3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2019 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
103 case "${invalid_p}" in
105 if test -n "${predefault}"
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
114 predicate="gdbarch->${function} != NULL"
118 echo "Predicate function ${function} with invalid_p." 1>&2
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
132 if [ -n "${postdefault}" ]
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
137 fallbackdefault="${predefault}"
142 #NOT YET: See gdbarch.log for basic verification of
157 fallback_default_p ()
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 class_is_variable_p ()
171 class_is_function_p ()
174 *f* | *F* | *m* | *M* ) true ;;
179 class_is_multiarch_p ()
187 class_is_predicate_p ()
190 *F* | *V* | *M* ) true ;;
204 # dump out/verify the doco
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
229 # For functions, the return type; for variables, the data type
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
257 # If STATICDEFAULT is empty, zero is used.
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
266 # If PREDEFAULT is empty, zero is used.
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
272 # A zero PREDEFAULT function will force the fallback to call
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
284 # If POSTDEFAULT is empty, no post update is performed.
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
316 # See also PREDEFAULT and POSTDEFAULT.
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
326 garbage_at_eol ) : ;;
328 # Catches stray fields.
331 echo "Bad field ${field}"
339 # See below (DOCO) for description of each field
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
364 # The ABI default bit-size and format for "half", "float", "double", and
365 # "long double". These bit/format pairs should eventually be combined
366 # into a single object. For the moment, just initialize them as a pair.
367 # Each format describes both the big and little endian layouts (if
370 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
379 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380 # starting with C++11.
381 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
382 # One if \`wchar_t' is signed, zero if unsigned.
383 v;int;wchar_signed;;;1;-1;1
385 # Returns the floating-point format to be used for values of length LENGTH.
386 # NAME, if non-NULL, is the type name, which may be used to distinguish
387 # different target formats of the same length.
388 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
390 # For most targets, a pointer on the target and its representation as an
391 # address in GDB have the same size and "look the same". For such a
392 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
393 # / addr_bit will be set from it.
395 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
396 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397 # gdbarch_address_to_pointer as well.
399 # ptr_bit is the size of a pointer on the target
400 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
401 # addr_bit is the size of a target address as represented in gdb
402 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
404 # dwarf2_addr_size is the target address size as used in the Dwarf debug
405 # info. For .debug_frame FDEs, this is supposed to be the target address
406 # size from the associated CU header, and which is equivalent to the
407 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408 # Unfortunately there is no good way to determine this value. Therefore
409 # dwarf2_addr_size simply defaults to the target pointer size.
411 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412 # defined using the target's pointer size so far.
414 # Note that dwarf2_addr_size only needs to be redefined by a target if the
415 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416 # and if Dwarf versions < 4 need to be supported.
417 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
419 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
420 v;int;char_signed;;;1;-1;1
422 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
423 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
427 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
429 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
430 # Read a register into a new struct value. If the register is wholly
431 # or partly unavailable, this should call mark_value_bytes_unavailable
432 # as appropriate. If this is defined, then pseudo_register_read will
434 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
435 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
437 v;int;num_regs;;;0;-1
438 # This macro gives the number of pseudo-registers that live in the
439 # register namespace but do not get fetched or stored on the target.
440 # These pseudo-registers may be aliases for other registers,
441 # combinations of other registers, or they may be computed by GDB.
442 v;int;num_pseudo_regs;;;0;0;;0
444 # Assemble agent expression bytecode to collect pseudo-register REG.
445 # Return -1 if something goes wrong, 0 otherwise.
446 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
448 # Assemble agent expression bytecode to push the value of pseudo-register
449 # REG on the interpreter stack.
450 # Return -1 if something goes wrong, 0 otherwise.
451 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
453 # Some targets/architectures can do extra processing/display of
454 # segmentation faults. E.g., Intel MPX boundary faults.
455 # Call the architecture dependent function to handle the fault.
456 # UIOUT is the output stream where the handler will place information.
457 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
459 # GDB's standard (or well known) register numbers. These can map onto
460 # a real register or a pseudo (computed) register or not be defined at
462 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
463 v;int;sp_regnum;;;-1;-1;;0
464 v;int;pc_regnum;;;-1;-1;;0
465 v;int;ps_regnum;;;-1;-1;;0
466 v;int;fp0_regnum;;;0;-1;;0
467 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
468 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
469 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
470 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
471 # Convert from an sdb register number to an internal gdb register number.
472 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
473 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
474 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
475 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476 m;const char *;register_name;int regnr;regnr;;0
478 # Return the type of a register specified by the architecture. Only
479 # the register cache should call this function directly; others should
480 # use "register_type".
481 M;struct type *;register_type;int reg_nr;reg_nr
483 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
484 # a dummy frame. A dummy frame is created before an inferior call,
485 # the frame_id returned here must match the frame_id that was built
486 # for the inferior call. Usually this means the returned frame_id's
487 # stack address should match the address returned by
488 # gdbarch_push_dummy_call, and the returned frame_id's code address
489 # should match the address at which the breakpoint was set in the dummy
491 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
492 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
493 # deprecated_fp_regnum.
494 v;int;deprecated_fp_regnum;;;-1;-1;;0
496 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
497 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
498 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
500 # Return true if the code of FRAME is writable.
501 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
503 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
504 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
505 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
506 # MAP a GDB RAW register number onto a simulator register number. See
507 # also include/...-sim.h.
508 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
509 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
510 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
512 # Determine the address where a longjmp will land and save this address
513 # in PC. Return nonzero on success.
515 # FRAME corresponds to the longjmp frame.
516 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
519 v;int;believe_pcc_promotion;;;;;;;
521 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
522 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
523 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
524 # Construct a value representing the contents of register REGNUM in
525 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
526 # allocate and return a struct value with all value attributes
527 # (but not the value contents) filled in.
528 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
530 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
531 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
532 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
534 # Return the return-value convention that will be used by FUNCTION
535 # to return a value of type VALTYPE. FUNCTION may be NULL in which
536 # case the return convention is computed based only on VALTYPE.
538 # If READBUF is not NULL, extract the return value and save it in this buffer.
540 # If WRITEBUF is not NULL, it contains a return value which will be
541 # stored into the appropriate register. This can be used when we want
542 # to force the value returned by a function (see the "return" command
544 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
546 # Return true if the return value of function is stored in the first hidden
547 # parameter. In theory, this feature should be language-dependent, specified
548 # by language and its ABI, such as C++. Unfortunately, compiler may
549 # implement it to a target-dependent feature. So that we need such hook here
550 # to be aware of this in GDB.
551 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
553 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
554 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
555 # On some platforms, a single function may provide multiple entry points,
556 # e.g. one that is used for function-pointer calls and a different one
557 # that is used for direct function calls.
558 # In order to ensure that breakpoints set on the function will trigger
559 # no matter via which entry point the function is entered, a platform
560 # may provide the skip_entrypoint callback. It is called with IP set
561 # to the main entry point of a function (as determined by the symbol table),
562 # and should return the address of the innermost entry point, where the
563 # actual breakpoint needs to be set. Note that skip_entrypoint is used
564 # by GDB common code even when debugging optimized code, where skip_prologue
566 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
568 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
569 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
571 # Return the breakpoint kind for this target based on *PCPTR.
572 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
574 # Return the software breakpoint from KIND. KIND can have target
575 # specific meaning like the Z0 kind parameter.
576 # SIZE is set to the software breakpoint's length in memory.
577 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
579 # Return the breakpoint kind for this target based on the current
580 # processor state (e.g. the current instruction mode on ARM) and the
581 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
582 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
584 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
585 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
586 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
587 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
589 # A function can be addressed by either it's "pointer" (possibly a
590 # descriptor address) or "entry point" (first executable instruction).
591 # The method "convert_from_func_ptr_addr" converting the former to the
592 # latter. gdbarch_deprecated_function_start_offset is being used to implement
593 # a simplified subset of that functionality - the function's address
594 # corresponds to the "function pointer" and the function's start
595 # corresponds to the "function entry point" - and hence is redundant.
597 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
599 # Return the remote protocol register number associated with this
600 # register. Normally the identity mapping.
601 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
603 # Fetch the target specific address used to represent a load module.
604 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
606 v;CORE_ADDR;frame_args_skip;;;0;;;0
607 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
608 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
609 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
610 # frame-base. Enable frame-base before frame-unwind.
611 F;int;frame_num_args;struct frame_info *frame;frame
613 M;CORE_ADDR;frame_align;CORE_ADDR address;address
614 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
615 v;int;frame_red_zone_size
617 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
618 # On some machines there are bits in addresses which are not really
619 # part of the address, but are used by the kernel, the hardware, etc.
620 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
621 # we get a "real" address such as one would find in a symbol table.
622 # This is used only for addresses of instructions, and even then I'm
623 # not sure it's used in all contexts. It exists to deal with there
624 # being a few stray bits in the PC which would mislead us, not as some
625 # sort of generic thing to handle alignment or segmentation (it's
626 # possible it should be in TARGET_READ_PC instead).
627 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
629 # On some machines, not all bits of an address word are significant.
630 # For example, on AArch64, the top bits of an address known as the "tag"
631 # are ignored by the kernel, the hardware, etc. and can be regarded as
632 # additional data associated with the address.
633 v;int;significant_addr_bit;;;;;;0
635 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
636 # indicates if the target needs software single step. An ISA method to
639 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
640 # target can single step. If not, then implement single step using breakpoints.
642 # Return a vector of addresses on which the software single step
643 # breakpoints should be inserted. NULL means software single step is
645 # Multiple breakpoints may be inserted for some instructions such as
646 # conditional branch. However, each implementation must always evaluate
647 # the condition and only put the breakpoint at the branch destination if
648 # the condition is true, so that we ensure forward progress when stepping
649 # past a conditional branch to self.
650 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
652 # Return non-zero if the processor is executing a delay slot and a
653 # further single-step is needed before the instruction finishes.
654 M;int;single_step_through_delay;struct frame_info *frame;frame
655 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
656 # disassembler. Perhaps objdump can handle it?
657 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
658 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
661 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
662 # evaluates non-zero, this is the address where the debugger will place
663 # a step-resume breakpoint to get us past the dynamic linker.
664 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
665 # Some systems also have trampoline code for returning from shared libs.
666 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
668 # Return true if PC lies inside an indirect branch thunk.
669 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
671 # A target might have problems with watchpoints as soon as the stack
672 # frame of the current function has been destroyed. This mostly happens
673 # as the first action in a function's epilogue. stack_frame_destroyed_p()
674 # is defined to return a non-zero value if either the given addr is one
675 # instruction after the stack destroying instruction up to the trailing
676 # return instruction or if we can figure out that the stack frame has
677 # already been invalidated regardless of the value of addr. Targets
678 # which don't suffer from that problem could just let this functionality
680 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
681 # Process an ELF symbol in the minimal symbol table in a backend-specific
682 # way. Normally this hook is supposed to do nothing, however if required,
683 # then this hook can be used to apply tranformations to symbols that are
684 # considered special in some way. For example the MIPS backend uses it
685 # to interpret \`st_other' information to mark compressed code symbols so
686 # that they can be treated in the appropriate manner in the processing of
687 # the main symbol table and DWARF-2 records.
688 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
689 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
690 # Process a symbol in the main symbol table in a backend-specific way.
691 # Normally this hook is supposed to do nothing, however if required,
692 # then this hook can be used to apply tranformations to symbols that
693 # are considered special in some way. This is currently used by the
694 # MIPS backend to make sure compressed code symbols have the ISA bit
695 # set. This in turn is needed for symbol values seen in GDB to match
696 # the values used at the runtime by the program itself, for function
697 # and label references.
698 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
699 # Adjust the address retrieved from a DWARF-2 record other than a line
700 # entry in a backend-specific way. Normally this hook is supposed to
701 # return the address passed unchanged, however if that is incorrect for
702 # any reason, then this hook can be used to fix the address up in the
703 # required manner. This is currently used by the MIPS backend to make
704 # sure addresses in FDE, range records, etc. referring to compressed
705 # code have the ISA bit set, matching line information and the symbol
707 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
708 # Adjust the address updated by a line entry in a backend-specific way.
709 # Normally this hook is supposed to return the address passed unchanged,
710 # however in the case of inconsistencies in these records, this hook can
711 # be used to fix them up in the required manner. This is currently used
712 # by the MIPS backend to make sure all line addresses in compressed code
713 # are presented with the ISA bit set, which is not always the case. This
714 # in turn ensures breakpoint addresses are correctly matched against the
716 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
717 v;int;cannot_step_breakpoint;;;0;0;;0
718 # See comment in target.h about continuable, steppable and
719 # non-steppable watchpoints.
720 v;int;have_nonsteppable_watchpoint;;;0;0;;0
721 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
722 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
723 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
724 # FS are passed from the generic execute_cfa_program function.
725 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
727 # Return the appropriate type_flags for the supplied address class.
728 # This function should return 1 if the address class was recognized and
729 # type_flags was set, zero otherwise.
730 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
731 # Is a register in a group
732 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
733 # Fetch the pointer to the ith function argument.
734 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
736 # Iterate over all supported register notes in a core file. For each
737 # supported register note section, the iterator must call CB and pass
738 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
739 # the supported register note sections based on the current register
740 # values. Otherwise it should enumerate all supported register note
742 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
744 # Create core file notes
745 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
747 # Find core file memory regions
748 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
750 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
751 # core file into buffer READBUF with length LEN. Return the number of bytes read
752 # (zero indicates failure).
753 # failed, otherwise, return the red length of READBUF.
754 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
756 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
757 # libraries list from core file into buffer READBUF with length LEN.
758 # Return the number of bytes read (zero indicates failure).
759 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
761 # How the core target converts a PTID from a core file to a string.
762 M;const char *;core_pid_to_str;ptid_t ptid;ptid
764 # How the core target extracts the name of a thread from a core file.
765 M;const char *;core_thread_name;struct thread_info *thr;thr
767 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
768 # from core file into buffer READBUF with length LEN. Return the number
769 # of bytes read (zero indicates EOF, a negative value indicates failure).
770 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
772 # BFD target to use when generating a core file.
773 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
775 # If the elements of C++ vtables are in-place function descriptors rather
776 # than normal function pointers (which may point to code or a descriptor),
778 v;int;vtable_function_descriptors;;;0;0;;0
780 # Set if the least significant bit of the delta is used instead of the least
781 # significant bit of the pfn for pointers to virtual member functions.
782 v;int;vbit_in_delta;;;0;0;;0
784 # Advance PC to next instruction in order to skip a permanent breakpoint.
785 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
787 # The maximum length of an instruction on this architecture in bytes.
788 V;ULONGEST;max_insn_length;;;0;0
790 # Copy the instruction at FROM to TO, and make any adjustments
791 # necessary to single-step it at that address.
793 # REGS holds the state the thread's registers will have before
794 # executing the copied instruction; the PC in REGS will refer to FROM,
795 # not the copy at TO. The caller should update it to point at TO later.
797 # Return a pointer to data of the architecture's choice to be passed
798 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
799 # the instruction's effects have been completely simulated, with the
800 # resulting state written back to REGS.
802 # For a general explanation of displaced stepping and how GDB uses it,
803 # see the comments in infrun.c.
805 # The TO area is only guaranteed to have space for
806 # gdbarch_max_insn_length (arch) bytes, so this function must not
807 # write more bytes than that to that area.
809 # If you do not provide this function, GDB assumes that the
810 # architecture does not support displaced stepping.
812 # If the instruction cannot execute out of line, return NULL. The
813 # core falls back to stepping past the instruction in-line instead in
815 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
817 # Return true if GDB should use hardware single-stepping to execute
818 # the displaced instruction identified by CLOSURE. If false,
819 # GDB will simply restart execution at the displaced instruction
820 # location, and it is up to the target to ensure GDB will receive
821 # control again (e.g. by placing a software breakpoint instruction
822 # into the displaced instruction buffer).
824 # The default implementation returns false on all targets that
825 # provide a gdbarch_software_single_step routine, and true otherwise.
826 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
828 # Fix up the state resulting from successfully single-stepping a
829 # displaced instruction, to give the result we would have gotten from
830 # stepping the instruction in its original location.
832 # REGS is the register state resulting from single-stepping the
833 # displaced instruction.
835 # CLOSURE is the result from the matching call to
836 # gdbarch_displaced_step_copy_insn.
838 # If you provide gdbarch_displaced_step_copy_insn.but not this
839 # function, then GDB assumes that no fixup is needed after
840 # single-stepping the instruction.
842 # For a general explanation of displaced stepping and how GDB uses it,
843 # see the comments in infrun.c.
844 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
846 # Return the address of an appropriate place to put displaced
847 # instructions while we step over them. There need only be one such
848 # place, since we're only stepping one thread over a breakpoint at a
851 # For a general explanation of displaced stepping and how GDB uses it,
852 # see the comments in infrun.c.
853 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
855 # Relocate an instruction to execute at a different address. OLDLOC
856 # is the address in the inferior memory where the instruction to
857 # relocate is currently at. On input, TO points to the destination
858 # where we want the instruction to be copied (and possibly adjusted)
859 # to. On output, it points to one past the end of the resulting
860 # instruction(s). The effect of executing the instruction at TO shall
861 # be the same as if executing it at FROM. For example, call
862 # instructions that implicitly push the return address on the stack
863 # should be adjusted to return to the instruction after OLDLOC;
864 # relative branches, and other PC-relative instructions need the
865 # offset adjusted; etc.
866 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
868 # Refresh overlay mapped state for section OSECT.
869 F;void;overlay_update;struct obj_section *osect;osect
871 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
873 # Handle special encoding of static variables in stabs debug info.
874 F;const char *;static_transform_name;const char *name;name
875 # Set if the address in N_SO or N_FUN stabs may be zero.
876 v;int;sofun_address_maybe_missing;;;0;0;;0
878 # Parse the instruction at ADDR storing in the record execution log
879 # the registers REGCACHE and memory ranges that will be affected when
880 # the instruction executes, along with their current values.
881 # Return -1 if something goes wrong, 0 otherwise.
882 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
884 # Save process state after a signal.
885 # Return -1 if something goes wrong, 0 otherwise.
886 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
888 # Signal translation: translate inferior's signal (target's) number
889 # into GDB's representation. The implementation of this method must
890 # be host independent. IOW, don't rely on symbols of the NAT_FILE
891 # header (the nm-*.h files), the host <signal.h> header, or similar
892 # headers. This is mainly used when cross-debugging core files ---
893 # "Live" targets hide the translation behind the target interface
894 # (target_wait, target_resume, etc.).
895 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
897 # Signal translation: translate the GDB's internal signal number into
898 # the inferior's signal (target's) representation. The implementation
899 # of this method must be host independent. IOW, don't rely on symbols
900 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
901 # header, or similar headers.
902 # Return the target signal number if found, or -1 if the GDB internal
903 # signal number is invalid.
904 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
906 # Extra signal info inspection.
908 # Return a type suitable to inspect extra signal information.
909 M;struct type *;get_siginfo_type;void;
911 # Record architecture-specific information from the symbol table.
912 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
914 # Function for the 'catch syscall' feature.
916 # Get architecture-specific system calls information from registers.
917 M;LONGEST;get_syscall_number;thread_info *thread;thread
919 # The filename of the XML syscall for this architecture.
920 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
922 # Information about system calls from this architecture
923 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
925 # SystemTap related fields and functions.
927 # A NULL-terminated array of prefixes used to mark an integer constant
928 # on the architecture's assembly.
929 # For example, on x86 integer constants are written as:
931 # \$10 ;; integer constant 10
933 # in this case, this prefix would be the character \`\$\'.
934 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
936 # A NULL-terminated array of suffixes used to mark an integer constant
937 # on the architecture's assembly.
938 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
940 # A NULL-terminated array of prefixes used to mark a register name on
941 # the architecture's assembly.
942 # For example, on x86 the register name is written as:
944 # \%eax ;; register eax
946 # in this case, this prefix would be the character \`\%\'.
947 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
949 # A NULL-terminated array of suffixes used to mark a register name on
950 # the architecture's assembly.
951 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
953 # A NULL-terminated array of prefixes used to mark a register
954 # indirection on the architecture's assembly.
955 # For example, on x86 the register indirection is written as:
957 # \(\%eax\) ;; indirecting eax
959 # in this case, this prefix would be the charater \`\(\'.
961 # Please note that we use the indirection prefix also for register
962 # displacement, e.g., \`4\(\%eax\)\' on x86.
963 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
965 # A NULL-terminated array of suffixes used to mark a register
966 # indirection on the architecture's assembly.
967 # For example, on x86 the register indirection is written as:
969 # \(\%eax\) ;; indirecting eax
971 # in this case, this prefix would be the charater \`\)\'.
973 # Please note that we use the indirection suffix also for register
974 # displacement, e.g., \`4\(\%eax\)\' on x86.
975 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
977 # Prefix(es) used to name a register using GDB's nomenclature.
979 # For example, on PPC a register is represented by a number in the assembly
980 # language (e.g., \`10\' is the 10th general-purpose register). However,
981 # inside GDB this same register has an \`r\' appended to its name, so the 10th
982 # register would be represented as \`r10\' internally.
983 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
985 # Suffix used to name a register using GDB's nomenclature.
986 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
988 # Check if S is a single operand.
990 # Single operands can be:
991 # \- Literal integers, e.g. \`\$10\' on x86
992 # \- Register access, e.g. \`\%eax\' on x86
993 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
994 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
996 # This function should check for these patterns on the string
997 # and return 1 if some were found, or zero otherwise. Please try to match
998 # as much info as you can from the string, i.e., if you have to match
999 # something like \`\(\%\', do not match just the \`\(\'.
1000 M;int;stap_is_single_operand;const char *s;s
1002 # Function used to handle a "special case" in the parser.
1004 # A "special case" is considered to be an unknown token, i.e., a token
1005 # that the parser does not know how to parse. A good example of special
1006 # case would be ARM's register displacement syntax:
1008 # [R0, #4] ;; displacing R0 by 4
1010 # Since the parser assumes that a register displacement is of the form:
1012 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1014 # it means that it will not be able to recognize and parse this odd syntax.
1015 # Therefore, we should add a special case function that will handle this token.
1017 # This function should generate the proper expression form of the expression
1018 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1019 # and so on). It should also return 1 if the parsing was successful, or zero
1020 # if the token was not recognized as a special token (in this case, returning
1021 # zero means that the special parser is deferring the parsing to the generic
1022 # parser), and should advance the buffer pointer (p->arg).
1023 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1025 # DTrace related functions.
1027 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1028 # NARG must be >= 0.
1029 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1031 # True if the given ADDR does not contain the instruction sequence
1032 # corresponding to a disabled DTrace is-enabled probe.
1033 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1035 # Enable a DTrace is-enabled probe at ADDR.
1036 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1038 # Disable a DTrace is-enabled probe at ADDR.
1039 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1041 # True if the list of shared libraries is one and only for all
1042 # processes, as opposed to a list of shared libraries per inferior.
1043 # This usually means that all processes, although may or may not share
1044 # an address space, will see the same set of symbols at the same
1046 v;int;has_global_solist;;;0;0;;0
1048 # On some targets, even though each inferior has its own private
1049 # address space, the debug interface takes care of making breakpoints
1050 # visible to all address spaces automatically. For such cases,
1051 # this property should be set to true.
1052 v;int;has_global_breakpoints;;;0;0;;0
1054 # True if inferiors share an address space (e.g., uClinux).
1055 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1057 # True if a fast tracepoint can be set at an address.
1058 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1060 # Guess register state based on tracepoint location. Used for tracepoints
1061 # where no registers have been collected, but there's only one location,
1062 # allowing us to guess the PC value, and perhaps some other registers.
1063 # On entry, regcache has all registers marked as unavailable.
1064 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1066 # Return the "auto" target charset.
1067 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1068 # Return the "auto" target wide charset.
1069 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1071 # If non-empty, this is a file extension that will be opened in place
1072 # of the file extension reported by the shared library list.
1074 # This is most useful for toolchains that use a post-linker tool,
1075 # where the names of the files run on the target differ in extension
1076 # compared to the names of the files GDB should load for debug info.
1077 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1079 # If true, the target OS has DOS-based file system semantics. That
1080 # is, absolute paths include a drive name, and the backslash is
1081 # considered a directory separator.
1082 v;int;has_dos_based_file_system;;;0;0;;0
1084 # Generate bytecodes to collect the return address in a frame.
1085 # Since the bytecodes run on the target, possibly with GDB not even
1086 # connected, the full unwinding machinery is not available, and
1087 # typically this function will issue bytecodes for one or more likely
1088 # places that the return address may be found.
1089 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1091 # Implement the "info proc" command.
1092 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1094 # Implement the "info proc" command for core files. Noe that there
1095 # are two "info_proc"-like methods on gdbarch -- one for core files,
1096 # one for live targets.
1097 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1099 # Iterate over all objfiles in the order that makes the most sense
1100 # for the architecture to make global symbol searches.
1102 # CB is a callback function where OBJFILE is the objfile to be searched,
1103 # and CB_DATA a pointer to user-defined data (the same data that is passed
1104 # when calling this gdbarch method). The iteration stops if this function
1107 # CB_DATA is a pointer to some user-defined data to be passed to
1110 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1111 # inspected when the symbol search was requested.
1112 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1114 # Ravenscar arch-dependent ops.
1115 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1117 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1118 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1120 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1121 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1123 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1124 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1126 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1127 # Return 0 if *READPTR is already at the end of the buffer.
1128 # Return -1 if there is insufficient buffer for a whole entry.
1129 # Return 1 if an entry was read into *TYPEP and *VALP.
1130 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1132 # Print the description of a single auxv entry described by TYPE and VAL
1134 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1136 # Find the address range of the current inferior's vsyscall/vDSO, and
1137 # write it to *RANGE. If the vsyscall's length can't be determined, a
1138 # range with zero length is returned. Returns true if the vsyscall is
1139 # found, false otherwise.
1140 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1142 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1143 # PROT has GDB_MMAP_PROT_* bitmask format.
1144 # Throw an error if it is not possible. Returned address is always valid.
1145 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1147 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1148 # Print a warning if it is not possible.
1149 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1151 # Return string (caller has to use xfree for it) with options for GCC
1152 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1153 # These options are put before CU's DW_AT_producer compilation options so that
1154 # they can override it. Method may also return NULL.
1155 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1157 # Return a regular expression that matches names used by this
1158 # architecture in GNU configury triplets. The result is statically
1159 # allocated and must not be freed. The default implementation simply
1160 # returns the BFD architecture name, which is correct in nearly every
1162 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1164 # Return the size in 8-bit bytes of an addressable memory unit on this
1165 # architecture. This corresponds to the number of 8-bit bytes associated to
1166 # each address in memory.
1167 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1169 # Functions for allowing a target to modify its disassembler options.
1170 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1171 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1172 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1175 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1183 exec > new-gdbarch.log
1184 function_list | while do_read
1187 ${class} ${returntype} ${function} ($formal)
1191 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1193 if class_is_predicate_p && fallback_default_p
1195 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1199 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1201 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1205 if class_is_multiarch_p
1207 if class_is_predicate_p ; then :
1208 elif test "x${predefault}" = "x"
1210 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1219 compare_new gdbarch.log
1225 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1228 /* Dynamic architecture support for GDB, the GNU debugger.
1230 Copyright (C) 1998-2018 Free Software Foundation, Inc.
1232 This file is part of GDB.
1234 This program is free software; you can redistribute it and/or modify
1235 it under the terms of the GNU General Public License as published by
1236 the Free Software Foundation; either version 3 of the License, or
1237 (at your option) any later version.
1239 This program is distributed in the hope that it will be useful,
1240 but WITHOUT ANY WARRANTY; without even the implied warranty of
1241 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1242 GNU General Public License for more details.
1244 You should have received a copy of the GNU General Public License
1245 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1247 /* This file was created with the aid of \`\`gdbarch.sh''.
1249 The Bourne shell script \`\`gdbarch.sh'' creates the files
1250 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1251 against the existing \`\`gdbarch.[hc]''. Any differences found
1254 If editing this file, please also run gdbarch.sh and merge any
1255 changes into that script. Conversely, when making sweeping changes
1256 to this file, modifying gdbarch.sh and using its output may prove
1266 exec > new-gdbarch.h
1274 #include "dis-asm.h"
1275 #include "gdb_obstack.h"
1282 struct minimal_symbol;
1286 struct disassemble_info;
1289 struct bp_target_info;
1292 struct displaced_step_closure;
1296 struct stap_parse_info;
1297 struct parser_state;
1298 struct ravenscar_arch_ops;
1300 struct syscalls_info;
1304 #include "regcache.h"
1306 /* The architecture associated with the inferior through the
1307 connection to the target.
1309 The architecture vector provides some information that is really a
1310 property of the inferior, accessed through a particular target:
1311 ptrace operations; the layout of certain RSP packets; the solib_ops
1312 vector; etc. To differentiate architecture accesses to
1313 per-inferior/target properties from
1314 per-thread/per-frame/per-objfile properties, accesses to
1315 per-inferior/target properties should be made through this
1318 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1319 extern struct gdbarch *target_gdbarch (void);
1321 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1324 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1325 (struct objfile *objfile, void *cb_data);
1327 /* Callback type for regset section iterators. The callback usually
1328 invokes the REGSET's supply or collect method, to which it must
1329 pass a buffer - for collects this buffer will need to be created using
1330 COLLECT_SIZE, for supply the existing buffer being read from should
1331 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1332 is used for diagnostic messages. CB_DATA should have been passed
1333 unchanged through the iterator. */
1335 typedef void (iterate_over_regset_sections_cb)
1336 (const char *sect_name, int supply_size, int collect_size,
1337 const struct regset *regset, const char *human_name, void *cb_data);
1339 /* For a function call, does the function return a value using a
1340 normal value return or a structure return - passing a hidden
1341 argument pointing to storage. For the latter, there are two
1342 cases: language-mandated structure return and target ABI
1343 structure return. */
1345 enum function_call_return_method
1347 /* Standard value return. */
1348 return_method_normal = 0,
1350 /* Language ABI structure return. This is handled
1351 by passing the return location as the first parameter to
1352 the function, even preceding "this". */
1353 return_method_hidden_param,
1355 /* Target ABI struct return. This is target-specific; for instance,
1356 on ia64 the first argument is passed in out0 but the hidden
1357 structure return pointer would normally be passed in r8. */
1358 return_method_struct,
1363 # function typedef's
1366 printf "/* The following are pre-initialized by GDBARCH. */\n"
1367 function_list | while do_read
1372 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1373 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1377 # function typedef's
1380 printf "/* The following are initialized by the target dependent code. */\n"
1381 function_list | while do_read
1383 if [ -n "${comment}" ]
1385 echo "${comment}" | sed \
1391 if class_is_predicate_p
1394 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1396 if class_is_variable_p
1399 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1400 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1402 if class_is_function_p
1405 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1407 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1408 elif class_is_multiarch_p
1410 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1412 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1414 if [ "x${formal}" = "xvoid" ]
1416 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1418 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1420 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1427 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1430 /* Mechanism for co-ordinating the selection of a specific
1433 GDB targets (*-tdep.c) can register an interest in a specific
1434 architecture. Other GDB components can register a need to maintain
1435 per-architecture data.
1437 The mechanisms below ensures that there is only a loose connection
1438 between the set-architecture command and the various GDB
1439 components. Each component can independently register their need
1440 to maintain architecture specific data with gdbarch.
1444 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1447 The more traditional mega-struct containing architecture specific
1448 data for all the various GDB components was also considered. Since
1449 GDB is built from a variable number of (fairly independent)
1450 components it was determined that the global aproach was not
1454 /* Register a new architectural family with GDB.
1456 Register support for the specified ARCHITECTURE with GDB. When
1457 gdbarch determines that the specified architecture has been
1458 selected, the corresponding INIT function is called.
1462 The INIT function takes two parameters: INFO which contains the
1463 information available to gdbarch about the (possibly new)
1464 architecture; ARCHES which is a list of the previously created
1465 \`\`struct gdbarch'' for this architecture.
1467 The INFO parameter is, as far as possible, be pre-initialized with
1468 information obtained from INFO.ABFD or the global defaults.
1470 The ARCHES parameter is a linked list (sorted most recently used)
1471 of all the previously created architures for this architecture
1472 family. The (possibly NULL) ARCHES->gdbarch can used to access
1473 values from the previously selected architecture for this
1474 architecture family.
1476 The INIT function shall return any of: NULL - indicating that it
1477 doesn't recognize the selected architecture; an existing \`\`struct
1478 gdbarch'' from the ARCHES list - indicating that the new
1479 architecture is just a synonym for an earlier architecture (see
1480 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1481 - that describes the selected architecture (see gdbarch_alloc()).
1483 The DUMP_TDEP function shall print out all target specific values.
1484 Care should be taken to ensure that the function works in both the
1485 multi-arch and non- multi-arch cases. */
1489 struct gdbarch *gdbarch;
1490 struct gdbarch_list *next;
1495 /* Use default: NULL (ZERO). */
1496 const struct bfd_arch_info *bfd_arch_info;
1498 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1499 enum bfd_endian byte_order;
1501 enum bfd_endian byte_order_for_code;
1503 /* Use default: NULL (ZERO). */
1506 /* Use default: NULL (ZERO). */
1509 /* Architecture-specific information. The generic form for targets
1510 that have extra requirements. */
1511 struct gdbarch_tdep_info *tdep_info;
1513 /* Architecture-specific target description data. Numerous targets
1514 need only this, so give them an easy way to hold it. */
1515 struct tdesc_arch_data *tdesc_data;
1517 /* SPU file system ID. This is a single integer, so using the
1518 generic form would only complicate code. Other targets may
1519 reuse this member if suitable. */
1523 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1524 enum gdb_osabi osabi;
1526 /* Use default: NULL (ZERO). */
1527 const struct target_desc *target_desc;
1530 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1531 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1533 /* DEPRECATED - use gdbarch_register() */
1534 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1536 extern void gdbarch_register (enum bfd_architecture architecture,
1537 gdbarch_init_ftype *,
1538 gdbarch_dump_tdep_ftype *);
1541 /* Return a freshly allocated, NULL terminated, array of the valid
1542 architecture names. Since architectures are registered during the
1543 _initialize phase this function only returns useful information
1544 once initialization has been completed. */
1546 extern const char **gdbarch_printable_names (void);
1549 /* Helper function. Search the list of ARCHES for a GDBARCH that
1550 matches the information provided by INFO. */
1552 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1555 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1556 basic initialization using values obtained from the INFO and TDEP
1557 parameters. set_gdbarch_*() functions are called to complete the
1558 initialization of the object. */
1560 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1563 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1564 It is assumed that the caller freeds the \`\`struct
1567 extern void gdbarch_free (struct gdbarch *);
1569 /* Get the obstack owned by ARCH. */
1571 extern obstack *gdbarch_obstack (gdbarch *arch);
1573 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1574 obstack. The memory is freed when the corresponding architecture
1577 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1578 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1580 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1581 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1583 /* Duplicate STRING, returning an equivalent string that's allocated on the
1584 obstack associated with GDBARCH. The string is freed when the corresponding
1585 architecture is also freed. */
1587 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1589 /* Helper function. Force an update of the current architecture.
1591 The actual architecture selected is determined by INFO, \`\`(gdb) set
1592 architecture'' et.al., the existing architecture and BFD's default
1593 architecture. INFO should be initialized to zero and then selected
1594 fields should be updated.
1596 Returns non-zero if the update succeeds. */
1598 extern int gdbarch_update_p (struct gdbarch_info info);
1601 /* Helper function. Find an architecture matching info.
1603 INFO should be initialized using gdbarch_info_init, relevant fields
1604 set, and then finished using gdbarch_info_fill.
1606 Returns the corresponding architecture, or NULL if no matching
1607 architecture was found. */
1609 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1612 /* Helper function. Set the target gdbarch to "gdbarch". */
1614 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1617 /* Register per-architecture data-pointer.
1619 Reserve space for a per-architecture data-pointer. An identifier
1620 for the reserved data-pointer is returned. That identifer should
1621 be saved in a local static variable.
1623 Memory for the per-architecture data shall be allocated using
1624 gdbarch_obstack_zalloc. That memory will be deleted when the
1625 corresponding architecture object is deleted.
1627 When a previously created architecture is re-selected, the
1628 per-architecture data-pointer for that previous architecture is
1629 restored. INIT() is not re-called.
1631 Multiple registrarants for any architecture are allowed (and
1632 strongly encouraged). */
1634 struct gdbarch_data;
1636 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1637 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1638 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1639 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1640 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1641 struct gdbarch_data *data,
1644 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1647 /* Set the dynamic target-system-dependent parameters (architecture,
1648 byte-order, ...) using information found in the BFD. */
1650 extern void set_gdbarch_from_file (bfd *);
1653 /* Initialize the current architecture to the "first" one we find on
1656 extern void initialize_current_architecture (void);
1658 /* gdbarch trace variable */
1659 extern unsigned int gdbarch_debug;
1661 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1663 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1666 gdbarch_num_cooked_regs (gdbarch *arch)
1668 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1674 #../move-if-change new-gdbarch.h gdbarch.h
1675 compare_new gdbarch.h
1682 exec > new-gdbarch.c
1687 #include "arch-utils.h"
1690 #include "inferior.h"
1693 #include "floatformat.h"
1694 #include "reggroups.h"
1696 #include "gdb_obstack.h"
1697 #include "observable.h"
1698 #include "regcache.h"
1699 #include "objfiles.h"
1701 #include "frame-unwind.h"
1702 #include "dummy-frame.h"
1704 /* Static function declarations */
1706 static void alloc_gdbarch_data (struct gdbarch *);
1708 /* Non-zero if we want to trace architecture code. */
1710 #ifndef GDBARCH_DEBUG
1711 #define GDBARCH_DEBUG 0
1713 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1715 show_gdbarch_debug (struct ui_file *file, int from_tty,
1716 struct cmd_list_element *c, const char *value)
1718 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1722 pformat (const struct floatformat **format)
1727 /* Just print out one of them - this is only for diagnostics. */
1728 return format[0]->name;
1732 pstring (const char *string)
1740 pstring_ptr (char **string)
1742 if (string == NULL || *string == NULL)
1747 /* Helper function to print a list of strings, represented as "const
1748 char *const *". The list is printed comma-separated. */
1751 pstring_list (const char *const *list)
1753 static char ret[100];
1754 const char *const *p;
1761 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1763 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1769 gdb_assert (offset - 2 < sizeof (ret));
1770 ret[offset - 2] = '\0';
1778 # gdbarch open the gdbarch object
1780 printf "/* Maintain the struct gdbarch object. */\n"
1782 printf "struct gdbarch\n"
1784 printf " /* Has this architecture been fully initialized? */\n"
1785 printf " int initialized_p;\n"
1787 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1788 printf " struct obstack *obstack;\n"
1790 printf " /* basic architectural information. */\n"
1791 function_list | while do_read
1795 printf " ${returntype} ${function};\n"
1799 printf " /* target specific vector. */\n"
1800 printf " struct gdbarch_tdep *tdep;\n"
1801 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1803 printf " /* per-architecture data-pointers. */\n"
1804 printf " unsigned nr_data;\n"
1805 printf " void **data;\n"
1808 /* Multi-arch values.
1810 When extending this structure you must:
1812 Add the field below.
1814 Declare set/get functions and define the corresponding
1817 gdbarch_alloc(): If zero/NULL is not a suitable default,
1818 initialize the new field.
1820 verify_gdbarch(): Confirm that the target updated the field
1823 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1826 get_gdbarch(): Implement the set/get functions (probably using
1827 the macro's as shortcuts).
1832 function_list | while do_read
1834 if class_is_variable_p
1836 printf " ${returntype} ${function};\n"
1837 elif class_is_function_p
1839 printf " gdbarch_${function}_ftype *${function};\n"
1844 # Create a new gdbarch struct
1847 /* Create a new \`\`struct gdbarch'' based on information provided by
1848 \`\`struct gdbarch_info''. */
1853 gdbarch_alloc (const struct gdbarch_info *info,
1854 struct gdbarch_tdep *tdep)
1856 struct gdbarch *gdbarch;
1858 /* Create an obstack for allocating all the per-architecture memory,
1859 then use that to allocate the architecture vector. */
1860 struct obstack *obstack = XNEW (struct obstack);
1861 obstack_init (obstack);
1862 gdbarch = XOBNEW (obstack, struct gdbarch);
1863 memset (gdbarch, 0, sizeof (*gdbarch));
1864 gdbarch->obstack = obstack;
1866 alloc_gdbarch_data (gdbarch);
1868 gdbarch->tdep = tdep;
1871 function_list | while do_read
1875 printf " gdbarch->${function} = info->${function};\n"
1879 printf " /* Force the explicit initialization of these. */\n"
1880 function_list | while do_read
1882 if class_is_function_p || class_is_variable_p
1884 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1886 printf " gdbarch->${function} = ${predefault};\n"
1891 /* gdbarch_alloc() */
1897 # Free a gdbarch struct.
1902 obstack *gdbarch_obstack (gdbarch *arch)
1904 return arch->obstack;
1907 /* See gdbarch.h. */
1910 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1912 return obstack_strdup (arch->obstack, string);
1916 /* Free a gdbarch struct. This should never happen in normal
1917 operation --- once you've created a gdbarch, you keep it around.
1918 However, if an architecture's init function encounters an error
1919 building the structure, it may need to clean up a partially
1920 constructed gdbarch. */
1923 gdbarch_free (struct gdbarch *arch)
1925 struct obstack *obstack;
1927 gdb_assert (arch != NULL);
1928 gdb_assert (!arch->initialized_p);
1929 obstack = arch->obstack;
1930 obstack_free (obstack, 0); /* Includes the ARCH. */
1935 # verify a new architecture
1939 /* Ensure that all values in a GDBARCH are reasonable. */
1942 verify_gdbarch (struct gdbarch *gdbarch)
1947 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1948 log.puts ("\n\tbyte-order");
1949 if (gdbarch->bfd_arch_info == NULL)
1950 log.puts ("\n\tbfd_arch_info");
1951 /* Check those that need to be defined for the given multi-arch level. */
1953 function_list | while do_read
1955 if class_is_function_p || class_is_variable_p
1957 if [ "x${invalid_p}" = "x0" ]
1959 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1960 elif class_is_predicate_p
1962 printf " /* Skip verify of ${function}, has predicate. */\n"
1963 # FIXME: See do_read for potential simplification
1964 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1966 printf " if (${invalid_p})\n"
1967 printf " gdbarch->${function} = ${postdefault};\n"
1968 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1970 printf " if (gdbarch->${function} == ${predefault})\n"
1971 printf " gdbarch->${function} = ${postdefault};\n"
1972 elif [ -n "${postdefault}" ]
1974 printf " if (gdbarch->${function} == 0)\n"
1975 printf " gdbarch->${function} = ${postdefault};\n"
1976 elif [ -n "${invalid_p}" ]
1978 printf " if (${invalid_p})\n"
1979 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1980 elif [ -n "${predefault}" ]
1982 printf " if (gdbarch->${function} == ${predefault})\n"
1983 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1989 internal_error (__FILE__, __LINE__,
1990 _("verify_gdbarch: the following are invalid ...%s"),
1995 # dump the structure
1999 /* Print out the details of the current architecture. */
2002 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2004 const char *gdb_nm_file = "<not-defined>";
2006 #if defined (GDB_NM_FILE)
2007 gdb_nm_file = GDB_NM_FILE;
2009 fprintf_unfiltered (file,
2010 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2013 function_list | sort '-t;' -k 3 | while do_read
2015 # First the predicate
2016 if class_is_predicate_p
2018 printf " fprintf_unfiltered (file,\n"
2019 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
2020 printf " gdbarch_${function}_p (gdbarch));\n"
2022 # Print the corresponding value.
2023 if class_is_function_p
2025 printf " fprintf_unfiltered (file,\n"
2026 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2027 printf " host_address_to_string (gdbarch->${function}));\n"
2030 case "${print}:${returntype}" in
2033 print="core_addr_to_string_nz (gdbarch->${function})"
2037 print="plongest (gdbarch->${function})"
2043 printf " fprintf_unfiltered (file,\n"
2044 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2045 printf " ${print});\n"
2049 if (gdbarch->dump_tdep != NULL)
2050 gdbarch->dump_tdep (gdbarch, file);
2058 struct gdbarch_tdep *
2059 gdbarch_tdep (struct gdbarch *gdbarch)
2061 if (gdbarch_debug >= 2)
2062 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2063 return gdbarch->tdep;
2067 function_list | while do_read
2069 if class_is_predicate_p
2073 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2075 printf " gdb_assert (gdbarch != NULL);\n"
2076 printf " return ${predicate};\n"
2079 if class_is_function_p
2082 printf "${returntype}\n"
2083 if [ "x${formal}" = "xvoid" ]
2085 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2087 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2090 printf " gdb_assert (gdbarch != NULL);\n"
2091 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2092 if class_is_predicate_p && test -n "${predefault}"
2094 # Allow a call to a function with a predicate.
2095 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2097 printf " if (gdbarch_debug >= 2)\n"
2098 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2099 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2101 if class_is_multiarch_p
2108 if class_is_multiarch_p
2110 params="gdbarch, ${actual}"
2115 if [ "x${returntype}" = "xvoid" ]
2117 printf " gdbarch->${function} (${params});\n"
2119 printf " return gdbarch->${function} (${params});\n"
2124 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2125 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2127 printf " gdbarch->${function} = ${function};\n"
2129 elif class_is_variable_p
2132 printf "${returntype}\n"
2133 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2135 printf " gdb_assert (gdbarch != NULL);\n"
2136 if [ "x${invalid_p}" = "x0" ]
2138 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2139 elif [ -n "${invalid_p}" ]
2141 printf " /* Check variable is valid. */\n"
2142 printf " gdb_assert (!(${invalid_p}));\n"
2143 elif [ -n "${predefault}" ]
2145 printf " /* Check variable changed from pre-default. */\n"
2146 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2148 printf " if (gdbarch_debug >= 2)\n"
2149 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2150 printf " return gdbarch->${function};\n"
2154 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2155 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2157 printf " gdbarch->${function} = ${function};\n"
2159 elif class_is_info_p
2162 printf "${returntype}\n"
2163 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2165 printf " gdb_assert (gdbarch != NULL);\n"
2166 printf " if (gdbarch_debug >= 2)\n"
2167 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2168 printf " return gdbarch->${function};\n"
2173 # All the trailing guff
2177 /* Keep a registry of per-architecture data-pointers required by GDB
2184 gdbarch_data_pre_init_ftype *pre_init;
2185 gdbarch_data_post_init_ftype *post_init;
2188 struct gdbarch_data_registration
2190 struct gdbarch_data *data;
2191 struct gdbarch_data_registration *next;
2194 struct gdbarch_data_registry
2197 struct gdbarch_data_registration *registrations;
2200 struct gdbarch_data_registry gdbarch_data_registry =
2205 static struct gdbarch_data *
2206 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2207 gdbarch_data_post_init_ftype *post_init)
2209 struct gdbarch_data_registration **curr;
2211 /* Append the new registration. */
2212 for (curr = &gdbarch_data_registry.registrations;
2214 curr = &(*curr)->next);
2215 (*curr) = XNEW (struct gdbarch_data_registration);
2216 (*curr)->next = NULL;
2217 (*curr)->data = XNEW (struct gdbarch_data);
2218 (*curr)->data->index = gdbarch_data_registry.nr++;
2219 (*curr)->data->pre_init = pre_init;
2220 (*curr)->data->post_init = post_init;
2221 (*curr)->data->init_p = 1;
2222 return (*curr)->data;
2225 struct gdbarch_data *
2226 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2228 return gdbarch_data_register (pre_init, NULL);
2231 struct gdbarch_data *
2232 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2234 return gdbarch_data_register (NULL, post_init);
2237 /* Create/delete the gdbarch data vector. */
2240 alloc_gdbarch_data (struct gdbarch *gdbarch)
2242 gdb_assert (gdbarch->data == NULL);
2243 gdbarch->nr_data = gdbarch_data_registry.nr;
2244 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2247 /* Initialize the current value of the specified per-architecture
2251 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2252 struct gdbarch_data *data,
2255 gdb_assert (data->index < gdbarch->nr_data);
2256 gdb_assert (gdbarch->data[data->index] == NULL);
2257 gdb_assert (data->pre_init == NULL);
2258 gdbarch->data[data->index] = pointer;
2261 /* Return the current value of the specified per-architecture
2265 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2267 gdb_assert (data->index < gdbarch->nr_data);
2268 if (gdbarch->data[data->index] == NULL)
2270 /* The data-pointer isn't initialized, call init() to get a
2272 if (data->pre_init != NULL)
2273 /* Mid architecture creation: pass just the obstack, and not
2274 the entire architecture, as that way it isn't possible for
2275 pre-init code to refer to undefined architecture
2277 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2278 else if (gdbarch->initialized_p
2279 && data->post_init != NULL)
2280 /* Post architecture creation: pass the entire architecture
2281 (as all fields are valid), but be careful to also detect
2282 recursive references. */
2284 gdb_assert (data->init_p);
2286 gdbarch->data[data->index] = data->post_init (gdbarch);
2290 /* The architecture initialization hasn't completed - punt -
2291 hope that the caller knows what they are doing. Once
2292 deprecated_set_gdbarch_data has been initialized, this can be
2293 changed to an internal error. */
2295 gdb_assert (gdbarch->data[data->index] != NULL);
2297 return gdbarch->data[data->index];
2301 /* Keep a registry of the architectures known by GDB. */
2303 struct gdbarch_registration
2305 enum bfd_architecture bfd_architecture;
2306 gdbarch_init_ftype *init;
2307 gdbarch_dump_tdep_ftype *dump_tdep;
2308 struct gdbarch_list *arches;
2309 struct gdbarch_registration *next;
2312 static struct gdbarch_registration *gdbarch_registry = NULL;
2315 append_name (const char ***buf, int *nr, const char *name)
2317 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2323 gdbarch_printable_names (void)
2325 /* Accumulate a list of names based on the registed list of
2328 const char **arches = NULL;
2329 struct gdbarch_registration *rego;
2331 for (rego = gdbarch_registry;
2335 const struct bfd_arch_info *ap;
2336 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2338 internal_error (__FILE__, __LINE__,
2339 _("gdbarch_architecture_names: multi-arch unknown"));
2342 append_name (&arches, &nr_arches, ap->printable_name);
2347 append_name (&arches, &nr_arches, NULL);
2353 gdbarch_register (enum bfd_architecture bfd_architecture,
2354 gdbarch_init_ftype *init,
2355 gdbarch_dump_tdep_ftype *dump_tdep)
2357 struct gdbarch_registration **curr;
2358 const struct bfd_arch_info *bfd_arch_info;
2360 /* Check that BFD recognizes this architecture */
2361 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2362 if (bfd_arch_info == NULL)
2364 internal_error (__FILE__, __LINE__,
2365 _("gdbarch: Attempt to register "
2366 "unknown architecture (%d)"),
2369 /* Check that we haven't seen this architecture before. */
2370 for (curr = &gdbarch_registry;
2372 curr = &(*curr)->next)
2374 if (bfd_architecture == (*curr)->bfd_architecture)
2375 internal_error (__FILE__, __LINE__,
2376 _("gdbarch: Duplicate registration "
2377 "of architecture (%s)"),
2378 bfd_arch_info->printable_name);
2382 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2383 bfd_arch_info->printable_name,
2384 host_address_to_string (init));
2386 (*curr) = XNEW (struct gdbarch_registration);
2387 (*curr)->bfd_architecture = bfd_architecture;
2388 (*curr)->init = init;
2389 (*curr)->dump_tdep = dump_tdep;
2390 (*curr)->arches = NULL;
2391 (*curr)->next = NULL;
2395 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2396 gdbarch_init_ftype *init)
2398 gdbarch_register (bfd_architecture, init, NULL);
2402 /* Look for an architecture using gdbarch_info. */
2404 struct gdbarch_list *
2405 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2406 const struct gdbarch_info *info)
2408 for (; arches != NULL; arches = arches->next)
2410 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2412 if (info->byte_order != arches->gdbarch->byte_order)
2414 if (info->osabi != arches->gdbarch->osabi)
2416 if (info->target_desc != arches->gdbarch->target_desc)
2424 /* Find an architecture that matches the specified INFO. Create a new
2425 architecture if needed. Return that new architecture. */
2428 gdbarch_find_by_info (struct gdbarch_info info)
2430 struct gdbarch *new_gdbarch;
2431 struct gdbarch_registration *rego;
2433 /* Fill in missing parts of the INFO struct using a number of
2434 sources: "set ..."; INFOabfd supplied; and the global
2436 gdbarch_info_fill (&info);
2438 /* Must have found some sort of architecture. */
2439 gdb_assert (info.bfd_arch_info != NULL);
2443 fprintf_unfiltered (gdb_stdlog,
2444 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2445 (info.bfd_arch_info != NULL
2446 ? info.bfd_arch_info->printable_name
2448 fprintf_unfiltered (gdb_stdlog,
2449 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2451 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2452 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2454 fprintf_unfiltered (gdb_stdlog,
2455 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2456 info.osabi, gdbarch_osabi_name (info.osabi));
2457 fprintf_unfiltered (gdb_stdlog,
2458 "gdbarch_find_by_info: info.abfd %s\n",
2459 host_address_to_string (info.abfd));
2460 fprintf_unfiltered (gdb_stdlog,
2461 "gdbarch_find_by_info: info.tdep_info %s\n",
2462 host_address_to_string (info.tdep_info));
2465 /* Find the tdep code that knows about this architecture. */
2466 for (rego = gdbarch_registry;
2469 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2474 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2475 "No matching architecture\n");
2479 /* Ask the tdep code for an architecture that matches "info". */
2480 new_gdbarch = rego->init (info, rego->arches);
2482 /* Did the tdep code like it? No. Reject the change and revert to
2483 the old architecture. */
2484 if (new_gdbarch == NULL)
2487 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2488 "Target rejected architecture\n");
2492 /* Is this a pre-existing architecture (as determined by already
2493 being initialized)? Move it to the front of the architecture
2494 list (keeping the list sorted Most Recently Used). */
2495 if (new_gdbarch->initialized_p)
2497 struct gdbarch_list **list;
2498 struct gdbarch_list *self;
2500 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2501 "Previous architecture %s (%s) selected\n",
2502 host_address_to_string (new_gdbarch),
2503 new_gdbarch->bfd_arch_info->printable_name);
2504 /* Find the existing arch in the list. */
2505 for (list = ®o->arches;
2506 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2507 list = &(*list)->next);
2508 /* It had better be in the list of architectures. */
2509 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2512 (*list) = self->next;
2513 /* Insert SELF at the front. */
2514 self->next = rego->arches;
2515 rego->arches = self;
2520 /* It's a new architecture. */
2522 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2523 "New architecture %s (%s) selected\n",
2524 host_address_to_string (new_gdbarch),
2525 new_gdbarch->bfd_arch_info->printable_name);
2527 /* Insert the new architecture into the front of the architecture
2528 list (keep the list sorted Most Recently Used). */
2530 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2531 self->next = rego->arches;
2532 self->gdbarch = new_gdbarch;
2533 rego->arches = self;
2536 /* Check that the newly installed architecture is valid. Plug in
2537 any post init values. */
2538 new_gdbarch->dump_tdep = rego->dump_tdep;
2539 verify_gdbarch (new_gdbarch);
2540 new_gdbarch->initialized_p = 1;
2543 gdbarch_dump (new_gdbarch, gdb_stdlog);
2548 /* Make the specified architecture current. */
2551 set_target_gdbarch (struct gdbarch *new_gdbarch)
2553 gdb_assert (new_gdbarch != NULL);
2554 gdb_assert (new_gdbarch->initialized_p);
2555 current_inferior ()->gdbarch = new_gdbarch;
2556 gdb::observers::architecture_changed.notify (new_gdbarch);
2557 registers_changed ();
2560 /* Return the current inferior's arch. */
2563 target_gdbarch (void)
2565 return current_inferior ()->gdbarch;
2569 _initialize_gdbarch (void)
2571 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2572 Set architecture debugging."), _("\\
2573 Show architecture debugging."), _("\\
2574 When non-zero, architecture debugging is enabled."),
2577 &setdebuglist, &showdebuglist);
2583 #../move-if-change new-gdbarch.c gdbarch.c
2584 compare_new gdbarch.c