3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 if test -n "${garbage_at_eol}"
77 echo "Garbage at end-of-line in ${line}" 1>&2
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
86 if eval test \"\${${r}}\" = \"\ \"
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
100 case "${invalid_p}" in
102 if test -n "${predefault}"
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
111 predicate="gdbarch->${function} != NULL"
115 echo "Predicate function ${function} with invalid_p." 1>&2
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
129 if [ -n "${postdefault}" ]
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
134 fallbackdefault="${predefault}"
139 #NOT YET: See gdbarch.log for basic verification of
154 fallback_default_p ()
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
160 class_is_variable_p ()
168 class_is_function_p ()
171 *f* | *F* | *m* | *M* ) true ;;
176 class_is_multiarch_p ()
184 class_is_predicate_p ()
187 *F* | *V* | *M* ) true ;;
201 # dump out/verify the doco
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
226 # For functions, the return type; for variables, the data type
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
254 # If STATICDEFAULT is empty, zero is used.
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
263 # If PREDEFAULT is empty, zero is used.
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
269 # A zero PREDEFAULT function will force the fallback to call
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
281 # If POSTDEFAULT is empty, no post update is performed.
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
313 # See also PREDEFAULT and POSTDEFAULT.
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
323 garbage_at_eol ) : ;;
325 # Catches stray fields.
328 echo "Bad field ${field}"
336 # See below (DOCO) for description of each field
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
491 v:int:believe_pcc_promotion:::::::
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
634 # Create core file notes
635 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
637 # Find core file memory regions
638 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
640 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641 # core file into buffer READBUF with length LEN.
642 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
644 # How the core target converts a PTID from a core file to a string.
645 M:char *:core_pid_to_str:ptid_t ptid:ptid
647 # BFD target to use when generating a core file.
648 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
650 # If the elements of C++ vtables are in-place function descriptors rather
651 # than normal function pointers (which may point to code or a descriptor),
653 v:int:vtable_function_descriptors:::0:0::0
655 # Set if the least significant bit of the delta is used instead of the least
656 # significant bit of the pfn for pointers to virtual member functions.
657 v:int:vbit_in_delta:::0:0::0
659 # Advance PC to next instruction in order to skip a permanent breakpoint.
660 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
662 # The maximum length of an instruction on this architecture in bytes.
663 V:ULONGEST:max_insn_length:::0:0
665 # Copy the instruction at FROM to TO, and make any adjustments
666 # necessary to single-step it at that address.
668 # REGS holds the state the thread's registers will have before
669 # executing the copied instruction; the PC in REGS will refer to FROM,
670 # not the copy at TO. The caller should update it to point at TO later.
672 # Return a pointer to data of the architecture's choice to be passed
673 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674 # the instruction's effects have been completely simulated, with the
675 # resulting state written back to REGS.
677 # For a general explanation of displaced stepping and how GDB uses it,
678 # see the comments in infrun.c.
680 # The TO area is only guaranteed to have space for
681 # gdbarch_max_insn_length (arch) bytes, so this function must not
682 # write more bytes than that to that area.
684 # If you do not provide this function, GDB assumes that the
685 # architecture does not support displaced stepping.
687 # If your architecture doesn't need to adjust instructions before
688 # single-stepping them, consider using simple_displaced_step_copy_insn
690 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
692 # Return true if GDB should use hardware single-stepping to execute
693 # the displaced instruction identified by CLOSURE. If false,
694 # GDB will simply restart execution at the displaced instruction
695 # location, and it is up to the target to ensure GDB will receive
696 # control again (e.g. by placing a software breakpoint instruction
697 # into the displaced instruction buffer).
699 # The default implementation returns false on all targets that
700 # provide a gdbarch_software_single_step routine, and true otherwise.
701 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
703 # Fix up the state resulting from successfully single-stepping a
704 # displaced instruction, to give the result we would have gotten from
705 # stepping the instruction in its original location.
707 # REGS is the register state resulting from single-stepping the
708 # displaced instruction.
710 # CLOSURE is the result from the matching call to
711 # gdbarch_displaced_step_copy_insn.
713 # If you provide gdbarch_displaced_step_copy_insn.but not this
714 # function, then GDB assumes that no fixup is needed after
715 # single-stepping the instruction.
717 # For a general explanation of displaced stepping and how GDB uses it,
718 # see the comments in infrun.c.
719 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
721 # Free a closure returned by gdbarch_displaced_step_copy_insn.
723 # If you provide gdbarch_displaced_step_copy_insn, you must provide
724 # this function as well.
726 # If your architecture uses closures that don't need to be freed, then
727 # you can use simple_displaced_step_free_closure here.
729 # For a general explanation of displaced stepping and how GDB uses it,
730 # see the comments in infrun.c.
731 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
733 # Return the address of an appropriate place to put displaced
734 # instructions while we step over them. There need only be one such
735 # place, since we're only stepping one thread over a breakpoint at a
738 # For a general explanation of displaced stepping and how GDB uses it,
739 # see the comments in infrun.c.
740 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
742 # Relocate an instruction to execute at a different address. OLDLOC
743 # is the address in the inferior memory where the instruction to
744 # relocate is currently at. On input, TO points to the destination
745 # where we want the instruction to be copied (and possibly adjusted)
746 # to. On output, it points to one past the end of the resulting
747 # instruction(s). The effect of executing the instruction at TO shall
748 # be the same as if executing it at FROM. For example, call
749 # instructions that implicitly push the return address on the stack
750 # should be adjusted to return to the instruction after OLDLOC;
751 # relative branches, and other PC-relative instructions need the
752 # offset adjusted; etc.
753 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
755 # Refresh overlay mapped state for section OSECT.
756 F:void:overlay_update:struct obj_section *osect:osect
758 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
760 # Handle special encoding of static variables in stabs debug info.
761 F:const char *:static_transform_name:const char *name:name
762 # Set if the address in N_SO or N_FUN stabs may be zero.
763 v:int:sofun_address_maybe_missing:::0:0::0
765 # Parse the instruction at ADDR storing in the record execution log
766 # the registers REGCACHE and memory ranges that will be affected when
767 # the instruction executes, along with their current values.
768 # Return -1 if something goes wrong, 0 otherwise.
769 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
771 # Save process state after a signal.
772 # Return -1 if something goes wrong, 0 otherwise.
773 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
775 # Signal translation: translate inferior's signal (target's) number
776 # into GDB's representation. This is mainly used when cross-debugging
777 # core files --- "Live" targets hide the translation behind the target
778 # interface (target_wait, target_resume, etc.). The default is to do
779 # the translation using host signal numbers.
780 m:enum gdb_signal:gdb_signal_from_target:int signo:signo::default_gdb_signal_from_target::0
782 # Extra signal info inspection.
784 # Return a type suitable to inspect extra signal information.
785 M:struct type *:get_siginfo_type:void:
787 # Record architecture-specific information from the symbol table.
788 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
790 # Function for the 'catch syscall' feature.
792 # Get architecture-specific system calls information from registers.
793 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
795 # SystemTap related fields and functions.
797 # Prefix used to mark an integer constant on the architecture's assembly
798 # For example, on x86 integer constants are written as:
800 # \$10 ;; integer constant 10
802 # in this case, this prefix would be the character \`\$\'.
803 v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
805 # Suffix used to mark an integer constant on the architecture's assembly.
806 v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
808 # Prefix used to mark a register name on the architecture's assembly.
809 # For example, on x86 the register name is written as:
811 # \%eax ;; register eax
813 # in this case, this prefix would be the character \`\%\'.
814 v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
816 # Suffix used to mark a register name on the architecture's assembly
817 v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
819 # Prefix used to mark a register indirection on the architecture's assembly.
820 # For example, on x86 the register indirection is written as:
822 # \(\%eax\) ;; indirecting eax
824 # in this case, this prefix would be the charater \`\(\'.
826 # Please note that we use the indirection prefix also for register
827 # displacement, e.g., \`4\(\%eax\)\' on x86.
828 v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
830 # Suffix used to mark a register indirection on the architecture's assembly.
831 # For example, on x86 the register indirection is written as:
833 # \(\%eax\) ;; indirecting eax
835 # in this case, this prefix would be the charater \`\)\'.
837 # Please note that we use the indirection suffix also for register
838 # displacement, e.g., \`4\(\%eax\)\' on x86.
839 v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
841 # Prefix used to name a register using GDB's nomenclature.
843 # For example, on PPC a register is represented by a number in the assembly
844 # language (e.g., \`10\' is the 10th general-purpose register). However,
845 # inside GDB this same register has an \`r\' appended to its name, so the 10th
846 # register would be represented as \`r10\' internally.
847 v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
849 # Suffix used to name a register using GDB's nomenclature.
850 v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
852 # Check if S is a single operand.
854 # Single operands can be:
855 # \- Literal integers, e.g. \`\$10\' on x86
856 # \- Register access, e.g. \`\%eax\' on x86
857 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
858 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
860 # This function should check for these patterns on the string
861 # and return 1 if some were found, or zero otherwise. Please try to match
862 # as much info as you can from the string, i.e., if you have to match
863 # something like \`\(\%\', do not match just the \`\(\'.
864 M:int:stap_is_single_operand:const char *s:s
866 # Function used to handle a "special case" in the parser.
868 # A "special case" is considered to be an unknown token, i.e., a token
869 # that the parser does not know how to parse. A good example of special
870 # case would be ARM's register displacement syntax:
872 # [R0, #4] ;; displacing R0 by 4
874 # Since the parser assumes that a register displacement is of the form:
876 # <number> <indirection_prefix> <register_name> <indirection_suffix>
878 # it means that it will not be able to recognize and parse this odd syntax.
879 # Therefore, we should add a special case function that will handle this token.
881 # This function should generate the proper expression form of the expression
882 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
883 # and so on). It should also return 1 if the parsing was successful, or zero
884 # if the token was not recognized as a special token (in this case, returning
885 # zero means that the special parser is deferring the parsing to the generic
886 # parser), and should advance the buffer pointer (p->arg).
887 M:int:stap_parse_special_token:struct stap_parse_info *p:p
890 # True if the list of shared libraries is one and only for all
891 # processes, as opposed to a list of shared libraries per inferior.
892 # This usually means that all processes, although may or may not share
893 # an address space, will see the same set of symbols at the same
895 v:int:has_global_solist:::0:0::0
897 # On some targets, even though each inferior has its own private
898 # address space, the debug interface takes care of making breakpoints
899 # visible to all address spaces automatically. For such cases,
900 # this property should be set to true.
901 v:int:has_global_breakpoints:::0:0::0
903 # True if inferiors share an address space (e.g., uClinux).
904 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
906 # True if a fast tracepoint can be set at an address.
907 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
909 # Return the "auto" target charset.
910 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
911 # Return the "auto" target wide charset.
912 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
914 # If non-empty, this is a file extension that will be opened in place
915 # of the file extension reported by the shared library list.
917 # This is most useful for toolchains that use a post-linker tool,
918 # where the names of the files run on the target differ in extension
919 # compared to the names of the files GDB should load for debug info.
920 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
922 # If true, the target OS has DOS-based file system semantics. That
923 # is, absolute paths include a drive name, and the backslash is
924 # considered a directory separator.
925 v:int:has_dos_based_file_system:::0:0::0
927 # Generate bytecodes to collect the return address in a frame.
928 # Since the bytecodes run on the target, possibly with GDB not even
929 # connected, the full unwinding machinery is not available, and
930 # typically this function will issue bytecodes for one or more likely
931 # places that the return address may be found.
932 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
934 # Implement the "info proc" command.
935 M:void:info_proc:char *args, enum info_proc_what what:args, what
943 exec > new-gdbarch.log
944 function_list | while do_read
947 ${class} ${returntype} ${function} ($formal)
951 eval echo \"\ \ \ \ ${r}=\${${r}}\"
953 if class_is_predicate_p && fallback_default_p
955 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
959 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
961 echo "Error: postdefault is useless when invalid_p=0" 1>&2
965 if class_is_multiarch_p
967 if class_is_predicate_p ; then :
968 elif test "x${predefault}" = "x"
970 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
979 compare_new gdbarch.log
985 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
987 /* Dynamic architecture support for GDB, the GNU debugger.
989 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
990 2007, 2008, 2009 Free Software Foundation, Inc.
992 This file is part of GDB.
994 This program is free software; you can redistribute it and/or modify
995 it under the terms of the GNU General Public License as published by
996 the Free Software Foundation; either version 3 of the License, or
997 (at your option) any later version.
999 This program is distributed in the hope that it will be useful,
1000 but WITHOUT ANY WARRANTY; without even the implied warranty of
1001 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1002 GNU General Public License for more details.
1004 You should have received a copy of the GNU General Public License
1005 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1007 /* This file was created with the aid of \`\`gdbarch.sh''.
1009 The Bourne shell script \`\`gdbarch.sh'' creates the files
1010 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1011 against the existing \`\`gdbarch.[hc]''. Any differences found
1014 If editing this file, please also run gdbarch.sh and merge any
1015 changes into that script. Conversely, when making sweeping changes
1016 to this file, modifying gdbarch.sh and using its output may prove
1026 exec > new-gdbarch.h
1038 struct minimal_symbol;
1042 struct disassemble_info;
1045 struct bp_target_info;
1047 struct displaced_step_closure;
1048 struct core_regset_section;
1052 struct stap_parse_info;
1054 /* The architecture associated with the connection to the target.
1056 The architecture vector provides some information that is really
1057 a property of the target: The layout of certain packets, for instance;
1058 or the solib_ops vector. Etc. To differentiate architecture accesses
1059 to per-target properties from per-thread/per-frame/per-objfile properties,
1060 accesses to per-target properties should be made through target_gdbarch.
1062 Eventually, when support for multiple targets is implemented in
1063 GDB, this global should be made target-specific. */
1064 extern struct gdbarch *target_gdbarch;
1067 # function typedef's
1070 printf "/* The following are pre-initialized by GDBARCH. */\n"
1071 function_list | while do_read
1076 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1077 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1081 # function typedef's
1084 printf "/* The following are initialized by the target dependent code. */\n"
1085 function_list | while do_read
1087 if [ -n "${comment}" ]
1089 echo "${comment}" | sed \
1095 if class_is_predicate_p
1098 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1100 if class_is_variable_p
1103 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1104 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1106 if class_is_function_p
1109 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1111 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1112 elif class_is_multiarch_p
1114 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1116 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1118 if [ "x${formal}" = "xvoid" ]
1120 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1122 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1124 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1131 /* Definition for an unknown syscall, used basically in error-cases. */
1132 #define UNKNOWN_SYSCALL (-1)
1134 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1137 /* Mechanism for co-ordinating the selection of a specific
1140 GDB targets (*-tdep.c) can register an interest in a specific
1141 architecture. Other GDB components can register a need to maintain
1142 per-architecture data.
1144 The mechanisms below ensures that there is only a loose connection
1145 between the set-architecture command and the various GDB
1146 components. Each component can independently register their need
1147 to maintain architecture specific data with gdbarch.
1151 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1154 The more traditional mega-struct containing architecture specific
1155 data for all the various GDB components was also considered. Since
1156 GDB is built from a variable number of (fairly independent)
1157 components it was determined that the global aproach was not
1161 /* Register a new architectural family with GDB.
1163 Register support for the specified ARCHITECTURE with GDB. When
1164 gdbarch determines that the specified architecture has been
1165 selected, the corresponding INIT function is called.
1169 The INIT function takes two parameters: INFO which contains the
1170 information available to gdbarch about the (possibly new)
1171 architecture; ARCHES which is a list of the previously created
1172 \`\`struct gdbarch'' for this architecture.
1174 The INFO parameter is, as far as possible, be pre-initialized with
1175 information obtained from INFO.ABFD or the global defaults.
1177 The ARCHES parameter is a linked list (sorted most recently used)
1178 of all the previously created architures for this architecture
1179 family. The (possibly NULL) ARCHES->gdbarch can used to access
1180 values from the previously selected architecture for this
1181 architecture family.
1183 The INIT function shall return any of: NULL - indicating that it
1184 doesn't recognize the selected architecture; an existing \`\`struct
1185 gdbarch'' from the ARCHES list - indicating that the new
1186 architecture is just a synonym for an earlier architecture (see
1187 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1188 - that describes the selected architecture (see gdbarch_alloc()).
1190 The DUMP_TDEP function shall print out all target specific values.
1191 Care should be taken to ensure that the function works in both the
1192 multi-arch and non- multi-arch cases. */
1196 struct gdbarch *gdbarch;
1197 struct gdbarch_list *next;
1202 /* Use default: NULL (ZERO). */
1203 const struct bfd_arch_info *bfd_arch_info;
1205 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1208 int byte_order_for_code;
1210 /* Use default: NULL (ZERO). */
1213 /* Use default: NULL (ZERO). */
1214 struct gdbarch_tdep_info *tdep_info;
1216 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1217 enum gdb_osabi osabi;
1219 /* Use default: NULL (ZERO). */
1220 const struct target_desc *target_desc;
1223 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1224 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1226 /* DEPRECATED - use gdbarch_register() */
1227 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1229 extern void gdbarch_register (enum bfd_architecture architecture,
1230 gdbarch_init_ftype *,
1231 gdbarch_dump_tdep_ftype *);
1234 /* Return a freshly allocated, NULL terminated, array of the valid
1235 architecture names. Since architectures are registered during the
1236 _initialize phase this function only returns useful information
1237 once initialization has been completed. */
1239 extern const char **gdbarch_printable_names (void);
1242 /* Helper function. Search the list of ARCHES for a GDBARCH that
1243 matches the information provided by INFO. */
1245 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1248 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1249 basic initialization using values obtained from the INFO and TDEP
1250 parameters. set_gdbarch_*() functions are called to complete the
1251 initialization of the object. */
1253 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1256 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1257 It is assumed that the caller freeds the \`\`struct
1260 extern void gdbarch_free (struct gdbarch *);
1263 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1264 obstack. The memory is freed when the corresponding architecture
1267 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1268 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1269 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1272 /* Helper function. Force an update of the current architecture.
1274 The actual architecture selected is determined by INFO, \`\`(gdb) set
1275 architecture'' et.al., the existing architecture and BFD's default
1276 architecture. INFO should be initialized to zero and then selected
1277 fields should be updated.
1279 Returns non-zero if the update succeeds. */
1281 extern int gdbarch_update_p (struct gdbarch_info info);
1284 /* Helper function. Find an architecture matching info.
1286 INFO should be initialized using gdbarch_info_init, relevant fields
1287 set, and then finished using gdbarch_info_fill.
1289 Returns the corresponding architecture, or NULL if no matching
1290 architecture was found. */
1292 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1295 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1297 FIXME: kettenis/20031124: Of the functions that follow, only
1298 gdbarch_from_bfd is supposed to survive. The others will
1299 dissappear since in the future GDB will (hopefully) be truly
1300 multi-arch. However, for now we're still stuck with the concept of
1301 a single active architecture. */
1303 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1306 /* Register per-architecture data-pointer.
1308 Reserve space for a per-architecture data-pointer. An identifier
1309 for the reserved data-pointer is returned. That identifer should
1310 be saved in a local static variable.
1312 Memory for the per-architecture data shall be allocated using
1313 gdbarch_obstack_zalloc. That memory will be deleted when the
1314 corresponding architecture object is deleted.
1316 When a previously created architecture is re-selected, the
1317 per-architecture data-pointer for that previous architecture is
1318 restored. INIT() is not re-called.
1320 Multiple registrarants for any architecture are allowed (and
1321 strongly encouraged). */
1323 struct gdbarch_data;
1325 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1326 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1327 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1328 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1329 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1330 struct gdbarch_data *data,
1333 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1336 /* Set the dynamic target-system-dependent parameters (architecture,
1337 byte-order, ...) using information found in the BFD. */
1339 extern void set_gdbarch_from_file (bfd *);
1342 /* Initialize the current architecture to the "first" one we find on
1345 extern void initialize_current_architecture (void);
1347 /* gdbarch trace variable */
1348 extern int gdbarch_debug;
1350 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1355 #../move-if-change new-gdbarch.h gdbarch.h
1356 compare_new gdbarch.h
1363 exec > new-gdbarch.c
1368 #include "arch-utils.h"
1371 #include "inferior.h"
1374 #include "floatformat.h"
1376 #include "gdb_assert.h"
1377 #include "gdb_string.h"
1378 #include "reggroups.h"
1380 #include "gdb_obstack.h"
1381 #include "observer.h"
1382 #include "regcache.h"
1384 /* Static function declarations */
1386 static void alloc_gdbarch_data (struct gdbarch *);
1388 /* Non-zero if we want to trace architecture code. */
1390 #ifndef GDBARCH_DEBUG
1391 #define GDBARCH_DEBUG 0
1393 int gdbarch_debug = GDBARCH_DEBUG;
1395 show_gdbarch_debug (struct ui_file *file, int from_tty,
1396 struct cmd_list_element *c, const char *value)
1398 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1402 pformat (const struct floatformat **format)
1407 /* Just print out one of them - this is only for diagnostics. */
1408 return format[0]->name;
1412 pstring (const char *string)
1421 # gdbarch open the gdbarch object
1423 printf "/* Maintain the struct gdbarch object. */\n"
1425 printf "struct gdbarch\n"
1427 printf " /* Has this architecture been fully initialized? */\n"
1428 printf " int initialized_p;\n"
1430 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1431 printf " struct obstack *obstack;\n"
1433 printf " /* basic architectural information. */\n"
1434 function_list | while do_read
1438 printf " ${returntype} ${function};\n"
1442 printf " /* target specific vector. */\n"
1443 printf " struct gdbarch_tdep *tdep;\n"
1444 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1446 printf " /* per-architecture data-pointers. */\n"
1447 printf " unsigned nr_data;\n"
1448 printf " void **data;\n"
1450 printf " /* per-architecture swap-regions. */\n"
1451 printf " struct gdbarch_swap *swap;\n"
1454 /* Multi-arch values.
1456 When extending this structure you must:
1458 Add the field below.
1460 Declare set/get functions and define the corresponding
1463 gdbarch_alloc(): If zero/NULL is not a suitable default,
1464 initialize the new field.
1466 verify_gdbarch(): Confirm that the target updated the field
1469 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1472 \`\`startup_gdbarch()'': Append an initial value to the static
1473 variable (base values on the host's c-type system).
1475 get_gdbarch(): Implement the set/get functions (probably using
1476 the macro's as shortcuts).
1481 function_list | while do_read
1483 if class_is_variable_p
1485 printf " ${returntype} ${function};\n"
1486 elif class_is_function_p
1488 printf " gdbarch_${function}_ftype *${function};\n"
1493 # A pre-initialized vector
1497 /* The default architecture uses host values (for want of a better
1501 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1503 printf "struct gdbarch startup_gdbarch =\n"
1505 printf " 1, /* Always initialized. */\n"
1506 printf " NULL, /* The obstack. */\n"
1507 printf " /* basic architecture information. */\n"
1508 function_list | while do_read
1512 printf " ${staticdefault}, /* ${function} */\n"
1516 /* target specific vector and its dump routine. */
1518 /*per-architecture data-pointers and swap regions. */
1520 /* Multi-arch values */
1522 function_list | while do_read
1524 if class_is_function_p || class_is_variable_p
1526 printf " ${staticdefault}, /* ${function} */\n"
1530 /* startup_gdbarch() */
1533 struct gdbarch *target_gdbarch = &startup_gdbarch;
1536 # Create a new gdbarch struct
1539 /* Create a new \`\`struct gdbarch'' based on information provided by
1540 \`\`struct gdbarch_info''. */
1545 gdbarch_alloc (const struct gdbarch_info *info,
1546 struct gdbarch_tdep *tdep)
1548 struct gdbarch *gdbarch;
1550 /* Create an obstack for allocating all the per-architecture memory,
1551 then use that to allocate the architecture vector. */
1552 struct obstack *obstack = XMALLOC (struct obstack);
1553 obstack_init (obstack);
1554 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1555 memset (gdbarch, 0, sizeof (*gdbarch));
1556 gdbarch->obstack = obstack;
1558 alloc_gdbarch_data (gdbarch);
1560 gdbarch->tdep = tdep;
1563 function_list | while do_read
1567 printf " gdbarch->${function} = info->${function};\n"
1571 printf " /* Force the explicit initialization of these. */\n"
1572 function_list | while do_read
1574 if class_is_function_p || class_is_variable_p
1576 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1578 printf " gdbarch->${function} = ${predefault};\n"
1583 /* gdbarch_alloc() */
1589 # Free a gdbarch struct.
1593 /* Allocate extra space using the per-architecture obstack. */
1596 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1598 void *data = obstack_alloc (arch->obstack, size);
1600 memset (data, 0, size);
1605 /* Free a gdbarch struct. This should never happen in normal
1606 operation --- once you've created a gdbarch, you keep it around.
1607 However, if an architecture's init function encounters an error
1608 building the structure, it may need to clean up a partially
1609 constructed gdbarch. */
1612 gdbarch_free (struct gdbarch *arch)
1614 struct obstack *obstack;
1616 gdb_assert (arch != NULL);
1617 gdb_assert (!arch->initialized_p);
1618 obstack = arch->obstack;
1619 obstack_free (obstack, 0); /* Includes the ARCH. */
1624 # verify a new architecture
1628 /* Ensure that all values in a GDBARCH are reasonable. */
1631 verify_gdbarch (struct gdbarch *gdbarch)
1633 struct ui_file *log;
1634 struct cleanup *cleanups;
1638 log = mem_fileopen ();
1639 cleanups = make_cleanup_ui_file_delete (log);
1641 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1642 fprintf_unfiltered (log, "\n\tbyte-order");
1643 if (gdbarch->bfd_arch_info == NULL)
1644 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1645 /* Check those that need to be defined for the given multi-arch level. */
1647 function_list | while do_read
1649 if class_is_function_p || class_is_variable_p
1651 if [ "x${invalid_p}" = "x0" ]
1653 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1654 elif class_is_predicate_p
1656 printf " /* Skip verify of ${function}, has predicate. */\n"
1657 # FIXME: See do_read for potential simplification
1658 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1660 printf " if (${invalid_p})\n"
1661 printf " gdbarch->${function} = ${postdefault};\n"
1662 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1664 printf " if (gdbarch->${function} == ${predefault})\n"
1665 printf " gdbarch->${function} = ${postdefault};\n"
1666 elif [ -n "${postdefault}" ]
1668 printf " if (gdbarch->${function} == 0)\n"
1669 printf " gdbarch->${function} = ${postdefault};\n"
1670 elif [ -n "${invalid_p}" ]
1672 printf " if (${invalid_p})\n"
1673 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1674 elif [ -n "${predefault}" ]
1676 printf " if (gdbarch->${function} == ${predefault})\n"
1677 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1682 buf = ui_file_xstrdup (log, &length);
1683 make_cleanup (xfree, buf);
1685 internal_error (__FILE__, __LINE__,
1686 _("verify_gdbarch: the following are invalid ...%s"),
1688 do_cleanups (cleanups);
1692 # dump the structure
1696 /* Print out the details of the current architecture. */
1699 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1701 const char *gdb_nm_file = "<not-defined>";
1703 #if defined (GDB_NM_FILE)
1704 gdb_nm_file = GDB_NM_FILE;
1706 fprintf_unfiltered (file,
1707 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1710 function_list | sort -t: -k 3 | while do_read
1712 # First the predicate
1713 if class_is_predicate_p
1715 printf " fprintf_unfiltered (file,\n"
1716 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1717 printf " gdbarch_${function}_p (gdbarch));\n"
1719 # Print the corresponding value.
1720 if class_is_function_p
1722 printf " fprintf_unfiltered (file,\n"
1723 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1724 printf " host_address_to_string (gdbarch->${function}));\n"
1727 case "${print}:${returntype}" in
1730 print="core_addr_to_string_nz (gdbarch->${function})"
1734 print="plongest (gdbarch->${function})"
1740 printf " fprintf_unfiltered (file,\n"
1741 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1742 printf " ${print});\n"
1746 if (gdbarch->dump_tdep != NULL)
1747 gdbarch->dump_tdep (gdbarch, file);
1755 struct gdbarch_tdep *
1756 gdbarch_tdep (struct gdbarch *gdbarch)
1758 if (gdbarch_debug >= 2)
1759 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1760 return gdbarch->tdep;
1764 function_list | while do_read
1766 if class_is_predicate_p
1770 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1772 printf " gdb_assert (gdbarch != NULL);\n"
1773 printf " return ${predicate};\n"
1776 if class_is_function_p
1779 printf "${returntype}\n"
1780 if [ "x${formal}" = "xvoid" ]
1782 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1784 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1787 printf " gdb_assert (gdbarch != NULL);\n"
1788 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1789 if class_is_predicate_p && test -n "${predefault}"
1791 # Allow a call to a function with a predicate.
1792 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1794 printf " if (gdbarch_debug >= 2)\n"
1795 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1796 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1798 if class_is_multiarch_p
1805 if class_is_multiarch_p
1807 params="gdbarch, ${actual}"
1812 if [ "x${returntype}" = "xvoid" ]
1814 printf " gdbarch->${function} (${params});\n"
1816 printf " return gdbarch->${function} (${params});\n"
1821 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1822 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1824 printf " gdbarch->${function} = ${function};\n"
1826 elif class_is_variable_p
1829 printf "${returntype}\n"
1830 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1832 printf " gdb_assert (gdbarch != NULL);\n"
1833 if [ "x${invalid_p}" = "x0" ]
1835 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1836 elif [ -n "${invalid_p}" ]
1838 printf " /* Check variable is valid. */\n"
1839 printf " gdb_assert (!(${invalid_p}));\n"
1840 elif [ -n "${predefault}" ]
1842 printf " /* Check variable changed from pre-default. */\n"
1843 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1845 printf " if (gdbarch_debug >= 2)\n"
1846 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1847 printf " return gdbarch->${function};\n"
1851 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1852 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1854 printf " gdbarch->${function} = ${function};\n"
1856 elif class_is_info_p
1859 printf "${returntype}\n"
1860 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1862 printf " gdb_assert (gdbarch != NULL);\n"
1863 printf " if (gdbarch_debug >= 2)\n"
1864 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1865 printf " return gdbarch->${function};\n"
1870 # All the trailing guff
1874 /* Keep a registry of per-architecture data-pointers required by GDB
1881 gdbarch_data_pre_init_ftype *pre_init;
1882 gdbarch_data_post_init_ftype *post_init;
1885 struct gdbarch_data_registration
1887 struct gdbarch_data *data;
1888 struct gdbarch_data_registration *next;
1891 struct gdbarch_data_registry
1894 struct gdbarch_data_registration *registrations;
1897 struct gdbarch_data_registry gdbarch_data_registry =
1902 static struct gdbarch_data *
1903 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1904 gdbarch_data_post_init_ftype *post_init)
1906 struct gdbarch_data_registration **curr;
1908 /* Append the new registration. */
1909 for (curr = &gdbarch_data_registry.registrations;
1911 curr = &(*curr)->next);
1912 (*curr) = XMALLOC (struct gdbarch_data_registration);
1913 (*curr)->next = NULL;
1914 (*curr)->data = XMALLOC (struct gdbarch_data);
1915 (*curr)->data->index = gdbarch_data_registry.nr++;
1916 (*curr)->data->pre_init = pre_init;
1917 (*curr)->data->post_init = post_init;
1918 (*curr)->data->init_p = 1;
1919 return (*curr)->data;
1922 struct gdbarch_data *
1923 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1925 return gdbarch_data_register (pre_init, NULL);
1928 struct gdbarch_data *
1929 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1931 return gdbarch_data_register (NULL, post_init);
1934 /* Create/delete the gdbarch data vector. */
1937 alloc_gdbarch_data (struct gdbarch *gdbarch)
1939 gdb_assert (gdbarch->data == NULL);
1940 gdbarch->nr_data = gdbarch_data_registry.nr;
1941 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1944 /* Initialize the current value of the specified per-architecture
1948 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1949 struct gdbarch_data *data,
1952 gdb_assert (data->index < gdbarch->nr_data);
1953 gdb_assert (gdbarch->data[data->index] == NULL);
1954 gdb_assert (data->pre_init == NULL);
1955 gdbarch->data[data->index] = pointer;
1958 /* Return the current value of the specified per-architecture
1962 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1964 gdb_assert (data->index < gdbarch->nr_data);
1965 if (gdbarch->data[data->index] == NULL)
1967 /* The data-pointer isn't initialized, call init() to get a
1969 if (data->pre_init != NULL)
1970 /* Mid architecture creation: pass just the obstack, and not
1971 the entire architecture, as that way it isn't possible for
1972 pre-init code to refer to undefined architecture
1974 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1975 else if (gdbarch->initialized_p
1976 && data->post_init != NULL)
1977 /* Post architecture creation: pass the entire architecture
1978 (as all fields are valid), but be careful to also detect
1979 recursive references. */
1981 gdb_assert (data->init_p);
1983 gdbarch->data[data->index] = data->post_init (gdbarch);
1987 /* The architecture initialization hasn't completed - punt -
1988 hope that the caller knows what they are doing. Once
1989 deprecated_set_gdbarch_data has been initialized, this can be
1990 changed to an internal error. */
1992 gdb_assert (gdbarch->data[data->index] != NULL);
1994 return gdbarch->data[data->index];
1998 /* Keep a registry of the architectures known by GDB. */
2000 struct gdbarch_registration
2002 enum bfd_architecture bfd_architecture;
2003 gdbarch_init_ftype *init;
2004 gdbarch_dump_tdep_ftype *dump_tdep;
2005 struct gdbarch_list *arches;
2006 struct gdbarch_registration *next;
2009 static struct gdbarch_registration *gdbarch_registry = NULL;
2012 append_name (const char ***buf, int *nr, const char *name)
2014 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2020 gdbarch_printable_names (void)
2022 /* Accumulate a list of names based on the registed list of
2025 const char **arches = NULL;
2026 struct gdbarch_registration *rego;
2028 for (rego = gdbarch_registry;
2032 const struct bfd_arch_info *ap;
2033 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2035 internal_error (__FILE__, __LINE__,
2036 _("gdbarch_architecture_names: multi-arch unknown"));
2039 append_name (&arches, &nr_arches, ap->printable_name);
2044 append_name (&arches, &nr_arches, NULL);
2050 gdbarch_register (enum bfd_architecture bfd_architecture,
2051 gdbarch_init_ftype *init,
2052 gdbarch_dump_tdep_ftype *dump_tdep)
2054 struct gdbarch_registration **curr;
2055 const struct bfd_arch_info *bfd_arch_info;
2057 /* Check that BFD recognizes this architecture */
2058 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2059 if (bfd_arch_info == NULL)
2061 internal_error (__FILE__, __LINE__,
2062 _("gdbarch: Attempt to register "
2063 "unknown architecture (%d)"),
2066 /* Check that we haven't seen this architecture before. */
2067 for (curr = &gdbarch_registry;
2069 curr = &(*curr)->next)
2071 if (bfd_architecture == (*curr)->bfd_architecture)
2072 internal_error (__FILE__, __LINE__,
2073 _("gdbarch: Duplicate registration "
2074 "of architecture (%s)"),
2075 bfd_arch_info->printable_name);
2079 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2080 bfd_arch_info->printable_name,
2081 host_address_to_string (init));
2083 (*curr) = XMALLOC (struct gdbarch_registration);
2084 (*curr)->bfd_architecture = bfd_architecture;
2085 (*curr)->init = init;
2086 (*curr)->dump_tdep = dump_tdep;
2087 (*curr)->arches = NULL;
2088 (*curr)->next = NULL;
2092 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2093 gdbarch_init_ftype *init)
2095 gdbarch_register (bfd_architecture, init, NULL);
2099 /* Look for an architecture using gdbarch_info. */
2101 struct gdbarch_list *
2102 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2103 const struct gdbarch_info *info)
2105 for (; arches != NULL; arches = arches->next)
2107 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2109 if (info->byte_order != arches->gdbarch->byte_order)
2111 if (info->osabi != arches->gdbarch->osabi)
2113 if (info->target_desc != arches->gdbarch->target_desc)
2121 /* Find an architecture that matches the specified INFO. Create a new
2122 architecture if needed. Return that new architecture. */
2125 gdbarch_find_by_info (struct gdbarch_info info)
2127 struct gdbarch *new_gdbarch;
2128 struct gdbarch_registration *rego;
2130 /* Fill in missing parts of the INFO struct using a number of
2131 sources: "set ..."; INFOabfd supplied; and the global
2133 gdbarch_info_fill (&info);
2135 /* Must have found some sort of architecture. */
2136 gdb_assert (info.bfd_arch_info != NULL);
2140 fprintf_unfiltered (gdb_stdlog,
2141 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2142 (info.bfd_arch_info != NULL
2143 ? info.bfd_arch_info->printable_name
2145 fprintf_unfiltered (gdb_stdlog,
2146 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2148 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2149 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2151 fprintf_unfiltered (gdb_stdlog,
2152 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2153 info.osabi, gdbarch_osabi_name (info.osabi));
2154 fprintf_unfiltered (gdb_stdlog,
2155 "gdbarch_find_by_info: info.abfd %s\n",
2156 host_address_to_string (info.abfd));
2157 fprintf_unfiltered (gdb_stdlog,
2158 "gdbarch_find_by_info: info.tdep_info %s\n",
2159 host_address_to_string (info.tdep_info));
2162 /* Find the tdep code that knows about this architecture. */
2163 for (rego = gdbarch_registry;
2166 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2171 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2172 "No matching architecture\n");
2176 /* Ask the tdep code for an architecture that matches "info". */
2177 new_gdbarch = rego->init (info, rego->arches);
2179 /* Did the tdep code like it? No. Reject the change and revert to
2180 the old architecture. */
2181 if (new_gdbarch == NULL)
2184 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2185 "Target rejected architecture\n");
2189 /* Is this a pre-existing architecture (as determined by already
2190 being initialized)? Move it to the front of the architecture
2191 list (keeping the list sorted Most Recently Used). */
2192 if (new_gdbarch->initialized_p)
2194 struct gdbarch_list **list;
2195 struct gdbarch_list *this;
2197 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2198 "Previous architecture %s (%s) selected\n",
2199 host_address_to_string (new_gdbarch),
2200 new_gdbarch->bfd_arch_info->printable_name);
2201 /* Find the existing arch in the list. */
2202 for (list = ®o->arches;
2203 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2204 list = &(*list)->next);
2205 /* It had better be in the list of architectures. */
2206 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2209 (*list) = this->next;
2210 /* Insert THIS at the front. */
2211 this->next = rego->arches;
2212 rego->arches = this;
2217 /* It's a new architecture. */
2219 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2220 "New architecture %s (%s) selected\n",
2221 host_address_to_string (new_gdbarch),
2222 new_gdbarch->bfd_arch_info->printable_name);
2224 /* Insert the new architecture into the front of the architecture
2225 list (keep the list sorted Most Recently Used). */
2227 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2228 this->next = rego->arches;
2229 this->gdbarch = new_gdbarch;
2230 rego->arches = this;
2233 /* Check that the newly installed architecture is valid. Plug in
2234 any post init values. */
2235 new_gdbarch->dump_tdep = rego->dump_tdep;
2236 verify_gdbarch (new_gdbarch);
2237 new_gdbarch->initialized_p = 1;
2240 gdbarch_dump (new_gdbarch, gdb_stdlog);
2245 /* Make the specified architecture current. */
2248 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2250 gdb_assert (new_gdbarch != NULL);
2251 gdb_assert (new_gdbarch->initialized_p);
2252 target_gdbarch = new_gdbarch;
2253 observer_notify_architecture_changed (new_gdbarch);
2254 registers_changed ();
2257 extern void _initialize_gdbarch (void);
2260 _initialize_gdbarch (void)
2262 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2263 Set architecture debugging."), _("\\
2264 Show architecture debugging."), _("\\
2265 When non-zero, architecture debugging is enabled."),
2268 &setdebuglist, &showdebuglist);
2274 #../move-if-change new-gdbarch.c gdbarch.c
2275 compare_new gdbarch.c