3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
8 # This file is part of GDB.
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
23 # Make certain that the script is not running in an internationalized
26 LC_ALL=c ; export LC_ALL
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
37 echo "${file} unchanged" 1>&2
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
53 if test "${line}" = ""
56 elif test "${line}" = "#" -a "${comment}" = ""
59 elif expr "${line}" : "#" > /dev/null
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
76 if test -n "${garbage_at_eol}"
78 echo "Garbage at end-of-line in ${line}" 1>&2
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
87 if eval test \"\${${r}}\" = \"\ \"
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
101 case "${invalid_p}" in
103 if test -n "${predefault}"
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
112 predicate="gdbarch->${function} != NULL"
116 echo "Predicate function ${function} with invalid_p." 1>&2
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
130 if [ -n "${postdefault}" ]
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
135 fallbackdefault="${predefault}"
140 #NOT YET: See gdbarch.log for basic verification of
155 fallback_default_p ()
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 class_is_variable_p ()
169 class_is_function_p ()
172 *f* | *F* | *m* | *M* ) true ;;
177 class_is_multiarch_p ()
185 class_is_predicate_p ()
188 *F* | *V* | *M* ) true ;;
202 # dump out/verify the doco
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
227 # For functions, the return type; for variables, the data type
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
255 # If STATICDEFAULT is empty, zero is used.
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
264 # If PREDEFAULT is empty, zero is used.
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
270 # A zero PREDEFAULT function will force the fallback to call
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
282 # If POSTDEFAULT is empty, no post update is performed.
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
314 # See also PREDEFAULT and POSTDEFAULT.
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
324 garbage_at_eol ) : ;;
326 # Catches stray fields.
329 echo "Bad field ${field}"
337 # See below (DOCO) for description of each field
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
341 i:int:byte_order:::BFD_ENDIAN_BIG
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365 # The ABI default bit-size and format for "float", "double", and "long
366 # double". These bit/format pairs should eventually be combined into
367 # a single object. For the moment, just initialize them as a pair.
368 # Each format describes both the big and little endian layouts (if
371 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
372 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
373 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
374 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
375 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
376 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378 # For most targets, a pointer on the target and its representation as an
379 # address in GDB have the same size and "look the same". For such a
380 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
381 # / addr_bit will be set from it.
383 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
384 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
387 # ptr_bit is the size of a pointer on the target
388 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
389 # addr_bit is the size of a target address as represented in gdb
390 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
393 v:int:char_signed:::1:-1:1
395 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
396 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
397 # Function for getting target's idea of a frame pointer. FIXME: GDB's
398 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
403 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 v:int:num_regs:::0:-1
406 # This macro gives the number of pseudo-registers that live in the
407 # register namespace but do not get fetched or stored on the target.
408 # These pseudo-registers may be aliases for other registers,
409 # combinations of other registers, or they may be computed by GDB.
410 v:int:num_pseudo_regs:::0:0::0
412 # GDB's standard (or well known) register numbers. These can map onto
413 # a real register or a pseudo (computed) register or not be defined at
415 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
416 v:int:sp_regnum:::-1:-1::0
417 v:int:pc_regnum:::-1:-1::0
418 v:int:ps_regnum:::-1:-1::0
419 v:int:fp0_regnum:::0:-1::0
420 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
421 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
422 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
423 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
424 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
425 m:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
426 # Convert from an sdb register number to an internal gdb register number.
427 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
458 v:int:believe_pcc_promotion:::::::
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
487 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
488 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
489 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
490 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
491 v:CORE_ADDR:decr_pc_after_break:::0:::0
493 # A function can be addressed by either it's "pointer" (possibly a
494 # descriptor address) or "entry point" (first executable instruction).
495 # The method "convert_from_func_ptr_addr" converting the former to the
496 # latter. gdbarch_deprecated_function_start_offset is being used to implement
497 # a simplified subset of that functionality - the function's address
498 # corresponds to the "function pointer" and the function's start
499 # corresponds to the "function entry point" - and hence is redundant.
501 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503 # Return the remote protocol register number associated with this
504 # register. Normally the identity mapping.
505 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507 # Fetch the target specific address used to represent a load module.
508 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 v:CORE_ADDR:frame_args_skip:::0:::0
511 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
512 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
513 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
514 # frame-base. Enable frame-base before frame-unwind.
515 F:int:frame_num_args:struct frame_info *frame:frame
517 M:CORE_ADDR:frame_align:CORE_ADDR address:address
518 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
519 v:int:frame_red_zone_size
521 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
522 # On some machines there are bits in addresses which are not really
523 # part of the address, but are used by the kernel, the hardware, etc.
524 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
525 # we get a "real" address such as one would find in a symbol table.
526 # This is used only for addresses of instructions, and even then I'm
527 # not sure it's used in all contexts. It exists to deal with there
528 # being a few stray bits in the PC which would mislead us, not as some
529 # sort of generic thing to handle alignment or segmentation (it's
530 # possible it should be in TARGET_READ_PC instead).
531 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
532 # It is not at all clear why gdbarch_smash_text_address is not folded into
533 # gdbarch_addr_bits_remove.
534 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
537 # indicates if the target needs software single step. An ISA method to
540 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
541 # breakpoints using the breakpoint system instead of blatting memory directly
544 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
545 # target can single step. If not, then implement single step using breakpoints.
547 # A return value of 1 means that the software_single_step breakpoints
548 # were inserted; 0 means they were not.
549 F:int:software_single_step:struct frame_info *frame:frame
551 # Return non-zero if the processor is executing a delay slot and a
552 # further single-step is needed before the instruction finishes.
553 M:int:single_step_through_delay:struct frame_info *frame:frame
554 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
555 # disassembler. Perhaps objdump can handle it?
556 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
557 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
560 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
561 # evaluates non-zero, this is the address where the debugger will place
562 # a step-resume breakpoint to get us past the dynamic linker.
563 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
564 # Some systems also have trampoline code for returning from shared libs.
565 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567 # A target might have problems with watchpoints as soon as the stack
568 # frame of the current function has been destroyed. This mostly happens
569 # as the first action in a funtion's epilogue. in_function_epilogue_p()
570 # is defined to return a non-zero value if either the given addr is one
571 # instruction after the stack destroying instruction up to the trailing
572 # return instruction or if we can figure out that the stack frame has
573 # already been invalidated regardless of the value of addr. Targets
574 # which don't suffer from that problem could just let this functionality
576 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
577 # Given a vector of command-line arguments, return a newly allocated
578 # string which, when passed to the create_inferior function, will be
579 # parsed (on Unix systems, by the shell) to yield the same vector.
580 # This function should call error() if the argument vector is not
581 # representable for this target or if this target does not support
582 # command-line arguments.
583 # ARGC is the number of elements in the vector.
584 # ARGV is an array of strings, one per argument.
585 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
586 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
587 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
588 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
603 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
604 # core file into buffer READBUF with length LEN.
605 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
607 # If the elements of C++ vtables are in-place function descriptors rather
608 # than normal function pointers (which may point to code or a descriptor),
610 v:int:vtable_function_descriptors:::0:0::0
612 # Set if the least significant bit of the delta is used instead of the least
613 # significant bit of the pfn for pointers to virtual member functions.
614 v:int:vbit_in_delta:::0:0::0
616 # Advance PC to next instruction in order to skip a permanent breakpoint.
617 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
619 # Refresh overlay mapped state for section OSECT.
620 F:void:overlay_update:struct obj_section *osect:osect
622 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
624 # Handle special encoding of static variables in stabs debug info.
625 F:char *:static_transform_name:char *name:name
626 # Set if the address in N_SO or N_FUN stabs may be zero.
627 v:int:sofun_address_maybe_missing:::0:0::0
634 exec > new-gdbarch.log
635 function_list | while do_read
638 ${class} ${returntype} ${function} ($formal)
642 eval echo \"\ \ \ \ ${r}=\${${r}}\"
644 if class_is_predicate_p && fallback_default_p
646 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
650 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
652 echo "Error: postdefault is useless when invalid_p=0" 1>&2
656 if class_is_multiarch_p
658 if class_is_predicate_p ; then :
659 elif test "x${predefault}" = "x"
661 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
670 compare_new gdbarch.log
676 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
678 /* Dynamic architecture support for GDB, the GNU debugger.
680 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
681 Free Software Foundation, Inc.
683 This file is part of GDB.
685 This program is free software; you can redistribute it and/or modify
686 it under the terms of the GNU General Public License as published by
687 the Free Software Foundation; either version 3 of the License, or
688 (at your option) any later version.
690 This program is distributed in the hope that it will be useful,
691 but WITHOUT ANY WARRANTY; without even the implied warranty of
692 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
693 GNU General Public License for more details.
695 You should have received a copy of the GNU General Public License
696 along with this program. If not, see <http://www.gnu.org/licenses/>. */
698 /* This file was created with the aid of \`\`gdbarch.sh''.
700 The Bourne shell script \`\`gdbarch.sh'' creates the files
701 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
702 against the existing \`\`gdbarch.[hc]''. Any differences found
705 If editing this file, please also run gdbarch.sh and merge any
706 changes into that script. Conversely, when making sweeping changes
707 to this file, modifying gdbarch.sh and using its output may prove
729 struct minimal_symbol;
733 struct disassemble_info;
736 struct bp_target_info;
739 extern struct gdbarch *current_gdbarch;
745 printf "/* The following are pre-initialized by GDBARCH. */\n"
746 function_list | while do_read
751 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
752 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
759 printf "/* The following are initialized by the target dependent code. */\n"
760 function_list | while do_read
762 if [ -n "${comment}" ]
764 echo "${comment}" | sed \
770 if class_is_predicate_p
773 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
775 if class_is_variable_p
778 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
779 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
781 if class_is_function_p
784 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
786 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
787 elif class_is_multiarch_p
789 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
791 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
793 if [ "x${formal}" = "xvoid" ]
795 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
797 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
799 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
806 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
809 /* Mechanism for co-ordinating the selection of a specific
812 GDB targets (*-tdep.c) can register an interest in a specific
813 architecture. Other GDB components can register a need to maintain
814 per-architecture data.
816 The mechanisms below ensures that there is only a loose connection
817 between the set-architecture command and the various GDB
818 components. Each component can independently register their need
819 to maintain architecture specific data with gdbarch.
823 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
826 The more traditional mega-struct containing architecture specific
827 data for all the various GDB components was also considered. Since
828 GDB is built from a variable number of (fairly independent)
829 components it was determined that the global aproach was not
833 /* Register a new architectural family with GDB.
835 Register support for the specified ARCHITECTURE with GDB. When
836 gdbarch determines that the specified architecture has been
837 selected, the corresponding INIT function is called.
841 The INIT function takes two parameters: INFO which contains the
842 information available to gdbarch about the (possibly new)
843 architecture; ARCHES which is a list of the previously created
844 \`\`struct gdbarch'' for this architecture.
846 The INFO parameter is, as far as possible, be pre-initialized with
847 information obtained from INFO.ABFD or the global defaults.
849 The ARCHES parameter is a linked list (sorted most recently used)
850 of all the previously created architures for this architecture
851 family. The (possibly NULL) ARCHES->gdbarch can used to access
852 values from the previously selected architecture for this
853 architecture family. The global \`\`current_gdbarch'' shall not be
856 The INIT function shall return any of: NULL - indicating that it
857 doesn't recognize the selected architecture; an existing \`\`struct
858 gdbarch'' from the ARCHES list - indicating that the new
859 architecture is just a synonym for an earlier architecture (see
860 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
861 - that describes the selected architecture (see gdbarch_alloc()).
863 The DUMP_TDEP function shall print out all target specific values.
864 Care should be taken to ensure that the function works in both the
865 multi-arch and non- multi-arch cases. */
869 struct gdbarch *gdbarch;
870 struct gdbarch_list *next;
875 /* Use default: NULL (ZERO). */
876 const struct bfd_arch_info *bfd_arch_info;
878 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
881 /* Use default: NULL (ZERO). */
884 /* Use default: NULL (ZERO). */
885 struct gdbarch_tdep_info *tdep_info;
887 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
888 enum gdb_osabi osabi;
890 /* Use default: NULL (ZERO). */
891 const struct target_desc *target_desc;
894 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
895 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
897 /* DEPRECATED - use gdbarch_register() */
898 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
900 extern void gdbarch_register (enum bfd_architecture architecture,
901 gdbarch_init_ftype *,
902 gdbarch_dump_tdep_ftype *);
905 /* Return a freshly allocated, NULL terminated, array of the valid
906 architecture names. Since architectures are registered during the
907 _initialize phase this function only returns useful information
908 once initialization has been completed. */
910 extern const char **gdbarch_printable_names (void);
913 /* Helper function. Search the list of ARCHES for a GDBARCH that
914 matches the information provided by INFO. */
916 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
919 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
920 basic initialization using values obtained from the INFO and TDEP
921 parameters. set_gdbarch_*() functions are called to complete the
922 initialization of the object. */
924 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
927 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
928 It is assumed that the caller freeds the \`\`struct
931 extern void gdbarch_free (struct gdbarch *);
934 /* Helper function. Allocate memory from the \`\`struct gdbarch''
935 obstack. The memory is freed when the corresponding architecture
938 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
939 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
940 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
943 /* Helper function. Force an update of the current architecture.
945 The actual architecture selected is determined by INFO, \`\`(gdb) set
946 architecture'' et.al., the existing architecture and BFD's default
947 architecture. INFO should be initialized to zero and then selected
948 fields should be updated.
950 Returns non-zero if the update succeeds */
952 extern int gdbarch_update_p (struct gdbarch_info info);
955 /* Helper function. Find an architecture matching info.
957 INFO should be initialized using gdbarch_info_init, relevant fields
958 set, and then finished using gdbarch_info_fill.
960 Returns the corresponding architecture, or NULL if no matching
961 architecture was found. "current_gdbarch" is not updated. */
963 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
966 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
968 FIXME: kettenis/20031124: Of the functions that follow, only
969 gdbarch_from_bfd is supposed to survive. The others will
970 dissappear since in the future GDB will (hopefully) be truly
971 multi-arch. However, for now we're still stuck with the concept of
972 a single active architecture. */
974 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
977 /* Register per-architecture data-pointer.
979 Reserve space for a per-architecture data-pointer. An identifier
980 for the reserved data-pointer is returned. That identifer should
981 be saved in a local static variable.
983 Memory for the per-architecture data shall be allocated using
984 gdbarch_obstack_zalloc. That memory will be deleted when the
985 corresponding architecture object is deleted.
987 When a previously created architecture is re-selected, the
988 per-architecture data-pointer for that previous architecture is
989 restored. INIT() is not re-called.
991 Multiple registrarants for any architecture are allowed (and
992 strongly encouraged). */
996 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
997 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
998 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
999 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1000 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1001 struct gdbarch_data *data,
1004 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1007 /* Set the dynamic target-system-dependent parameters (architecture,
1008 byte-order, ...) using information found in the BFD */
1010 extern void set_gdbarch_from_file (bfd *);
1013 /* Initialize the current architecture to the "first" one we find on
1016 extern void initialize_current_architecture (void);
1018 /* gdbarch trace variable */
1019 extern int gdbarch_debug;
1021 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1026 #../move-if-change new-gdbarch.h gdbarch.h
1027 compare_new gdbarch.h
1034 exec > new-gdbarch.c
1039 #include "arch-utils.h"
1042 #include "inferior.h"
1045 #include "floatformat.h"
1047 #include "gdb_assert.h"
1048 #include "gdb_string.h"
1049 #include "gdb-events.h"
1050 #include "reggroups.h"
1052 #include "gdb_obstack.h"
1054 /* Static function declarations */
1056 static void alloc_gdbarch_data (struct gdbarch *);
1058 /* Non-zero if we want to trace architecture code. */
1060 #ifndef GDBARCH_DEBUG
1061 #define GDBARCH_DEBUG 0
1063 int gdbarch_debug = GDBARCH_DEBUG;
1065 show_gdbarch_debug (struct ui_file *file, int from_tty,
1066 struct cmd_list_element *c, const char *value)
1068 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1072 pformat (const struct floatformat **format)
1077 /* Just print out one of them - this is only for diagnostics. */
1078 return format[0]->name;
1083 # gdbarch open the gdbarch object
1085 printf "/* Maintain the struct gdbarch object */\n"
1087 printf "struct gdbarch\n"
1089 printf " /* Has this architecture been fully initialized? */\n"
1090 printf " int initialized_p;\n"
1092 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1093 printf " struct obstack *obstack;\n"
1095 printf " /* basic architectural information */\n"
1096 function_list | while do_read
1100 printf " ${returntype} ${function};\n"
1104 printf " /* target specific vector. */\n"
1105 printf " struct gdbarch_tdep *tdep;\n"
1106 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1108 printf " /* per-architecture data-pointers */\n"
1109 printf " unsigned nr_data;\n"
1110 printf " void **data;\n"
1112 printf " /* per-architecture swap-regions */\n"
1113 printf " struct gdbarch_swap *swap;\n"
1116 /* Multi-arch values.
1118 When extending this structure you must:
1120 Add the field below.
1122 Declare set/get functions and define the corresponding
1125 gdbarch_alloc(): If zero/NULL is not a suitable default,
1126 initialize the new field.
1128 verify_gdbarch(): Confirm that the target updated the field
1131 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1134 \`\`startup_gdbarch()'': Append an initial value to the static
1135 variable (base values on the host's c-type system).
1137 get_gdbarch(): Implement the set/get functions (probably using
1138 the macro's as shortcuts).
1143 function_list | while do_read
1145 if class_is_variable_p
1147 printf " ${returntype} ${function};\n"
1148 elif class_is_function_p
1150 printf " gdbarch_${function}_ftype *${function};\n"
1155 # A pre-initialized vector
1159 /* The default architecture uses host values (for want of a better
1163 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1165 printf "struct gdbarch startup_gdbarch =\n"
1167 printf " 1, /* Always initialized. */\n"
1168 printf " NULL, /* The obstack. */\n"
1169 printf " /* basic architecture information */\n"
1170 function_list | while do_read
1174 printf " ${staticdefault}, /* ${function} */\n"
1178 /* target specific vector and its dump routine */
1180 /*per-architecture data-pointers and swap regions */
1182 /* Multi-arch values */
1184 function_list | while do_read
1186 if class_is_function_p || class_is_variable_p
1188 printf " ${staticdefault}, /* ${function} */\n"
1192 /* startup_gdbarch() */
1195 struct gdbarch *current_gdbarch = &startup_gdbarch;
1198 # Create a new gdbarch struct
1201 /* Create a new \`\`struct gdbarch'' based on information provided by
1202 \`\`struct gdbarch_info''. */
1207 gdbarch_alloc (const struct gdbarch_info *info,
1208 struct gdbarch_tdep *tdep)
1210 struct gdbarch *gdbarch;
1212 /* Create an obstack for allocating all the per-architecture memory,
1213 then use that to allocate the architecture vector. */
1214 struct obstack *obstack = XMALLOC (struct obstack);
1215 obstack_init (obstack);
1216 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1217 memset (gdbarch, 0, sizeof (*gdbarch));
1218 gdbarch->obstack = obstack;
1220 alloc_gdbarch_data (gdbarch);
1222 gdbarch->tdep = tdep;
1225 function_list | while do_read
1229 printf " gdbarch->${function} = info->${function};\n"
1233 printf " /* Force the explicit initialization of these. */\n"
1234 function_list | while do_read
1236 if class_is_function_p || class_is_variable_p
1238 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1240 printf " gdbarch->${function} = ${predefault};\n"
1245 /* gdbarch_alloc() */
1251 # Free a gdbarch struct.
1255 /* Allocate extra space using the per-architecture obstack. */
1258 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1260 void *data = obstack_alloc (arch->obstack, size);
1261 memset (data, 0, size);
1266 /* Free a gdbarch struct. This should never happen in normal
1267 operation --- once you've created a gdbarch, you keep it around.
1268 However, if an architecture's init function encounters an error
1269 building the structure, it may need to clean up a partially
1270 constructed gdbarch. */
1273 gdbarch_free (struct gdbarch *arch)
1275 struct obstack *obstack;
1276 gdb_assert (arch != NULL);
1277 gdb_assert (!arch->initialized_p);
1278 obstack = arch->obstack;
1279 obstack_free (obstack, 0); /* Includes the ARCH. */
1284 # verify a new architecture
1288 /* Ensure that all values in a GDBARCH are reasonable. */
1291 verify_gdbarch (struct gdbarch *gdbarch)
1293 struct ui_file *log;
1294 struct cleanup *cleanups;
1297 log = mem_fileopen ();
1298 cleanups = make_cleanup_ui_file_delete (log);
1300 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1301 fprintf_unfiltered (log, "\n\tbyte-order");
1302 if (gdbarch->bfd_arch_info == NULL)
1303 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1304 /* Check those that need to be defined for the given multi-arch level. */
1306 function_list | while do_read
1308 if class_is_function_p || class_is_variable_p
1310 if [ "x${invalid_p}" = "x0" ]
1312 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1313 elif class_is_predicate_p
1315 printf " /* Skip verify of ${function}, has predicate */\n"
1316 # FIXME: See do_read for potential simplification
1317 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1319 printf " if (${invalid_p})\n"
1320 printf " gdbarch->${function} = ${postdefault};\n"
1321 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1323 printf " if (gdbarch->${function} == ${predefault})\n"
1324 printf " gdbarch->${function} = ${postdefault};\n"
1325 elif [ -n "${postdefault}" ]
1327 printf " if (gdbarch->${function} == 0)\n"
1328 printf " gdbarch->${function} = ${postdefault};\n"
1329 elif [ -n "${invalid_p}" ]
1331 printf " if (${invalid_p})\n"
1332 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1333 elif [ -n "${predefault}" ]
1335 printf " if (gdbarch->${function} == ${predefault})\n"
1336 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1341 buf = ui_file_xstrdup (log, &dummy);
1342 make_cleanup (xfree, buf);
1343 if (strlen (buf) > 0)
1344 internal_error (__FILE__, __LINE__,
1345 _("verify_gdbarch: the following are invalid ...%s"),
1347 do_cleanups (cleanups);
1351 # dump the structure
1355 /* Print out the details of the current architecture. */
1358 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1360 const char *gdb_nm_file = "<not-defined>";
1361 #if defined (GDB_NM_FILE)
1362 gdb_nm_file = GDB_NM_FILE;
1364 fprintf_unfiltered (file,
1365 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1368 function_list | sort -t: -k 3 | while do_read
1370 # First the predicate
1371 if class_is_predicate_p
1373 printf " fprintf_unfiltered (file,\n"
1374 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1375 printf " gdbarch_${function}_p (gdbarch));\n"
1377 # Print the corresponding value.
1378 if class_is_function_p
1380 printf " fprintf_unfiltered (file,\n"
1381 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1382 printf " (long) gdbarch->${function});\n"
1385 case "${print}:${returntype}" in
1388 print="paddr_nz (gdbarch->${function})"
1392 print="paddr_d (gdbarch->${function})"
1398 printf " fprintf_unfiltered (file,\n"
1399 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1400 printf " ${print});\n"
1404 if (gdbarch->dump_tdep != NULL)
1405 gdbarch->dump_tdep (gdbarch, file);
1413 struct gdbarch_tdep *
1414 gdbarch_tdep (struct gdbarch *gdbarch)
1416 if (gdbarch_debug >= 2)
1417 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1418 return gdbarch->tdep;
1422 function_list | while do_read
1424 if class_is_predicate_p
1428 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1430 printf " gdb_assert (gdbarch != NULL);\n"
1431 printf " return ${predicate};\n"
1434 if class_is_function_p
1437 printf "${returntype}\n"
1438 if [ "x${formal}" = "xvoid" ]
1440 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1442 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1445 printf " gdb_assert (gdbarch != NULL);\n"
1446 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1447 if class_is_predicate_p && test -n "${predefault}"
1449 # Allow a call to a function with a predicate.
1450 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1452 printf " if (gdbarch_debug >= 2)\n"
1453 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1454 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1456 if class_is_multiarch_p
1463 if class_is_multiarch_p
1465 params="gdbarch, ${actual}"
1470 if [ "x${returntype}" = "xvoid" ]
1472 printf " gdbarch->${function} (${params});\n"
1474 printf " return gdbarch->${function} (${params});\n"
1479 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1480 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1482 printf " gdbarch->${function} = ${function};\n"
1484 elif class_is_variable_p
1487 printf "${returntype}\n"
1488 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1490 printf " gdb_assert (gdbarch != NULL);\n"
1491 if [ "x${invalid_p}" = "x0" ]
1493 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1494 elif [ -n "${invalid_p}" ]
1496 printf " /* Check variable is valid. */\n"
1497 printf " gdb_assert (!(${invalid_p}));\n"
1498 elif [ -n "${predefault}" ]
1500 printf " /* Check variable changed from pre-default. */\n"
1501 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1503 printf " if (gdbarch_debug >= 2)\n"
1504 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1505 printf " return gdbarch->${function};\n"
1509 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1510 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1512 printf " gdbarch->${function} = ${function};\n"
1514 elif class_is_info_p
1517 printf "${returntype}\n"
1518 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1520 printf " gdb_assert (gdbarch != NULL);\n"
1521 printf " if (gdbarch_debug >= 2)\n"
1522 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1523 printf " return gdbarch->${function};\n"
1528 # All the trailing guff
1532 /* Keep a registry of per-architecture data-pointers required by GDB
1539 gdbarch_data_pre_init_ftype *pre_init;
1540 gdbarch_data_post_init_ftype *post_init;
1543 struct gdbarch_data_registration
1545 struct gdbarch_data *data;
1546 struct gdbarch_data_registration *next;
1549 struct gdbarch_data_registry
1552 struct gdbarch_data_registration *registrations;
1555 struct gdbarch_data_registry gdbarch_data_registry =
1560 static struct gdbarch_data *
1561 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1562 gdbarch_data_post_init_ftype *post_init)
1564 struct gdbarch_data_registration **curr;
1565 /* Append the new registraration. */
1566 for (curr = &gdbarch_data_registry.registrations;
1568 curr = &(*curr)->next);
1569 (*curr) = XMALLOC (struct gdbarch_data_registration);
1570 (*curr)->next = NULL;
1571 (*curr)->data = XMALLOC (struct gdbarch_data);
1572 (*curr)->data->index = gdbarch_data_registry.nr++;
1573 (*curr)->data->pre_init = pre_init;
1574 (*curr)->data->post_init = post_init;
1575 (*curr)->data->init_p = 1;
1576 return (*curr)->data;
1579 struct gdbarch_data *
1580 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1582 return gdbarch_data_register (pre_init, NULL);
1585 struct gdbarch_data *
1586 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1588 return gdbarch_data_register (NULL, post_init);
1591 /* Create/delete the gdbarch data vector. */
1594 alloc_gdbarch_data (struct gdbarch *gdbarch)
1596 gdb_assert (gdbarch->data == NULL);
1597 gdbarch->nr_data = gdbarch_data_registry.nr;
1598 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1601 /* Initialize the current value of the specified per-architecture
1605 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1606 struct gdbarch_data *data,
1609 gdb_assert (data->index < gdbarch->nr_data);
1610 gdb_assert (gdbarch->data[data->index] == NULL);
1611 gdb_assert (data->pre_init == NULL);
1612 gdbarch->data[data->index] = pointer;
1615 /* Return the current value of the specified per-architecture
1619 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1621 gdb_assert (data->index < gdbarch->nr_data);
1622 if (gdbarch->data[data->index] == NULL)
1624 /* The data-pointer isn't initialized, call init() to get a
1626 if (data->pre_init != NULL)
1627 /* Mid architecture creation: pass just the obstack, and not
1628 the entire architecture, as that way it isn't possible for
1629 pre-init code to refer to undefined architecture
1631 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1632 else if (gdbarch->initialized_p
1633 && data->post_init != NULL)
1634 /* Post architecture creation: pass the entire architecture
1635 (as all fields are valid), but be careful to also detect
1636 recursive references. */
1638 gdb_assert (data->init_p);
1640 gdbarch->data[data->index] = data->post_init (gdbarch);
1644 /* The architecture initialization hasn't completed - punt -
1645 hope that the caller knows what they are doing. Once
1646 deprecated_set_gdbarch_data has been initialized, this can be
1647 changed to an internal error. */
1649 gdb_assert (gdbarch->data[data->index] != NULL);
1651 return gdbarch->data[data->index];
1655 /* Keep a registry of the architectures known by GDB. */
1657 struct gdbarch_registration
1659 enum bfd_architecture bfd_architecture;
1660 gdbarch_init_ftype *init;
1661 gdbarch_dump_tdep_ftype *dump_tdep;
1662 struct gdbarch_list *arches;
1663 struct gdbarch_registration *next;
1666 static struct gdbarch_registration *gdbarch_registry = NULL;
1669 append_name (const char ***buf, int *nr, const char *name)
1671 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1677 gdbarch_printable_names (void)
1679 /* Accumulate a list of names based on the registed list of
1681 enum bfd_architecture a;
1683 const char **arches = NULL;
1684 struct gdbarch_registration *rego;
1685 for (rego = gdbarch_registry;
1689 const struct bfd_arch_info *ap;
1690 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1692 internal_error (__FILE__, __LINE__,
1693 _("gdbarch_architecture_names: multi-arch unknown"));
1696 append_name (&arches, &nr_arches, ap->printable_name);
1701 append_name (&arches, &nr_arches, NULL);
1707 gdbarch_register (enum bfd_architecture bfd_architecture,
1708 gdbarch_init_ftype *init,
1709 gdbarch_dump_tdep_ftype *dump_tdep)
1711 struct gdbarch_registration **curr;
1712 const struct bfd_arch_info *bfd_arch_info;
1713 /* Check that BFD recognizes this architecture */
1714 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1715 if (bfd_arch_info == NULL)
1717 internal_error (__FILE__, __LINE__,
1718 _("gdbarch: Attempt to register unknown architecture (%d)"),
1721 /* Check that we haven't seen this architecture before */
1722 for (curr = &gdbarch_registry;
1724 curr = &(*curr)->next)
1726 if (bfd_architecture == (*curr)->bfd_architecture)
1727 internal_error (__FILE__, __LINE__,
1728 _("gdbarch: Duplicate registraration of architecture (%s)"),
1729 bfd_arch_info->printable_name);
1733 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1734 bfd_arch_info->printable_name,
1737 (*curr) = XMALLOC (struct gdbarch_registration);
1738 (*curr)->bfd_architecture = bfd_architecture;
1739 (*curr)->init = init;
1740 (*curr)->dump_tdep = dump_tdep;
1741 (*curr)->arches = NULL;
1742 (*curr)->next = NULL;
1746 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1747 gdbarch_init_ftype *init)
1749 gdbarch_register (bfd_architecture, init, NULL);
1753 /* Look for an architecture using gdbarch_info. */
1755 struct gdbarch_list *
1756 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1757 const struct gdbarch_info *info)
1759 for (; arches != NULL; arches = arches->next)
1761 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1763 if (info->byte_order != arches->gdbarch->byte_order)
1765 if (info->osabi != arches->gdbarch->osabi)
1767 if (info->target_desc != arches->gdbarch->target_desc)
1775 /* Find an architecture that matches the specified INFO. Create a new
1776 architecture if needed. Return that new architecture. Assumes
1777 that there is no current architecture. */
1779 static struct gdbarch *
1780 find_arch_by_info (struct gdbarch_info info)
1782 struct gdbarch *new_gdbarch;
1783 struct gdbarch_registration *rego;
1785 /* The existing architecture has been swapped out - all this code
1786 works from a clean slate. */
1787 gdb_assert (current_gdbarch == NULL);
1789 /* Fill in missing parts of the INFO struct using a number of
1790 sources: "set ..."; INFOabfd supplied; and the global
1792 gdbarch_info_fill (&info);
1794 /* Must have found some sort of architecture. */
1795 gdb_assert (info.bfd_arch_info != NULL);
1799 fprintf_unfiltered (gdb_stdlog,
1800 "find_arch_by_info: info.bfd_arch_info %s\n",
1801 (info.bfd_arch_info != NULL
1802 ? info.bfd_arch_info->printable_name
1804 fprintf_unfiltered (gdb_stdlog,
1805 "find_arch_by_info: info.byte_order %d (%s)\n",
1807 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1808 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1810 fprintf_unfiltered (gdb_stdlog,
1811 "find_arch_by_info: info.osabi %d (%s)\n",
1812 info.osabi, gdbarch_osabi_name (info.osabi));
1813 fprintf_unfiltered (gdb_stdlog,
1814 "find_arch_by_info: info.abfd 0x%lx\n",
1816 fprintf_unfiltered (gdb_stdlog,
1817 "find_arch_by_info: info.tdep_info 0x%lx\n",
1818 (long) info.tdep_info);
1821 /* Find the tdep code that knows about this architecture. */
1822 for (rego = gdbarch_registry;
1825 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1830 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1831 "No matching architecture\n");
1835 /* Ask the tdep code for an architecture that matches "info". */
1836 new_gdbarch = rego->init (info, rego->arches);
1838 /* Did the tdep code like it? No. Reject the change and revert to
1839 the old architecture. */
1840 if (new_gdbarch == NULL)
1843 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1844 "Target rejected architecture\n");
1848 /* Is this a pre-existing architecture (as determined by already
1849 being initialized)? Move it to the front of the architecture
1850 list (keeping the list sorted Most Recently Used). */
1851 if (new_gdbarch->initialized_p)
1853 struct gdbarch_list **list;
1854 struct gdbarch_list *this;
1856 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1857 "Previous architecture 0x%08lx (%s) selected\n",
1859 new_gdbarch->bfd_arch_info->printable_name);
1860 /* Find the existing arch in the list. */
1861 for (list = ®o->arches;
1862 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1863 list = &(*list)->next);
1864 /* It had better be in the list of architectures. */
1865 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1868 (*list) = this->next;
1869 /* Insert THIS at the front. */
1870 this->next = rego->arches;
1871 rego->arches = this;
1876 /* It's a new architecture. */
1878 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1879 "New architecture 0x%08lx (%s) selected\n",
1881 new_gdbarch->bfd_arch_info->printable_name);
1883 /* Insert the new architecture into the front of the architecture
1884 list (keep the list sorted Most Recently Used). */
1886 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1887 this->next = rego->arches;
1888 this->gdbarch = new_gdbarch;
1889 rego->arches = this;
1892 /* Check that the newly installed architecture is valid. Plug in
1893 any post init values. */
1894 new_gdbarch->dump_tdep = rego->dump_tdep;
1895 verify_gdbarch (new_gdbarch);
1896 new_gdbarch->initialized_p = 1;
1899 gdbarch_dump (new_gdbarch, gdb_stdlog);
1905 gdbarch_find_by_info (struct gdbarch_info info)
1907 struct gdbarch *new_gdbarch;
1909 /* Save the previously selected architecture, setting the global to
1910 NULL. This stops things like gdbarch->init() trying to use the
1911 previous architecture's configuration. The previous architecture
1912 may not even be of the same architecture family. The most recent
1913 architecture of the same family is found at the head of the
1914 rego->arches list. */
1915 struct gdbarch *old_gdbarch = current_gdbarch;
1916 current_gdbarch = NULL;
1918 /* Find the specified architecture. */
1919 new_gdbarch = find_arch_by_info (info);
1921 /* Restore the existing architecture. */
1922 gdb_assert (current_gdbarch == NULL);
1923 current_gdbarch = old_gdbarch;
1928 /* Make the specified architecture current. */
1931 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
1933 gdb_assert (new_gdbarch != NULL);
1934 gdb_assert (current_gdbarch != NULL);
1935 gdb_assert (new_gdbarch->initialized_p);
1936 current_gdbarch = new_gdbarch;
1937 architecture_changed_event ();
1938 reinit_frame_cache ();
1941 extern void _initialize_gdbarch (void);
1944 _initialize_gdbarch (void)
1946 struct cmd_list_element *c;
1948 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
1949 Set architecture debugging."), _("\\
1950 Show architecture debugging."), _("\\
1951 When non-zero, architecture debugging is enabled."),
1954 &setdebuglist, &showdebuglist);
1960 #../move-if-change new-gdbarch.c gdbarch.c
1961 compare_new gdbarch.c