3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
8 # This file is part of GDB.
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
25 # Make certain that the script is not running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
98 # Provide a UCASE version of function (for when there isn't MACRO)
100 elif test "${macro}" = "${FUNCTION}"
102 echo "${function}: Specify = for macro field" 1>&2
107 # Check that macro definition wasn't supplied for multi-arch
110 if test "${macro}" != ""
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
126 case "${invalid_p}" in
128 if test -n "${predefault}"
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
137 predicate="gdbarch->${function} != NULL"
141 echo "Predicate function ${function} with invalid_p." 1>&2
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
155 if [ -n "${postdefault}" ]
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
160 fallbackdefault="${predefault}"
165 #NOT YET: See gdbarch.log for basic verification of
180 fallback_default_p ()
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
186 class_is_variable_p ()
194 class_is_function_p ()
197 *f* | *F* | *m* | *M* ) true ;;
202 class_is_multiarch_p ()
210 class_is_predicate_p ()
213 *F* | *V* | *M* ) true ;;
227 # dump out/verify the doco
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
258 # For functions, the return type; for variables, the data type
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
345 # See also PREDEFAULT and POSTDEFAULT.
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
355 garbage_at_eol ) : ;;
357 # Catches stray fields.
360 echo "Bad field ${field}"
368 # See below (DOCO) for description of each field
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
372 i::int:byte_order:::BFD_ENDIAN_BIG
374 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
381 # Number of bits in a short or unsigned short for the target machine.
382 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
389 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394 # Each format describes both the big and little endian layouts (if
397 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 v:TARGET_FLOAT_FORMAT:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
399 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 v:TARGET_DOUBLE_FORMAT:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
401 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
404 # For most targets, a pointer on the target and its representation as an
405 # address in GDB have the same size and "look the same". For such a
406 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
407 # / addr_bit will be set from it.
409 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
410 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
413 # ptr_bit is the size of a pointer on the target
414 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
415 # addr_bit is the size of a target address as represented in gdb
416 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
417 # Number of bits in a BFD_VMA for the target object file format.
418 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
420 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
421 v::int:char_signed:::1:-1:1
423 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
424 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
425 # Function for getting target's idea of a frame pointer. FIXME: GDB's
426 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
430 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
431 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
433 v::int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v::int:num_pseudo_regs:::0:0::0
440 # GDB's standard (or well known) register numbers. These can map onto
441 # a real register or a pseudo (computed) register or not be defined at
443 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
444 v:=:int:sp_regnum:::-1:-1::0
445 v:=:int:pc_regnum:::-1:-1::0
446 v:=:int:ps_regnum:::-1:-1::0
447 v:=:int:fp0_regnum:::0:-1::0
448 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
449 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
450 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
451 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
452 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
453 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
454 # Convert from an sdb register number to an internal gdb register number.
455 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
456 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
457 f:=:const char *:register_name:int regnr:regnr
459 # Return the type of a register specified by the architecture. Only
460 # the register cache should call this function directly; others should
461 # use "register_type".
462 M::struct type *:register_type:int reg_nr:reg_nr
464 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
465 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
466 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
467 # DEPRECATED_FP_REGNUM.
468 v:=:int:deprecated_fp_regnum:::-1:-1::0
470 # See gdbint.texinfo. See infcall.c.
471 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
472 # DEPRECATED_REGISTER_SIZE can be deleted.
473 v:=:int:deprecated_register_size
474 v::int:call_dummy_location::::AT_ENTRY_POINT::0
475 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
477 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
478 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
479 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
480 # MAP a GDB RAW register number onto a simulator register number. See
481 # also include/...-sim.h.
482 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
483 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
484 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
485 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
486 # setjmp/longjmp support.
487 F::int:get_longjmp_target:CORE_ADDR *pc:pc
489 v:=:int:believe_pcc_promotion:::::::
491 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
492 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
493 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
494 # Construct a value representing the contents of register REGNUM in
495 # frame FRAME, interpreted as type TYPE. The routine needs to
496 # allocate and return a struct value with all value attributes
497 # (but not the value contents) filled in.
498 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
500 f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
501 f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
502 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
504 # It has been suggested that this, well actually its predecessor,
505 # should take the type/value of the function to be called and not the
506 # return type. This is left as an exercise for the reader.
508 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
509 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
510 # (via legacy_return_value), when a small struct is involved.
512 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
514 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
515 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
516 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
519 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
520 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
521 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
523 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
524 # ABI suitable for the implementation of a robust extract
525 # struct-convention return-value address method (the sparc saves the
526 # address in the callers frame). All the other cases so far examined,
527 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
528 # erreneous - the code was incorrectly assuming that the return-value
529 # address, stored in a register, was preserved across the entire
532 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
533 # the ABIs that are still to be analyzed - perhaps this should simply
534 # be deleted. The commented out extract_returned_value_address method
535 # is provided as a starting point for the 32-bit SPARC. It, or
536 # something like it, along with changes to both infcmd.c and stack.c
537 # will be needed for that case to work. NB: It is passed the callers
538 # frame since it is only after the callee has returned that this
541 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
542 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
545 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
546 f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
549 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
550 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
551 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
553 # A function can be addressed by either it's "pointer" (possibly a
554 # descriptor address) or "entry point" (first executable instruction).
555 # The method "convert_from_func_ptr_addr" converting the former to the
556 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
557 # a simplified subset of that functionality - the function's address
558 # corresponds to the "function pointer" and the function's start
559 # corresponds to the "function entry point" - and hence is redundant.
561 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
563 # Return the remote protocol register number associated with this
564 # register. Normally the identity mapping.
565 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
567 # Fetch the target specific address used to represent a load module.
568 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
570 v::CORE_ADDR:frame_args_skip:::0:::0
571 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
572 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
573 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
574 # frame-base. Enable frame-base before frame-unwind.
575 F::int:frame_num_args:struct frame_info *frame:frame
577 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
578 # to frame_align and the requirement that methods such as
579 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
581 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
582 M::CORE_ADDR:frame_align:CORE_ADDR address:address
583 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
584 # stabs_argument_has_addr.
585 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
586 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
587 v::int:frame_red_zone_size
589 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
590 # On some machines there are bits in addresses which are not really
591 # part of the address, but are used by the kernel, the hardware, etc.
592 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
593 # we get a "real" address such as one would find in a symbol table.
594 # This is used only for addresses of instructions, and even then I'm
595 # not sure it's used in all contexts. It exists to deal with there
596 # being a few stray bits in the PC which would mislead us, not as some
597 # sort of generic thing to handle alignment or segmentation (it's
598 # possible it should be in TARGET_READ_PC instead).
599 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
600 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
602 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
604 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
605 # indicates if the target needs software single step. An ISA method to
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
609 # breakpoints using the breakpoint system instead of blatting memory directly
612 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
613 # target can single step. If not, then implement single step using breakpoints.
615 # A return value of 1 means that the software_single_step breakpoints
616 # were inserted; 0 means they were not.
617 F:=:int:software_single_step:struct regcache *regcache:regcache
619 # Return non-zero if the processor is executing a delay slot and a
620 # further single-step is needed before the instruction finishes.
621 M::int:single_step_through_delay:struct frame_info *frame:frame
622 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
623 # disassembler. Perhaps objdump can handle it?
624 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
625 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
628 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
629 # evaluates non-zero, this is the address where the debugger will place
630 # a step-resume breakpoint to get us past the dynamic linker.
631 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
632 # Some systems also have trampoline code for returning from shared libs.
633 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
635 # A target might have problems with watchpoints as soon as the stack
636 # frame of the current function has been destroyed. This mostly happens
637 # as the first action in a funtion's epilogue. in_function_epilogue_p()
638 # is defined to return a non-zero value if either the given addr is one
639 # instruction after the stack destroying instruction up to the trailing
640 # return instruction or if we can figure out that the stack frame has
641 # already been invalidated regardless of the value of addr. Targets
642 # which don't suffer from that problem could just let this functionality
644 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
645 # Given a vector of command-line arguments, return a newly allocated
646 # string which, when passed to the create_inferior function, will be
647 # parsed (on Unix systems, by the shell) to yield the same vector.
648 # This function should call error() if the argument vector is not
649 # representable for this target or if this target does not support
650 # command-line arguments.
651 # ARGC is the number of elements in the vector.
652 # ARGV is an array of strings, one per argument.
653 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
654 f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
655 f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
656 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
657 v:=:int:cannot_step_breakpoint:::0:0::0
658 v:=:int:have_nonsteppable_watchpoint:::0:0::0
659 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
660 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
661 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
662 # Is a register in a group
663 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
664 # Fetch the pointer to the ith function argument.
665 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
667 # Return the appropriate register set for a core file section with
668 # name SECT_NAME and size SECT_SIZE.
669 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
671 # If the elements of C++ vtables are in-place function descriptors rather
672 # than normal function pointers (which may point to code or a descriptor),
674 v::int:vtable_function_descriptors:::0:0::0
676 # Set if the least significant bit of the delta is used instead of the least
677 # significant bit of the pfn for pointers to virtual member functions.
678 v::int:vbit_in_delta:::0:0::0
680 # Advance PC to next instruction in order to skip a permanent breakpoint.
681 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
683 # Refresh overlay mapped state for section OSECT.
684 F::void:overlay_update:struct obj_section *osect:osect
691 exec > new-gdbarch.log
692 function_list | while do_read
695 ${class} ${returntype} ${function} ($formal)
699 eval echo \"\ \ \ \ ${r}=\${${r}}\"
701 if class_is_predicate_p && fallback_default_p
703 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
707 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
709 echo "Error: postdefault is useless when invalid_p=0" 1>&2
713 if class_is_multiarch_p
715 if class_is_predicate_p ; then :
716 elif test "x${predefault}" = "x"
718 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
727 compare_new gdbarch.log
733 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
735 /* Dynamic architecture support for GDB, the GNU debugger.
737 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
738 Free Software Foundation, Inc.
740 This file is part of GDB.
742 This program is free software; you can redistribute it and/or modify
743 it under the terms of the GNU General Public License as published by
744 the Free Software Foundation; either version 2 of the License, or
745 (at your option) any later version.
747 This program is distributed in the hope that it will be useful,
748 but WITHOUT ANY WARRANTY; without even the implied warranty of
749 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
750 GNU General Public License for more details.
752 You should have received a copy of the GNU General Public License
753 along with this program; if not, write to the Free Software
754 Foundation, Inc., 51 Franklin Street, Fifth Floor,
755 Boston, MA 02110-1301, USA. */
757 /* This file was created with the aid of \`\`gdbarch.sh''.
759 The Bourne shell script \`\`gdbarch.sh'' creates the files
760 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
761 against the existing \`\`gdbarch.[hc]''. Any differences found
764 If editing this file, please also run gdbarch.sh and merge any
765 changes into that script. Conversely, when making sweeping changes
766 to this file, modifying gdbarch.sh and using its output may prove
788 struct minimal_symbol;
792 struct disassemble_info;
795 struct bp_target_info;
798 extern struct gdbarch *current_gdbarch;
804 printf "/* The following are pre-initialized by GDBARCH. */\n"
805 function_list | while do_read
810 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
811 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
812 if test -n "${macro}"
814 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
815 printf "#error \"Non multi-arch definition of ${macro}\"\n"
817 printf "#if !defined (${macro})\n"
818 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
827 printf "/* The following are initialized by the target dependent code. */\n"
828 function_list | while do_read
830 if [ -n "${comment}" ]
832 echo "${comment}" | sed \
838 if class_is_predicate_p
840 if test -n "${macro}"
843 printf "#if defined (${macro})\n"
844 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
845 printf "#if !defined (${macro}_P)\n"
846 printf "#define ${macro}_P() (1)\n"
851 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
852 if test -n "${macro}"
854 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
855 printf "#error \"Non multi-arch definition of ${macro}\"\n"
857 printf "#if !defined (${macro}_P)\n"
858 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
862 if class_is_variable_p
865 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
866 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
867 if test -n "${macro}"
869 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
870 printf "#error \"Non multi-arch definition of ${macro}\"\n"
872 printf "#if !defined (${macro})\n"
873 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
877 if class_is_function_p
880 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
882 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
883 elif class_is_multiarch_p
885 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
887 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
889 if [ "x${formal}" = "xvoid" ]
891 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
893 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
895 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
896 if test -n "${macro}"
898 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
899 printf "#error \"Non multi-arch definition of ${macro}\"\n"
901 if [ "x${actual}" = "x" ]
903 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
904 elif [ "x${actual}" = "x-" ]
906 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
908 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
910 printf "#if !defined (${macro})\n"
911 if [ "x${actual}" = "x" ]
913 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
914 elif [ "x${actual}" = "x-" ]
916 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
918 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
928 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
931 /* Mechanism for co-ordinating the selection of a specific
934 GDB targets (*-tdep.c) can register an interest in a specific
935 architecture. Other GDB components can register a need to maintain
936 per-architecture data.
938 The mechanisms below ensures that there is only a loose connection
939 between the set-architecture command and the various GDB
940 components. Each component can independently register their need
941 to maintain architecture specific data with gdbarch.
945 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
948 The more traditional mega-struct containing architecture specific
949 data for all the various GDB components was also considered. Since
950 GDB is built from a variable number of (fairly independent)
951 components it was determined that the global aproach was not
955 /* Register a new architectural family with GDB.
957 Register support for the specified ARCHITECTURE with GDB. When
958 gdbarch determines that the specified architecture has been
959 selected, the corresponding INIT function is called.
963 The INIT function takes two parameters: INFO which contains the
964 information available to gdbarch about the (possibly new)
965 architecture; ARCHES which is a list of the previously created
966 \`\`struct gdbarch'' for this architecture.
968 The INFO parameter is, as far as possible, be pre-initialized with
969 information obtained from INFO.ABFD or the global defaults.
971 The ARCHES parameter is a linked list (sorted most recently used)
972 of all the previously created architures for this architecture
973 family. The (possibly NULL) ARCHES->gdbarch can used to access
974 values from the previously selected architecture for this
975 architecture family. The global \`\`current_gdbarch'' shall not be
978 The INIT function shall return any of: NULL - indicating that it
979 doesn't recognize the selected architecture; an existing \`\`struct
980 gdbarch'' from the ARCHES list - indicating that the new
981 architecture is just a synonym for an earlier architecture (see
982 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
983 - that describes the selected architecture (see gdbarch_alloc()).
985 The DUMP_TDEP function shall print out all target specific values.
986 Care should be taken to ensure that the function works in both the
987 multi-arch and non- multi-arch cases. */
991 struct gdbarch *gdbarch;
992 struct gdbarch_list *next;
997 /* Use default: NULL (ZERO). */
998 const struct bfd_arch_info *bfd_arch_info;
1000 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1003 /* Use default: NULL (ZERO). */
1006 /* Use default: NULL (ZERO). */
1007 struct gdbarch_tdep_info *tdep_info;
1009 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1010 enum gdb_osabi osabi;
1012 /* Use default: NULL (ZERO). */
1013 const struct target_desc *target_desc;
1016 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1017 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1019 /* DEPRECATED - use gdbarch_register() */
1020 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1022 extern void gdbarch_register (enum bfd_architecture architecture,
1023 gdbarch_init_ftype *,
1024 gdbarch_dump_tdep_ftype *);
1027 /* Return a freshly allocated, NULL terminated, array of the valid
1028 architecture names. Since architectures are registered during the
1029 _initialize phase this function only returns useful information
1030 once initialization has been completed. */
1032 extern const char **gdbarch_printable_names (void);
1035 /* Helper function. Search the list of ARCHES for a GDBARCH that
1036 matches the information provided by INFO. */
1038 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1041 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1042 basic initialization using values obtained from the INFO and TDEP
1043 parameters. set_gdbarch_*() functions are called to complete the
1044 initialization of the object. */
1046 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1049 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1050 It is assumed that the caller freeds the \`\`struct
1053 extern void gdbarch_free (struct gdbarch *);
1056 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1057 obstack. The memory is freed when the corresponding architecture
1060 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1061 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1062 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1065 /* Helper function. Force an update of the current architecture.
1067 The actual architecture selected is determined by INFO, \`\`(gdb) set
1068 architecture'' et.al., the existing architecture and BFD's default
1069 architecture. INFO should be initialized to zero and then selected
1070 fields should be updated.
1072 Returns non-zero if the update succeeds */
1074 extern int gdbarch_update_p (struct gdbarch_info info);
1077 /* Helper function. Find an architecture matching info.
1079 INFO should be initialized using gdbarch_info_init, relevant fields
1080 set, and then finished using gdbarch_info_fill.
1082 Returns the corresponding architecture, or NULL if no matching
1083 architecture was found. "current_gdbarch" is not updated. */
1085 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1088 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1090 FIXME: kettenis/20031124: Of the functions that follow, only
1091 gdbarch_from_bfd is supposed to survive. The others will
1092 dissappear since in the future GDB will (hopefully) be truly
1093 multi-arch. However, for now we're still stuck with the concept of
1094 a single active architecture. */
1096 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1099 /* Register per-architecture data-pointer.
1101 Reserve space for a per-architecture data-pointer. An identifier
1102 for the reserved data-pointer is returned. That identifer should
1103 be saved in a local static variable.
1105 Memory for the per-architecture data shall be allocated using
1106 gdbarch_obstack_zalloc. That memory will be deleted when the
1107 corresponding architecture object is deleted.
1109 When a previously created architecture is re-selected, the
1110 per-architecture data-pointer for that previous architecture is
1111 restored. INIT() is not re-called.
1113 Multiple registrarants for any architecture are allowed (and
1114 strongly encouraged). */
1116 struct gdbarch_data;
1118 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1119 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1120 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1121 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1122 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1123 struct gdbarch_data *data,
1126 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1130 /* Register per-architecture memory region.
1132 Provide a memory-region swap mechanism. Per-architecture memory
1133 region are created. These memory regions are swapped whenever the
1134 architecture is changed. For a new architecture, the memory region
1135 is initialized with zero (0) and the INIT function is called.
1137 Memory regions are swapped / initialized in the order that they are
1138 registered. NULL DATA and/or INIT values can be specified.
1140 New code should use gdbarch_data_register_*(). */
1142 typedef void (gdbarch_swap_ftype) (void);
1143 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1144 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1148 /* Set the dynamic target-system-dependent parameters (architecture,
1149 byte-order, ...) using information found in the BFD */
1151 extern void set_gdbarch_from_file (bfd *);
1154 /* Initialize the current architecture to the "first" one we find on
1157 extern void initialize_current_architecture (void);
1159 /* gdbarch trace variable */
1160 extern int gdbarch_debug;
1162 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1167 #../move-if-change new-gdbarch.h gdbarch.h
1168 compare_new gdbarch.h
1175 exec > new-gdbarch.c
1180 #include "arch-utils.h"
1183 #include "inferior.h"
1186 #include "floatformat.h"
1188 #include "gdb_assert.h"
1189 #include "gdb_string.h"
1190 #include "gdb-events.h"
1191 #include "reggroups.h"
1193 #include "gdb_obstack.h"
1195 /* Static function declarations */
1197 static void alloc_gdbarch_data (struct gdbarch *);
1199 /* Non-zero if we want to trace architecture code. */
1201 #ifndef GDBARCH_DEBUG
1202 #define GDBARCH_DEBUG 0
1204 int gdbarch_debug = GDBARCH_DEBUG;
1206 show_gdbarch_debug (struct ui_file *file, int from_tty,
1207 struct cmd_list_element *c, const char *value)
1209 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1213 pformat (const struct floatformat **format)
1218 /* Just print out one of them - this is only for diagnostics. */
1219 return format[0]->name;
1224 # gdbarch open the gdbarch object
1226 printf "/* Maintain the struct gdbarch object */\n"
1228 printf "struct gdbarch\n"
1230 printf " /* Has this architecture been fully initialized? */\n"
1231 printf " int initialized_p;\n"
1233 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1234 printf " struct obstack *obstack;\n"
1236 printf " /* basic architectural information */\n"
1237 function_list | while do_read
1241 printf " ${returntype} ${function};\n"
1245 printf " /* target specific vector. */\n"
1246 printf " struct gdbarch_tdep *tdep;\n"
1247 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1249 printf " /* per-architecture data-pointers */\n"
1250 printf " unsigned nr_data;\n"
1251 printf " void **data;\n"
1253 printf " /* per-architecture swap-regions */\n"
1254 printf " struct gdbarch_swap *swap;\n"
1257 /* Multi-arch values.
1259 When extending this structure you must:
1261 Add the field below.
1263 Declare set/get functions and define the corresponding
1266 gdbarch_alloc(): If zero/NULL is not a suitable default,
1267 initialize the new field.
1269 verify_gdbarch(): Confirm that the target updated the field
1272 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1275 \`\`startup_gdbarch()'': Append an initial value to the static
1276 variable (base values on the host's c-type system).
1278 get_gdbarch(): Implement the set/get functions (probably using
1279 the macro's as shortcuts).
1284 function_list | while do_read
1286 if class_is_variable_p
1288 printf " ${returntype} ${function};\n"
1289 elif class_is_function_p
1291 printf " gdbarch_${function}_ftype *${function};\n"
1296 # A pre-initialized vector
1300 /* The default architecture uses host values (for want of a better
1304 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1306 printf "struct gdbarch startup_gdbarch =\n"
1308 printf " 1, /* Always initialized. */\n"
1309 printf " NULL, /* The obstack. */\n"
1310 printf " /* basic architecture information */\n"
1311 function_list | while do_read
1315 printf " ${staticdefault}, /* ${function} */\n"
1319 /* target specific vector and its dump routine */
1321 /*per-architecture data-pointers and swap regions */
1323 /* Multi-arch values */
1325 function_list | while do_read
1327 if class_is_function_p || class_is_variable_p
1329 printf " ${staticdefault}, /* ${function} */\n"
1333 /* startup_gdbarch() */
1336 struct gdbarch *current_gdbarch = &startup_gdbarch;
1339 # Create a new gdbarch struct
1342 /* Create a new \`\`struct gdbarch'' based on information provided by
1343 \`\`struct gdbarch_info''. */
1348 gdbarch_alloc (const struct gdbarch_info *info,
1349 struct gdbarch_tdep *tdep)
1351 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1352 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1353 the current local architecture and not the previous global
1354 architecture. This ensures that the new architectures initial
1355 values are not influenced by the previous architecture. Once
1356 everything is parameterised with gdbarch, this will go away. */
1357 struct gdbarch *current_gdbarch;
1359 /* Create an obstack for allocating all the per-architecture memory,
1360 then use that to allocate the architecture vector. */
1361 struct obstack *obstack = XMALLOC (struct obstack);
1362 obstack_init (obstack);
1363 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1364 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1365 current_gdbarch->obstack = obstack;
1367 alloc_gdbarch_data (current_gdbarch);
1369 current_gdbarch->tdep = tdep;
1372 function_list | while do_read
1376 printf " current_gdbarch->${function} = info->${function};\n"
1380 printf " /* Force the explicit initialization of these. */\n"
1381 function_list | while do_read
1383 if class_is_function_p || class_is_variable_p
1385 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1387 printf " current_gdbarch->${function} = ${predefault};\n"
1392 /* gdbarch_alloc() */
1394 return current_gdbarch;
1398 # Free a gdbarch struct.
1402 /* Allocate extra space using the per-architecture obstack. */
1405 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1407 void *data = obstack_alloc (arch->obstack, size);
1408 memset (data, 0, size);
1413 /* Free a gdbarch struct. This should never happen in normal
1414 operation --- once you've created a gdbarch, you keep it around.
1415 However, if an architecture's init function encounters an error
1416 building the structure, it may need to clean up a partially
1417 constructed gdbarch. */
1420 gdbarch_free (struct gdbarch *arch)
1422 struct obstack *obstack;
1423 gdb_assert (arch != NULL);
1424 gdb_assert (!arch->initialized_p);
1425 obstack = arch->obstack;
1426 obstack_free (obstack, 0); /* Includes the ARCH. */
1431 # verify a new architecture
1435 /* Ensure that all values in a GDBARCH are reasonable. */
1437 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1438 just happens to match the global variable \`\`current_gdbarch''. That
1439 way macros refering to that variable get the local and not the global
1440 version - ulgh. Once everything is parameterised with gdbarch, this
1444 verify_gdbarch (struct gdbarch *current_gdbarch)
1446 struct ui_file *log;
1447 struct cleanup *cleanups;
1450 log = mem_fileopen ();
1451 cleanups = make_cleanup_ui_file_delete (log);
1453 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1454 fprintf_unfiltered (log, "\n\tbyte-order");
1455 if (current_gdbarch->bfd_arch_info == NULL)
1456 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1457 /* Check those that need to be defined for the given multi-arch level. */
1459 function_list | while do_read
1461 if class_is_function_p || class_is_variable_p
1463 if [ "x${invalid_p}" = "x0" ]
1465 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1466 elif class_is_predicate_p
1468 printf " /* Skip verify of ${function}, has predicate */\n"
1469 # FIXME: See do_read for potential simplification
1470 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1472 printf " if (${invalid_p})\n"
1473 printf " current_gdbarch->${function} = ${postdefault};\n"
1474 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1476 printf " if (current_gdbarch->${function} == ${predefault})\n"
1477 printf " current_gdbarch->${function} = ${postdefault};\n"
1478 elif [ -n "${postdefault}" ]
1480 printf " if (current_gdbarch->${function} == 0)\n"
1481 printf " current_gdbarch->${function} = ${postdefault};\n"
1482 elif [ -n "${invalid_p}" ]
1484 printf " if (${invalid_p})\n"
1485 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1486 elif [ -n "${predefault}" ]
1488 printf " if (current_gdbarch->${function} == ${predefault})\n"
1489 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1494 buf = ui_file_xstrdup (log, &dummy);
1495 make_cleanup (xfree, buf);
1496 if (strlen (buf) > 0)
1497 internal_error (__FILE__, __LINE__,
1498 _("verify_gdbarch: the following are invalid ...%s"),
1500 do_cleanups (cleanups);
1504 # dump the structure
1508 /* Print out the details of the current architecture. */
1510 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1511 just happens to match the global variable \`\`current_gdbarch''. That
1512 way macros refering to that variable get the local and not the global
1513 version - ulgh. Once everything is parameterised with gdbarch, this
1517 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1519 const char *gdb_xm_file = "<not-defined>";
1520 const char *gdb_nm_file = "<not-defined>";
1521 const char *gdb_tm_file = "<not-defined>";
1522 #if defined (GDB_XM_FILE)
1523 gdb_xm_file = GDB_XM_FILE;
1525 fprintf_unfiltered (file,
1526 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1528 #if defined (GDB_NM_FILE)
1529 gdb_nm_file = GDB_NM_FILE;
1531 fprintf_unfiltered (file,
1532 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1534 #if defined (GDB_TM_FILE)
1535 gdb_tm_file = GDB_TM_FILE;
1537 fprintf_unfiltered (file,
1538 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1541 function_list | sort -t: -k 4 | while do_read
1543 # First the predicate
1544 if class_is_predicate_p
1546 if test -n "${macro}"
1548 printf "#ifdef ${macro}_P\n"
1549 printf " fprintf_unfiltered (file,\n"
1550 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1551 printf " \"${macro}_P()\",\n"
1552 printf " XSTRING (${macro}_P ()));\n"
1555 printf " fprintf_unfiltered (file,\n"
1556 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1557 printf " gdbarch_${function}_p (current_gdbarch));\n"
1559 # Print the macro definition.
1560 if test -n "${macro}"
1562 printf "#ifdef ${macro}\n"
1563 if class_is_function_p
1565 printf " fprintf_unfiltered (file,\n"
1566 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1567 printf " \"${macro}(${actual})\",\n"
1568 printf " XSTRING (${macro} (${actual})));\n"
1570 printf " fprintf_unfiltered (file,\n"
1571 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1572 printf " XSTRING (${macro}));\n"
1576 # Print the corresponding value.
1577 if class_is_function_p
1579 printf " fprintf_unfiltered (file,\n"
1580 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1581 printf " (long) current_gdbarch->${function});\n"
1584 case "${print}:${returntype}" in
1587 print="paddr_nz (current_gdbarch->${function})"
1591 print="paddr_d (current_gdbarch->${function})"
1597 printf " fprintf_unfiltered (file,\n"
1598 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1599 printf " ${print});\n"
1603 if (current_gdbarch->dump_tdep != NULL)
1604 current_gdbarch->dump_tdep (current_gdbarch, file);
1612 struct gdbarch_tdep *
1613 gdbarch_tdep (struct gdbarch *gdbarch)
1615 if (gdbarch_debug >= 2)
1616 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1617 return gdbarch->tdep;
1621 function_list | while do_read
1623 if class_is_predicate_p
1627 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1629 printf " gdb_assert (gdbarch != NULL);\n"
1630 printf " return ${predicate};\n"
1633 if class_is_function_p
1636 printf "${returntype}\n"
1637 if [ "x${formal}" = "xvoid" ]
1639 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1641 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1644 printf " gdb_assert (gdbarch != NULL);\n"
1645 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1646 if class_is_predicate_p && test -n "${predefault}"
1648 # Allow a call to a function with a predicate.
1649 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1651 printf " if (gdbarch_debug >= 2)\n"
1652 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1653 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1655 if class_is_multiarch_p
1662 if class_is_multiarch_p
1664 params="gdbarch, ${actual}"
1669 if [ "x${returntype}" = "xvoid" ]
1671 printf " gdbarch->${function} (${params});\n"
1673 printf " return gdbarch->${function} (${params});\n"
1678 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1679 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1681 printf " gdbarch->${function} = ${function};\n"
1683 elif class_is_variable_p
1686 printf "${returntype}\n"
1687 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1689 printf " gdb_assert (gdbarch != NULL);\n"
1690 if [ "x${invalid_p}" = "x0" ]
1692 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1693 elif [ -n "${invalid_p}" ]
1695 printf " /* Check variable is valid. */\n"
1696 printf " gdb_assert (!(${invalid_p}));\n"
1697 elif [ -n "${predefault}" ]
1699 printf " /* Check variable changed from pre-default. */\n"
1700 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1702 printf " if (gdbarch_debug >= 2)\n"
1703 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1704 printf " return gdbarch->${function};\n"
1708 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1709 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1711 printf " gdbarch->${function} = ${function};\n"
1713 elif class_is_info_p
1716 printf "${returntype}\n"
1717 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1719 printf " gdb_assert (gdbarch != NULL);\n"
1720 printf " if (gdbarch_debug >= 2)\n"
1721 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1722 printf " return gdbarch->${function};\n"
1727 # All the trailing guff
1731 /* Keep a registry of per-architecture data-pointers required by GDB
1738 gdbarch_data_pre_init_ftype *pre_init;
1739 gdbarch_data_post_init_ftype *post_init;
1742 struct gdbarch_data_registration
1744 struct gdbarch_data *data;
1745 struct gdbarch_data_registration *next;
1748 struct gdbarch_data_registry
1751 struct gdbarch_data_registration *registrations;
1754 struct gdbarch_data_registry gdbarch_data_registry =
1759 static struct gdbarch_data *
1760 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1761 gdbarch_data_post_init_ftype *post_init)
1763 struct gdbarch_data_registration **curr;
1764 /* Append the new registraration. */
1765 for (curr = &gdbarch_data_registry.registrations;
1767 curr = &(*curr)->next);
1768 (*curr) = XMALLOC (struct gdbarch_data_registration);
1769 (*curr)->next = NULL;
1770 (*curr)->data = XMALLOC (struct gdbarch_data);
1771 (*curr)->data->index = gdbarch_data_registry.nr++;
1772 (*curr)->data->pre_init = pre_init;
1773 (*curr)->data->post_init = post_init;
1774 (*curr)->data->init_p = 1;
1775 return (*curr)->data;
1778 struct gdbarch_data *
1779 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1781 return gdbarch_data_register (pre_init, NULL);
1784 struct gdbarch_data *
1785 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1787 return gdbarch_data_register (NULL, post_init);
1790 /* Create/delete the gdbarch data vector. */
1793 alloc_gdbarch_data (struct gdbarch *gdbarch)
1795 gdb_assert (gdbarch->data == NULL);
1796 gdbarch->nr_data = gdbarch_data_registry.nr;
1797 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1800 /* Initialize the current value of the specified per-architecture
1804 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1805 struct gdbarch_data *data,
1808 gdb_assert (data->index < gdbarch->nr_data);
1809 gdb_assert (gdbarch->data[data->index] == NULL);
1810 gdb_assert (data->pre_init == NULL);
1811 gdbarch->data[data->index] = pointer;
1814 /* Return the current value of the specified per-architecture
1818 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1820 gdb_assert (data->index < gdbarch->nr_data);
1821 if (gdbarch->data[data->index] == NULL)
1823 /* The data-pointer isn't initialized, call init() to get a
1825 if (data->pre_init != NULL)
1826 /* Mid architecture creation: pass just the obstack, and not
1827 the entire architecture, as that way it isn't possible for
1828 pre-init code to refer to undefined architecture
1830 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1831 else if (gdbarch->initialized_p
1832 && data->post_init != NULL)
1833 /* Post architecture creation: pass the entire architecture
1834 (as all fields are valid), but be careful to also detect
1835 recursive references. */
1837 gdb_assert (data->init_p);
1839 gdbarch->data[data->index] = data->post_init (gdbarch);
1843 /* The architecture initialization hasn't completed - punt -
1844 hope that the caller knows what they are doing. Once
1845 deprecated_set_gdbarch_data has been initialized, this can be
1846 changed to an internal error. */
1848 gdb_assert (gdbarch->data[data->index] != NULL);
1850 return gdbarch->data[data->index];
1855 /* Keep a registry of swapped data required by GDB modules. */
1860 struct gdbarch_swap_registration *source;
1861 struct gdbarch_swap *next;
1864 struct gdbarch_swap_registration
1867 unsigned long sizeof_data;
1868 gdbarch_swap_ftype *init;
1869 struct gdbarch_swap_registration *next;
1872 struct gdbarch_swap_registry
1875 struct gdbarch_swap_registration *registrations;
1878 struct gdbarch_swap_registry gdbarch_swap_registry =
1884 deprecated_register_gdbarch_swap (void *data,
1885 unsigned long sizeof_data,
1886 gdbarch_swap_ftype *init)
1888 struct gdbarch_swap_registration **rego;
1889 for (rego = &gdbarch_swap_registry.registrations;
1891 rego = &(*rego)->next);
1892 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1893 (*rego)->next = NULL;
1894 (*rego)->init = init;
1895 (*rego)->data = data;
1896 (*rego)->sizeof_data = sizeof_data;
1900 current_gdbarch_swap_init_hack (void)
1902 struct gdbarch_swap_registration *rego;
1903 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1904 for (rego = gdbarch_swap_registry.registrations;
1908 if (rego->data != NULL)
1910 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1911 struct gdbarch_swap);
1912 (*curr)->source = rego;
1913 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1915 (*curr)->next = NULL;
1916 curr = &(*curr)->next;
1918 if (rego->init != NULL)
1923 static struct gdbarch *
1924 current_gdbarch_swap_out_hack (void)
1926 struct gdbarch *old_gdbarch = current_gdbarch;
1927 struct gdbarch_swap *curr;
1929 gdb_assert (old_gdbarch != NULL);
1930 for (curr = old_gdbarch->swap;
1934 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1935 memset (curr->source->data, 0, curr->source->sizeof_data);
1937 current_gdbarch = NULL;
1942 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1944 struct gdbarch_swap *curr;
1946 gdb_assert (current_gdbarch == NULL);
1947 for (curr = new_gdbarch->swap;
1950 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1951 current_gdbarch = new_gdbarch;
1955 /* Keep a registry of the architectures known by GDB. */
1957 struct gdbarch_registration
1959 enum bfd_architecture bfd_architecture;
1960 gdbarch_init_ftype *init;
1961 gdbarch_dump_tdep_ftype *dump_tdep;
1962 struct gdbarch_list *arches;
1963 struct gdbarch_registration *next;
1966 static struct gdbarch_registration *gdbarch_registry = NULL;
1969 append_name (const char ***buf, int *nr, const char *name)
1971 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1977 gdbarch_printable_names (void)
1979 /* Accumulate a list of names based on the registed list of
1981 enum bfd_architecture a;
1983 const char **arches = NULL;
1984 struct gdbarch_registration *rego;
1985 for (rego = gdbarch_registry;
1989 const struct bfd_arch_info *ap;
1990 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1992 internal_error (__FILE__, __LINE__,
1993 _("gdbarch_architecture_names: multi-arch unknown"));
1996 append_name (&arches, &nr_arches, ap->printable_name);
2001 append_name (&arches, &nr_arches, NULL);
2007 gdbarch_register (enum bfd_architecture bfd_architecture,
2008 gdbarch_init_ftype *init,
2009 gdbarch_dump_tdep_ftype *dump_tdep)
2011 struct gdbarch_registration **curr;
2012 const struct bfd_arch_info *bfd_arch_info;
2013 /* Check that BFD recognizes this architecture */
2014 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2015 if (bfd_arch_info == NULL)
2017 internal_error (__FILE__, __LINE__,
2018 _("gdbarch: Attempt to register unknown architecture (%d)"),
2021 /* Check that we haven't seen this architecture before */
2022 for (curr = &gdbarch_registry;
2024 curr = &(*curr)->next)
2026 if (bfd_architecture == (*curr)->bfd_architecture)
2027 internal_error (__FILE__, __LINE__,
2028 _("gdbarch: Duplicate registraration of architecture (%s)"),
2029 bfd_arch_info->printable_name);
2033 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2034 bfd_arch_info->printable_name,
2037 (*curr) = XMALLOC (struct gdbarch_registration);
2038 (*curr)->bfd_architecture = bfd_architecture;
2039 (*curr)->init = init;
2040 (*curr)->dump_tdep = dump_tdep;
2041 (*curr)->arches = NULL;
2042 (*curr)->next = NULL;
2046 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2047 gdbarch_init_ftype *init)
2049 gdbarch_register (bfd_architecture, init, NULL);
2053 /* Look for an architecture using gdbarch_info. */
2055 struct gdbarch_list *
2056 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2057 const struct gdbarch_info *info)
2059 for (; arches != NULL; arches = arches->next)
2061 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2063 if (info->byte_order != arches->gdbarch->byte_order)
2065 if (info->osabi != arches->gdbarch->osabi)
2067 if (info->target_desc != arches->gdbarch->target_desc)
2075 /* Find an architecture that matches the specified INFO. Create a new
2076 architecture if needed. Return that new architecture. Assumes
2077 that there is no current architecture. */
2079 static struct gdbarch *
2080 find_arch_by_info (struct gdbarch_info info)
2082 struct gdbarch *new_gdbarch;
2083 struct gdbarch_registration *rego;
2085 /* The existing architecture has been swapped out - all this code
2086 works from a clean slate. */
2087 gdb_assert (current_gdbarch == NULL);
2089 /* Fill in missing parts of the INFO struct using a number of
2090 sources: "set ..."; INFOabfd supplied; and the global
2092 gdbarch_info_fill (&info);
2094 /* Must have found some sort of architecture. */
2095 gdb_assert (info.bfd_arch_info != NULL);
2099 fprintf_unfiltered (gdb_stdlog,
2100 "find_arch_by_info: info.bfd_arch_info %s\n",
2101 (info.bfd_arch_info != NULL
2102 ? info.bfd_arch_info->printable_name
2104 fprintf_unfiltered (gdb_stdlog,
2105 "find_arch_by_info: info.byte_order %d (%s)\n",
2107 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2108 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2110 fprintf_unfiltered (gdb_stdlog,
2111 "find_arch_by_info: info.osabi %d (%s)\n",
2112 info.osabi, gdbarch_osabi_name (info.osabi));
2113 fprintf_unfiltered (gdb_stdlog,
2114 "find_arch_by_info: info.abfd 0x%lx\n",
2116 fprintf_unfiltered (gdb_stdlog,
2117 "find_arch_by_info: info.tdep_info 0x%lx\n",
2118 (long) info.tdep_info);
2121 /* Find the tdep code that knows about this architecture. */
2122 for (rego = gdbarch_registry;
2125 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2130 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2131 "No matching architecture\n");
2135 /* Ask the tdep code for an architecture that matches "info". */
2136 new_gdbarch = rego->init (info, rego->arches);
2138 /* Did the tdep code like it? No. Reject the change and revert to
2139 the old architecture. */
2140 if (new_gdbarch == NULL)
2143 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2144 "Target rejected architecture\n");
2148 /* Is this a pre-existing architecture (as determined by already
2149 being initialized)? Move it to the front of the architecture
2150 list (keeping the list sorted Most Recently Used). */
2151 if (new_gdbarch->initialized_p)
2153 struct gdbarch_list **list;
2154 struct gdbarch_list *this;
2156 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2157 "Previous architecture 0x%08lx (%s) selected\n",
2159 new_gdbarch->bfd_arch_info->printable_name);
2160 /* Find the existing arch in the list. */
2161 for (list = ®o->arches;
2162 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2163 list = &(*list)->next);
2164 /* It had better be in the list of architectures. */
2165 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2168 (*list) = this->next;
2169 /* Insert THIS at the front. */
2170 this->next = rego->arches;
2171 rego->arches = this;
2176 /* It's a new architecture. */
2178 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2179 "New architecture 0x%08lx (%s) selected\n",
2181 new_gdbarch->bfd_arch_info->printable_name);
2183 /* Insert the new architecture into the front of the architecture
2184 list (keep the list sorted Most Recently Used). */
2186 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2187 this->next = rego->arches;
2188 this->gdbarch = new_gdbarch;
2189 rego->arches = this;
2192 /* Check that the newly installed architecture is valid. Plug in
2193 any post init values. */
2194 new_gdbarch->dump_tdep = rego->dump_tdep;
2195 verify_gdbarch (new_gdbarch);
2196 new_gdbarch->initialized_p = 1;
2198 /* Initialize any per-architecture swap areas. This phase requires
2199 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2200 swap the entire architecture out. */
2201 current_gdbarch = new_gdbarch;
2202 current_gdbarch_swap_init_hack ();
2203 current_gdbarch_swap_out_hack ();
2206 gdbarch_dump (new_gdbarch, gdb_stdlog);
2212 gdbarch_find_by_info (struct gdbarch_info info)
2214 /* Save the previously selected architecture, setting the global to
2215 NULL. This stops things like gdbarch->init() trying to use the
2216 previous architecture's configuration. The previous architecture
2217 may not even be of the same architecture family. The most recent
2218 architecture of the same family is found at the head of the
2219 rego->arches list. */
2220 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2222 /* Find the specified architecture. */
2223 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2225 /* Restore the existing architecture. */
2226 gdb_assert (current_gdbarch == NULL);
2227 current_gdbarch_swap_in_hack (old_gdbarch);
2232 /* Make the specified architecture current, swapping the existing one
2236 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2238 gdb_assert (new_gdbarch != NULL);
2239 gdb_assert (current_gdbarch != NULL);
2240 gdb_assert (new_gdbarch->initialized_p);
2241 current_gdbarch_swap_out_hack ();
2242 current_gdbarch_swap_in_hack (new_gdbarch);
2243 architecture_changed_event ();
2244 reinit_frame_cache ();
2247 extern void _initialize_gdbarch (void);
2250 _initialize_gdbarch (void)
2252 struct cmd_list_element *c;
2254 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2255 Set architecture debugging."), _("\\
2256 Show architecture debugging."), _("\\
2257 When non-zero, architecture debugging is enabled."),
2260 &setdebuglist, &showdebuglist);
2266 #../move-if-change new-gdbarch.c gdbarch.c
2267 compare_new gdbarch.c