3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
9 # This file is part of GDB.
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 # Make certain that the script is running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print garbage_at_eol"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
98 # Provide a UCASE version of function (for when there isn't MACRO)
100 elif test "${macro}" = "${FUNCTION}"
102 echo "${function}: Specify = for macro field" 1>&2
107 # Check that macro definition wasn't supplied for multi-arch
110 if test "${macro}" != ""
112 echo "${macro}: Multi-arch yet macro" 1>&2
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
126 case "${invalid_p}" in
128 if test -n "${predefault}"
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
137 predicate="gdbarch->${function} != NULL"
141 echo "Predicate function ${function} with invalid_p." 1>&2
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
155 if [ -n "${postdefault}" ]
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
160 fallbackdefault="${predefault}"
165 #NOT YET: See gdbarch.log for basic verification of
180 fallback_default_p ()
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
186 class_is_variable_p ()
194 class_is_function_p ()
197 *f* | *F* | *m* | *M* ) true ;;
202 class_is_multiarch_p ()
210 class_is_predicate_p ()
213 *F* | *V* | *M* ) true ;;
227 # dump out/verify the doco
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
258 # For functions, the return type; for variables, the data type
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
281 # Any GCC attributes that should be attached to the function
282 # declaration. At present this field is unused.
286 # To help with the GDB startup a static gdbarch object is
287 # created. STATICDEFAULT is the value to insert into that
288 # static gdbarch object. Since this a static object only
289 # simple expressions can be used.
291 # If STATICDEFAULT is empty, zero is used.
295 # An initial value to assign to MEMBER of the freshly
296 # malloc()ed gdbarch object. After initialization, the
297 # freshly malloc()ed object is passed to the target
298 # architecture code for further updates.
300 # If PREDEFAULT is empty, zero is used.
302 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
303 # INVALID_P are specified, PREDEFAULT will be used as the
304 # default for the non- multi-arch target.
306 # A zero PREDEFAULT function will force the fallback to call
309 # Variable declarations can refer to ``gdbarch'' which will
310 # contain the current architecture. Care should be taken.
314 # A value to assign to MEMBER of the new gdbarch object should
315 # the target architecture code fail to change the PREDEFAULT
318 # If POSTDEFAULT is empty, no post update is performed.
320 # If both INVALID_P and POSTDEFAULT are non-empty then
321 # INVALID_P will be used to determine if MEMBER should be
322 # changed to POSTDEFAULT.
324 # If a non-empty POSTDEFAULT and a zero INVALID_P are
325 # specified, POSTDEFAULT will be used as the default for the
326 # non- multi-arch target (regardless of the value of
329 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
331 # Variable declarations can refer to ``current_gdbarch'' which
332 # will contain the current architecture. Care should be
337 # A predicate equation that validates MEMBER. Non-zero is
338 # returned if the code creating the new architecture failed to
339 # initialize MEMBER or the initialized the member is invalid.
340 # If POSTDEFAULT is non-empty then MEMBER will be updated to
341 # that value. If POSTDEFAULT is empty then internal_error()
344 # If INVALID_P is empty, a check that MEMBER is no longer
345 # equal to PREDEFAULT is used.
347 # The expression ``0'' disables the INVALID_P check making
348 # PREDEFAULT a legitimate value.
350 # See also PREDEFAULT and POSTDEFAULT.
354 # printf style format string that can be used to print out the
355 # MEMBER. Sometimes "%s" is useful. For functions, this is
356 # ignored and the function address is printed.
358 # If FMT is empty, ``%ld'' is used.
362 # An optional equation that casts MEMBER to a value suitable
363 # for formatting by FMT.
365 # If PRINT is empty, ``(long)'' is used.
367 garbage_at_eol ) : ;;
369 # Catches stray fields.
372 echo "Bad field ${field}"
380 # See below (DOCO) for description of each field
382 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name
384 i:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
386 i:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
387 # Number of bits in a char or unsigned char for the target machine.
388 # Just like CHAR_BIT in <limits.h> but describes the target machine.
389 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
391 # Number of bits in a short or unsigned short for the target machine.
392 v:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
393 # Number of bits in an int or unsigned int for the target machine.
394 v:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
395 # Number of bits in a long or unsigned long for the target machine.
396 v:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
397 # Number of bits in a long long or unsigned long long for the target
399 v:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
400 # Number of bits in a float for the target machine.
401 v:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
402 # Number of bits in a double for the target machine.
403 v:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
404 # Number of bits in a long double for the target machine.
405 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
406 # For most targets, a pointer on the target and its representation as an
407 # address in GDB have the same size and "look the same". For such a
408 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
409 # / addr_bit will be set from it.
411 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
412 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
414 # ptr_bit is the size of a pointer on the target
415 v:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
416 # addr_bit is the size of a target address as represented in gdb
417 v:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
418 # Number of bits in a BFD_VMA for the target object file format.
419 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
421 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
422 v:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
424 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
425 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
426 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
427 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
428 # Function for getting target's idea of a frame pointer. FIXME: GDB's
429 # whole scheme for dealing with "frames" and "frame pointers" needs a
431 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
433 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
434 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
436 v:=:int:num_regs::::0:-1
437 # This macro gives the number of pseudo-registers that live in the
438 # register namespace but do not get fetched or stored on the target.
439 # These pseudo-registers may be aliases for other registers,
440 # combinations of other registers, or they may be computed by GDB.
441 v:=:int:num_pseudo_regs::::0:0::0:::
443 # GDB's standard (or well known) register numbers. These can map onto
444 # a real register or a pseudo (computed) register or not be defined at
446 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
447 v:=:int:sp_regnum::::-1:-1::0
448 v:=:int:pc_regnum::::-1:-1::0
449 v:=:int:ps_regnum::::-1:-1::0
450 v:=:int:fp0_regnum::::0:-1::0
451 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
452 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
453 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
454 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
455 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
456 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
457 # Convert from an sdb register number to an internal gdb register number.
458 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
459 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
460 f:=:const char *:register_name:int regnr:regnr
462 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
463 M::struct type *:register_type:int reg_nr:reg_nr
464 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
465 F:=:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
466 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
467 # from REGISTER_TYPE.
468 v:=:int:deprecated_register_bytes
469 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
470 # register offsets computed using just REGISTER_TYPE, this can be
471 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
472 # function with predicate has a valid (callable) initial value. As a
473 # consequence, even when the predicate is false, the corresponding
474 # function works. This simplifies the migration process - old code,
475 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
476 F:=:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
477 # If all registers have identical raw and virtual sizes and those
478 # sizes agree with the value computed from REGISTER_TYPE,
479 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
481 F:=:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
482 # If all registers have identical raw and virtual sizes and those
483 # sizes agree with the value computed from REGISTER_TYPE,
484 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
486 F:=:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
488 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
489 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
490 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
491 # SAVE_DUMMY_FRAME_TOS.
492 F:=:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
493 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
494 # DEPRECATED_FP_REGNUM.
495 v:=:int:deprecated_fp_regnum::::-1:-1::0
496 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
497 # DEPRECATED_TARGET_READ_FP.
498 F:=:CORE_ADDR:deprecated_target_read_fp:void
500 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
501 # replacement for DEPRECATED_PUSH_ARGUMENTS.
502 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
503 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
504 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
505 # Implement PUSH_RETURN_ADDRESS, and then merge in
506 # DEPRECATED_PUSH_RETURN_ADDRESS.
507 F:=:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
508 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
509 F:=:void:deprecated_dummy_write_sp:CORE_ADDR val:val
510 # DEPRECATED_REGISTER_SIZE can be deleted.
511 v:=:int:deprecated_register_size
512 v:=:int:call_dummy_location:::::AT_ENTRY_POINT::0
513 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
515 F:=:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
516 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
517 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
518 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
519 # MAP a GDB RAW register number onto a simulator register number. See
520 # also include/...-sim.h.
521 f:=:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
522 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
523 f:=:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
524 f:=:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
525 # setjmp/longjmp support.
526 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
527 F:=:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
529 v:=:int:believe_pcc_promotion:::::::
530 F:=:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
532 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type::0:generic_convert_register_p::0
533 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0
534 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0
536 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
537 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
538 F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
540 F:=:void:deprecated_pop_frame:void:-
541 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
542 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
544 # It has been suggested that this, well actually its predecessor,
545 # should take the type/value of the function to be called and not the
546 # return type. This is left as an exercise for the reader.
548 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
549 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
550 # (via legacy_return_value), when a small struct is involved.
552 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf:::legacy_return_value
554 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
555 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
556 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
559 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
560 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
561 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
562 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
563 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
565 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
566 # ABI suitable for the implementation of a robust extract
567 # struct-convention return-value address method (the sparc saves the
568 # address in the callers frame). All the other cases so far examined,
569 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
570 # erreneous - the code was incorrectly assuming that the return-value
571 # address, stored in a register, was preserved across the entire
574 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
575 # the ABIs that are still to be analyzed - perhaps this should simply
576 # be deleted. The commented out extract_returned_value_address method
577 # is provided as a starting point for the 32-bit SPARC. It, or
578 # something like it, along with changes to both infcmd.c and stack.c
579 # will be needed for that case to work. NB: It is passed the callers
580 # frame since it is only after the callee has returned that this
583 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
584 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
586 F:=:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
587 F:=:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
589 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
590 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
591 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
592 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
593 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
594 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
595 v:=:CORE_ADDR:decr_pc_after_break::::0:::0
597 # A function can be addressed by either it's "pointer" (possibly a
598 # descriptor address) or "entry point" (first executable instruction).
599 # The method "convert_from_func_ptr_addr" converting the former to the
600 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
601 # a simplified subset of that functionality - the function's address
602 # corresponds to the "function pointer" and the function's start
603 # corresponds to the "function entry point" - and hence is redundant.
605 v:=:CORE_ADDR:deprecated_function_start_offset::::0:::0
607 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
609 v:=:CORE_ADDR:frame_args_skip::::0:::0
610 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
611 # frame code works regardless of the type of frame - frameless,
612 # stackless, or normal.
613 F:=:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
614 F:=:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
615 F:=:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
616 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
617 # note, per UNWIND_PC's doco, that while the two have similar
618 # interfaces they have very different underlying implementations.
619 F:=:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
620 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
621 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
622 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
623 # frame-base. Enable frame-base before frame-unwind.
624 F:=:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
625 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
626 # frame-base. Enable frame-base before frame-unwind.
627 F:=:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
628 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
629 F:=:int:frame_num_args:struct frame_info *frame:frame
631 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
632 # to frame_align and the requirement that methods such as
633 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
635 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
636 M::CORE_ADDR:frame_align:CORE_ADDR address:address
637 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
638 # stabs_argument_has_addr.
639 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
640 m::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
641 v:=:int:frame_red_zone_size
643 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
644 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
645 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
646 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
647 # On some machines there are bits in addresses which are not really
648 # part of the address, but are used by the kernel, the hardware, etc.
649 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
650 # we get a "real" address such as one would find in a symbol table.
651 # This is used only for addresses of instructions, and even then I'm
652 # not sure it's used in all contexts. It exists to deal with there
653 # being a few stray bits in the PC which would mislead us, not as some
654 # sort of generic thing to handle alignment or segmentation (it's
655 # possible it should be in TARGET_READ_PC instead).
656 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
657 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
659 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
660 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
661 # the target needs software single step. An ISA method to implement it.
663 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
664 # using the breakpoint system instead of blatting memory directly (as with rs6000).
666 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
667 # single step. If not, then implement single step using breakpoints.
668 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
669 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
670 # disassembler. Perhaps objdump can handle it?
671 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
672 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
675 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
676 # evaluates non-zero, this is the address where the debugger will place
677 # a step-resume breakpoint to get us past the dynamic linker.
678 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
679 # For SVR4 shared libraries, each call goes through a small piece of
680 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
681 # to nonzero if we are currently stopped in one of these.
682 f:=:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
684 # Some systems also have trampoline code for returning from shared libs.
685 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
687 # A target might have problems with watchpoints as soon as the stack
688 # frame of the current function has been destroyed. This mostly happens
689 # as the first action in a funtion's epilogue. in_function_epilogue_p()
690 # is defined to return a non-zero value if either the given addr is one
691 # instruction after the stack destroying instruction up to the trailing
692 # return instruction or if we can figure out that the stack frame has
693 # already been invalidated regardless of the value of addr. Targets
694 # which don't suffer from that problem could just let this functionality
696 m::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
697 # Given a vector of command-line arguments, return a newly allocated
698 # string which, when passed to the create_inferior function, will be
699 # parsed (on Unix systems, by the shell) to yield the same vector.
700 # This function should call error() if the argument vector is not
701 # representable for this target or if this target does not support
702 # command-line arguments.
703 # ARGC is the number of elements in the vector.
704 # ARGV is an array of strings, one per argument.
705 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
706 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
707 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
708 v:=:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
709 v:=:int:cannot_step_breakpoint::::0:0::0
710 v:=:int:have_nonsteppable_watchpoint::::0:0::0
711 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
712 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
713 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
714 # Is a register in a group
715 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
716 # Fetch the pointer to the ith function argument.
717 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
719 # Return the appropriate register set for a core file section with
720 # name SECT_NAME and size SECT_SIZE.
721 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
728 exec > new-gdbarch.log
729 function_list | while do_read
732 ${class} ${returntype} ${function} ($formal)${attrib}
736 eval echo \"\ \ \ \ ${r}=\${${r}}\"
738 if class_is_predicate_p && fallback_default_p
740 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
744 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
746 echo "Error: postdefault is useless when invalid_p=0" 1>&2
750 if class_is_multiarch_p
752 if class_is_predicate_p ; then :
753 elif test "x${predefault}" = "x"
755 echo "Error: pure multi-arch function must have a predefault" 1>&2
764 compare_new gdbarch.log
770 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
772 /* Dynamic architecture support for GDB, the GNU debugger.
774 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
775 Software Foundation, Inc.
777 This file is part of GDB.
779 This program is free software; you can redistribute it and/or modify
780 it under the terms of the GNU General Public License as published by
781 the Free Software Foundation; either version 2 of the License, or
782 (at your option) any later version.
784 This program is distributed in the hope that it will be useful,
785 but WITHOUT ANY WARRANTY; without even the implied warranty of
786 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
787 GNU General Public License for more details.
789 You should have received a copy of the GNU General Public License
790 along with this program; if not, write to the Free Software
791 Foundation, Inc., 59 Temple Place - Suite 330,
792 Boston, MA 02111-1307, USA. */
794 /* This file was created with the aid of \`\`gdbarch.sh''.
796 The Bourne shell script \`\`gdbarch.sh'' creates the files
797 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
798 against the existing \`\`gdbarch.[hc]''. Any differences found
801 If editing this file, please also run gdbarch.sh and merge any
802 changes into that script. Conversely, when making sweeping changes
803 to this file, modifying gdbarch.sh and using its output may prove
824 struct minimal_symbol;
828 struct disassemble_info;
832 extern struct gdbarch *current_gdbarch;
834 /* If any of the following are defined, the target wasn't correctly
837 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
838 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
845 printf "/* The following are pre-initialized by GDBARCH. */\n"
846 function_list | while do_read
851 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
852 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
853 if test -n "${macro}"
855 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
856 printf "#error \"Non multi-arch definition of ${macro}\"\n"
858 printf "#if !defined (${macro})\n"
859 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
868 printf "/* The following are initialized by the target dependent code. */\n"
869 function_list | while do_read
871 if [ -n "${comment}" ]
873 echo "${comment}" | sed \
879 if class_is_predicate_p
881 if test -n "${macro}"
884 printf "#if defined (${macro})\n"
885 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
886 printf "#if !defined (${macro}_P)\n"
887 printf "#define ${macro}_P() (1)\n"
892 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
893 if test -n "${macro}"
895 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
896 printf "#error \"Non multi-arch definition of ${macro}\"\n"
898 printf "#if !defined (${macro}_P)\n"
899 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
903 if class_is_variable_p
906 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
907 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
908 if test -n "${macro}"
910 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
911 printf "#error \"Non multi-arch definition of ${macro}\"\n"
913 printf "#if !defined (${macro})\n"
914 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
918 if class_is_function_p
921 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
923 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
924 elif class_is_multiarch_p
926 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
928 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
930 if [ "x${formal}" = "xvoid" ]
932 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
934 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
936 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
937 if test -n "${macro}"
939 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
940 printf "#error \"Non multi-arch definition of ${macro}\"\n"
942 if [ "x${actual}" = "x" ]
944 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
945 elif [ "x${actual}" = "x-" ]
947 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
949 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
951 printf "#if !defined (${macro})\n"
952 if [ "x${actual}" = "x" ]
954 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
955 elif [ "x${actual}" = "x-" ]
957 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
959 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
969 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
972 /* Mechanism for co-ordinating the selection of a specific
975 GDB targets (*-tdep.c) can register an interest in a specific
976 architecture. Other GDB components can register a need to maintain
977 per-architecture data.
979 The mechanisms below ensures that there is only a loose connection
980 between the set-architecture command and the various GDB
981 components. Each component can independently register their need
982 to maintain architecture specific data with gdbarch.
986 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
989 The more traditional mega-struct containing architecture specific
990 data for all the various GDB components was also considered. Since
991 GDB is built from a variable number of (fairly independent)
992 components it was determined that the global aproach was not
996 /* Register a new architectural family with GDB.
998 Register support for the specified ARCHITECTURE with GDB. When
999 gdbarch determines that the specified architecture has been
1000 selected, the corresponding INIT function is called.
1004 The INIT function takes two parameters: INFO which contains the
1005 information available to gdbarch about the (possibly new)
1006 architecture; ARCHES which is a list of the previously created
1007 \`\`struct gdbarch'' for this architecture.
1009 The INFO parameter is, as far as possible, be pre-initialized with
1010 information obtained from INFO.ABFD or the previously selected
1013 The ARCHES parameter is a linked list (sorted most recently used)
1014 of all the previously created architures for this architecture
1015 family. The (possibly NULL) ARCHES->gdbarch can used to access
1016 values from the previously selected architecture for this
1017 architecture family. The global \`\`current_gdbarch'' shall not be
1020 The INIT function shall return any of: NULL - indicating that it
1021 doesn't recognize the selected architecture; an existing \`\`struct
1022 gdbarch'' from the ARCHES list - indicating that the new
1023 architecture is just a synonym for an earlier architecture (see
1024 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1025 - that describes the selected architecture (see gdbarch_alloc()).
1027 The DUMP_TDEP function shall print out all target specific values.
1028 Care should be taken to ensure that the function works in both the
1029 multi-arch and non- multi-arch cases. */
1033 struct gdbarch *gdbarch;
1034 struct gdbarch_list *next;
1039 /* Use default: NULL (ZERO). */
1040 const struct bfd_arch_info *bfd_arch_info;
1042 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1045 /* Use default: NULL (ZERO). */
1048 /* Use default: NULL (ZERO). */
1049 struct gdbarch_tdep_info *tdep_info;
1051 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1052 enum gdb_osabi osabi;
1055 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1056 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1058 /* DEPRECATED - use gdbarch_register() */
1059 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1061 extern void gdbarch_register (enum bfd_architecture architecture,
1062 gdbarch_init_ftype *,
1063 gdbarch_dump_tdep_ftype *);
1066 /* Return a freshly allocated, NULL terminated, array of the valid
1067 architecture names. Since architectures are registered during the
1068 _initialize phase this function only returns useful information
1069 once initialization has been completed. */
1071 extern const char **gdbarch_printable_names (void);
1074 /* Helper function. Search the list of ARCHES for a GDBARCH that
1075 matches the information provided by INFO. */
1077 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1080 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1081 basic initialization using values obtained from the INFO andTDEP
1082 parameters. set_gdbarch_*() functions are called to complete the
1083 initialization of the object. */
1085 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1088 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1089 It is assumed that the caller freeds the \`\`struct
1092 extern void gdbarch_free (struct gdbarch *);
1095 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1096 obstack. The memory is freed when the corresponding architecture
1099 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1100 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1101 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1104 /* Helper function. Force an update of the current architecture.
1106 The actual architecture selected is determined by INFO, \`\`(gdb) set
1107 architecture'' et.al., the existing architecture and BFD's default
1108 architecture. INFO should be initialized to zero and then selected
1109 fields should be updated.
1111 Returns non-zero if the update succeeds */
1113 extern int gdbarch_update_p (struct gdbarch_info info);
1116 /* Helper function. Find an architecture matching info.
1118 INFO should be initialized using gdbarch_info_init, relevant fields
1119 set, and then finished using gdbarch_info_fill.
1121 Returns the corresponding architecture, or NULL if no matching
1122 architecture was found. "current_gdbarch" is not updated. */
1124 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1127 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1129 FIXME: kettenis/20031124: Of the functions that follow, only
1130 gdbarch_from_bfd is supposed to survive. The others will
1131 dissappear since in the future GDB will (hopefully) be truly
1132 multi-arch. However, for now we're still stuck with the concept of
1133 a single active architecture. */
1135 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1138 /* Register per-architecture data-pointer.
1140 Reserve space for a per-architecture data-pointer. An identifier
1141 for the reserved data-pointer is returned. That identifer should
1142 be saved in a local static variable.
1144 Memory for the per-architecture data shall be allocated using
1145 gdbarch_obstack_zalloc. That memory will be deleted when the
1146 corresponding architecture object is deleted.
1148 When a previously created architecture is re-selected, the
1149 per-architecture data-pointer for that previous architecture is
1150 restored. INIT() is not re-called.
1152 Multiple registrarants for any architecture are allowed (and
1153 strongly encouraged). */
1155 struct gdbarch_data;
1157 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1158 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1159 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1160 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1161 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1162 struct gdbarch_data *data,
1165 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1169 /* Register per-architecture memory region.
1171 Provide a memory-region swap mechanism. Per-architecture memory
1172 region are created. These memory regions are swapped whenever the
1173 architecture is changed. For a new architecture, the memory region
1174 is initialized with zero (0) and the INIT function is called.
1176 Memory regions are swapped / initialized in the order that they are
1177 registered. NULL DATA and/or INIT values can be specified.
1179 New code should use gdbarch_data_register_*(). */
1181 typedef void (gdbarch_swap_ftype) (void);
1182 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1183 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1187 /* Set the dynamic target-system-dependent parameters (architecture,
1188 byte-order, ...) using information found in the BFD */
1190 extern void set_gdbarch_from_file (bfd *);
1193 /* Initialize the current architecture to the "first" one we find on
1196 extern void initialize_current_architecture (void);
1198 /* gdbarch trace variable */
1199 extern int gdbarch_debug;
1201 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1206 #../move-if-change new-gdbarch.h gdbarch.h
1207 compare_new gdbarch.h
1214 exec > new-gdbarch.c
1219 #include "arch-utils.h"
1222 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1225 #include "floatformat.h"
1227 #include "gdb_assert.h"
1228 #include "gdb_string.h"
1229 #include "gdb-events.h"
1230 #include "reggroups.h"
1232 #include "gdb_obstack.h"
1234 /* Static function declarations */
1236 static void alloc_gdbarch_data (struct gdbarch *);
1238 /* Non-zero if we want to trace architecture code. */
1240 #ifndef GDBARCH_DEBUG
1241 #define GDBARCH_DEBUG 0
1243 int gdbarch_debug = GDBARCH_DEBUG;
1247 # gdbarch open the gdbarch object
1249 printf "/* Maintain the struct gdbarch object */\n"
1251 printf "struct gdbarch\n"
1253 printf " /* Has this architecture been fully initialized? */\n"
1254 printf " int initialized_p;\n"
1256 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1257 printf " struct obstack *obstack;\n"
1259 printf " /* basic architectural information */\n"
1260 function_list | while do_read
1264 printf " ${returntype} ${function};\n"
1268 printf " /* target specific vector. */\n"
1269 printf " struct gdbarch_tdep *tdep;\n"
1270 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1272 printf " /* per-architecture data-pointers */\n"
1273 printf " unsigned nr_data;\n"
1274 printf " void **data;\n"
1276 printf " /* per-architecture swap-regions */\n"
1277 printf " struct gdbarch_swap *swap;\n"
1280 /* Multi-arch values.
1282 When extending this structure you must:
1284 Add the field below.
1286 Declare set/get functions and define the corresponding
1289 gdbarch_alloc(): If zero/NULL is not a suitable default,
1290 initialize the new field.
1292 verify_gdbarch(): Confirm that the target updated the field
1295 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1298 \`\`startup_gdbarch()'': Append an initial value to the static
1299 variable (base values on the host's c-type system).
1301 get_gdbarch(): Implement the set/get functions (probably using
1302 the macro's as shortcuts).
1307 function_list | while do_read
1309 if class_is_variable_p
1311 printf " ${returntype} ${function};\n"
1312 elif class_is_function_p
1314 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1319 # A pre-initialized vector
1323 /* The default architecture uses host values (for want of a better
1327 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1329 printf "struct gdbarch startup_gdbarch =\n"
1331 printf " 1, /* Always initialized. */\n"
1332 printf " NULL, /* The obstack. */\n"
1333 printf " /* basic architecture information */\n"
1334 function_list | while do_read
1338 printf " ${staticdefault}, /* ${function} */\n"
1342 /* target specific vector and its dump routine */
1344 /*per-architecture data-pointers and swap regions */
1346 /* Multi-arch values */
1348 function_list | while do_read
1350 if class_is_function_p || class_is_variable_p
1352 printf " ${staticdefault}, /* ${function} */\n"
1356 /* startup_gdbarch() */
1359 struct gdbarch *current_gdbarch = &startup_gdbarch;
1362 # Create a new gdbarch struct
1365 /* Create a new \`\`struct gdbarch'' based on information provided by
1366 \`\`struct gdbarch_info''. */
1371 gdbarch_alloc (const struct gdbarch_info *info,
1372 struct gdbarch_tdep *tdep)
1374 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1375 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1376 the current local architecture and not the previous global
1377 architecture. This ensures that the new architectures initial
1378 values are not influenced by the previous architecture. Once
1379 everything is parameterised with gdbarch, this will go away. */
1380 struct gdbarch *current_gdbarch;
1382 /* Create an obstack for allocating all the per-architecture memory,
1383 then use that to allocate the architecture vector. */
1384 struct obstack *obstack = XMALLOC (struct obstack);
1385 obstack_init (obstack);
1386 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1387 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1388 current_gdbarch->obstack = obstack;
1390 alloc_gdbarch_data (current_gdbarch);
1392 current_gdbarch->tdep = tdep;
1395 function_list | while do_read
1399 printf " current_gdbarch->${function} = info->${function};\n"
1403 printf " /* Force the explicit initialization of these. */\n"
1404 function_list | while do_read
1406 if class_is_function_p || class_is_variable_p
1408 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1410 printf " current_gdbarch->${function} = ${predefault};\n"
1415 /* gdbarch_alloc() */
1417 return current_gdbarch;
1421 # Free a gdbarch struct.
1425 /* Allocate extra space using the per-architecture obstack. */
1428 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1430 void *data = obstack_alloc (arch->obstack, size);
1431 memset (data, 0, size);
1436 /* Free a gdbarch struct. This should never happen in normal
1437 operation --- once you've created a gdbarch, you keep it around.
1438 However, if an architecture's init function encounters an error
1439 building the structure, it may need to clean up a partially
1440 constructed gdbarch. */
1443 gdbarch_free (struct gdbarch *arch)
1445 struct obstack *obstack;
1446 gdb_assert (arch != NULL);
1447 gdb_assert (!arch->initialized_p);
1448 obstack = arch->obstack;
1449 obstack_free (obstack, 0); /* Includes the ARCH. */
1454 # verify a new architecture
1458 /* Ensure that all values in a GDBARCH are reasonable. */
1460 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1461 just happens to match the global variable \`\`current_gdbarch''. That
1462 way macros refering to that variable get the local and not the global
1463 version - ulgh. Once everything is parameterised with gdbarch, this
1467 verify_gdbarch (struct gdbarch *current_gdbarch)
1469 struct ui_file *log;
1470 struct cleanup *cleanups;
1473 log = mem_fileopen ();
1474 cleanups = make_cleanup_ui_file_delete (log);
1476 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1477 fprintf_unfiltered (log, "\n\tbyte-order");
1478 if (current_gdbarch->bfd_arch_info == NULL)
1479 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1480 /* Check those that need to be defined for the given multi-arch level. */
1482 function_list | while do_read
1484 if class_is_function_p || class_is_variable_p
1486 if [ "x${invalid_p}" = "x0" ]
1488 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1489 elif class_is_predicate_p
1491 printf " /* Skip verify of ${function}, has predicate */\n"
1492 # FIXME: See do_read for potential simplification
1493 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1495 printf " if (${invalid_p})\n"
1496 printf " current_gdbarch->${function} = ${postdefault};\n"
1497 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1499 printf " if (current_gdbarch->${function} == ${predefault})\n"
1500 printf " current_gdbarch->${function} = ${postdefault};\n"
1501 elif [ -n "${postdefault}" ]
1503 printf " if (current_gdbarch->${function} == 0)\n"
1504 printf " current_gdbarch->${function} = ${postdefault};\n"
1505 elif [ -n "${invalid_p}" ]
1507 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1508 printf " && (${invalid_p}))\n"
1509 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1510 elif [ -n "${predefault}" ]
1512 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1513 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1514 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1519 buf = ui_file_xstrdup (log, &dummy);
1520 make_cleanup (xfree, buf);
1521 if (strlen (buf) > 0)
1522 internal_error (__FILE__, __LINE__,
1523 "verify_gdbarch: the following are invalid ...%s",
1525 do_cleanups (cleanups);
1529 # dump the structure
1533 /* Print out the details of the current architecture. */
1535 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1536 just happens to match the global variable \`\`current_gdbarch''. That
1537 way macros refering to that variable get the local and not the global
1538 version - ulgh. Once everything is parameterised with gdbarch, this
1542 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1544 fprintf_unfiltered (file,
1545 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1548 function_list | sort -t: -k 4 | while do_read
1550 # First the predicate
1551 if class_is_predicate_p
1553 if test -n "${macro}"
1555 printf "#ifdef ${macro}_P\n"
1556 printf " fprintf_unfiltered (file,\n"
1557 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1558 printf " \"${macro}_P()\",\n"
1559 printf " XSTRING (${macro}_P ()));\n"
1562 printf " fprintf_unfiltered (file,\n"
1563 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1564 printf " gdbarch_${function}_p (current_gdbarch));\n"
1566 # Print the macro definition.
1567 if test -n "${macro}"
1569 printf "#ifdef ${macro}\n"
1570 if class_is_function_p
1572 printf " fprintf_unfiltered (file,\n"
1573 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1574 printf " \"${macro}(${actual})\",\n"
1575 printf " XSTRING (${macro} (${actual})));\n"
1577 printf " fprintf_unfiltered (file,\n"
1578 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1579 printf " XSTRING (${macro}));\n"
1583 # Print the corresponding value.
1584 if class_is_function_p
1586 printf " fprintf_unfiltered (file,\n"
1587 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1588 printf " (long) current_gdbarch->${function});\n"
1591 case "${fmt}:${print}:${returntype}" in
1594 print="paddr_nz (current_gdbarch->${function})"
1598 print="paddr_d (current_gdbarch->${function})"
1601 test "${fmt}" || fmt="%ld"
1602 test "${print}" || print="(long) (current_gdbarch->${function})"
1605 printf " fprintf_unfiltered (file,\n"
1606 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1607 printf " ${print});\n"
1611 if (current_gdbarch->dump_tdep != NULL)
1612 current_gdbarch->dump_tdep (current_gdbarch, file);
1620 struct gdbarch_tdep *
1621 gdbarch_tdep (struct gdbarch *gdbarch)
1623 if (gdbarch_debug >= 2)
1624 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1625 return gdbarch->tdep;
1629 function_list | while do_read
1631 if class_is_predicate_p
1635 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1637 printf " gdb_assert (gdbarch != NULL);\n"
1638 printf " return ${predicate};\n"
1641 if class_is_function_p
1644 printf "${returntype}\n"
1645 if [ "x${formal}" = "xvoid" ]
1647 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1649 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1652 printf " gdb_assert (gdbarch != NULL);\n"
1653 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1654 if class_is_predicate_p && test -n "${predefault}"
1656 # Allow a call to a function with a predicate.
1657 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1659 printf " if (gdbarch_debug >= 2)\n"
1660 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1661 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1663 if class_is_multiarch_p
1670 if class_is_multiarch_p
1672 params="gdbarch, ${actual}"
1677 if [ "x${returntype}" = "xvoid" ]
1679 printf " gdbarch->${function} (${params});\n"
1681 printf " return gdbarch->${function} (${params});\n"
1686 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1687 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1689 printf " gdbarch->${function} = ${function};\n"
1691 elif class_is_variable_p
1694 printf "${returntype}\n"
1695 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1697 printf " gdb_assert (gdbarch != NULL);\n"
1698 if [ "x${invalid_p}" = "x0" ]
1700 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1701 elif [ -n "${invalid_p}" ]
1703 printf " /* Check variable is valid. */\n"
1704 printf " gdb_assert (!(${invalid_p}));\n"
1705 elif [ -n "${predefault}" ]
1707 printf " /* Check variable changed from pre-default. */\n"
1708 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1710 printf " if (gdbarch_debug >= 2)\n"
1711 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1712 printf " return gdbarch->${function};\n"
1716 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1717 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1719 printf " gdbarch->${function} = ${function};\n"
1721 elif class_is_info_p
1724 printf "${returntype}\n"
1725 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1727 printf " gdb_assert (gdbarch != NULL);\n"
1728 printf " if (gdbarch_debug >= 2)\n"
1729 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1730 printf " return gdbarch->${function};\n"
1735 # All the trailing guff
1739 /* Keep a registry of per-architecture data-pointers required by GDB
1746 gdbarch_data_pre_init_ftype *pre_init;
1747 gdbarch_data_post_init_ftype *post_init;
1750 struct gdbarch_data_registration
1752 struct gdbarch_data *data;
1753 struct gdbarch_data_registration *next;
1756 struct gdbarch_data_registry
1759 struct gdbarch_data_registration *registrations;
1762 struct gdbarch_data_registry gdbarch_data_registry =
1767 static struct gdbarch_data *
1768 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1769 gdbarch_data_post_init_ftype *post_init)
1771 struct gdbarch_data_registration **curr;
1772 /* Append the new registraration. */
1773 for (curr = &gdbarch_data_registry.registrations;
1775 curr = &(*curr)->next);
1776 (*curr) = XMALLOC (struct gdbarch_data_registration);
1777 (*curr)->next = NULL;
1778 (*curr)->data = XMALLOC (struct gdbarch_data);
1779 (*curr)->data->index = gdbarch_data_registry.nr++;
1780 (*curr)->data->pre_init = pre_init;
1781 (*curr)->data->post_init = post_init;
1782 (*curr)->data->init_p = 1;
1783 return (*curr)->data;
1786 struct gdbarch_data *
1787 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1789 return gdbarch_data_register (pre_init, NULL);
1792 struct gdbarch_data *
1793 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1795 return gdbarch_data_register (NULL, post_init);
1798 /* Create/delete the gdbarch data vector. */
1801 alloc_gdbarch_data (struct gdbarch *gdbarch)
1803 gdb_assert (gdbarch->data == NULL);
1804 gdbarch->nr_data = gdbarch_data_registry.nr;
1805 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1808 /* Initialize the current value of the specified per-architecture
1812 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1813 struct gdbarch_data *data,
1816 gdb_assert (data->index < gdbarch->nr_data);
1817 gdb_assert (gdbarch->data[data->index] == NULL);
1818 gdb_assert (data->pre_init == NULL);
1819 gdbarch->data[data->index] = pointer;
1822 /* Return the current value of the specified per-architecture
1826 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1828 gdb_assert (data->index < gdbarch->nr_data);
1829 if (gdbarch->data[data->index] == NULL)
1831 /* The data-pointer isn't initialized, call init() to get a
1833 if (data->pre_init != NULL)
1834 /* Mid architecture creation: pass just the obstack, and not
1835 the entire architecture, as that way it isn't possible for
1836 pre-init code to refer to undefined architecture
1838 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1839 else if (gdbarch->initialized_p
1840 && data->post_init != NULL)
1841 /* Post architecture creation: pass the entire architecture
1842 (as all fields are valid), but be careful to also detect
1843 recursive references. */
1845 gdb_assert (data->init_p);
1847 gdbarch->data[data->index] = data->post_init (gdbarch);
1851 /* The architecture initialization hasn't completed - punt -
1852 hope that the caller knows what they are doing. Once
1853 deprecated_set_gdbarch_data has been initialized, this can be
1854 changed to an internal error. */
1856 gdb_assert (gdbarch->data[data->index] != NULL);
1858 return gdbarch->data[data->index];
1863 /* Keep a registry of swapped data required by GDB modules. */
1868 struct gdbarch_swap_registration *source;
1869 struct gdbarch_swap *next;
1872 struct gdbarch_swap_registration
1875 unsigned long sizeof_data;
1876 gdbarch_swap_ftype *init;
1877 struct gdbarch_swap_registration *next;
1880 struct gdbarch_swap_registry
1883 struct gdbarch_swap_registration *registrations;
1886 struct gdbarch_swap_registry gdbarch_swap_registry =
1892 deprecated_register_gdbarch_swap (void *data,
1893 unsigned long sizeof_data,
1894 gdbarch_swap_ftype *init)
1896 struct gdbarch_swap_registration **rego;
1897 for (rego = &gdbarch_swap_registry.registrations;
1899 rego = &(*rego)->next);
1900 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1901 (*rego)->next = NULL;
1902 (*rego)->init = init;
1903 (*rego)->data = data;
1904 (*rego)->sizeof_data = sizeof_data;
1908 current_gdbarch_swap_init_hack (void)
1910 struct gdbarch_swap_registration *rego;
1911 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1912 for (rego = gdbarch_swap_registry.registrations;
1916 if (rego->data != NULL)
1918 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1919 struct gdbarch_swap);
1920 (*curr)->source = rego;
1921 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1923 (*curr)->next = NULL;
1924 curr = &(*curr)->next;
1926 if (rego->init != NULL)
1931 static struct gdbarch *
1932 current_gdbarch_swap_out_hack (void)
1934 struct gdbarch *old_gdbarch = current_gdbarch;
1935 struct gdbarch_swap *curr;
1937 gdb_assert (old_gdbarch != NULL);
1938 for (curr = old_gdbarch->swap;
1942 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1943 memset (curr->source->data, 0, curr->source->sizeof_data);
1945 current_gdbarch = NULL;
1950 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1952 struct gdbarch_swap *curr;
1954 gdb_assert (current_gdbarch == NULL);
1955 for (curr = new_gdbarch->swap;
1958 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1959 current_gdbarch = new_gdbarch;
1963 /* Keep a registry of the architectures known by GDB. */
1965 struct gdbarch_registration
1967 enum bfd_architecture bfd_architecture;
1968 gdbarch_init_ftype *init;
1969 gdbarch_dump_tdep_ftype *dump_tdep;
1970 struct gdbarch_list *arches;
1971 struct gdbarch_registration *next;
1974 static struct gdbarch_registration *gdbarch_registry = NULL;
1977 append_name (const char ***buf, int *nr, const char *name)
1979 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1985 gdbarch_printable_names (void)
1987 /* Accumulate a list of names based on the registed list of
1989 enum bfd_architecture a;
1991 const char **arches = NULL;
1992 struct gdbarch_registration *rego;
1993 for (rego = gdbarch_registry;
1997 const struct bfd_arch_info *ap;
1998 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2000 internal_error (__FILE__, __LINE__,
2001 "gdbarch_architecture_names: multi-arch unknown");
2004 append_name (&arches, &nr_arches, ap->printable_name);
2009 append_name (&arches, &nr_arches, NULL);
2015 gdbarch_register (enum bfd_architecture bfd_architecture,
2016 gdbarch_init_ftype *init,
2017 gdbarch_dump_tdep_ftype *dump_tdep)
2019 struct gdbarch_registration **curr;
2020 const struct bfd_arch_info *bfd_arch_info;
2021 /* Check that BFD recognizes this architecture */
2022 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2023 if (bfd_arch_info == NULL)
2025 internal_error (__FILE__, __LINE__,
2026 "gdbarch: Attempt to register unknown architecture (%d)",
2029 /* Check that we haven't seen this architecture before */
2030 for (curr = &gdbarch_registry;
2032 curr = &(*curr)->next)
2034 if (bfd_architecture == (*curr)->bfd_architecture)
2035 internal_error (__FILE__, __LINE__,
2036 "gdbarch: Duplicate registraration of architecture (%s)",
2037 bfd_arch_info->printable_name);
2041 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2042 bfd_arch_info->printable_name,
2045 (*curr) = XMALLOC (struct gdbarch_registration);
2046 (*curr)->bfd_architecture = bfd_architecture;
2047 (*curr)->init = init;
2048 (*curr)->dump_tdep = dump_tdep;
2049 (*curr)->arches = NULL;
2050 (*curr)->next = NULL;
2054 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2055 gdbarch_init_ftype *init)
2057 gdbarch_register (bfd_architecture, init, NULL);
2061 /* Look for an architecture using gdbarch_info. Base search on only
2062 BFD_ARCH_INFO and BYTE_ORDER. */
2064 struct gdbarch_list *
2065 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2066 const struct gdbarch_info *info)
2068 for (; arches != NULL; arches = arches->next)
2070 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2072 if (info->byte_order != arches->gdbarch->byte_order)
2074 if (info->osabi != arches->gdbarch->osabi)
2082 /* Find an architecture that matches the specified INFO. Create a new
2083 architecture if needed. Return that new architecture. Assumes
2084 that there is no current architecture. */
2086 static struct gdbarch *
2087 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2089 struct gdbarch *new_gdbarch;
2090 struct gdbarch_registration *rego;
2092 /* The existing architecture has been swapped out - all this code
2093 works from a clean slate. */
2094 gdb_assert (current_gdbarch == NULL);
2096 /* Fill in missing parts of the INFO struct using a number of
2097 sources: "set ..."; INFOabfd supplied; and the existing
2099 gdbarch_info_fill (old_gdbarch, &info);
2101 /* Must have found some sort of architecture. */
2102 gdb_assert (info.bfd_arch_info != NULL);
2106 fprintf_unfiltered (gdb_stdlog,
2107 "find_arch_by_info: info.bfd_arch_info %s\n",
2108 (info.bfd_arch_info != NULL
2109 ? info.bfd_arch_info->printable_name
2111 fprintf_unfiltered (gdb_stdlog,
2112 "find_arch_by_info: info.byte_order %d (%s)\n",
2114 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2115 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2117 fprintf_unfiltered (gdb_stdlog,
2118 "find_arch_by_info: info.osabi %d (%s)\n",
2119 info.osabi, gdbarch_osabi_name (info.osabi));
2120 fprintf_unfiltered (gdb_stdlog,
2121 "find_arch_by_info: info.abfd 0x%lx\n",
2123 fprintf_unfiltered (gdb_stdlog,
2124 "find_arch_by_info: info.tdep_info 0x%lx\n",
2125 (long) info.tdep_info);
2128 /* Find the tdep code that knows about this architecture. */
2129 for (rego = gdbarch_registry;
2132 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2137 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2138 "No matching architecture\n");
2142 /* Ask the tdep code for an architecture that matches "info". */
2143 new_gdbarch = rego->init (info, rego->arches);
2145 /* Did the tdep code like it? No. Reject the change and revert to
2146 the old architecture. */
2147 if (new_gdbarch == NULL)
2150 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2151 "Target rejected architecture\n");
2155 /* Is this a pre-existing architecture (as determined by already
2156 being initialized)? Move it to the front of the architecture
2157 list (keeping the list sorted Most Recently Used). */
2158 if (new_gdbarch->initialized_p)
2160 struct gdbarch_list **list;
2161 struct gdbarch_list *this;
2163 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2164 "Previous architecture 0x%08lx (%s) selected\n",
2166 new_gdbarch->bfd_arch_info->printable_name);
2167 /* Find the existing arch in the list. */
2168 for (list = ®o->arches;
2169 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2170 list = &(*list)->next);
2171 /* It had better be in the list of architectures. */
2172 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2175 (*list) = this->next;
2176 /* Insert THIS at the front. */
2177 this->next = rego->arches;
2178 rego->arches = this;
2183 /* It's a new architecture. */
2185 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2186 "New architecture 0x%08lx (%s) selected\n",
2188 new_gdbarch->bfd_arch_info->printable_name);
2190 /* Insert the new architecture into the front of the architecture
2191 list (keep the list sorted Most Recently Used). */
2193 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2194 this->next = rego->arches;
2195 this->gdbarch = new_gdbarch;
2196 rego->arches = this;
2199 /* Check that the newly installed architecture is valid. Plug in
2200 any post init values. */
2201 new_gdbarch->dump_tdep = rego->dump_tdep;
2202 verify_gdbarch (new_gdbarch);
2203 new_gdbarch->initialized_p = 1;
2205 /* Initialize any per-architecture swap areas. This phase requires
2206 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2207 swap the entire architecture out. */
2208 current_gdbarch = new_gdbarch;
2209 current_gdbarch_swap_init_hack ();
2210 current_gdbarch_swap_out_hack ();
2213 gdbarch_dump (new_gdbarch, gdb_stdlog);
2219 gdbarch_find_by_info (struct gdbarch_info info)
2221 /* Save the previously selected architecture, setting the global to
2222 NULL. This stops things like gdbarch->init() trying to use the
2223 previous architecture's configuration. The previous architecture
2224 may not even be of the same architecture family. The most recent
2225 architecture of the same family is found at the head of the
2226 rego->arches list. */
2227 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2229 /* Find the specified architecture. */
2230 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2232 /* Restore the existing architecture. */
2233 gdb_assert (current_gdbarch == NULL);
2234 current_gdbarch_swap_in_hack (old_gdbarch);
2239 /* Make the specified architecture current, swapping the existing one
2243 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2245 gdb_assert (new_gdbarch != NULL);
2246 gdb_assert (current_gdbarch != NULL);
2247 gdb_assert (new_gdbarch->initialized_p);
2248 current_gdbarch_swap_out_hack ();
2249 current_gdbarch_swap_in_hack (new_gdbarch);
2250 architecture_changed_event ();
2253 extern void _initialize_gdbarch (void);
2256 _initialize_gdbarch (void)
2258 struct cmd_list_element *c;
2260 deprecated_add_show_from_set
2261 (add_set_cmd ("arch",
2264 (char *)&gdbarch_debug,
2265 "Set architecture debugging.\\n\\
2266 When non-zero, architecture debugging is enabled.", &setdebuglist),
2268 c = add_set_cmd ("archdebug",
2271 (char *)&gdbarch_debug,
2272 "Set architecture debugging.\\n\\
2273 When non-zero, architecture debugging is enabled.", &setlist);
2275 deprecate_cmd (c, "set debug arch");
2276 deprecate_cmd (deprecated_add_show_from_set (c, &showlist), "show debug arch");
2282 #../move-if-change new-gdbarch.c gdbarch.c
2283 compare_new gdbarch.c