3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
103 case "${invalid_p}" in
105 if test -n "${predefault}"
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
114 predicate="gdbarch->${function} != NULL"
118 echo "Predicate function ${function} with invalid_p." 1>&2
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
132 if [ -n "${postdefault}" ]
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
137 fallbackdefault="${predefault}"
142 #NOT YET: See gdbarch.log for basic verification of
157 fallback_default_p ()
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 class_is_variable_p ()
171 class_is_function_p ()
174 *f* | *F* | *m* | *M* ) true ;;
179 class_is_multiarch_p ()
187 class_is_predicate_p ()
190 *F* | *V* | *M* ) true ;;
204 # dump out/verify the doco
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
229 # For functions, the return type; for variables, the data type
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
257 # If STATICDEFAULT is empty, zero is used.
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
266 # If PREDEFAULT is empty, zero is used.
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
272 # A zero PREDEFAULT function will force the fallback to call
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
284 # If POSTDEFAULT is empty, no post update is performed.
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
316 # See also PREDEFAULT and POSTDEFAULT.
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
326 garbage_at_eol ) : ;;
328 # Catches stray fields.
331 echo "Bad field ${field}"
339 # See below (DOCO) for description of each field
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
343 i:int:byte_order:::BFD_ENDIAN_BIG
344 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
497 v:int:believe_pcc_promotion:::::::
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
534 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
535 # Return the adjusted address and kind to use for Z0/Z1 packets.
536 # KIND is usually the memory length of the breakpoint, but may have a
537 # different target-specific meaning.
538 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
539 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
540 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
541 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
542 v:CORE_ADDR:decr_pc_after_break:::0:::0
544 # A function can be addressed by either it's "pointer" (possibly a
545 # descriptor address) or "entry point" (first executable instruction).
546 # The method "convert_from_func_ptr_addr" converting the former to the
547 # latter. gdbarch_deprecated_function_start_offset is being used to implement
548 # a simplified subset of that functionality - the function's address
549 # corresponds to the "function pointer" and the function's start
550 # corresponds to the "function entry point" - and hence is redundant.
552 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
554 # Return the remote protocol register number associated with this
555 # register. Normally the identity mapping.
556 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
558 # Fetch the target specific address used to represent a load module.
559 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
561 v:CORE_ADDR:frame_args_skip:::0:::0
562 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
563 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
564 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
565 # frame-base. Enable frame-base before frame-unwind.
566 F:int:frame_num_args:struct frame_info *frame:frame
568 M:CORE_ADDR:frame_align:CORE_ADDR address:address
569 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
570 v:int:frame_red_zone_size
572 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
573 # On some machines there are bits in addresses which are not really
574 # part of the address, but are used by the kernel, the hardware, etc.
575 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
576 # we get a "real" address such as one would find in a symbol table.
577 # This is used only for addresses of instructions, and even then I'm
578 # not sure it's used in all contexts. It exists to deal with there
579 # being a few stray bits in the PC which would mislead us, not as some
580 # sort of generic thing to handle alignment or segmentation (it's
581 # possible it should be in TARGET_READ_PC instead).
582 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
584 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
585 # indicates if the target needs software single step. An ISA method to
588 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
589 # breakpoints using the breakpoint system instead of blatting memory directly
592 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
593 # target can single step. If not, then implement single step using breakpoints.
595 # A return value of 1 means that the software_single_step breakpoints
596 # were inserted; 0 means they were not.
597 F:int:software_single_step:struct frame_info *frame:frame
599 # Return non-zero if the processor is executing a delay slot and a
600 # further single-step is needed before the instruction finishes.
601 M:int:single_step_through_delay:struct frame_info *frame:frame
602 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
603 # disassembler. Perhaps objdump can handle it?
604 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
605 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
608 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
609 # evaluates non-zero, this is the address where the debugger will place
610 # a step-resume breakpoint to get us past the dynamic linker.
611 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
612 # Some systems also have trampoline code for returning from shared libs.
613 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
615 # A target might have problems with watchpoints as soon as the stack
616 # frame of the current function has been destroyed. This mostly happens
617 # as the first action in a funtion's epilogue. in_function_epilogue_p()
618 # is defined to return a non-zero value if either the given addr is one
619 # instruction after the stack destroying instruction up to the trailing
620 # return instruction or if we can figure out that the stack frame has
621 # already been invalidated regardless of the value of addr. Targets
622 # which don't suffer from that problem could just let this functionality
624 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
625 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
626 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
627 v:int:cannot_step_breakpoint:::0:0::0
628 v:int:have_nonsteppable_watchpoint:::0:0::0
629 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
630 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
631 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
632 # Is a register in a group
633 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
634 # Fetch the pointer to the ith function argument.
635 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
637 # Return the appropriate register set for a core file section with
638 # name SECT_NAME and size SECT_SIZE.
639 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
641 # Supported register notes in a core file.
642 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
644 # Create core file notes
645 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
647 # The elfcore writer hook to use to write Linux prpsinfo notes to core
648 # files. Most Linux architectures use the same prpsinfo32 or
649 # prpsinfo64 layouts, and so won't need to provide this hook, as we
650 # call the Linux generic routines in bfd to write prpsinfo notes by
652 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
654 # Find core file memory regions
655 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
657 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
658 # core file into buffer READBUF with length LEN.
659 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
661 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
662 # libraries list from core file into buffer READBUF with length LEN.
663 M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
665 # How the core target converts a PTID from a core file to a string.
666 M:char *:core_pid_to_str:ptid_t ptid:ptid
668 # BFD target to use when generating a core file.
669 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
671 # If the elements of C++ vtables are in-place function descriptors rather
672 # than normal function pointers (which may point to code or a descriptor),
674 v:int:vtable_function_descriptors:::0:0::0
676 # Set if the least significant bit of the delta is used instead of the least
677 # significant bit of the pfn for pointers to virtual member functions.
678 v:int:vbit_in_delta:::0:0::0
680 # Advance PC to next instruction in order to skip a permanent breakpoint.
681 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
683 # The maximum length of an instruction on this architecture in bytes.
684 V:ULONGEST:max_insn_length:::0:0
686 # Copy the instruction at FROM to TO, and make any adjustments
687 # necessary to single-step it at that address.
689 # REGS holds the state the thread's registers will have before
690 # executing the copied instruction; the PC in REGS will refer to FROM,
691 # not the copy at TO. The caller should update it to point at TO later.
693 # Return a pointer to data of the architecture's choice to be passed
694 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
695 # the instruction's effects have been completely simulated, with the
696 # resulting state written back to REGS.
698 # For a general explanation of displaced stepping and how GDB uses it,
699 # see the comments in infrun.c.
701 # The TO area is only guaranteed to have space for
702 # gdbarch_max_insn_length (arch) bytes, so this function must not
703 # write more bytes than that to that area.
705 # If you do not provide this function, GDB assumes that the
706 # architecture does not support displaced stepping.
708 # If your architecture doesn't need to adjust instructions before
709 # single-stepping them, consider using simple_displaced_step_copy_insn
711 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
713 # Return true if GDB should use hardware single-stepping to execute
714 # the displaced instruction identified by CLOSURE. If false,
715 # GDB will simply restart execution at the displaced instruction
716 # location, and it is up to the target to ensure GDB will receive
717 # control again (e.g. by placing a software breakpoint instruction
718 # into the displaced instruction buffer).
720 # The default implementation returns false on all targets that
721 # provide a gdbarch_software_single_step routine, and true otherwise.
722 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
724 # Fix up the state resulting from successfully single-stepping a
725 # displaced instruction, to give the result we would have gotten from
726 # stepping the instruction in its original location.
728 # REGS is the register state resulting from single-stepping the
729 # displaced instruction.
731 # CLOSURE is the result from the matching call to
732 # gdbarch_displaced_step_copy_insn.
734 # If you provide gdbarch_displaced_step_copy_insn.but not this
735 # function, then GDB assumes that no fixup is needed after
736 # single-stepping the instruction.
738 # For a general explanation of displaced stepping and how GDB uses it,
739 # see the comments in infrun.c.
740 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
742 # Free a closure returned by gdbarch_displaced_step_copy_insn.
744 # If you provide gdbarch_displaced_step_copy_insn, you must provide
745 # this function as well.
747 # If your architecture uses closures that don't need to be freed, then
748 # you can use simple_displaced_step_free_closure here.
750 # For a general explanation of displaced stepping and how GDB uses it,
751 # see the comments in infrun.c.
752 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
754 # Return the address of an appropriate place to put displaced
755 # instructions while we step over them. There need only be one such
756 # place, since we're only stepping one thread over a breakpoint at a
759 # For a general explanation of displaced stepping and how GDB uses it,
760 # see the comments in infrun.c.
761 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
763 # Relocate an instruction to execute at a different address. OLDLOC
764 # is the address in the inferior memory where the instruction to
765 # relocate is currently at. On input, TO points to the destination
766 # where we want the instruction to be copied (and possibly adjusted)
767 # to. On output, it points to one past the end of the resulting
768 # instruction(s). The effect of executing the instruction at TO shall
769 # be the same as if executing it at FROM. For example, call
770 # instructions that implicitly push the return address on the stack
771 # should be adjusted to return to the instruction after OLDLOC;
772 # relative branches, and other PC-relative instructions need the
773 # offset adjusted; etc.
774 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
776 # Refresh overlay mapped state for section OSECT.
777 F:void:overlay_update:struct obj_section *osect:osect
779 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
781 # Handle special encoding of static variables in stabs debug info.
782 F:const char *:static_transform_name:const char *name:name
783 # Set if the address in N_SO or N_FUN stabs may be zero.
784 v:int:sofun_address_maybe_missing:::0:0::0
786 # Parse the instruction at ADDR storing in the record execution log
787 # the registers REGCACHE and memory ranges that will be affected when
788 # the instruction executes, along with their current values.
789 # Return -1 if something goes wrong, 0 otherwise.
790 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
792 # Save process state after a signal.
793 # Return -1 if something goes wrong, 0 otherwise.
794 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
796 # Signal translation: translate inferior's signal (target's) number
797 # into GDB's representation. The implementation of this method must
798 # be host independent. IOW, don't rely on symbols of the NAT_FILE
799 # header (the nm-*.h files), the host <signal.h> header, or similar
800 # headers. This is mainly used when cross-debugging core files ---
801 # "Live" targets hide the translation behind the target interface
802 # (target_wait, target_resume, etc.).
803 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
805 # Signal translation: translate the GDB's internal signal number into
806 # the inferior's signal (target's) representation. The implementation
807 # of this method must be host independent. IOW, don't rely on symbols
808 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
809 # header, or similar headers.
810 # Return the target signal number if found, or -1 if the GDB internal
811 # signal number is invalid.
812 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
814 # Extra signal info inspection.
816 # Return a type suitable to inspect extra signal information.
817 M:struct type *:get_siginfo_type:void:
819 # Record architecture-specific information from the symbol table.
820 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
822 # Function for the 'catch syscall' feature.
824 # Get architecture-specific system calls information from registers.
825 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
827 # SystemTap related fields and functions.
829 # A NULL-terminated array of prefixes used to mark an integer constant
830 # on the architecture's assembly.
831 # For example, on x86 integer constants are written as:
833 # \$10 ;; integer constant 10
835 # in this case, this prefix would be the character \`\$\'.
836 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
838 # A NULL-terminated array of suffixes used to mark an integer constant
839 # on the architecture's assembly.
840 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
842 # A NULL-terminated array of prefixes used to mark a register name on
843 # the architecture's assembly.
844 # For example, on x86 the register name is written as:
846 # \%eax ;; register eax
848 # in this case, this prefix would be the character \`\%\'.
849 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
851 # A NULL-terminated array of suffixes used to mark a register name on
852 # the architecture's assembly.
853 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
855 # A NULL-terminated array of prefixes used to mark a register
856 # indirection on the architecture's assembly.
857 # For example, on x86 the register indirection is written as:
859 # \(\%eax\) ;; indirecting eax
861 # in this case, this prefix would be the charater \`\(\'.
863 # Please note that we use the indirection prefix also for register
864 # displacement, e.g., \`4\(\%eax\)\' on x86.
865 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
867 # A NULL-terminated array of suffixes used to mark a register
868 # indirection on the architecture's assembly.
869 # For example, on x86 the register indirection is written as:
871 # \(\%eax\) ;; indirecting eax
873 # in this case, this prefix would be the charater \`\)\'.
875 # Please note that we use the indirection suffix also for register
876 # displacement, e.g., \`4\(\%eax\)\' on x86.
877 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
879 # Prefix(es) used to name a register using GDB's nomenclature.
881 # For example, on PPC a register is represented by a number in the assembly
882 # language (e.g., \`10\' is the 10th general-purpose register). However,
883 # inside GDB this same register has an \`r\' appended to its name, so the 10th
884 # register would be represented as \`r10\' internally.
885 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
887 # Suffix used to name a register using GDB's nomenclature.
888 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
890 # Check if S is a single operand.
892 # Single operands can be:
893 # \- Literal integers, e.g. \`\$10\' on x86
894 # \- Register access, e.g. \`\%eax\' on x86
895 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
896 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
898 # This function should check for these patterns on the string
899 # and return 1 if some were found, or zero otherwise. Please try to match
900 # as much info as you can from the string, i.e., if you have to match
901 # something like \`\(\%\', do not match just the \`\(\'.
902 M:int:stap_is_single_operand:const char *s:s
904 # Function used to handle a "special case" in the parser.
906 # A "special case" is considered to be an unknown token, i.e., a token
907 # that the parser does not know how to parse. A good example of special
908 # case would be ARM's register displacement syntax:
910 # [R0, #4] ;; displacing R0 by 4
912 # Since the parser assumes that a register displacement is of the form:
914 # <number> <indirection_prefix> <register_name> <indirection_suffix>
916 # it means that it will not be able to recognize and parse this odd syntax.
917 # Therefore, we should add a special case function that will handle this token.
919 # This function should generate the proper expression form of the expression
920 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
921 # and so on). It should also return 1 if the parsing was successful, or zero
922 # if the token was not recognized as a special token (in this case, returning
923 # zero means that the special parser is deferring the parsing to the generic
924 # parser), and should advance the buffer pointer (p->arg).
925 M:int:stap_parse_special_token:struct stap_parse_info *p:p
928 # True if the list of shared libraries is one and only for all
929 # processes, as opposed to a list of shared libraries per inferior.
930 # This usually means that all processes, although may or may not share
931 # an address space, will see the same set of symbols at the same
933 v:int:has_global_solist:::0:0::0
935 # On some targets, even though each inferior has its own private
936 # address space, the debug interface takes care of making breakpoints
937 # visible to all address spaces automatically. For such cases,
938 # this property should be set to true.
939 v:int:has_global_breakpoints:::0:0::0
941 # True if inferiors share an address space (e.g., uClinux).
942 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
944 # True if a fast tracepoint can be set at an address.
945 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
947 # Return the "auto" target charset.
948 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
949 # Return the "auto" target wide charset.
950 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
952 # If non-empty, this is a file extension that will be opened in place
953 # of the file extension reported by the shared library list.
955 # This is most useful for toolchains that use a post-linker tool,
956 # where the names of the files run on the target differ in extension
957 # compared to the names of the files GDB should load for debug info.
958 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
960 # If true, the target OS has DOS-based file system semantics. That
961 # is, absolute paths include a drive name, and the backslash is
962 # considered a directory separator.
963 v:int:has_dos_based_file_system:::0:0::0
965 # Generate bytecodes to collect the return address in a frame.
966 # Since the bytecodes run on the target, possibly with GDB not even
967 # connected, the full unwinding machinery is not available, and
968 # typically this function will issue bytecodes for one or more likely
969 # places that the return address may be found.
970 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
972 # Implement the "info proc" command.
973 M:void:info_proc:char *args, enum info_proc_what what:args, what
975 # Implement the "info proc" command for core files. Noe that there
976 # are two "info_proc"-like methods on gdbarch -- one for core files,
977 # one for live targets.
978 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
980 # Iterate over all objfiles in the order that makes the most sense
981 # for the architecture to make global symbol searches.
983 # CB is a callback function where OBJFILE is the objfile to be searched,
984 # and CB_DATA a pointer to user-defined data (the same data that is passed
985 # when calling this gdbarch method). The iteration stops if this function
988 # CB_DATA is a pointer to some user-defined data to be passed to
991 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
992 # inspected when the symbol search was requested.
993 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
995 # Ravenscar arch-dependent ops.
996 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1003 exec > new-gdbarch.log
1004 function_list | while do_read
1007 ${class} ${returntype} ${function} ($formal)
1011 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1013 if class_is_predicate_p && fallback_default_p
1015 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1019 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1021 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1025 if class_is_multiarch_p
1027 if class_is_predicate_p ; then :
1028 elif test "x${predefault}" = "x"
1030 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1039 compare_new gdbarch.log
1045 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1048 /* Dynamic architecture support for GDB, the GNU debugger.
1050 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1052 This file is part of GDB.
1054 This program is free software; you can redistribute it and/or modify
1055 it under the terms of the GNU General Public License as published by
1056 the Free Software Foundation; either version 3 of the License, or
1057 (at your option) any later version.
1059 This program is distributed in the hope that it will be useful,
1060 but WITHOUT ANY WARRANTY; without even the implied warranty of
1061 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1062 GNU General Public License for more details.
1064 You should have received a copy of the GNU General Public License
1065 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1067 /* This file was created with the aid of \`\`gdbarch.sh''.
1069 The Bourne shell script \`\`gdbarch.sh'' creates the files
1070 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1071 against the existing \`\`gdbarch.[hc]''. Any differences found
1074 If editing this file, please also run gdbarch.sh and merge any
1075 changes into that script. Conversely, when making sweeping changes
1076 to this file, modifying gdbarch.sh and using its output may prove
1086 exec > new-gdbarch.h
1098 struct minimal_symbol;
1102 struct disassemble_info;
1105 struct bp_target_info;
1107 struct displaced_step_closure;
1108 struct core_regset_section;
1112 struct stap_parse_info;
1113 struct ravenscar_arch_ops;
1114 struct elf_internal_linux_prpsinfo;
1116 /* The architecture associated with the inferior through the
1117 connection to the target.
1119 The architecture vector provides some information that is really a
1120 property of the inferior, accessed through a particular target:
1121 ptrace operations; the layout of certain RSP packets; the solib_ops
1122 vector; etc. To differentiate architecture accesses to
1123 per-inferior/target properties from
1124 per-thread/per-frame/per-objfile properties, accesses to
1125 per-inferior/target properties should be made through this
1128 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1129 extern struct gdbarch *target_gdbarch (void);
1131 /* The initial, default architecture. It uses host values (for want of a better
1133 extern struct gdbarch startup_gdbarch;
1136 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1139 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1140 (struct objfile *objfile, void *cb_data);
1143 # function typedef's
1146 printf "/* The following are pre-initialized by GDBARCH. */\n"
1147 function_list | while do_read
1152 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1153 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1157 # function typedef's
1160 printf "/* The following are initialized by the target dependent code. */\n"
1161 function_list | while do_read
1163 if [ -n "${comment}" ]
1165 echo "${comment}" | sed \
1171 if class_is_predicate_p
1174 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1176 if class_is_variable_p
1179 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1180 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1182 if class_is_function_p
1185 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1187 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1188 elif class_is_multiarch_p
1190 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1192 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1194 if [ "x${formal}" = "xvoid" ]
1196 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1198 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1200 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1207 /* Definition for an unknown syscall, used basically in error-cases. */
1208 #define UNKNOWN_SYSCALL (-1)
1210 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1213 /* Mechanism for co-ordinating the selection of a specific
1216 GDB targets (*-tdep.c) can register an interest in a specific
1217 architecture. Other GDB components can register a need to maintain
1218 per-architecture data.
1220 The mechanisms below ensures that there is only a loose connection
1221 between the set-architecture command and the various GDB
1222 components. Each component can independently register their need
1223 to maintain architecture specific data with gdbarch.
1227 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1230 The more traditional mega-struct containing architecture specific
1231 data for all the various GDB components was also considered. Since
1232 GDB is built from a variable number of (fairly independent)
1233 components it was determined that the global aproach was not
1237 /* Register a new architectural family with GDB.
1239 Register support for the specified ARCHITECTURE with GDB. When
1240 gdbarch determines that the specified architecture has been
1241 selected, the corresponding INIT function is called.
1245 The INIT function takes two parameters: INFO which contains the
1246 information available to gdbarch about the (possibly new)
1247 architecture; ARCHES which is a list of the previously created
1248 \`\`struct gdbarch'' for this architecture.
1250 The INFO parameter is, as far as possible, be pre-initialized with
1251 information obtained from INFO.ABFD or the global defaults.
1253 The ARCHES parameter is a linked list (sorted most recently used)
1254 of all the previously created architures for this architecture
1255 family. The (possibly NULL) ARCHES->gdbarch can used to access
1256 values from the previously selected architecture for this
1257 architecture family.
1259 The INIT function shall return any of: NULL - indicating that it
1260 doesn't recognize the selected architecture; an existing \`\`struct
1261 gdbarch'' from the ARCHES list - indicating that the new
1262 architecture is just a synonym for an earlier architecture (see
1263 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1264 - that describes the selected architecture (see gdbarch_alloc()).
1266 The DUMP_TDEP function shall print out all target specific values.
1267 Care should be taken to ensure that the function works in both the
1268 multi-arch and non- multi-arch cases. */
1272 struct gdbarch *gdbarch;
1273 struct gdbarch_list *next;
1278 /* Use default: NULL (ZERO). */
1279 const struct bfd_arch_info *bfd_arch_info;
1281 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1284 int byte_order_for_code;
1286 /* Use default: NULL (ZERO). */
1289 /* Use default: NULL (ZERO). */
1290 struct gdbarch_tdep_info *tdep_info;
1292 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1293 enum gdb_osabi osabi;
1295 /* Use default: NULL (ZERO). */
1296 const struct target_desc *target_desc;
1299 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1300 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1302 /* DEPRECATED - use gdbarch_register() */
1303 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1305 extern void gdbarch_register (enum bfd_architecture architecture,
1306 gdbarch_init_ftype *,
1307 gdbarch_dump_tdep_ftype *);
1310 /* Return a freshly allocated, NULL terminated, array of the valid
1311 architecture names. Since architectures are registered during the
1312 _initialize phase this function only returns useful information
1313 once initialization has been completed. */
1315 extern const char **gdbarch_printable_names (void);
1318 /* Helper function. Search the list of ARCHES for a GDBARCH that
1319 matches the information provided by INFO. */
1321 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1324 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1325 basic initialization using values obtained from the INFO and TDEP
1326 parameters. set_gdbarch_*() functions are called to complete the
1327 initialization of the object. */
1329 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1332 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1333 It is assumed that the caller freeds the \`\`struct
1336 extern void gdbarch_free (struct gdbarch *);
1339 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1340 obstack. The memory is freed when the corresponding architecture
1343 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1344 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1345 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1348 /* Helper function. Force an update of the current architecture.
1350 The actual architecture selected is determined by INFO, \`\`(gdb) set
1351 architecture'' et.al., the existing architecture and BFD's default
1352 architecture. INFO should be initialized to zero and then selected
1353 fields should be updated.
1355 Returns non-zero if the update succeeds. */
1357 extern int gdbarch_update_p (struct gdbarch_info info);
1360 /* Helper function. Find an architecture matching info.
1362 INFO should be initialized using gdbarch_info_init, relevant fields
1363 set, and then finished using gdbarch_info_fill.
1365 Returns the corresponding architecture, or NULL if no matching
1366 architecture was found. */
1368 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1371 /* Helper function. Set the target gdbarch to "gdbarch". */
1373 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1376 /* Register per-architecture data-pointer.
1378 Reserve space for a per-architecture data-pointer. An identifier
1379 for the reserved data-pointer is returned. That identifer should
1380 be saved in a local static variable.
1382 Memory for the per-architecture data shall be allocated using
1383 gdbarch_obstack_zalloc. That memory will be deleted when the
1384 corresponding architecture object is deleted.
1386 When a previously created architecture is re-selected, the
1387 per-architecture data-pointer for that previous architecture is
1388 restored. INIT() is not re-called.
1390 Multiple registrarants for any architecture are allowed (and
1391 strongly encouraged). */
1393 struct gdbarch_data;
1395 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1396 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1397 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1398 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1399 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1400 struct gdbarch_data *data,
1403 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1406 /* Set the dynamic target-system-dependent parameters (architecture,
1407 byte-order, ...) using information found in the BFD. */
1409 extern void set_gdbarch_from_file (bfd *);
1412 /* Initialize the current architecture to the "first" one we find on
1415 extern void initialize_current_architecture (void);
1417 /* gdbarch trace variable */
1418 extern unsigned int gdbarch_debug;
1420 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1425 #../move-if-change new-gdbarch.h gdbarch.h
1426 compare_new gdbarch.h
1433 exec > new-gdbarch.c
1438 #include "arch-utils.h"
1441 #include "inferior.h"
1444 #include "floatformat.h"
1446 #include "gdb_assert.h"
1448 #include "reggroups.h"
1450 #include "gdb_obstack.h"
1451 #include "observer.h"
1452 #include "regcache.h"
1453 #include "objfiles.h"
1455 /* Static function declarations */
1457 static void alloc_gdbarch_data (struct gdbarch *);
1459 /* Non-zero if we want to trace architecture code. */
1461 #ifndef GDBARCH_DEBUG
1462 #define GDBARCH_DEBUG 0
1464 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1466 show_gdbarch_debug (struct ui_file *file, int from_tty,
1467 struct cmd_list_element *c, const char *value)
1469 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1473 pformat (const struct floatformat **format)
1478 /* Just print out one of them - this is only for diagnostics. */
1479 return format[0]->name;
1483 pstring (const char *string)
1490 /* Helper function to print a list of strings, represented as "const
1491 char *const *". The list is printed comma-separated. */
1494 pstring_list (const char *const *list)
1496 static char ret[100];
1497 const char *const *p;
1504 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1506 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1512 gdb_assert (offset - 2 < sizeof (ret));
1513 ret[offset - 2] = '\0';
1521 # gdbarch open the gdbarch object
1523 printf "/* Maintain the struct gdbarch object. */\n"
1525 printf "struct gdbarch\n"
1527 printf " /* Has this architecture been fully initialized? */\n"
1528 printf " int initialized_p;\n"
1530 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1531 printf " struct obstack *obstack;\n"
1533 printf " /* basic architectural information. */\n"
1534 function_list | while do_read
1538 printf " ${returntype} ${function};\n"
1542 printf " /* target specific vector. */\n"
1543 printf " struct gdbarch_tdep *tdep;\n"
1544 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1546 printf " /* per-architecture data-pointers. */\n"
1547 printf " unsigned nr_data;\n"
1548 printf " void **data;\n"
1551 /* Multi-arch values.
1553 When extending this structure you must:
1555 Add the field below.
1557 Declare set/get functions and define the corresponding
1560 gdbarch_alloc(): If zero/NULL is not a suitable default,
1561 initialize the new field.
1563 verify_gdbarch(): Confirm that the target updated the field
1566 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1569 \`\`startup_gdbarch()'': Append an initial value to the static
1570 variable (base values on the host's c-type system).
1572 get_gdbarch(): Implement the set/get functions (probably using
1573 the macro's as shortcuts).
1578 function_list | while do_read
1580 if class_is_variable_p
1582 printf " ${returntype} ${function};\n"
1583 elif class_is_function_p
1585 printf " gdbarch_${function}_ftype *${function};\n"
1590 # A pre-initialized vector
1594 /* The default architecture uses host values (for want of a better
1598 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1600 printf "struct gdbarch startup_gdbarch =\n"
1602 printf " 1, /* Always initialized. */\n"
1603 printf " NULL, /* The obstack. */\n"
1604 printf " /* basic architecture information. */\n"
1605 function_list | while do_read
1609 printf " ${staticdefault}, /* ${function} */\n"
1613 /* target specific vector and its dump routine. */
1615 /*per-architecture data-pointers. */
1617 /* Multi-arch values */
1619 function_list | while do_read
1621 if class_is_function_p || class_is_variable_p
1623 printf " ${staticdefault}, /* ${function} */\n"
1627 /* startup_gdbarch() */
1632 # Create a new gdbarch struct
1635 /* Create a new \`\`struct gdbarch'' based on information provided by
1636 \`\`struct gdbarch_info''. */
1641 gdbarch_alloc (const struct gdbarch_info *info,
1642 struct gdbarch_tdep *tdep)
1644 struct gdbarch *gdbarch;
1646 /* Create an obstack for allocating all the per-architecture memory,
1647 then use that to allocate the architecture vector. */
1648 struct obstack *obstack = XMALLOC (struct obstack);
1649 obstack_init (obstack);
1650 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1651 memset (gdbarch, 0, sizeof (*gdbarch));
1652 gdbarch->obstack = obstack;
1654 alloc_gdbarch_data (gdbarch);
1656 gdbarch->tdep = tdep;
1659 function_list | while do_read
1663 printf " gdbarch->${function} = info->${function};\n"
1667 printf " /* Force the explicit initialization of these. */\n"
1668 function_list | while do_read
1670 if class_is_function_p || class_is_variable_p
1672 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1674 printf " gdbarch->${function} = ${predefault};\n"
1679 /* gdbarch_alloc() */
1685 # Free a gdbarch struct.
1689 /* Allocate extra space using the per-architecture obstack. */
1692 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1694 void *data = obstack_alloc (arch->obstack, size);
1696 memset (data, 0, size);
1701 /* Free a gdbarch struct. This should never happen in normal
1702 operation --- once you've created a gdbarch, you keep it around.
1703 However, if an architecture's init function encounters an error
1704 building the structure, it may need to clean up a partially
1705 constructed gdbarch. */
1708 gdbarch_free (struct gdbarch *arch)
1710 struct obstack *obstack;
1712 gdb_assert (arch != NULL);
1713 gdb_assert (!arch->initialized_p);
1714 obstack = arch->obstack;
1715 obstack_free (obstack, 0); /* Includes the ARCH. */
1720 # verify a new architecture
1724 /* Ensure that all values in a GDBARCH are reasonable. */
1727 verify_gdbarch (struct gdbarch *gdbarch)
1729 struct ui_file *log;
1730 struct cleanup *cleanups;
1734 log = mem_fileopen ();
1735 cleanups = make_cleanup_ui_file_delete (log);
1737 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1738 fprintf_unfiltered (log, "\n\tbyte-order");
1739 if (gdbarch->bfd_arch_info == NULL)
1740 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1741 /* Check those that need to be defined for the given multi-arch level. */
1743 function_list | while do_read
1745 if class_is_function_p || class_is_variable_p
1747 if [ "x${invalid_p}" = "x0" ]
1749 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1750 elif class_is_predicate_p
1752 printf " /* Skip verify of ${function}, has predicate. */\n"
1753 # FIXME: See do_read for potential simplification
1754 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1756 printf " if (${invalid_p})\n"
1757 printf " gdbarch->${function} = ${postdefault};\n"
1758 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1760 printf " if (gdbarch->${function} == ${predefault})\n"
1761 printf " gdbarch->${function} = ${postdefault};\n"
1762 elif [ -n "${postdefault}" ]
1764 printf " if (gdbarch->${function} == 0)\n"
1765 printf " gdbarch->${function} = ${postdefault};\n"
1766 elif [ -n "${invalid_p}" ]
1768 printf " if (${invalid_p})\n"
1769 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1770 elif [ -n "${predefault}" ]
1772 printf " if (gdbarch->${function} == ${predefault})\n"
1773 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1778 buf = ui_file_xstrdup (log, &length);
1779 make_cleanup (xfree, buf);
1781 internal_error (__FILE__, __LINE__,
1782 _("verify_gdbarch: the following are invalid ...%s"),
1784 do_cleanups (cleanups);
1788 # dump the structure
1792 /* Print out the details of the current architecture. */
1795 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1797 const char *gdb_nm_file = "<not-defined>";
1799 #if defined (GDB_NM_FILE)
1800 gdb_nm_file = GDB_NM_FILE;
1802 fprintf_unfiltered (file,
1803 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1806 function_list | sort -t: -k 3 | while do_read
1808 # First the predicate
1809 if class_is_predicate_p
1811 printf " fprintf_unfiltered (file,\n"
1812 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1813 printf " gdbarch_${function}_p (gdbarch));\n"
1815 # Print the corresponding value.
1816 if class_is_function_p
1818 printf " fprintf_unfiltered (file,\n"
1819 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1820 printf " host_address_to_string (gdbarch->${function}));\n"
1823 case "${print}:${returntype}" in
1826 print="core_addr_to_string_nz (gdbarch->${function})"
1830 print="plongest (gdbarch->${function})"
1836 printf " fprintf_unfiltered (file,\n"
1837 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1838 printf " ${print});\n"
1842 if (gdbarch->dump_tdep != NULL)
1843 gdbarch->dump_tdep (gdbarch, file);
1851 struct gdbarch_tdep *
1852 gdbarch_tdep (struct gdbarch *gdbarch)
1854 if (gdbarch_debug >= 2)
1855 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1856 return gdbarch->tdep;
1860 function_list | while do_read
1862 if class_is_predicate_p
1866 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1868 printf " gdb_assert (gdbarch != NULL);\n"
1869 printf " return ${predicate};\n"
1872 if class_is_function_p
1875 printf "${returntype}\n"
1876 if [ "x${formal}" = "xvoid" ]
1878 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1880 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1883 printf " gdb_assert (gdbarch != NULL);\n"
1884 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1885 if class_is_predicate_p && test -n "${predefault}"
1887 # Allow a call to a function with a predicate.
1888 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1890 printf " if (gdbarch_debug >= 2)\n"
1891 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1892 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1894 if class_is_multiarch_p
1901 if class_is_multiarch_p
1903 params="gdbarch, ${actual}"
1908 if [ "x${returntype}" = "xvoid" ]
1910 printf " gdbarch->${function} (${params});\n"
1912 printf " return gdbarch->${function} (${params});\n"
1917 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1918 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1920 printf " gdbarch->${function} = ${function};\n"
1922 elif class_is_variable_p
1925 printf "${returntype}\n"
1926 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1928 printf " gdb_assert (gdbarch != NULL);\n"
1929 if [ "x${invalid_p}" = "x0" ]
1931 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1932 elif [ -n "${invalid_p}" ]
1934 printf " /* Check variable is valid. */\n"
1935 printf " gdb_assert (!(${invalid_p}));\n"
1936 elif [ -n "${predefault}" ]
1938 printf " /* Check variable changed from pre-default. */\n"
1939 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1941 printf " if (gdbarch_debug >= 2)\n"
1942 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1943 printf " return gdbarch->${function};\n"
1947 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1948 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1950 printf " gdbarch->${function} = ${function};\n"
1952 elif class_is_info_p
1955 printf "${returntype}\n"
1956 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1958 printf " gdb_assert (gdbarch != NULL);\n"
1959 printf " if (gdbarch_debug >= 2)\n"
1960 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1961 printf " return gdbarch->${function};\n"
1966 # All the trailing guff
1970 /* Keep a registry of per-architecture data-pointers required by GDB
1977 gdbarch_data_pre_init_ftype *pre_init;
1978 gdbarch_data_post_init_ftype *post_init;
1981 struct gdbarch_data_registration
1983 struct gdbarch_data *data;
1984 struct gdbarch_data_registration *next;
1987 struct gdbarch_data_registry
1990 struct gdbarch_data_registration *registrations;
1993 struct gdbarch_data_registry gdbarch_data_registry =
1998 static struct gdbarch_data *
1999 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2000 gdbarch_data_post_init_ftype *post_init)
2002 struct gdbarch_data_registration **curr;
2004 /* Append the new registration. */
2005 for (curr = &gdbarch_data_registry.registrations;
2007 curr = &(*curr)->next);
2008 (*curr) = XMALLOC (struct gdbarch_data_registration);
2009 (*curr)->next = NULL;
2010 (*curr)->data = XMALLOC (struct gdbarch_data);
2011 (*curr)->data->index = gdbarch_data_registry.nr++;
2012 (*curr)->data->pre_init = pre_init;
2013 (*curr)->data->post_init = post_init;
2014 (*curr)->data->init_p = 1;
2015 return (*curr)->data;
2018 struct gdbarch_data *
2019 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2021 return gdbarch_data_register (pre_init, NULL);
2024 struct gdbarch_data *
2025 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2027 return gdbarch_data_register (NULL, post_init);
2030 /* Create/delete the gdbarch data vector. */
2033 alloc_gdbarch_data (struct gdbarch *gdbarch)
2035 gdb_assert (gdbarch->data == NULL);
2036 gdbarch->nr_data = gdbarch_data_registry.nr;
2037 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2040 /* Initialize the current value of the specified per-architecture
2044 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2045 struct gdbarch_data *data,
2048 gdb_assert (data->index < gdbarch->nr_data);
2049 gdb_assert (gdbarch->data[data->index] == NULL);
2050 gdb_assert (data->pre_init == NULL);
2051 gdbarch->data[data->index] = pointer;
2054 /* Return the current value of the specified per-architecture
2058 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2060 gdb_assert (data->index < gdbarch->nr_data);
2061 if (gdbarch->data[data->index] == NULL)
2063 /* The data-pointer isn't initialized, call init() to get a
2065 if (data->pre_init != NULL)
2066 /* Mid architecture creation: pass just the obstack, and not
2067 the entire architecture, as that way it isn't possible for
2068 pre-init code to refer to undefined architecture
2070 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2071 else if (gdbarch->initialized_p
2072 && data->post_init != NULL)
2073 /* Post architecture creation: pass the entire architecture
2074 (as all fields are valid), but be careful to also detect
2075 recursive references. */
2077 gdb_assert (data->init_p);
2079 gdbarch->data[data->index] = data->post_init (gdbarch);
2083 /* The architecture initialization hasn't completed - punt -
2084 hope that the caller knows what they are doing. Once
2085 deprecated_set_gdbarch_data has been initialized, this can be
2086 changed to an internal error. */
2088 gdb_assert (gdbarch->data[data->index] != NULL);
2090 return gdbarch->data[data->index];
2094 /* Keep a registry of the architectures known by GDB. */
2096 struct gdbarch_registration
2098 enum bfd_architecture bfd_architecture;
2099 gdbarch_init_ftype *init;
2100 gdbarch_dump_tdep_ftype *dump_tdep;
2101 struct gdbarch_list *arches;
2102 struct gdbarch_registration *next;
2105 static struct gdbarch_registration *gdbarch_registry = NULL;
2108 append_name (const char ***buf, int *nr, const char *name)
2110 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2116 gdbarch_printable_names (void)
2118 /* Accumulate a list of names based on the registed list of
2121 const char **arches = NULL;
2122 struct gdbarch_registration *rego;
2124 for (rego = gdbarch_registry;
2128 const struct bfd_arch_info *ap;
2129 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2131 internal_error (__FILE__, __LINE__,
2132 _("gdbarch_architecture_names: multi-arch unknown"));
2135 append_name (&arches, &nr_arches, ap->printable_name);
2140 append_name (&arches, &nr_arches, NULL);
2146 gdbarch_register (enum bfd_architecture bfd_architecture,
2147 gdbarch_init_ftype *init,
2148 gdbarch_dump_tdep_ftype *dump_tdep)
2150 struct gdbarch_registration **curr;
2151 const struct bfd_arch_info *bfd_arch_info;
2153 /* Check that BFD recognizes this architecture */
2154 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2155 if (bfd_arch_info == NULL)
2157 internal_error (__FILE__, __LINE__,
2158 _("gdbarch: Attempt to register "
2159 "unknown architecture (%d)"),
2162 /* Check that we haven't seen this architecture before. */
2163 for (curr = &gdbarch_registry;
2165 curr = &(*curr)->next)
2167 if (bfd_architecture == (*curr)->bfd_architecture)
2168 internal_error (__FILE__, __LINE__,
2169 _("gdbarch: Duplicate registration "
2170 "of architecture (%s)"),
2171 bfd_arch_info->printable_name);
2175 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2176 bfd_arch_info->printable_name,
2177 host_address_to_string (init));
2179 (*curr) = XMALLOC (struct gdbarch_registration);
2180 (*curr)->bfd_architecture = bfd_architecture;
2181 (*curr)->init = init;
2182 (*curr)->dump_tdep = dump_tdep;
2183 (*curr)->arches = NULL;
2184 (*curr)->next = NULL;
2188 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2189 gdbarch_init_ftype *init)
2191 gdbarch_register (bfd_architecture, init, NULL);
2195 /* Look for an architecture using gdbarch_info. */
2197 struct gdbarch_list *
2198 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2199 const struct gdbarch_info *info)
2201 for (; arches != NULL; arches = arches->next)
2203 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2205 if (info->byte_order != arches->gdbarch->byte_order)
2207 if (info->osabi != arches->gdbarch->osabi)
2209 if (info->target_desc != arches->gdbarch->target_desc)
2217 /* Find an architecture that matches the specified INFO. Create a new
2218 architecture if needed. Return that new architecture. */
2221 gdbarch_find_by_info (struct gdbarch_info info)
2223 struct gdbarch *new_gdbarch;
2224 struct gdbarch_registration *rego;
2226 /* Fill in missing parts of the INFO struct using a number of
2227 sources: "set ..."; INFOabfd supplied; and the global
2229 gdbarch_info_fill (&info);
2231 /* Must have found some sort of architecture. */
2232 gdb_assert (info.bfd_arch_info != NULL);
2236 fprintf_unfiltered (gdb_stdlog,
2237 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2238 (info.bfd_arch_info != NULL
2239 ? info.bfd_arch_info->printable_name
2241 fprintf_unfiltered (gdb_stdlog,
2242 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2244 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2245 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2247 fprintf_unfiltered (gdb_stdlog,
2248 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2249 info.osabi, gdbarch_osabi_name (info.osabi));
2250 fprintf_unfiltered (gdb_stdlog,
2251 "gdbarch_find_by_info: info.abfd %s\n",
2252 host_address_to_string (info.abfd));
2253 fprintf_unfiltered (gdb_stdlog,
2254 "gdbarch_find_by_info: info.tdep_info %s\n",
2255 host_address_to_string (info.tdep_info));
2258 /* Find the tdep code that knows about this architecture. */
2259 for (rego = gdbarch_registry;
2262 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2267 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2268 "No matching architecture\n");
2272 /* Ask the tdep code for an architecture that matches "info". */
2273 new_gdbarch = rego->init (info, rego->arches);
2275 /* Did the tdep code like it? No. Reject the change and revert to
2276 the old architecture. */
2277 if (new_gdbarch == NULL)
2280 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2281 "Target rejected architecture\n");
2285 /* Is this a pre-existing architecture (as determined by already
2286 being initialized)? Move it to the front of the architecture
2287 list (keeping the list sorted Most Recently Used). */
2288 if (new_gdbarch->initialized_p)
2290 struct gdbarch_list **list;
2291 struct gdbarch_list *this;
2293 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2294 "Previous architecture %s (%s) selected\n",
2295 host_address_to_string (new_gdbarch),
2296 new_gdbarch->bfd_arch_info->printable_name);
2297 /* Find the existing arch in the list. */
2298 for (list = ®o->arches;
2299 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2300 list = &(*list)->next);
2301 /* It had better be in the list of architectures. */
2302 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2305 (*list) = this->next;
2306 /* Insert THIS at the front. */
2307 this->next = rego->arches;
2308 rego->arches = this;
2313 /* It's a new architecture. */
2315 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2316 "New architecture %s (%s) selected\n",
2317 host_address_to_string (new_gdbarch),
2318 new_gdbarch->bfd_arch_info->printable_name);
2320 /* Insert the new architecture into the front of the architecture
2321 list (keep the list sorted Most Recently Used). */
2323 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2324 this->next = rego->arches;
2325 this->gdbarch = new_gdbarch;
2326 rego->arches = this;
2329 /* Check that the newly installed architecture is valid. Plug in
2330 any post init values. */
2331 new_gdbarch->dump_tdep = rego->dump_tdep;
2332 verify_gdbarch (new_gdbarch);
2333 new_gdbarch->initialized_p = 1;
2336 gdbarch_dump (new_gdbarch, gdb_stdlog);
2341 /* Make the specified architecture current. */
2344 set_target_gdbarch (struct gdbarch *new_gdbarch)
2346 gdb_assert (new_gdbarch != NULL);
2347 gdb_assert (new_gdbarch->initialized_p);
2348 current_inferior ()->gdbarch = new_gdbarch;
2349 observer_notify_architecture_changed (new_gdbarch);
2350 registers_changed ();
2353 /* Return the current inferior's arch. */
2356 target_gdbarch (void)
2358 return current_inferior ()->gdbarch;
2361 extern void _initialize_gdbarch (void);
2364 _initialize_gdbarch (void)
2366 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2367 Set architecture debugging."), _("\\
2368 Show architecture debugging."), _("\\
2369 When non-zero, architecture debugging is enabled."),
2372 &setdebuglist, &showdebuglist);
2378 #../move-if-change new-gdbarch.c gdbarch.c
2379 compare_new gdbarch.c