3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6 # This file is part of GDB.
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 # Make certain that the script is running in an internationalized
25 LC_ALL=c ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
79 if eval test \"\${${r}}\" = \"\ \"
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
104 if [ "${returntype}" = int ]
108 elif [ "${returntype}" = long ]
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
118 case "${invalid_p}" in
121 if [ -n "${predefault}" ]
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
130 * ) valid_p="!(${invalid_p})"
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
140 if [ -n "${postdefault}" ]
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
145 fallbackdefault="${predefault}"
150 #NOT YET: See gdbarch.log for basic verification of
165 fallback_default_p ()
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
171 class_is_variable_p ()
179 class_is_function_p ()
182 *f* | *F* | *m* | *M* ) true ;;
187 class_is_multiarch_p ()
195 class_is_predicate_p ()
198 *F* | *V* | *M* ) true ;;
212 # dump out/verify the doco
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
243 # The name of the MACRO that this method is to be accessed by.
247 # For functions, the return type; for variables, the data type
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
280 # If STATICDEFAULT is empty, zero is used.
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
289 # If PREDEFAULT is empty, zero is used.
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
295 # A zero PREDEFAULT function will force the fallback to call
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
307 # If POSTDEFAULT is empty, no post update is performed.
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
338 # See also PREDEFAULT and POSTDEFAULT.
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
346 # If FMT is empty, ``%ld'' is used.
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
353 # If PRINT is empty, ``(long)'' is used.
357 # An optional indicator for any predicte to wrap around the
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
364 # If PRINT_P is empty, ``1'' is always used.
371 echo "Bad field ${field}"
379 # See below (DOCO) for description of each field
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
431 M:::void:register_read:int regnum, char *buf:regnum, buf:
432 M:::void:register_write:int regnum, char *buf:regnum, buf:
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
471 m:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame:file, frame:::default_print_float_info::0
472 # MAP a GDB RAW register number onto a simulator register number. See
473 # also include/...-sim.h.
474 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
475 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
476 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
477 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
478 # setjmp/longjmp support.
479 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
481 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
482 # much better but at least they are vaguely consistent). The headers
483 # and body contain convoluted #if/#else sequences for determine how
484 # things should be compiled. Instead of trying to mimic that
485 # behaviour here (and hence entrench it further) gdbarch simply
486 # reqires that these methods be set up from the word go. This also
487 # avoids any potential problems with moving beyond multi-arch partial.
488 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
489 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
490 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
491 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
492 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
493 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
494 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
495 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
496 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
497 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
498 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
499 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
500 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
501 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
502 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
503 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
505 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
506 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
507 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
508 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
510 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
511 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
512 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
514 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
515 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
516 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
517 # This function is called when the value of a pseudo-register needs to
518 # be updated. Typically it will be defined on a per-architecture
520 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
521 # This function is called when the value of a pseudo-register needs to
522 # be set or stored. Typically it will be defined on a
523 # per-architecture basis.
524 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
526 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
527 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
528 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
530 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
531 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, char *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
532 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
533 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
534 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
535 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
536 f:2:POP_FRAME:void:pop_frame:void:-:::0
538 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
539 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
540 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
541 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
542 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
544 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
545 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
547 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
548 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
549 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
550 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
551 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
552 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
553 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
554 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
555 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
557 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
559 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
560 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
561 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
562 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
563 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
564 # given frame is the outermost one and has no caller.
566 # XXXX - both default and alternate frame_chain_valid functions are
567 # deprecated. New code should use dummy frames and one of the generic
569 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
570 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
571 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
572 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
573 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
574 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
576 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
577 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
578 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
579 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
580 v:2:PARM_BOUNDARY:int:parm_boundary
582 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
583 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
584 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
585 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
596 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
598 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
599 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
600 # the target needs software single step. An ISA method to implement it.
602 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
603 # using the breakpoint system instead of blatting memory directly (as with rs6000).
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
606 # single step. If not, then implement single step using breakpoints.
607 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
608 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
609 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
610 # For SVR4 shared libraries, each call goes through a small piece of
611 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
612 # to nonzero if we are current stopped in one of these.
613 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
614 # Sigtramp is a routine that the kernel calls (which then calls the
615 # signal handler). On most machines it is a library routine that is
616 # linked into the executable.
618 # This macro, given a program counter value and the name of the
619 # function in which that PC resides (which can be null if the name is
620 # not known), returns nonzero if the PC and name show that we are in
623 # On most machines just see if the name is sigtramp (and if we have
624 # no name, assume we are not in sigtramp).
626 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
627 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
628 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
629 # own local NAME lookup.
631 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
632 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
634 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
635 # A target might have problems with watchpoints as soon as the stack
636 # frame of the current function has been destroyed. This mostly happens
637 # as the first action in a funtion's epilogue. in_function_epilogue_p()
638 # is defined to return a non-zero value if either the given addr is one
639 # instruction after the stack destroying instruction up to the trailing
640 # return instruction or if we can figure out that the stack frame has
641 # already been invalidated regardless of the value of addr. Targets
642 # which don't suffer from that problem could just let this functionality
644 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
645 # Given a vector of command-line arguments, return a newly allocated
646 # string which, when passed to the create_inferior function, will be
647 # parsed (on Unix systems, by the shell) to yield the same vector.
648 # This function should call error() if the argument vector is not
649 # representable for this target or if this target does not support
650 # command-line arguments.
651 # ARGC is the number of elements in the vector.
652 # ARGV is an array of strings, one per argument.
653 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
654 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
655 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
656 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
663 exec > new-gdbarch.log
664 function_list | while do_read
667 ${class} ${macro}(${actual})
668 ${returntype} ${function} ($formal)${attrib}
672 eval echo \"\ \ \ \ ${r}=\${${r}}\"
674 # #fallbackdefault=${fallbackdefault}
675 # #valid_p=${valid_p}
677 if class_is_predicate_p && fallback_default_p
679 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
683 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
685 echo "Error: postdefault is useless when invalid_p=0" 1>&2
689 if class_is_multiarch_p
691 if class_is_predicate_p ; then :
692 elif test "x${predefault}" = "x"
694 echo "Error: pure multi-arch function must have a predefault" 1>&2
703 compare_new gdbarch.log
709 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
711 /* Dynamic architecture support for GDB, the GNU debugger.
712 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
714 This file is part of GDB.
716 This program is free software; you can redistribute it and/or modify
717 it under the terms of the GNU General Public License as published by
718 the Free Software Foundation; either version 2 of the License, or
719 (at your option) any later version.
721 This program is distributed in the hope that it will be useful,
722 but WITHOUT ANY WARRANTY; without even the implied warranty of
723 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
724 GNU General Public License for more details.
726 You should have received a copy of the GNU General Public License
727 along with this program; if not, write to the Free Software
728 Foundation, Inc., 59 Temple Place - Suite 330,
729 Boston, MA 02111-1307, USA. */
731 /* This file was created with the aid of \`\`gdbarch.sh''.
733 The Bourne shell script \`\`gdbarch.sh'' creates the files
734 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
735 against the existing \`\`gdbarch.[hc]''. Any differences found
738 If editing this file, please also run gdbarch.sh and merge any
739 changes into that script. Conversely, when making sweeping changes
740 to this file, modifying gdbarch.sh and using its output may prove
756 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
758 /* Pull in function declarations refered to, indirectly, via macros. */
759 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
760 #include "inferior.h" /* For unsigned_address_to_pointer(). */
766 struct minimal_symbol;
769 extern struct gdbarch *current_gdbarch;
772 /* If any of the following are defined, the target wasn't correctly
776 #if defined (EXTRA_FRAME_INFO)
777 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
782 #if defined (FRAME_FIND_SAVED_REGS)
783 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
787 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
788 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
795 printf "/* The following are pre-initialized by GDBARCH. */\n"
796 function_list | while do_read
801 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
802 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
803 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
804 printf "#error \"Non multi-arch definition of ${macro}\"\n"
806 printf "#if GDB_MULTI_ARCH\n"
807 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
808 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
817 printf "/* The following are initialized by the target dependent code. */\n"
818 function_list | while do_read
820 if [ -n "${comment}" ]
822 echo "${comment}" | sed \
827 if class_is_multiarch_p
829 if class_is_predicate_p
832 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
835 if class_is_predicate_p
838 printf "#if defined (${macro})\n"
839 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
840 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
841 printf "#if !defined (${macro}_P)\n"
842 printf "#define ${macro}_P() (1)\n"
846 printf "/* Default predicate for non- multi-arch targets. */\n"
847 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
848 printf "#define ${macro}_P() (0)\n"
851 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
852 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
853 printf "#error \"Non multi-arch definition of ${macro}\"\n"
855 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
856 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
860 if class_is_variable_p
862 if fallback_default_p || class_is_predicate_p
865 printf "/* Default (value) for non- multi-arch platforms. */\n"
866 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
867 echo "#define ${macro} (${fallbackdefault})" \
868 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
872 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
873 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
874 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
875 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 printf "#if GDB_MULTI_ARCH\n"
878 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
879 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
883 if class_is_function_p
885 if class_is_multiarch_p ; then :
886 elif fallback_default_p || class_is_predicate_p
889 printf "/* Default (function) for non- multi-arch platforms. */\n"
890 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
891 if [ "x${fallbackdefault}" = "x0" ]
893 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
895 # FIXME: Should be passing current_gdbarch through!
896 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
897 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
902 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
904 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
905 elif class_is_multiarch_p
907 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
909 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
911 if [ "x${formal}" = "xvoid" ]
913 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
915 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
917 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
918 if class_is_multiarch_p ; then :
920 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
921 printf "#error \"Non multi-arch definition of ${macro}\"\n"
923 printf "#if GDB_MULTI_ARCH\n"
924 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
925 if [ "x${actual}" = "x" ]
927 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
928 elif [ "x${actual}" = "x-" ]
930 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
932 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
943 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
946 /* Mechanism for co-ordinating the selection of a specific
949 GDB targets (*-tdep.c) can register an interest in a specific
950 architecture. Other GDB components can register a need to maintain
951 per-architecture data.
953 The mechanisms below ensures that there is only a loose connection
954 between the set-architecture command and the various GDB
955 components. Each component can independently register their need
956 to maintain architecture specific data with gdbarch.
960 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
963 The more traditional mega-struct containing architecture specific
964 data for all the various GDB components was also considered. Since
965 GDB is built from a variable number of (fairly independent)
966 components it was determined that the global aproach was not
970 /* Register a new architectural family with GDB.
972 Register support for the specified ARCHITECTURE with GDB. When
973 gdbarch determines that the specified architecture has been
974 selected, the corresponding INIT function is called.
978 The INIT function takes two parameters: INFO which contains the
979 information available to gdbarch about the (possibly new)
980 architecture; ARCHES which is a list of the previously created
981 \`\`struct gdbarch'' for this architecture.
983 The INFO parameter is, as far as possible, be pre-initialized with
984 information obtained from INFO.ABFD or the previously selected
987 The ARCHES parameter is a linked list (sorted most recently used)
988 of all the previously created architures for this architecture
989 family. The (possibly NULL) ARCHES->gdbarch can used to access
990 values from the previously selected architecture for this
991 architecture family. The global \`\`current_gdbarch'' shall not be
994 The INIT function shall return any of: NULL - indicating that it
995 doesn't recognize the selected architecture; an existing \`\`struct
996 gdbarch'' from the ARCHES list - indicating that the new
997 architecture is just a synonym for an earlier architecture (see
998 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
999 - that describes the selected architecture (see gdbarch_alloc()).
1001 The DUMP_TDEP function shall print out all target specific values.
1002 Care should be taken to ensure that the function works in both the
1003 multi-arch and non- multi-arch cases. */
1007 struct gdbarch *gdbarch;
1008 struct gdbarch_list *next;
1013 /* Use default: NULL (ZERO). */
1014 const struct bfd_arch_info *bfd_arch_info;
1016 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1019 /* Use default: NULL (ZERO). */
1022 /* Use default: NULL (ZERO). */
1023 struct gdbarch_tdep_info *tdep_info;
1026 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1027 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1029 /* DEPRECATED - use gdbarch_register() */
1030 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1032 extern void gdbarch_register (enum bfd_architecture architecture,
1033 gdbarch_init_ftype *,
1034 gdbarch_dump_tdep_ftype *);
1037 /* Return a freshly allocated, NULL terminated, array of the valid
1038 architecture names. Since architectures are registered during the
1039 _initialize phase this function only returns useful information
1040 once initialization has been completed. */
1042 extern const char **gdbarch_printable_names (void);
1045 /* Helper function. Search the list of ARCHES for a GDBARCH that
1046 matches the information provided by INFO. */
1048 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1051 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1052 basic initialization using values obtained from the INFO andTDEP
1053 parameters. set_gdbarch_*() functions are called to complete the
1054 initialization of the object. */
1056 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1059 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1060 It is assumed that the caller freeds the \`\`struct
1063 extern void gdbarch_free (struct gdbarch *);
1066 /* Helper function. Force an update of the current architecture.
1068 The actual architecture selected is determined by INFO, \`\`(gdb) set
1069 architecture'' et.al., the existing architecture and BFD's default
1070 architecture. INFO should be initialized to zero and then selected
1071 fields should be updated.
1073 Returns non-zero if the update succeeds */
1075 extern int gdbarch_update_p (struct gdbarch_info info);
1079 /* Register per-architecture data-pointer.
1081 Reserve space for a per-architecture data-pointer. An identifier
1082 for the reserved data-pointer is returned. That identifer should
1083 be saved in a local static variable.
1085 The per-architecture data-pointer is either initialized explicitly
1086 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1087 gdbarch_data()). FREE() is called to delete either an existing
1088 data-pointer overridden by set_gdbarch_data() or when the
1089 architecture object is being deleted.
1091 When a previously created architecture is re-selected, the
1092 per-architecture data-pointer for that previous architecture is
1093 restored. INIT() is not re-called.
1095 Multiple registrarants for any architecture are allowed (and
1096 strongly encouraged). */
1098 struct gdbarch_data;
1100 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1101 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1103 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1104 gdbarch_data_free_ftype *free);
1105 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1106 struct gdbarch_data *data,
1109 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1112 /* Register per-architecture memory region.
1114 Provide a memory-region swap mechanism. Per-architecture memory
1115 region are created. These memory regions are swapped whenever the
1116 architecture is changed. For a new architecture, the memory region
1117 is initialized with zero (0) and the INIT function is called.
1119 Memory regions are swapped / initialized in the order that they are
1120 registered. NULL DATA and/or INIT values can be specified.
1122 New code should use register_gdbarch_data(). */
1124 typedef void (gdbarch_swap_ftype) (void);
1125 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1126 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1130 /* The target-system-dependent byte order is dynamic */
1132 extern int target_byte_order;
1133 #ifndef TARGET_BYTE_ORDER
1134 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1137 extern int target_byte_order_auto;
1138 #ifndef TARGET_BYTE_ORDER_AUTO
1139 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1144 /* The target-system-dependent BFD architecture is dynamic */
1146 extern int target_architecture_auto;
1147 #ifndef TARGET_ARCHITECTURE_AUTO
1148 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1151 extern const struct bfd_arch_info *target_architecture;
1152 #ifndef TARGET_ARCHITECTURE
1153 #define TARGET_ARCHITECTURE (target_architecture + 0)
1157 /* The target-system-dependent disassembler is semi-dynamic */
1159 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1160 unsigned int len, disassemble_info *info);
1162 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1163 disassemble_info *info);
1165 extern void dis_asm_print_address (bfd_vma addr,
1166 disassemble_info *info);
1168 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1169 extern disassemble_info tm_print_insn_info;
1170 #ifndef TARGET_PRINT_INSN_INFO
1171 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1176 /* Set the dynamic target-system-dependent parameters (architecture,
1177 byte-order, ...) using information found in the BFD */
1179 extern void set_gdbarch_from_file (bfd *);
1182 /* Initialize the current architecture to the "first" one we find on
1185 extern void initialize_current_architecture (void);
1187 /* For non-multiarched targets, do any initialization of the default
1188 gdbarch object necessary after the _initialize_MODULE functions
1190 extern void initialize_non_multiarch (void);
1192 /* gdbarch trace variable */
1193 extern int gdbarch_debug;
1195 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1200 #../move-if-change new-gdbarch.h gdbarch.h
1201 compare_new gdbarch.h
1208 exec > new-gdbarch.c
1213 #include "arch-utils.h"
1217 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1219 /* Just include everything in sight so that the every old definition
1220 of macro is visible. */
1221 #include "gdb_string.h"
1225 #include "inferior.h"
1226 #include "breakpoint.h"
1227 #include "gdb_wait.h"
1228 #include "gdbcore.h"
1231 #include "gdbthread.h"
1232 #include "annotate.h"
1233 #include "symfile.h" /* for overlay functions */
1234 #include "value.h" /* For old tm.h/nm.h macros. */
1238 #include "floatformat.h"
1240 #include "gdb_assert.h"
1241 #include "gdb-events.h"
1243 /* Static function declarations */
1245 static void verify_gdbarch (struct gdbarch *gdbarch);
1246 static void alloc_gdbarch_data (struct gdbarch *);
1247 static void free_gdbarch_data (struct gdbarch *);
1248 static void init_gdbarch_swap (struct gdbarch *);
1249 static void clear_gdbarch_swap (struct gdbarch *);
1250 static void swapout_gdbarch_swap (struct gdbarch *);
1251 static void swapin_gdbarch_swap (struct gdbarch *);
1253 /* Non-zero if we want to trace architecture code. */
1255 #ifndef GDBARCH_DEBUG
1256 #define GDBARCH_DEBUG 0
1258 int gdbarch_debug = GDBARCH_DEBUG;
1262 # gdbarch open the gdbarch object
1264 printf "/* Maintain the struct gdbarch object */\n"
1266 printf "struct gdbarch\n"
1268 printf " /* Has this architecture been fully initialized? */\n"
1269 printf " int initialized_p;\n"
1270 printf " /* basic architectural information */\n"
1271 function_list | while do_read
1275 printf " ${returntype} ${function};\n"
1279 printf " /* target specific vector. */\n"
1280 printf " struct gdbarch_tdep *tdep;\n"
1281 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1283 printf " /* per-architecture data-pointers */\n"
1284 printf " unsigned nr_data;\n"
1285 printf " void **data;\n"
1287 printf " /* per-architecture swap-regions */\n"
1288 printf " struct gdbarch_swap *swap;\n"
1291 /* Multi-arch values.
1293 When extending this structure you must:
1295 Add the field below.
1297 Declare set/get functions and define the corresponding
1300 gdbarch_alloc(): If zero/NULL is not a suitable default,
1301 initialize the new field.
1303 verify_gdbarch(): Confirm that the target updated the field
1306 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1309 \`\`startup_gdbarch()'': Append an initial value to the static
1310 variable (base values on the host's c-type system).
1312 get_gdbarch(): Implement the set/get functions (probably using
1313 the macro's as shortcuts).
1318 function_list | while do_read
1320 if class_is_variable_p
1322 printf " ${returntype} ${function};\n"
1323 elif class_is_function_p
1325 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1330 # A pre-initialized vector
1334 /* The default architecture uses host values (for want of a better
1338 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1340 printf "struct gdbarch startup_gdbarch =\n"
1342 printf " 1, /* Always initialized. */\n"
1343 printf " /* basic architecture information */\n"
1344 function_list | while do_read
1348 printf " ${staticdefault},\n"
1352 /* target specific vector and its dump routine */
1354 /*per-architecture data-pointers and swap regions */
1356 /* Multi-arch values */
1358 function_list | while do_read
1360 if class_is_function_p || class_is_variable_p
1362 printf " ${staticdefault},\n"
1366 /* startup_gdbarch() */
1369 struct gdbarch *current_gdbarch = &startup_gdbarch;
1371 /* Do any initialization needed for a non-multiarch configuration
1372 after the _initialize_MODULE functions have been run. */
1374 initialize_non_multiarch (void)
1376 alloc_gdbarch_data (&startup_gdbarch);
1377 /* Ensure that all swap areas are zeroed so that they again think
1378 they are starting from scratch. */
1379 clear_gdbarch_swap (&startup_gdbarch);
1380 init_gdbarch_swap (&startup_gdbarch);
1384 # Create a new gdbarch struct
1388 /* Create a new \`\`struct gdbarch'' based on information provided by
1389 \`\`struct gdbarch_info''. */
1394 gdbarch_alloc (const struct gdbarch_info *info,
1395 struct gdbarch_tdep *tdep)
1397 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1398 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1399 the current local architecture and not the previous global
1400 architecture. This ensures that the new architectures initial
1401 values are not influenced by the previous architecture. Once
1402 everything is parameterised with gdbarch, this will go away. */
1403 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1404 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1406 alloc_gdbarch_data (current_gdbarch);
1408 current_gdbarch->tdep = tdep;
1411 function_list | while do_read
1415 printf " current_gdbarch->${function} = info->${function};\n"
1419 printf " /* Force the explicit initialization of these. */\n"
1420 function_list | while do_read
1422 if class_is_function_p || class_is_variable_p
1424 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1426 printf " current_gdbarch->${function} = ${predefault};\n"
1431 /* gdbarch_alloc() */
1433 return current_gdbarch;
1437 # Free a gdbarch struct.
1441 /* Free a gdbarch struct. This should never happen in normal
1442 operation --- once you've created a gdbarch, you keep it around.
1443 However, if an architecture's init function encounters an error
1444 building the structure, it may need to clean up a partially
1445 constructed gdbarch. */
1448 gdbarch_free (struct gdbarch *arch)
1450 gdb_assert (arch != NULL);
1451 free_gdbarch_data (arch);
1456 # verify a new architecture
1459 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1463 verify_gdbarch (struct gdbarch *gdbarch)
1465 struct ui_file *log;
1466 struct cleanup *cleanups;
1469 /* Only perform sanity checks on a multi-arch target. */
1470 if (!GDB_MULTI_ARCH)
1472 log = mem_fileopen ();
1473 cleanups = make_cleanup_ui_file_delete (log);
1475 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1476 fprintf_unfiltered (log, "\n\tbyte-order");
1477 if (gdbarch->bfd_arch_info == NULL)
1478 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1479 /* Check those that need to be defined for the given multi-arch level. */
1481 function_list | while do_read
1483 if class_is_function_p || class_is_variable_p
1485 if [ "x${invalid_p}" = "x0" ]
1487 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1488 elif class_is_predicate_p
1490 printf " /* Skip verify of ${function}, has predicate */\n"
1491 # FIXME: See do_read for potential simplification
1492 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1494 printf " if (${invalid_p})\n"
1495 printf " gdbarch->${function} = ${postdefault};\n"
1496 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1498 printf " if (gdbarch->${function} == ${predefault})\n"
1499 printf " gdbarch->${function} = ${postdefault};\n"
1500 elif [ -n "${postdefault}" ]
1502 printf " if (gdbarch->${function} == 0)\n"
1503 printf " gdbarch->${function} = ${postdefault};\n"
1504 elif [ -n "${invalid_p}" ]
1506 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1507 printf " && (${invalid_p}))\n"
1508 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1509 elif [ -n "${predefault}" ]
1511 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1512 printf " && (gdbarch->${function} == ${predefault}))\n"
1513 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1518 buf = ui_file_xstrdup (log, &dummy);
1519 make_cleanup (xfree, buf);
1520 if (strlen (buf) > 0)
1521 internal_error (__FILE__, __LINE__,
1522 "verify_gdbarch: the following are invalid ...%s",
1524 do_cleanups (cleanups);
1528 # dump the structure
1532 /* Print out the details of the current architecture. */
1534 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1535 just happens to match the global variable \`\`current_gdbarch''. That
1536 way macros refering to that variable get the local and not the global
1537 version - ulgh. Once everything is parameterised with gdbarch, this
1541 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1543 fprintf_unfiltered (file,
1544 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1547 function_list | sort -t: +2 | while do_read
1549 # multiarch functions don't have macros.
1550 if class_is_multiarch_p
1552 printf " if (GDB_MULTI_ARCH)\n"
1553 printf " fprintf_unfiltered (file,\n"
1554 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1555 printf " (long) current_gdbarch->${function});\n"
1558 # Print the macro definition.
1559 printf "#ifdef ${macro}\n"
1560 if [ "x${returntype}" = "xvoid" ]
1562 printf "#if GDB_MULTI_ARCH\n"
1563 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1565 if class_is_function_p
1567 printf " fprintf_unfiltered (file,\n"
1568 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1569 printf " \"${macro}(${actual})\",\n"
1570 printf " XSTRING (${macro} (${actual})));\n"
1572 printf " fprintf_unfiltered (file,\n"
1573 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1574 printf " XSTRING (${macro}));\n"
1576 # Print the architecture vector value
1577 if [ "x${returntype}" = "xvoid" ]
1581 if [ "x${print_p}" = "x()" ]
1583 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1584 elif [ "x${print_p}" = "x0" ]
1586 printf " /* skip print of ${macro}, print_p == 0. */\n"
1587 elif [ -n "${print_p}" ]
1589 printf " if (${print_p})\n"
1590 printf " fprintf_unfiltered (file,\n"
1591 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1592 printf " ${print});\n"
1593 elif class_is_function_p
1595 printf " if (GDB_MULTI_ARCH)\n"
1596 printf " fprintf_unfiltered (file,\n"
1597 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1598 printf " (long) current_gdbarch->${function}\n"
1599 printf " /*${macro} ()*/);\n"
1601 printf " fprintf_unfiltered (file,\n"
1602 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1603 printf " ${print});\n"
1608 if (current_gdbarch->dump_tdep != NULL)
1609 current_gdbarch->dump_tdep (current_gdbarch, file);
1617 struct gdbarch_tdep *
1618 gdbarch_tdep (struct gdbarch *gdbarch)
1620 if (gdbarch_debug >= 2)
1621 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1622 return gdbarch->tdep;
1626 function_list | while do_read
1628 if class_is_predicate_p
1632 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1634 printf " gdb_assert (gdbarch != NULL);\n"
1635 if [ -n "${valid_p}" ]
1637 printf " return ${valid_p};\n"
1639 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1643 if class_is_function_p
1646 printf "${returntype}\n"
1647 if [ "x${formal}" = "xvoid" ]
1649 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1651 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1654 printf " gdb_assert (gdbarch != NULL);\n"
1655 printf " if (gdbarch->${function} == 0)\n"
1656 printf " internal_error (__FILE__, __LINE__,\n"
1657 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1658 printf " if (gdbarch_debug >= 2)\n"
1659 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1660 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1662 if class_is_multiarch_p
1669 if class_is_multiarch_p
1671 params="gdbarch, ${actual}"
1676 if [ "x${returntype}" = "xvoid" ]
1678 printf " gdbarch->${function} (${params});\n"
1680 printf " return gdbarch->${function} (${params});\n"
1685 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1686 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1688 printf " gdbarch->${function} = ${function};\n"
1690 elif class_is_variable_p
1693 printf "${returntype}\n"
1694 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1696 printf " gdb_assert (gdbarch != NULL);\n"
1697 if [ "x${invalid_p}" = "x0" ]
1699 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1700 elif [ -n "${invalid_p}" ]
1702 printf " if (${invalid_p})\n"
1703 printf " internal_error (__FILE__, __LINE__,\n"
1704 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1705 elif [ -n "${predefault}" ]
1707 printf " if (gdbarch->${function} == ${predefault})\n"
1708 printf " internal_error (__FILE__, __LINE__,\n"
1709 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1711 printf " if (gdbarch_debug >= 2)\n"
1712 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1713 printf " return gdbarch->${function};\n"
1717 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1718 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1720 printf " gdbarch->${function} = ${function};\n"
1722 elif class_is_info_p
1725 printf "${returntype}\n"
1726 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1728 printf " gdb_assert (gdbarch != NULL);\n"
1729 printf " if (gdbarch_debug >= 2)\n"
1730 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1731 printf " return gdbarch->${function};\n"
1736 # All the trailing guff
1740 /* Keep a registry of per-architecture data-pointers required by GDB
1747 gdbarch_data_init_ftype *init;
1748 gdbarch_data_free_ftype *free;
1751 struct gdbarch_data_registration
1753 struct gdbarch_data *data;
1754 struct gdbarch_data_registration *next;
1757 struct gdbarch_data_registry
1760 struct gdbarch_data_registration *registrations;
1763 struct gdbarch_data_registry gdbarch_data_registry =
1768 struct gdbarch_data *
1769 register_gdbarch_data (gdbarch_data_init_ftype *init,
1770 gdbarch_data_free_ftype *free)
1772 struct gdbarch_data_registration **curr;
1773 /* Append the new registraration. */
1774 for (curr = &gdbarch_data_registry.registrations;
1776 curr = &(*curr)->next);
1777 (*curr) = XMALLOC (struct gdbarch_data_registration);
1778 (*curr)->next = NULL;
1779 (*curr)->data = XMALLOC (struct gdbarch_data);
1780 (*curr)->data->index = gdbarch_data_registry.nr++;
1781 (*curr)->data->init = init;
1782 (*curr)->data->init_p = 1;
1783 (*curr)->data->free = free;
1784 return (*curr)->data;
1788 /* Create/delete the gdbarch data vector. */
1791 alloc_gdbarch_data (struct gdbarch *gdbarch)
1793 gdb_assert (gdbarch->data == NULL);
1794 gdbarch->nr_data = gdbarch_data_registry.nr;
1795 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1799 free_gdbarch_data (struct gdbarch *gdbarch)
1801 struct gdbarch_data_registration *rego;
1802 gdb_assert (gdbarch->data != NULL);
1803 for (rego = gdbarch_data_registry.registrations;
1807 struct gdbarch_data *data = rego->data;
1808 gdb_assert (data->index < gdbarch->nr_data);
1809 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1811 data->free (gdbarch, gdbarch->data[data->index]);
1812 gdbarch->data[data->index] = NULL;
1815 xfree (gdbarch->data);
1816 gdbarch->data = NULL;
1820 /* Initialize the current value of the specified per-architecture
1824 set_gdbarch_data (struct gdbarch *gdbarch,
1825 struct gdbarch_data *data,
1828 gdb_assert (data->index < gdbarch->nr_data);
1829 if (gdbarch->data[data->index] != NULL)
1831 gdb_assert (data->free != NULL);
1832 data->free (gdbarch, gdbarch->data[data->index]);
1834 gdbarch->data[data->index] = pointer;
1837 /* Return the current value of the specified per-architecture
1841 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1843 gdb_assert (data->index < gdbarch->nr_data);
1844 /* The data-pointer isn't initialized, call init() to get a value but
1845 only if the architecture initializaiton has completed. Otherwise
1846 punt - hope that the caller knows what they are doing. */
1847 if (gdbarch->data[data->index] == NULL
1848 && gdbarch->initialized_p)
1850 /* Be careful to detect an initialization cycle. */
1851 gdb_assert (data->init_p);
1853 gdb_assert (data->init != NULL);
1854 gdbarch->data[data->index] = data->init (gdbarch);
1856 gdb_assert (gdbarch->data[data->index] != NULL);
1858 return gdbarch->data[data->index];
1863 /* Keep a registry of swapped data required by GDB modules. */
1868 struct gdbarch_swap_registration *source;
1869 struct gdbarch_swap *next;
1872 struct gdbarch_swap_registration
1875 unsigned long sizeof_data;
1876 gdbarch_swap_ftype *init;
1877 struct gdbarch_swap_registration *next;
1880 struct gdbarch_swap_registry
1883 struct gdbarch_swap_registration *registrations;
1886 struct gdbarch_swap_registry gdbarch_swap_registry =
1892 register_gdbarch_swap (void *data,
1893 unsigned long sizeof_data,
1894 gdbarch_swap_ftype *init)
1896 struct gdbarch_swap_registration **rego;
1897 for (rego = &gdbarch_swap_registry.registrations;
1899 rego = &(*rego)->next);
1900 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1901 (*rego)->next = NULL;
1902 (*rego)->init = init;
1903 (*rego)->data = data;
1904 (*rego)->sizeof_data = sizeof_data;
1908 clear_gdbarch_swap (struct gdbarch *gdbarch)
1910 struct gdbarch_swap *curr;
1911 for (curr = gdbarch->swap;
1915 memset (curr->source->data, 0, curr->source->sizeof_data);
1920 init_gdbarch_swap (struct gdbarch *gdbarch)
1922 struct gdbarch_swap_registration *rego;
1923 struct gdbarch_swap **curr = &gdbarch->swap;
1924 for (rego = gdbarch_swap_registry.registrations;
1928 if (rego->data != NULL)
1930 (*curr) = XMALLOC (struct gdbarch_swap);
1931 (*curr)->source = rego;
1932 (*curr)->swap = xmalloc (rego->sizeof_data);
1933 (*curr)->next = NULL;
1934 curr = &(*curr)->next;
1936 if (rego->init != NULL)
1942 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1944 struct gdbarch_swap *curr;
1945 for (curr = gdbarch->swap;
1948 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1952 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1954 struct gdbarch_swap *curr;
1955 for (curr = gdbarch->swap;
1958 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1962 /* Keep a registry of the architectures known by GDB. */
1964 struct gdbarch_registration
1966 enum bfd_architecture bfd_architecture;
1967 gdbarch_init_ftype *init;
1968 gdbarch_dump_tdep_ftype *dump_tdep;
1969 struct gdbarch_list *arches;
1970 struct gdbarch_registration *next;
1973 static struct gdbarch_registration *gdbarch_registry = NULL;
1976 append_name (const char ***buf, int *nr, const char *name)
1978 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1984 gdbarch_printable_names (void)
1988 /* Accumulate a list of names based on the registed list of
1990 enum bfd_architecture a;
1992 const char **arches = NULL;
1993 struct gdbarch_registration *rego;
1994 for (rego = gdbarch_registry;
1998 const struct bfd_arch_info *ap;
1999 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2001 internal_error (__FILE__, __LINE__,
2002 "gdbarch_architecture_names: multi-arch unknown");
2005 append_name (&arches, &nr_arches, ap->printable_name);
2010 append_name (&arches, &nr_arches, NULL);
2014 /* Just return all the architectures that BFD knows. Assume that
2015 the legacy architecture framework supports them. */
2016 return bfd_arch_list ();
2021 gdbarch_register (enum bfd_architecture bfd_architecture,
2022 gdbarch_init_ftype *init,
2023 gdbarch_dump_tdep_ftype *dump_tdep)
2025 struct gdbarch_registration **curr;
2026 const struct bfd_arch_info *bfd_arch_info;
2027 /* Check that BFD recognizes this architecture */
2028 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2029 if (bfd_arch_info == NULL)
2031 internal_error (__FILE__, __LINE__,
2032 "gdbarch: Attempt to register unknown architecture (%d)",
2035 /* Check that we haven't seen this architecture before */
2036 for (curr = &gdbarch_registry;
2038 curr = &(*curr)->next)
2040 if (bfd_architecture == (*curr)->bfd_architecture)
2041 internal_error (__FILE__, __LINE__,
2042 "gdbarch: Duplicate registraration of architecture (%s)",
2043 bfd_arch_info->printable_name);
2047 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2048 bfd_arch_info->printable_name,
2051 (*curr) = XMALLOC (struct gdbarch_registration);
2052 (*curr)->bfd_architecture = bfd_architecture;
2053 (*curr)->init = init;
2054 (*curr)->dump_tdep = dump_tdep;
2055 (*curr)->arches = NULL;
2056 (*curr)->next = NULL;
2057 /* When non- multi-arch, install whatever target dump routine we've
2058 been provided - hopefully that routine has been written correctly
2059 and works regardless of multi-arch. */
2060 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2061 && startup_gdbarch.dump_tdep == NULL)
2062 startup_gdbarch.dump_tdep = dump_tdep;
2066 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2067 gdbarch_init_ftype *init)
2069 gdbarch_register (bfd_architecture, init, NULL);
2073 /* Look for an architecture using gdbarch_info. Base search on only
2074 BFD_ARCH_INFO and BYTE_ORDER. */
2076 struct gdbarch_list *
2077 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2078 const struct gdbarch_info *info)
2080 for (; arches != NULL; arches = arches->next)
2082 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2084 if (info->byte_order != arches->gdbarch->byte_order)
2092 /* Update the current architecture. Return ZERO if the update request
2096 gdbarch_update_p (struct gdbarch_info info)
2098 struct gdbarch *new_gdbarch;
2099 struct gdbarch *old_gdbarch;
2100 struct gdbarch_registration *rego;
2102 /* Fill in missing parts of the INFO struct using a number of
2103 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2105 /* \`\`(gdb) set architecture ...'' */
2106 if (info.bfd_arch_info == NULL
2107 && !TARGET_ARCHITECTURE_AUTO)
2108 info.bfd_arch_info = TARGET_ARCHITECTURE;
2109 if (info.bfd_arch_info == NULL
2110 && info.abfd != NULL
2111 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2112 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2113 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2114 if (info.bfd_arch_info == NULL)
2115 info.bfd_arch_info = TARGET_ARCHITECTURE;
2117 /* \`\`(gdb) set byte-order ...'' */
2118 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2119 && !TARGET_BYTE_ORDER_AUTO)
2120 info.byte_order = TARGET_BYTE_ORDER;
2121 /* From the INFO struct. */
2122 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2123 && info.abfd != NULL)
2124 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2125 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2126 : BFD_ENDIAN_UNKNOWN);
2127 /* From the current target. */
2128 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2129 info.byte_order = TARGET_BYTE_ORDER;
2131 /* Must have found some sort of architecture. */
2132 gdb_assert (info.bfd_arch_info != NULL);
2136 fprintf_unfiltered (gdb_stdlog,
2137 "gdbarch_update: info.bfd_arch_info %s\n",
2138 (info.bfd_arch_info != NULL
2139 ? info.bfd_arch_info->printable_name
2141 fprintf_unfiltered (gdb_stdlog,
2142 "gdbarch_update: info.byte_order %d (%s)\n",
2144 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2145 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2147 fprintf_unfiltered (gdb_stdlog,
2148 "gdbarch_update: info.abfd 0x%lx\n",
2150 fprintf_unfiltered (gdb_stdlog,
2151 "gdbarch_update: info.tdep_info 0x%lx\n",
2152 (long) info.tdep_info);
2155 /* Find the target that knows about this architecture. */
2156 for (rego = gdbarch_registry;
2159 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2164 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2168 /* Swap the data belonging to the old target out setting the
2169 installed data to zero. This stops the ->init() function trying
2170 to refer to the previous architecture's global data structures. */
2171 swapout_gdbarch_swap (current_gdbarch);
2172 clear_gdbarch_swap (current_gdbarch);
2174 /* Save the previously selected architecture, setting the global to
2175 NULL. This stops ->init() trying to use the previous
2176 architecture's configuration. The previous architecture may not
2177 even be of the same architecture family. The most recent
2178 architecture of the same family is found at the head of the
2179 rego->arches list. */
2180 old_gdbarch = current_gdbarch;
2181 current_gdbarch = NULL;
2183 /* Ask the target for a replacement architecture. */
2184 new_gdbarch = rego->init (info, rego->arches);
2186 /* Did the target like it? No. Reject the change and revert to the
2187 old architecture. */
2188 if (new_gdbarch == NULL)
2191 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2192 swapin_gdbarch_swap (old_gdbarch);
2193 current_gdbarch = old_gdbarch;
2197 /* Did the architecture change? No. Oops, put the old architecture
2199 if (old_gdbarch == new_gdbarch)
2202 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2204 new_gdbarch->bfd_arch_info->printable_name);
2205 swapin_gdbarch_swap (old_gdbarch);
2206 current_gdbarch = old_gdbarch;
2210 /* Is this a pre-existing architecture? Yes. Move it to the front
2211 of the list of architectures (keeping the list sorted Most
2212 Recently Used) and then copy it in. */
2214 struct gdbarch_list **list;
2215 for (list = ®o->arches;
2217 list = &(*list)->next)
2219 if ((*list)->gdbarch == new_gdbarch)
2221 struct gdbarch_list *this;
2223 fprintf_unfiltered (gdb_stdlog,
2224 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2226 new_gdbarch->bfd_arch_info->printable_name);
2229 (*list) = this->next;
2230 /* Insert in the front. */
2231 this->next = rego->arches;
2232 rego->arches = this;
2233 /* Copy the new architecture in. */
2234 current_gdbarch = new_gdbarch;
2235 swapin_gdbarch_swap (new_gdbarch);
2236 architecture_changed_event ();
2242 /* Prepend this new architecture to the architecture list (keep the
2243 list sorted Most Recently Used). */
2245 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2246 this->next = rego->arches;
2247 this->gdbarch = new_gdbarch;
2248 rego->arches = this;
2251 /* Switch to this new architecture marking it initialized. */
2252 current_gdbarch = new_gdbarch;
2253 current_gdbarch->initialized_p = 1;
2256 fprintf_unfiltered (gdb_stdlog,
2257 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2259 new_gdbarch->bfd_arch_info->printable_name);
2262 /* Check that the newly installed architecture is valid. Plug in
2263 any post init values. */
2264 new_gdbarch->dump_tdep = rego->dump_tdep;
2265 verify_gdbarch (new_gdbarch);
2267 /* Initialize the per-architecture memory (swap) areas.
2268 CURRENT_GDBARCH must be update before these modules are
2270 init_gdbarch_swap (new_gdbarch);
2272 /* Initialize the per-architecture data. CURRENT_GDBARCH
2273 must be updated before these modules are called. */
2274 architecture_changed_event ();
2277 gdbarch_dump (current_gdbarch, gdb_stdlog);
2285 /* Pointer to the target-dependent disassembly function. */
2286 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2287 disassemble_info tm_print_insn_info;
2290 extern void _initialize_gdbarch (void);
2293 _initialize_gdbarch (void)
2295 struct cmd_list_element *c;
2297 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2298 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2299 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2300 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2301 tm_print_insn_info.print_address_func = dis_asm_print_address;
2303 add_show_from_set (add_set_cmd ("arch",
2306 (char *)&gdbarch_debug,
2307 "Set architecture debugging.\\n\\
2308 When non-zero, architecture debugging is enabled.", &setdebuglist),
2310 c = add_set_cmd ("archdebug",
2313 (char *)&gdbarch_debug,
2314 "Set architecture debugging.\\n\\
2315 When non-zero, architecture debugging is enabled.", &setlist);
2317 deprecate_cmd (c, "set debug arch");
2318 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2324 #../move-if-change new-gdbarch.c gdbarch.c
2325 compare_new gdbarch.c