c-type system).
1513 get_gdbarch(): Implement the set/get functions (probably using
1514 the macro's as shortcuts).
1519 function_list | while do_read
1521 if class_is_variable_p
1523 printf " ${returntype} ${function};\n"
1524 elif class_is_function_p
1526 printf " gdbarch_${function}_ftype *${function};\n"
1531 # A pre-initialized vector
1535 /* The default architecture uses host values (for want of a better
1539 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1541 printf "struct gdbarch startup_gdbarch =\n"
1543 printf " 1, /* Always initialized. */\n"
1544 printf " NULL, /* The obstack. */\n"
1545 printf " /* basic architecture information. */\n"
1546 function_list | while do_read
1550 printf " ${staticdefault}, /* ${function} */\n"
1554 /* target specific vector and its dump routine. */
1556 /*per-architecture data-pointers. */
1558 /* Multi-arch values */
1560 function_list | while do_read
1562 if class_is_function_p || class_is_variable_p
1564 printf " ${staticdefault}, /* ${function} */\n"
1568 /* startup_gdbarch() */
1573 # Create a new gdbarch struct
1576 /* Create a new \`\`struct gdbarch'' based on information provided by
1577 \`\`struct gdbarch_info''. */
1582 gdbarch_alloc (const struct gdbarch_info *info,
1583 struct gdbarch_tdep *tdep)
1585 struct gdbarch *gdbarch;
1587 /* Create an obstack for allocating all the per-architecture memory,
1588 then use that to allocate the architecture vector. */
1589 struct obstack *obstack = XMALLOC (struct obstack);
1590 obstack_init (obstack);
1591 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1592 memset (gdbarch, 0, sizeof (*gdbarch));
1593 gdbarch->obstack = obstack;
1595 alloc_gdbarch_data (gdbarch);
1597 gdbarch->tdep = tdep;
1600 function_list | while do_read
1604 printf " gdbarch->${function} = info->${function};\n"
1608 printf " /* Force the explicit initialization of these. */\n"
1609 function_list | while do_read
1611 if class_is_function_p || class_is_variable_p
1613 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1615 printf " gdbarch->${function} = ${predefault};\n"
1620 /* gdbarch_alloc() */
1626 # Free a gdbarch struct.
1630 /* Allocate extra space using the per-architecture obstack. */
1633 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1635 void *data = obstack_alloc (arch->obstack, size);
1637 memset (data, 0, size);
1642 /* Free a gdbarch struct. This should never happen in normal
1643 operation --- once you've created a gdbarch, you keep it around.
1644 However, if an architecture's init function encounters an error
1645 building the structure, it may need to clean up a partially
1646 constructed gdbarch. */
1649 gdbarch_free (struct gdbarch *arch)
1651 struct obstack *obstack;
1653 gdb_assert (arch != NULL);
1654 gdb_assert (!arch->initialized_p);
1655 obstack = arch->obstack;
1656 obstack_free (obstack, 0); /* Includes the ARCH. */
1661 # verify a new architecture
1665 /* Ensure that all values in a GDBARCH are reasonable. */
1668 verify_gdbarch (struct gdbarch *gdbarch)
1670 struct ui_file *log;
1671 struct cleanup *cleanups;
1675 log = mem_fileopen ();
1676 cleanups = make_cleanup_ui_file_delete (log);
1678 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1679 fprintf_unfiltered (log, "\n\tbyte-order");
1680 if (gdbarch->bfd_arch_info == NULL)
1681 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1682 /* Check those that need to be defined for the given multi-arch level. */
1684 function_list | while do_read
1686 if class_is_function_p || class_is_variable_p
1688 if [ "x${invalid_p}" = "x0" ]
1690 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1691 elif class_is_predicate_p
1693 printf " /* Skip verify of ${function}, has predicate. */\n"
1694 # FIXME: See do_read for potential simplification
1695 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1697 printf " if (${invalid_p})\n"
1698 printf " gdbarch->${function} = ${postdefault};\n"
1699 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1701 printf " if (gdbarch->${function} == ${predefault})\n"
1702 printf " gdbarch->${function} = ${postdefault};\n"
1703 elif [ -n "${postdefault}" ]
1705 printf " if (gdbarch->${function} == 0)\n"
1706 printf " gdbarch->${function} = ${postdefault};\n"
1707 elif [ -n "${invalid_p}" ]
1709 printf " if (${invalid_p})\n"
1710 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1711 elif [ -n "${predefault}" ]
1713 printf " if (gdbarch->${function} == ${predefault})\n"
1714 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1719 buf = ui_file_xstrdup (log, &length);
1720 make_cleanup (xfree, buf);
1722 internal_error (__FILE__, __LINE__,
1723 _("verify_gdbarch: the following are invalid ...%s"),
1725 do_cleanups (cleanups);
1729 # dump the structure
1733 /* Print out the details of the current architecture. */
1736 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1738 const char *gdb_nm_file = "<not-defined>";
1740 #if defined (GDB_NM_FILE)
1741 gdb_nm_file = GDB_NM_FILE;
1743 fprintf_unfiltered (file,
1744 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1747 function_list | sort -t: -k 3 | while do_read
1749 # First the predicate
1750 if class_is_predicate_p
1752 printf " fprintf_unfiltered (file,\n"
1753 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1754 printf " gdbarch_${function}_p (gdbarch));\n"
1756 # Print the corresponding value.
1757 if class_is_function_p
1759 printf " fprintf_unfiltered (file,\n"
1760 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1761 printf " host_address_to_string (gdbarch->${function}));\n"
1764 case "${print}:${returntype}" in
1767 print="core_addr_to_string_nz (gdbarch->${function})"
1771 print="plongest (gdbarch->${function})"
1777 printf " fprintf_unfiltered (file,\n"
1778 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1779 printf " ${print});\n"
1783 if (gdbarch->dump_tdep != NULL)
1784 gdbarch->dump_tdep (gdbarch, file);
1792 struct gdbarch_tdep *
1793 gdbarch_tdep (struct gdbarch *gdbarch)
1795 if (gdbarch_debug >= 2)
1796 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1797 return gdbarch->tdep;
1801 function_list | while do_read
1803 if class_is_predicate_p
1807 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1809 printf " gdb_assert (gdbarch != NULL);\n"
1810 printf " return ${predicate};\n"
1813 if class_is_function_p
1816 printf "${returntype}\n"
1817 if [ "x${formal}" = "xvoid" ]
1819 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1821 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1824 printf " gdb_assert (gdbarch != NULL);\n"
1825 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1826 if class_is_predicate_p && test -n "${predefault}"
1828 # Allow a call to a function with a predicate.
1829 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1831 printf " if (gdbarch_debug >= 2)\n"
1832 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1833 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1835 if class_is_multiarch_p
1842 if class_is_multiarch_p
1844 params="gdbarch, ${actual}"
1849 if [ "x${returntype}" = "xvoid" ]
1851 printf " gdbarch->${function} (${params});\n"
1853 printf " return gdbarch->${function} (${params});\n"
1858 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1859 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1861 printf " gdbarch->${function} = ${function};\n"
1863 elif class_is_variable_p
1866 printf "${returntype}\n"
1867 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1869 printf " gdb_assert (gdbarch != NULL);\n"
1870 if [ "x${invalid_p}" = "x0" ]
1872 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1873 elif [ -n "${invalid_p}" ]
1875 printf " /* Check variable is valid. */\n"
1876 printf " gdb_assert (!(${invalid_p}));\n"
1877 elif [ -n "${predefault}" ]
1879 printf " /* Check variable changed from pre-default. */\n"
1880 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1882 printf " if (gdbarch_debug >= 2)\n"
1883 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1884 printf " return gdbarch->${function};\n"
1888 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1889 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1891 printf " gdbarch->${function} = ${function};\n"
1893 elif class_is_info_p
1896 printf "${returntype}\n"
1897 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1899 printf " gdb_assert (gdbarch != NULL);\n"
1900 printf " if (gdbarch_debug >= 2)\n"
1901 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1902 printf " return gdbarch->${function};\n"
1907 # All the trailing guff
1911 /* Keep a registry of per-architecture data-pointers required by GDB
1918 gdbarch_data_pre_init_ftype *pre_init;
1919 gdbarch_data_post_init_ftype *post_init;
1922 struct gdbarch_data_registration
1924 struct gdbarch_data *data;
1925 struct gdbarch_data_registration *next;
1928 struct gdbarch_data_registry
1931 struct gdbarch_data_registration *registrations;
1934 struct gdbarch_data_registry gdbarch_data_registry =
1939 static struct gdbarch_data *
1940 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1941 gdbarch_data_post_init_ftype *post_init)
1943 struct gdbarch_data_registration **curr;
1945 /* Append the new registration. */
1946 for (curr = &gdbarch_data_registry.registrations;
1948 curr = &(*curr)->next);
1949 (*curr) = XMALLOC (struct gdbarch_data_registration);
1950 (*curr)->next = NULL;
1951 (*curr)->data = XMALLOC (struct gdbarch_data);
1952 (*curr)->data->index = gdbarch_data_registry.nr++;
1953 (*curr)->data->pre_init = pre_init;
1954 (*curr)->data->post_init = post_init;
1955 (*curr)->data->init_p = 1;
1956 return (*curr)->data;
1959 struct gdbarch_data *
1960 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1962 return gdbarch_data_register (pre_init, NULL);
1965 struct gdbarch_data *
1966 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1968 return gdbarch_data_register (NULL, post_init);
1971 /* Create/delete the gdbarch data vector. */
1974 alloc_gdbarch_data (struct gdbarch *gdbarch)
1976 gdb_assert (gdbarch->data == NULL);
1977 gdbarch->nr_data = gdbarch_data_registry.nr;
1978 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1981 /* Initialize the current value of the specified per-architecture
1985 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1986 struct gdbarch_data *data,
1989 gdb_assert (data->index < gdbarch->nr_data);
1990 gdb_assert (gdbarch->data[data->index] == NULL);
1991 gdb_assert (data->pre_init == NULL);
1992 gdbarch->data[data->index] = pointer;
1995 /* Return the current value of the specified per-architecture
1999 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2001 gdb_assert (data->index < gdbarch->nr_data);
2002 if (gdbarch->data[data->index] == NULL)
2004 /* The data-pointer isn't initialized, call init() to get a
2006 if (data->pre_init != NULL)
2007 /* Mid architecture creation: pass just the obstack, and not
2008 the entire architecture, as that way it isn't possible for
2009 pre-init code to refer to undefined architecture
2011 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2012 else if (gdbarch->initialized_p
2013 && data->post_init != NULL)
2014 /* Post architecture creation: pass the entire architecture
2015 (as all fields are valid), but be careful to also detect
2016 recursive references. */
2018 gdb_assert (data->init_p);
2020 gdbarch->data[data->index] = data->post_init (gdbarch);
2024 /* The architecture initialization hasn't completed - punt -
2025 hope that the caller knows what they are doing. Once
2026 deprecated_set_gdbarch_data has been initialized, this can be
2027 changed to an internal error. */
2029 gdb_assert (gdbarch->data[data->index] != NULL);
2031 return gdbarch->data[data->index];
2035 /* Keep a registry of the architectures known by GDB. */
2037 struct gdbarch_registration
2039 enum bfd_architecture bfd_architecture;
2040 gdbarch_init_ftype *init;
2041 gdbarch_dump_tdep_ftype *dump_tdep;
2042 struct gdbarch_list *arches;
2043 struct gdbarch_registration *next;
2046 static struct gdbarch_registration *gdbarch_registry = NULL;
2049 append_name (const char ***buf, int *nr, const char *name)
2051 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2057 gdbarch_printable_names (void)
2059 /* Accumulate a list of names based on the registed list of
2062 const char **arches = NULL;
2063 struct gdbarch_registration *rego;
2065 for (rego = gdbarch_registry;
2069 const struct bfd_arch_info *ap;
2070 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2072 internal_error (__FILE__, __LINE__,
2073 _("gdbarch_architecture_names: multi-arch unknown"));
2076 append_name (&arches, &nr_arches, ap->printable_name);
2081 append_name (&arches, &nr_arches, NULL);
2087 gdbarch_register (enum bfd_architecture bfd_architecture,
2088 gdbarch_init_ftype *init,
2089 gdbarch_dump_tdep_ftype *dump_tdep)
2091 struct gdbarch_registration **curr;
2092 const struct bfd_arch_info *bfd_arch_info;
2094 /* Check that BFD recognizes this architecture */
2095 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2096 if (bfd_arch_info == NULL)
2098 internal_error (__FILE__, __LINE__,
2099 _("gdbarch: Attempt to register "
2100 "unknown architecture (%d)"),
2103 /* Check that we haven't seen this architecture before. */
2104 for (curr = &gdbarch_registry;
2106 curr = &(*curr)->next)
2108 if (bfd_architecture == (*curr)->bfd_architecture)
2109 internal_error (__FILE__, __LINE__,
2110 _("gdbarch: Duplicate registration "
2111 "of architecture (%s)"),
2112 bfd_arch_info->printable_name);
2116 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2117 bfd_arch_info->printable_name,
2118 host_address_to_string (init));
2120 (*curr) = XMALLOC (struct gdbarch_registration);
2121 (*curr)->bfd_architecture = bfd_architecture;
2122 (*curr)->init = init;
2123 (*curr)->dump_tdep = dump_tdep;
2124 (*curr)->arches = NULL;
2125 (*curr)->next = NULL;
2129 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2130 gdbarch_init_ftype *init)
2132 gdbarch_register (bfd_architecture, init, NULL);
2136 /* Look for an architecture using gdbarch_info. */
2138 struct gdbarch_list *
2139 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2140 const struct gdbarch_info *info)
2142 for (; arches != NULL; arches = arches->next)
2144 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2146 if (info->byte_order != arches->gdbarch->byte_order)
2148 if (info->osabi != arches->gdbarch->osabi)
2150 if (info->target_desc != arches->gdbarch->target_desc)
2158 /* Find an architecture that matches the specified INFO. Create a new
2159 architecture if needed. Return that new architecture. */
2162 gdbarch_find_by_info (struct gdbarch_info info)
2164 struct gdbarch *new_gdbarch;
2165 struct gdbarch_registration *rego;
2167 /* Fill in missing parts of the INFO struct using a number of
2168 sources: "set ..."; INFOabfd supplied; and the global
2170 gdbarch_info_fill (&info);
2172 /* Must have found some sort of architecture. */
2173 gdb_assert (info.bfd_arch_info != NULL);
2177 fprintf_unfiltered (gdb_stdlog,
2178 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2179 (info.bfd_arch_info != NULL
2180 ? info.bfd_arch_info->printable_name
2182 fprintf_unfiltered (gdb_stdlog,
2183 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2185 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2186 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2188 fprintf_unfiltered (gdb_stdlog,
2189 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2190 info.osabi, gdbarch_osabi_name (info.osabi));
2191 fprintf_unfiltered (gdb_stdlog,
2192 "gdbarch_find_by_info: info.abfd %s\n",
2193 host_address_to_string (info.abfd));
2194 fprintf_unfiltered (gdb_stdlog,
2195 "gdbarch_find_by_info: info.tdep_info %s\n",
2196 host_address_to_string (info.tdep_info));
2199 /* Find the tdep code that knows about this architecture. */
2200 for (rego = gdbarch_registry;
2203 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2208 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2209 "No matching architecture\n");
2213 /* Ask the tdep code for an architecture that matches "info". */
2214 new_gdbarch = rego->init (info, rego->arches);
2216 /* Did the tdep code like it? No. Reject the change and revert to
2217 the old architecture. */
2218 if (new_gdbarch == NULL)
2221 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2222 "Target rejected architecture\n");
2226 /* Is this a pre-existing architecture (as determined by already
2227 being initialized)? Move it to the front of the architecture
2228 list (keeping the list sorted Most Recently Used). */
2229 if (new_gdbarch->initialized_p)
2231 struct gdbarch_list **list;
2232 struct gdbarch_list *this;
2234 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2235 "Previous architecture %s (%s) selected\n",
2236 host_address_to_string (new_gdbarch),
2237 new_gdbarch->bfd_arch_info->printable_name);
2238 /* Find the existing arch in the list. */
2239 for (list = ®o->arches;
2240 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2241 list = &(*list)->next);
2242 /* It had better be in the list of architectures. */
2243 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2246 (*list) = this->next;
2247 /* Insert THIS at the front. */
2248 this->next = rego->arches;
2249 rego->arches = this;
2254 /* It's a new architecture. */
2256 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2257 "New architecture %s (%s) selected\n",
2258 host_address_to_string (new_gdbarch),
2259 new_gdbarch->bfd_arch_info->printable_name);
2261 /* Insert the new architecture into the front of the architecture
2262 list (keep the list sorted Most Recently Used). */
2264 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2265 this->next = rego->arches;
2266 this->gdbarch = new_gdbarch;
2267 rego->arches = this;
2270 /* Check that the newly installed architecture is valid. Plug in
2271 any post init values. */
2272 new_gdbarch->dump_tdep = rego->dump_tdep;
2273 verify_gdbarch (new_gdbarch);
2274 new_gdbarch->initialized_p = 1;
2277 gdbarch_dump (new_gdbarch, gdb_stdlog);
2282 /* Make the specified architecture current. */
2285 set_target_gdbarch (struct gdbarch *new_gdbarch)
2287 gdb_assert (new_gdbarch != NULL);
2288 gdb_assert (new_gdbarch->initialized_p);
2289 current_inferior ()->gdbarch = new_gdbarch;
2290 observer_notify_architecture_changed (new_gdbarch);
2291 registers_changed ();
2294 /* Return the current inferior's arch. */
2297 target_gdbarch (void)
2299 return current_inferior ()->gdbarch;
2302 extern void _initialize_gdbarch (void);
2305 _initialize_gdbarch (void)
2307 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2308 Set architecture debugging."), _("\\
2309 Show architecture debugging."), _("\\
2310 When non-zero, architecture debugging is enabled."),
2313 &setdebuglist, &showdebuglist);
2319 #../move-if-change new-gdbarch.c gdbarch.c
2320 compare_new gdbarch.c