3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2018 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
103 case "${invalid_p}" in
105 if test -n "${predefault}"
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
114 predicate="gdbarch->${function} != NULL"
118 echo "Predicate function ${function} with invalid_p." 1>&2
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
132 if [ -n "${postdefault}" ]
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
137 fallbackdefault="${predefault}"
142 #NOT YET: See gdbarch.log for basic verification of
157 fallback_default_p ()
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 class_is_variable_p ()
171 class_is_function_p ()
174 *f* | *F* | *m* | *M* ) true ;;
179 class_is_multiarch_p ()
187 class_is_predicate_p ()
190 *F* | *V* | *M* ) true ;;
204 # dump out/verify the doco
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
229 # For functions, the return type; for variables, the data type
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
257 # If STATICDEFAULT is empty, zero is used.
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
266 # If PREDEFAULT is empty, zero is used.
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
272 # A zero PREDEFAULT function will force the fallback to call
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
284 # If POSTDEFAULT is empty, no post update is performed.
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
316 # See also PREDEFAULT and POSTDEFAULT.
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
326 garbage_at_eol ) : ;;
328 # Catches stray fields.
331 echo "Bad field ${field}"
339 # See below (DOCO) for description of each field
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363 # Alignment of a long long or unsigned long long for the target
365 v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
367 # The ABI default bit-size and format for "half", "float", "double", and
368 # "long double". These bit/format pairs should eventually be combined
369 # into a single object. For the moment, just initialize them as a pair.
370 # Each format describes both the big and little endian layouts (if
373 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
374 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
375 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
376 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
377 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
378 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
379 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
380 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
382 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
383 # starting with C++11.
384 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
385 # One if \`wchar_t' is signed, zero if unsigned.
386 v;int;wchar_signed;;;1;-1;1
388 # Returns the floating-point format to be used for values of length LENGTH.
389 # NAME, if non-NULL, is the type name, which may be used to distinguish
390 # different target formats of the same length.
391 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
393 # For most targets, a pointer on the target and its representation as an
394 # address in GDB have the same size and "look the same". For such a
395 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
396 # / addr_bit will be set from it.
398 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
399 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
400 # gdbarch_address_to_pointer as well.
402 # ptr_bit is the size of a pointer on the target
403 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
404 # addr_bit is the size of a target address as represented in gdb
405 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
407 # dwarf2_addr_size is the target address size as used in the Dwarf debug
408 # info. For .debug_frame FDEs, this is supposed to be the target address
409 # size from the associated CU header, and which is equivalent to the
410 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
411 # Unfortunately there is no good way to determine this value. Therefore
412 # dwarf2_addr_size simply defaults to the target pointer size.
414 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
415 # defined using the target's pointer size so far.
417 # Note that dwarf2_addr_size only needs to be redefined by a target if the
418 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
419 # and if Dwarf versions < 4 need to be supported.
420 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
422 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
423 v;int;char_signed;;;1;-1;1
425 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
426 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
427 # Function for getting target's idea of a frame pointer. FIXME: GDB's
428 # whole scheme for dealing with "frames" and "frame pointers" needs a
430 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
432 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
433 # Read a register into a new struct value. If the register is wholly
434 # or partly unavailable, this should call mark_value_bytes_unavailable
435 # as appropriate. If this is defined, then pseudo_register_read will
437 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
438 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
440 v;int;num_regs;;;0;-1
441 # This macro gives the number of pseudo-registers that live in the
442 # register namespace but do not get fetched or stored on the target.
443 # These pseudo-registers may be aliases for other registers,
444 # combinations of other registers, or they may be computed by GDB.
445 v;int;num_pseudo_regs;;;0;0;;0
447 # Assemble agent expression bytecode to collect pseudo-register REG.
448 # Return -1 if something goes wrong, 0 otherwise.
449 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
451 # Assemble agent expression bytecode to push the value of pseudo-register
452 # REG on the interpreter stack.
453 # Return -1 if something goes wrong, 0 otherwise.
454 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
456 # Some targets/architectures can do extra processing/display of
457 # segmentation faults. E.g., Intel MPX boundary faults.
458 # Call the architecture dependent function to handle the fault.
459 # UIOUT is the output stream where the handler will place information.
460 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
462 # GDB's standard (or well known) register numbers. These can map onto
463 # a real register or a pseudo (computed) register or not be defined at
465 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
466 v;int;sp_regnum;;;-1;-1;;0
467 v;int;pc_regnum;;;-1;-1;;0
468 v;int;ps_regnum;;;-1;-1;;0
469 v;int;fp0_regnum;;;0;-1;;0
470 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
471 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
472 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
473 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
474 # Convert from an sdb register number to an internal gdb register number.
475 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
476 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
477 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
478 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
479 m;const char *;register_name;int regnr;regnr;;0
481 # Return the type of a register specified by the architecture. Only
482 # the register cache should call this function directly; others should
483 # use "register_type".
484 M;struct type *;register_type;int reg_nr;reg_nr
486 M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
487 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
488 # deprecated_fp_regnum.
489 v;int;deprecated_fp_regnum;;;-1;-1;;0
491 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
492 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
493 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
495 # Return true if the code of FRAME is writable.
496 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
498 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
499 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
500 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
501 # MAP a GDB RAW register number onto a simulator register number. See
502 # also include/...-sim.h.
503 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
504 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
505 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
507 # Determine the address where a longjmp will land and save this address
508 # in PC. Return nonzero on success.
510 # FRAME corresponds to the longjmp frame.
511 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
514 v;int;believe_pcc_promotion;;;;;;;
516 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
517 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
518 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
519 # Construct a value representing the contents of register REGNUM in
520 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
521 # allocate and return a struct value with all value attributes
522 # (but not the value contents) filled in.
523 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
525 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
526 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
527 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
529 # Return the return-value convention that will be used by FUNCTION
530 # to return a value of type VALTYPE. FUNCTION may be NULL in which
531 # case the return convention is computed based only on VALTYPE.
533 # If READBUF is not NULL, extract the return value and save it in this buffer.
535 # If WRITEBUF is not NULL, it contains a return value which will be
536 # stored into the appropriate register. This can be used when we want
537 # to force the value returned by a function (see the "return" command
539 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
541 # Return true if the return value of function is stored in the first hidden
542 # parameter. In theory, this feature should be language-dependent, specified
543 # by language and its ABI, such as C++. Unfortunately, compiler may
544 # implement it to a target-dependent feature. So that we need such hook here
545 # to be aware of this in GDB.
546 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
548 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
549 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
550 # On some platforms, a single function may provide multiple entry points,
551 # e.g. one that is used for function-pointer calls and a different one
552 # that is used for direct function calls.
553 # In order to ensure that breakpoints set on the function will trigger
554 # no matter via which entry point the function is entered, a platform
555 # may provide the skip_entrypoint callback. It is called with IP set
556 # to the main entry point of a function (as determined by the symbol table),
557 # and should return the address of the innermost entry point, where the
558 # actual breakpoint needs to be set. Note that skip_entrypoint is used
559 # by GDB common code even when debugging optimized code, where skip_prologue
561 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
563 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
564 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
566 # Return the breakpoint kind for this target based on *PCPTR.
567 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
569 # Return the software breakpoint from KIND. KIND can have target
570 # specific meaning like the Z0 kind parameter.
571 # SIZE is set to the software breakpoint's length in memory.
572 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
574 # Return the breakpoint kind for this target based on the current
575 # processor state (e.g. the current instruction mode on ARM) and the
576 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
577 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
579 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
580 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
581 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
582 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
584 # A function can be addressed by either it's "pointer" (possibly a
585 # descriptor address) or "entry point" (first executable instruction).
586 # The method "convert_from_func_ptr_addr" converting the former to the
587 # latter. gdbarch_deprecated_function_start_offset is being used to implement
588 # a simplified subset of that functionality - the function's address
589 # corresponds to the "function pointer" and the function's start
590 # corresponds to the "function entry point" - and hence is redundant.
592 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
594 # Return the remote protocol register number associated with this
595 # register. Normally the identity mapping.
596 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
598 # Fetch the target specific address used to represent a load module.
599 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
601 v;CORE_ADDR;frame_args_skip;;;0;;;0
602 M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
603 M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
604 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
605 # frame-base. Enable frame-base before frame-unwind.
606 F;int;frame_num_args;struct frame_info *frame;frame
608 M;CORE_ADDR;frame_align;CORE_ADDR address;address
609 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
610 v;int;frame_red_zone_size
612 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
613 # On some machines there are bits in addresses which are not really
614 # part of the address, but are used by the kernel, the hardware, etc.
615 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
616 # we get a "real" address such as one would find in a symbol table.
617 # This is used only for addresses of instructions, and even then I'm
618 # not sure it's used in all contexts. It exists to deal with there
619 # being a few stray bits in the PC which would mislead us, not as some
620 # sort of generic thing to handle alignment or segmentation (it's
621 # possible it should be in TARGET_READ_PC instead).
622 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
624 # On some machines, not all bits of an address word are significant.
625 # For example, on AArch64, the top bits of an address known as the "tag"
626 # are ignored by the kernel, the hardware, etc. and can be regarded as
627 # additional data associated with the address.
628 v;int;significant_addr_bit;;;;;gdbarch_addr_bit (gdbarch);
630 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
631 # indicates if the target needs software single step. An ISA method to
634 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
635 # target can single step. If not, then implement single step using breakpoints.
637 # Return a vector of addresses on which the software single step
638 # breakpoints should be inserted. NULL means software single step is
640 # Multiple breakpoints may be inserted for some instructions such as
641 # conditional branch. However, each implementation must always evaluate
642 # the condition and only put the breakpoint at the branch destination if
643 # the condition is true, so that we ensure forward progress when stepping
644 # past a conditional branch to self.
645 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
647 # Return non-zero if the processor is executing a delay slot and a
648 # further single-step is needed before the instruction finishes.
649 M;int;single_step_through_delay;struct frame_info *frame;frame
650 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
651 # disassembler. Perhaps objdump can handle it?
652 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
653 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
656 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
657 # evaluates non-zero, this is the address where the debugger will place
658 # a step-resume breakpoint to get us past the dynamic linker.
659 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
660 # Some systems also have trampoline code for returning from shared libs.
661 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
663 # A target might have problems with watchpoints as soon as the stack
664 # frame of the current function has been destroyed. This mostly happens
665 # as the first action in a function's epilogue. stack_frame_destroyed_p()
666 # is defined to return a non-zero value if either the given addr is one
667 # instruction after the stack destroying instruction up to the trailing
668 # return instruction or if we can figure out that the stack frame has
669 # already been invalidated regardless of the value of addr. Targets
670 # which don't suffer from that problem could just let this functionality
672 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
673 # Process an ELF symbol in the minimal symbol table in a backend-specific
674 # way. Normally this hook is supposed to do nothing, however if required,
675 # then this hook can be used to apply tranformations to symbols that are
676 # considered special in some way. For example the MIPS backend uses it
677 # to interpret \`st_other' information to mark compressed code symbols so
678 # that they can be treated in the appropriate manner in the processing of
679 # the main symbol table and DWARF-2 records.
680 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
681 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
682 # Process a symbol in the main symbol table in a backend-specific way.
683 # Normally this hook is supposed to do nothing, however if required,
684 # then this hook can be used to apply tranformations to symbols that
685 # are considered special in some way. This is currently used by the
686 # MIPS backend to make sure compressed code symbols have the ISA bit
687 # set. This in turn is needed for symbol values seen in GDB to match
688 # the values used at the runtime by the program itself, for function
689 # and label references.
690 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
691 # Adjust the address retrieved from a DWARF-2 record other than a line
692 # entry in a backend-specific way. Normally this hook is supposed to
693 # return the address passed unchanged, however if that is incorrect for
694 # any reason, then this hook can be used to fix the address up in the
695 # required manner. This is currently used by the MIPS backend to make
696 # sure addresses in FDE, range records, etc. referring to compressed
697 # code have the ISA bit set, matching line information and the symbol
699 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
700 # Adjust the address updated by a line entry in a backend-specific way.
701 # Normally this hook is supposed to return the address passed unchanged,
702 # however in the case of inconsistencies in these records, this hook can
703 # be used to fix them up in the required manner. This is currently used
704 # by the MIPS backend to make sure all line addresses in compressed code
705 # are presented with the ISA bit set, which is not always the case. This
706 # in turn ensures breakpoint addresses are correctly matched against the
708 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
709 v;int;cannot_step_breakpoint;;;0;0;;0
710 v;int;have_nonsteppable_watchpoint;;;0;0;;0
711 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
712 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
713 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
714 # FS are passed from the generic execute_cfa_program function.
715 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
717 # Return the appropriate type_flags for the supplied address class.
718 # This function should return 1 if the address class was recognized and
719 # type_flags was set, zero otherwise.
720 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
721 # Is a register in a group
722 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
723 # Fetch the pointer to the ith function argument.
724 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
726 # Iterate over all supported register notes in a core file. For each
727 # supported register note section, the iterator must call CB and pass
728 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
729 # the supported register note sections based on the current register
730 # values. Otherwise it should enumerate all supported register note
732 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
734 # Create core file notes
735 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
737 # Find core file memory regions
738 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
740 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
741 # core file into buffer READBUF with length LEN. Return the number of bytes read
742 # (zero indicates failure).
743 # failed, otherwise, return the red length of READBUF.
744 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
746 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
747 # libraries list from core file into buffer READBUF with length LEN.
748 # Return the number of bytes read (zero indicates failure).
749 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
751 # How the core target converts a PTID from a core file to a string.
752 M;const char *;core_pid_to_str;ptid_t ptid;ptid
754 # How the core target extracts the name of a thread from a core file.
755 M;const char *;core_thread_name;struct thread_info *thr;thr
757 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
758 # from core file into buffer READBUF with length LEN. Return the number
759 # of bytes read (zero indicates EOF, a negative value indicates failure).
760 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
762 # BFD target to use when generating a core file.
763 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
765 # If the elements of C++ vtables are in-place function descriptors rather
766 # than normal function pointers (which may point to code or a descriptor),
768 v;int;vtable_function_descriptors;;;0;0;;0
770 # Set if the least significant bit of the delta is used instead of the least
771 # significant bit of the pfn for pointers to virtual member functions.
772 v;int;vbit_in_delta;;;0;0;;0
774 # Advance PC to next instruction in order to skip a permanent breakpoint.
775 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
777 # The maximum length of an instruction on this architecture in bytes.
778 V;ULONGEST;max_insn_length;;;0;0
780 # Copy the instruction at FROM to TO, and make any adjustments
781 # necessary to single-step it at that address.
783 # REGS holds the state the thread's registers will have before
784 # executing the copied instruction; the PC in REGS will refer to FROM,
785 # not the copy at TO. The caller should update it to point at TO later.
787 # Return a pointer to data of the architecture's choice to be passed
788 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
789 # the instruction's effects have been completely simulated, with the
790 # resulting state written back to REGS.
792 # For a general explanation of displaced stepping and how GDB uses it,
793 # see the comments in infrun.c.
795 # The TO area is only guaranteed to have space for
796 # gdbarch_max_insn_length (arch) bytes, so this function must not
797 # write more bytes than that to that area.
799 # If you do not provide this function, GDB assumes that the
800 # architecture does not support displaced stepping.
802 # If the instruction cannot execute out of line, return NULL. The
803 # core falls back to stepping past the instruction in-line instead in
805 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
807 # Return true if GDB should use hardware single-stepping to execute
808 # the displaced instruction identified by CLOSURE. If false,
809 # GDB will simply restart execution at the displaced instruction
810 # location, and it is up to the target to ensure GDB will receive
811 # control again (e.g. by placing a software breakpoint instruction
812 # into the displaced instruction buffer).
814 # The default implementation returns false on all targets that
815 # provide a gdbarch_software_single_step routine, and true otherwise.
816 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
818 # Fix up the state resulting from successfully single-stepping a
819 # displaced instruction, to give the result we would have gotten from
820 # stepping the instruction in its original location.
822 # REGS is the register state resulting from single-stepping the
823 # displaced instruction.
825 # CLOSURE is the result from the matching call to
826 # gdbarch_displaced_step_copy_insn.
828 # If you provide gdbarch_displaced_step_copy_insn.but not this
829 # function, then GDB assumes that no fixup is needed after
830 # single-stepping the instruction.
832 # For a general explanation of displaced stepping and how GDB uses it,
833 # see the comments in infrun.c.
834 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
836 # Return the address of an appropriate place to put displaced
837 # instructions while we step over them. There need only be one such
838 # place, since we're only stepping one thread over a breakpoint at a
841 # For a general explanation of displaced stepping and how GDB uses it,
842 # see the comments in infrun.c.
843 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
845 # Relocate an instruction to execute at a different address. OLDLOC
846 # is the address in the inferior memory where the instruction to
847 # relocate is currently at. On input, TO points to the destination
848 # where we want the instruction to be copied (and possibly adjusted)
849 # to. On output, it points to one past the end of the resulting
850 # instruction(s). The effect of executing the instruction at TO shall
851 # be the same as if executing it at FROM. For example, call
852 # instructions that implicitly push the return address on the stack
853 # should be adjusted to return to the instruction after OLDLOC;
854 # relative branches, and other PC-relative instructions need the
855 # offset adjusted; etc.
856 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
858 # Refresh overlay mapped state for section OSECT.
859 F;void;overlay_update;struct obj_section *osect;osect
861 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
863 # Handle special encoding of static variables in stabs debug info.
864 F;const char *;static_transform_name;const char *name;name
865 # Set if the address in N_SO or N_FUN stabs may be zero.
866 v;int;sofun_address_maybe_missing;;;0;0;;0
868 # Parse the instruction at ADDR storing in the record execution log
869 # the registers REGCACHE and memory ranges that will be affected when
870 # the instruction executes, along with their current values.
871 # Return -1 if something goes wrong, 0 otherwise.
872 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
874 # Save process state after a signal.
875 # Return -1 if something goes wrong, 0 otherwise.
876 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
878 # Signal translation: translate inferior's signal (target's) number
879 # into GDB's representation. The implementation of this method must
880 # be host independent. IOW, don't rely on symbols of the NAT_FILE
881 # header (the nm-*.h files), the host <signal.h> header, or similar
882 # headers. This is mainly used when cross-debugging core files ---
883 # "Live" targets hide the translation behind the target interface
884 # (target_wait, target_resume, etc.).
885 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
887 # Signal translation: translate the GDB's internal signal number into
888 # the inferior's signal (target's) representation. The implementation
889 # of this method must be host independent. IOW, don't rely on symbols
890 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
891 # header, or similar headers.
892 # Return the target signal number if found, or -1 if the GDB internal
893 # signal number is invalid.
894 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
896 # Extra signal info inspection.
898 # Return a type suitable to inspect extra signal information.
899 M;struct type *;get_siginfo_type;void;
901 # Record architecture-specific information from the symbol table.
902 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
904 # Function for the 'catch syscall' feature.
906 # Get architecture-specific system calls information from registers.
907 M;LONGEST;get_syscall_number;ptid_t ptid;ptid
909 # The filename of the XML syscall for this architecture.
910 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
912 # Information about system calls from this architecture
913 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
915 # SystemTap related fields and functions.
917 # A NULL-terminated array of prefixes used to mark an integer constant
918 # on the architecture's assembly.
919 # For example, on x86 integer constants are written as:
921 # \$10 ;; integer constant 10
923 # in this case, this prefix would be the character \`\$\'.
924 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
926 # A NULL-terminated array of suffixes used to mark an integer constant
927 # on the architecture's assembly.
928 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
930 # A NULL-terminated array of prefixes used to mark a register name on
931 # the architecture's assembly.
932 # For example, on x86 the register name is written as:
934 # \%eax ;; register eax
936 # in this case, this prefix would be the character \`\%\'.
937 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
939 # A NULL-terminated array of suffixes used to mark a register name on
940 # the architecture's assembly.
941 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
943 # A NULL-terminated array of prefixes used to mark a register
944 # indirection on the architecture's assembly.
945 # For example, on x86 the register indirection is written as:
947 # \(\%eax\) ;; indirecting eax
949 # in this case, this prefix would be the charater \`\(\'.
951 # Please note that we use the indirection prefix also for register
952 # displacement, e.g., \`4\(\%eax\)\' on x86.
953 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
955 # A NULL-terminated array of suffixes used to mark a register
956 # indirection on the architecture's assembly.
957 # For example, on x86 the register indirection is written as:
959 # \(\%eax\) ;; indirecting eax
961 # in this case, this prefix would be the charater \`\)\'.
963 # Please note that we use the indirection suffix also for register
964 # displacement, e.g., \`4\(\%eax\)\' on x86.
965 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
967 # Prefix(es) used to name a register using GDB's nomenclature.
969 # For example, on PPC a register is represented by a number in the assembly
970 # language (e.g., \`10\' is the 10th general-purpose register). However,
971 # inside GDB this same register has an \`r\' appended to its name, so the 10th
972 # register would be represented as \`r10\' internally.
973 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
975 # Suffix used to name a register using GDB's nomenclature.
976 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
978 # Check if S is a single operand.
980 # Single operands can be:
981 # \- Literal integers, e.g. \`\$10\' on x86
982 # \- Register access, e.g. \`\%eax\' on x86
983 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
984 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
986 # This function should check for these patterns on the string
987 # and return 1 if some were found, or zero otherwise. Please try to match
988 # as much info as you can from the string, i.e., if you have to match
989 # something like \`\(\%\', do not match just the \`\(\'.
990 M;int;stap_is_single_operand;const char *s;s
992 # Function used to handle a "special case" in the parser.
994 # A "special case" is considered to be an unknown token, i.e., a token
995 # that the parser does not know how to parse. A good example of special
996 # case would be ARM's register displacement syntax:
998 # [R0, #4] ;; displacing R0 by 4
1000 # Since the parser assumes that a register displacement is of the form:
1002 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1004 # it means that it will not be able to recognize and parse this odd syntax.
1005 # Therefore, we should add a special case function that will handle this token.
1007 # This function should generate the proper expression form of the expression
1008 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1009 # and so on). It should also return 1 if the parsing was successful, or zero
1010 # if the token was not recognized as a special token (in this case, returning
1011 # zero means that the special parser is deferring the parsing to the generic
1012 # parser), and should advance the buffer pointer (p->arg).
1013 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1015 # DTrace related functions.
1017 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1018 # NARG must be >= 0.
1019 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1021 # True if the given ADDR does not contain the instruction sequence
1022 # corresponding to a disabled DTrace is-enabled probe.
1023 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1025 # Enable a DTrace is-enabled probe at ADDR.
1026 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1028 # Disable a DTrace is-enabled probe at ADDR.
1029 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1031 # True if the list of shared libraries is one and only for all
1032 # processes, as opposed to a list of shared libraries per inferior.
1033 # This usually means that all processes, although may or may not share
1034 # an address space, will see the same set of symbols at the same
1036 v;int;has_global_solist;;;0;0;;0
1038 # On some targets, even though each inferior has its own private
1039 # address space, the debug interface takes care of making breakpoints
1040 # visible to all address spaces automatically. For such cases,
1041 # this property should be set to true.
1042 v;int;has_global_breakpoints;;;0;0;;0
1044 # True if inferiors share an address space (e.g., uClinux).
1045 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1047 # True if a fast tracepoint can be set at an address.
1048 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1050 # Guess register state based on tracepoint location. Used for tracepoints
1051 # where no registers have been collected, but there's only one location,
1052 # allowing us to guess the PC value, and perhaps some other registers.
1053 # On entry, regcache has all registers marked as unavailable.
1054 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1056 # Return the "auto" target charset.
1057 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1058 # Return the "auto" target wide charset.
1059 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1061 # If non-empty, this is a file extension that will be opened in place
1062 # of the file extension reported by the shared library list.
1064 # This is most useful for toolchains that use a post-linker tool,
1065 # where the names of the files run on the target differ in extension
1066 # compared to the names of the files GDB should load for debug info.
1067 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1069 # If true, the target OS has DOS-based file system semantics. That
1070 # is, absolute paths include a drive name, and the backslash is
1071 # considered a directory separator.
1072 v;int;has_dos_based_file_system;;;0;0;;0
1074 # Generate bytecodes to collect the return address in a frame.
1075 # Since the bytecodes run on the target, possibly with GDB not even
1076 # connected, the full unwinding machinery is not available, and
1077 # typically this function will issue bytecodes for one or more likely
1078 # places that the return address may be found.
1079 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1081 # Implement the "info proc" command.
1082 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1084 # Implement the "info proc" command for core files. Noe that there
1085 # are two "info_proc"-like methods on gdbarch -- one for core files,
1086 # one for live targets.
1087 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1089 # Iterate over all objfiles in the order that makes the most sense
1090 # for the architecture to make global symbol searches.
1092 # CB is a callback function where OBJFILE is the objfile to be searched,
1093 # and CB_DATA a pointer to user-defined data (the same data that is passed
1094 # when calling this gdbarch method). The iteration stops if this function
1097 # CB_DATA is a pointer to some user-defined data to be passed to
1100 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1101 # inspected when the symbol search was requested.
1102 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1104 # Ravenscar arch-dependent ops.
1105 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1107 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1108 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1110 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1111 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1113 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1114 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1116 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1117 # Return 0 if *READPTR is already at the end of the buffer.
1118 # Return -1 if there is insufficient buffer for a whole entry.
1119 # Return 1 if an entry was read into *TYPEP and *VALP.
1120 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1122 # Print the description of a single auxv entry described by TYPE and VAL
1124 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1126 # Find the address range of the current inferior's vsyscall/vDSO, and
1127 # write it to *RANGE. If the vsyscall's length can't be determined, a
1128 # range with zero length is returned. Returns true if the vsyscall is
1129 # found, false otherwise.
1130 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1132 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1133 # PROT has GDB_MMAP_PROT_* bitmask format.
1134 # Throw an error if it is not possible. Returned address is always valid.
1135 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1137 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1138 # Print a warning if it is not possible.
1139 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1141 # Return string (caller has to use xfree for it) with options for GCC
1142 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1143 # These options are put before CU's DW_AT_producer compilation options so that
1144 # they can override it. Method may also return NULL.
1145 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1147 # Return a regular expression that matches names used by this
1148 # architecture in GNU configury triplets. The result is statically
1149 # allocated and must not be freed. The default implementation simply
1150 # returns the BFD architecture name, which is correct in nearly every
1152 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1154 # Return the size in 8-bit bytes of an addressable memory unit on this
1155 # architecture. This corresponds to the number of 8-bit bytes associated to
1156 # each address in memory.
1157 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1159 # Functions for allowing a target to modify its disassembler options.
1160 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1161 v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1169 exec > new-gdbarch.log
1170 function_list | while do_read
1173 ${class} ${returntype} ${function} ($formal)
1177 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1179 if class_is_predicate_p && fallback_default_p
1181 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1185 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1187 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1191 if class_is_multiarch_p
1193 if class_is_predicate_p ; then :
1194 elif test "x${predefault}" = "x"
1196 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1205 compare_new gdbarch.log
1211 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1214 /* Dynamic architecture support for GDB, the GNU debugger.
1216 Copyright (C) 1998-2018 Free Software Foundation, Inc.
1218 This file is part of GDB.
1220 This program is free software; you can redistribute it and/or modify
1221 it under the terms of the GNU General Public License as published by
1222 the Free Software Foundation; either version 3 of the License, or
1223 (at your option) any later version.
1225 This program is distributed in the hope that it will be useful,
1226 but WITHOUT ANY WARRANTY; without even the implied warranty of
1227 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1228 GNU General Public License for more details.
1230 You should have received a copy of the GNU General Public License
1231 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1233 /* This file was created with the aid of \`\`gdbarch.sh''.
1235 The Bourne shell script \`\`gdbarch.sh'' creates the files
1236 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1237 against the existing \`\`gdbarch.[hc]''. Any differences found
1240 If editing this file, please also run gdbarch.sh and merge any
1241 changes into that script. Conversely, when making sweeping changes
1242 to this file, modifying gdbarch.sh and using its output may prove
1252 exec > new-gdbarch.h
1260 #include "dis-asm.h"
1267 struct minimal_symbol;
1271 struct disassemble_info;
1274 struct bp_target_info;
1277 struct displaced_step_closure;
1281 struct stap_parse_info;
1282 struct parser_state;
1283 struct ravenscar_arch_ops;
1285 struct syscalls_info;
1289 #include "regcache.h"
1291 /* The architecture associated with the inferior through the
1292 connection to the target.
1294 The architecture vector provides some information that is really a
1295 property of the inferior, accessed through a particular target:
1296 ptrace operations; the layout of certain RSP packets; the solib_ops
1297 vector; etc. To differentiate architecture accesses to
1298 per-inferior/target properties from
1299 per-thread/per-frame/per-objfile properties, accesses to
1300 per-inferior/target properties should be made through this
1303 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1304 extern struct gdbarch *target_gdbarch (void);
1306 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1309 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1310 (struct objfile *objfile, void *cb_data);
1312 /* Callback type for regset section iterators. The callback usually
1313 invokes the REGSET's supply or collect method, to which it must
1314 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1315 section name, and HUMAN_NAME is used for diagnostic messages.
1316 CB_DATA should have been passed unchanged through the iterator. */
1318 typedef void (iterate_over_regset_sections_cb)
1319 (const char *sect_name, int size, const struct regset *regset,
1320 const char *human_name, void *cb_data);
1323 # function typedef's
1326 printf "/* The following are pre-initialized by GDBARCH. */\n"
1327 function_list | while do_read
1332 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1333 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1337 # function typedef's
1340 printf "/* The following are initialized by the target dependent code. */\n"
1341 function_list | while do_read
1343 if [ -n "${comment}" ]
1345 echo "${comment}" | sed \
1351 if class_is_predicate_p
1354 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1356 if class_is_variable_p
1359 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1360 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1362 if class_is_function_p
1365 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1367 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1368 elif class_is_multiarch_p
1370 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1372 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1374 if [ "x${formal}" = "xvoid" ]
1376 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1378 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1380 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1387 /* Definition for an unknown syscall, used basically in error-cases. */
1388 #define UNKNOWN_SYSCALL (-1)
1390 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1393 /* Mechanism for co-ordinating the selection of a specific
1396 GDB targets (*-tdep.c) can register an interest in a specific
1397 architecture. Other GDB components can register a need to maintain
1398 per-architecture data.
1400 The mechanisms below ensures that there is only a loose connection
1401 between the set-architecture command and the various GDB
1402 components. Each component can independently register their need
1403 to maintain architecture specific data with gdbarch.
1407 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1410 The more traditional mega-struct containing architecture specific
1411 data for all the various GDB components was also considered. Since
1412 GDB is built from a variable number of (fairly independent)
1413 components it was determined that the global aproach was not
1417 /* Register a new architectural family with GDB.
1419 Register support for the specified ARCHITECTURE with GDB. When
1420 gdbarch determines that the specified architecture has been
1421 selected, the corresponding INIT function is called.
1425 The INIT function takes two parameters: INFO which contains the
1426 information available to gdbarch about the (possibly new)
1427 architecture; ARCHES which is a list of the previously created
1428 \`\`struct gdbarch'' for this architecture.
1430 The INFO parameter is, as far as possible, be pre-initialized with
1431 information obtained from INFO.ABFD or the global defaults.
1433 The ARCHES parameter is a linked list (sorted most recently used)
1434 of all the previously created architures for this architecture
1435 family. The (possibly NULL) ARCHES->gdbarch can used to access
1436 values from the previously selected architecture for this
1437 architecture family.
1439 The INIT function shall return any of: NULL - indicating that it
1440 doesn't recognize the selected architecture; an existing \`\`struct
1441 gdbarch'' from the ARCHES list - indicating that the new
1442 architecture is just a synonym for an earlier architecture (see
1443 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1444 - that describes the selected architecture (see gdbarch_alloc()).
1446 The DUMP_TDEP function shall print out all target specific values.
1447 Care should be taken to ensure that the function works in both the
1448 multi-arch and non- multi-arch cases. */
1452 struct gdbarch *gdbarch;
1453 struct gdbarch_list *next;
1458 /* Use default: NULL (ZERO). */
1459 const struct bfd_arch_info *bfd_arch_info;
1461 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1462 enum bfd_endian byte_order;
1464 enum bfd_endian byte_order_for_code;
1466 /* Use default: NULL (ZERO). */
1469 /* Use default: NULL (ZERO). */
1472 /* Architecture-specific information. The generic form for targets
1473 that have extra requirements. */
1474 struct gdbarch_tdep_info *tdep_info;
1476 /* Architecture-specific target description data. Numerous targets
1477 need only this, so give them an easy way to hold it. */
1478 struct tdesc_arch_data *tdesc_data;
1480 /* SPU file system ID. This is a single integer, so using the
1481 generic form would only complicate code. Other targets may
1482 reuse this member if suitable. */
1486 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1487 enum gdb_osabi osabi;
1489 /* Use default: NULL (ZERO). */
1490 const struct target_desc *target_desc;
1493 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1494 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1496 /* DEPRECATED - use gdbarch_register() */
1497 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1499 extern void gdbarch_register (enum bfd_architecture architecture,
1500 gdbarch_init_ftype *,
1501 gdbarch_dump_tdep_ftype *);
1504 /* Return a freshly allocated, NULL terminated, array of the valid
1505 architecture names. Since architectures are registered during the
1506 _initialize phase this function only returns useful information
1507 once initialization has been completed. */
1509 extern const char **gdbarch_printable_names (void);
1512 /* Helper function. Search the list of ARCHES for a GDBARCH that
1513 matches the information provided by INFO. */
1515 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1518 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1519 basic initialization using values obtained from the INFO and TDEP
1520 parameters. set_gdbarch_*() functions are called to complete the
1521 initialization of the object. */
1523 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1526 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1527 It is assumed that the caller freeds the \`\`struct
1530 extern void gdbarch_free (struct gdbarch *);
1533 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1534 obstack. The memory is freed when the corresponding architecture
1537 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1538 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1539 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1541 /* Duplicate STRING, returning an equivalent string that's allocated on the
1542 obstack associated with GDBARCH. The string is freed when the corresponding
1543 architecture is also freed. */
1545 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1547 /* Helper function. Force an update of the current architecture.
1549 The actual architecture selected is determined by INFO, \`\`(gdb) set
1550 architecture'' et.al., the existing architecture and BFD's default
1551 architecture. INFO should be initialized to zero and then selected
1552 fields should be updated.
1554 Returns non-zero if the update succeeds. */
1556 extern int gdbarch_update_p (struct gdbarch_info info);
1559 /* Helper function. Find an architecture matching info.
1561 INFO should be initialized using gdbarch_info_init, relevant fields
1562 set, and then finished using gdbarch_info_fill.
1564 Returns the corresponding architecture, or NULL if no matching
1565 architecture was found. */
1567 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1570 /* Helper function. Set the target gdbarch to "gdbarch". */
1572 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1575 /* Register per-architecture data-pointer.
1577 Reserve space for a per-architecture data-pointer. An identifier
1578 for the reserved data-pointer is returned. That identifer should
1579 be saved in a local static variable.
1581 Memory for the per-architecture data shall be allocated using
1582 gdbarch_obstack_zalloc. That memory will be deleted when the
1583 corresponding architecture object is deleted.
1585 When a previously created architecture is re-selected, the
1586 per-architecture data-pointer for that previous architecture is
1587 restored. INIT() is not re-called.
1589 Multiple registrarants for any architecture are allowed (and
1590 strongly encouraged). */
1592 struct gdbarch_data;
1594 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1595 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1596 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1597 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1598 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1599 struct gdbarch_data *data,
1602 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1605 /* Set the dynamic target-system-dependent parameters (architecture,
1606 byte-order, ...) using information found in the BFD. */
1608 extern void set_gdbarch_from_file (bfd *);
1611 /* Initialize the current architecture to the "first" one we find on
1614 extern void initialize_current_architecture (void);
1616 /* gdbarch trace variable */
1617 extern unsigned int gdbarch_debug;
1619 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1624 #../move-if-change new-gdbarch.h gdbarch.h
1625 compare_new gdbarch.h
1632 exec > new-gdbarch.c
1637 #include "arch-utils.h"
1640 #include "inferior.h"
1643 #include "floatformat.h"
1644 #include "reggroups.h"
1646 #include "gdb_obstack.h"
1647 #include "observer.h"
1648 #include "regcache.h"
1649 #include "objfiles.h"
1652 /* Static function declarations */
1654 static void alloc_gdbarch_data (struct gdbarch *);
1656 /* Non-zero if we want to trace architecture code. */
1658 #ifndef GDBARCH_DEBUG
1659 #define GDBARCH_DEBUG 0
1661 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1663 show_gdbarch_debug (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c, const char *value)
1666 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1670 pformat (const struct floatformat **format)
1675 /* Just print out one of them - this is only for diagnostics. */
1676 return format[0]->name;
1680 pstring (const char *string)
1688 pstring_ptr (char **string)
1690 if (string == NULL || *string == NULL)
1695 /* Helper function to print a list of strings, represented as "const
1696 char *const *". The list is printed comma-separated. */
1699 pstring_list (const char *const *list)
1701 static char ret[100];
1702 const char *const *p;
1709 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1711 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1717 gdb_assert (offset - 2 < sizeof (ret));
1718 ret[offset - 2] = '\0';
1726 # gdbarch open the gdbarch object
1728 printf "/* Maintain the struct gdbarch object. */\n"
1730 printf "struct gdbarch\n"
1732 printf " /* Has this architecture been fully initialized? */\n"
1733 printf " int initialized_p;\n"
1735 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1736 printf " struct obstack *obstack;\n"
1738 printf " /* basic architectural information. */\n"
1739 function_list | while do_read
1743 printf " ${returntype} ${function};\n"
1747 printf " /* target specific vector. */\n"
1748 printf " struct gdbarch_tdep *tdep;\n"
1749 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1751 printf " /* per-architecture data-pointers. */\n"
1752 printf " unsigned nr_data;\n"
1753 printf " void **data;\n"
1756 /* Multi-arch values.
1758 When extending this structure you must:
1760 Add the field below.
1762 Declare set/get functions and define the corresponding
1765 gdbarch_alloc(): If zero/NULL is not a suitable default,
1766 initialize the new field.
1768 verify_gdbarch(): Confirm that the target updated the field
1771 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1774 get_gdbarch(): Implement the set/get functions (probably using
1775 the macro's as shortcuts).
1780 function_list | while do_read
1782 if class_is_variable_p
1784 printf " ${returntype} ${function};\n"
1785 elif class_is_function_p
1787 printf " gdbarch_${function}_ftype *${function};\n"
1792 # Create a new gdbarch struct
1795 /* Create a new \`\`struct gdbarch'' based on information provided by
1796 \`\`struct gdbarch_info''. */
1801 gdbarch_alloc (const struct gdbarch_info *info,
1802 struct gdbarch_tdep *tdep)
1804 struct gdbarch *gdbarch;
1806 /* Create an obstack for allocating all the per-architecture memory,
1807 then use that to allocate the architecture vector. */
1808 struct obstack *obstack = XNEW (struct obstack);
1809 obstack_init (obstack);
1810 gdbarch = XOBNEW (obstack, struct gdbarch);
1811 memset (gdbarch, 0, sizeof (*gdbarch));
1812 gdbarch->obstack = obstack;
1814 alloc_gdbarch_data (gdbarch);
1816 gdbarch->tdep = tdep;
1819 function_list | while do_read
1823 printf " gdbarch->${function} = info->${function};\n"
1827 printf " /* Force the explicit initialization of these. */\n"
1828 function_list | while do_read
1830 if class_is_function_p || class_is_variable_p
1832 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1834 printf " gdbarch->${function} = ${predefault};\n"
1839 /* gdbarch_alloc() */
1845 # Free a gdbarch struct.
1849 /* Allocate extra space using the per-architecture obstack. */
1852 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1854 void *data = obstack_alloc (arch->obstack, size);
1856 memset (data, 0, size);
1860 /* See gdbarch.h. */
1863 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1865 return obstack_strdup (arch->obstack, string);
1869 /* Free a gdbarch struct. This should never happen in normal
1870 operation --- once you've created a gdbarch, you keep it around.
1871 However, if an architecture's init function encounters an error
1872 building the structure, it may need to clean up a partially
1873 constructed gdbarch. */
1876 gdbarch_free (struct gdbarch *arch)
1878 struct obstack *obstack;
1880 gdb_assert (arch != NULL);
1881 gdb_assert (!arch->initialized_p);
1882 obstack = arch->obstack;
1883 obstack_free (obstack, 0); /* Includes the ARCH. */
1888 # verify a new architecture
1892 /* Ensure that all values in a GDBARCH are reasonable. */
1895 verify_gdbarch (struct gdbarch *gdbarch)
1900 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1901 log.puts ("\n\tbyte-order");
1902 if (gdbarch->bfd_arch_info == NULL)
1903 log.puts ("\n\tbfd_arch_info");
1904 /* Check those that need to be defined for the given multi-arch level. */
1906 function_list | while do_read
1908 if class_is_function_p || class_is_variable_p
1910 if [ "x${invalid_p}" = "x0" ]
1912 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1913 elif class_is_predicate_p
1915 printf " /* Skip verify of ${function}, has predicate. */\n"
1916 # FIXME: See do_read for potential simplification
1917 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1919 printf " if (${invalid_p})\n"
1920 printf " gdbarch->${function} = ${postdefault};\n"
1921 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1923 printf " if (gdbarch->${function} == ${predefault})\n"
1924 printf " gdbarch->${function} = ${postdefault};\n"
1925 elif [ -n "${postdefault}" ]
1927 printf " if (gdbarch->${function} == 0)\n"
1928 printf " gdbarch->${function} = ${postdefault};\n"
1929 elif [ -n "${invalid_p}" ]
1931 printf " if (${invalid_p})\n"
1932 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1933 elif [ -n "${predefault}" ]
1935 printf " if (gdbarch->${function} == ${predefault})\n"
1936 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1942 internal_error (__FILE__, __LINE__,
1943 _("verify_gdbarch: the following are invalid ...%s"),
1948 # dump the structure
1952 /* Print out the details of the current architecture. */
1955 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1957 const char *gdb_nm_file = "<not-defined>";
1959 #if defined (GDB_NM_FILE)
1960 gdb_nm_file = GDB_NM_FILE;
1962 fprintf_unfiltered (file,
1963 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1966 function_list | sort '-t;' -k 3 | while do_read
1968 # First the predicate
1969 if class_is_predicate_p
1971 printf " fprintf_unfiltered (file,\n"
1972 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1973 printf " gdbarch_${function}_p (gdbarch));\n"
1975 # Print the corresponding value.
1976 if class_is_function_p
1978 printf " fprintf_unfiltered (file,\n"
1979 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1980 printf " host_address_to_string (gdbarch->${function}));\n"
1983 case "${print}:${returntype}" in
1986 print="core_addr_to_string_nz (gdbarch->${function})"
1990 print="plongest (gdbarch->${function})"
1996 printf " fprintf_unfiltered (file,\n"
1997 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1998 printf " ${print});\n"
2002 if (gdbarch->dump_tdep != NULL)
2003 gdbarch->dump_tdep (gdbarch, file);
2011 struct gdbarch_tdep *
2012 gdbarch_tdep (struct gdbarch *gdbarch)
2014 if (gdbarch_debug >= 2)
2015 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2016 return gdbarch->tdep;
2020 function_list | while do_read
2022 if class_is_predicate_p
2026 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2028 printf " gdb_assert (gdbarch != NULL);\n"
2029 printf " return ${predicate};\n"
2032 if class_is_function_p
2035 printf "${returntype}\n"
2036 if [ "x${formal}" = "xvoid" ]
2038 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2040 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2043 printf " gdb_assert (gdbarch != NULL);\n"
2044 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2045 if class_is_predicate_p && test -n "${predefault}"
2047 # Allow a call to a function with a predicate.
2048 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2050 printf " if (gdbarch_debug >= 2)\n"
2051 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2052 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2054 if class_is_multiarch_p
2061 if class_is_multiarch_p
2063 params="gdbarch, ${actual}"
2068 if [ "x${returntype}" = "xvoid" ]
2070 printf " gdbarch->${function} (${params});\n"
2072 printf " return gdbarch->${function} (${params});\n"
2077 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2078 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2080 printf " gdbarch->${function} = ${function};\n"
2082 elif class_is_variable_p
2085 printf "${returntype}\n"
2086 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2088 printf " gdb_assert (gdbarch != NULL);\n"
2089 if [ "x${invalid_p}" = "x0" ]
2091 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2092 elif [ -n "${invalid_p}" ]
2094 printf " /* Check variable is valid. */\n"
2095 printf " gdb_assert (!(${invalid_p}));\n"
2096 elif [ -n "${predefault}" ]
2098 printf " /* Check variable changed from pre-default. */\n"
2099 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2101 printf " if (gdbarch_debug >= 2)\n"
2102 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2103 printf " return gdbarch->${function};\n"
2107 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2108 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2110 printf " gdbarch->${function} = ${function};\n"
2112 elif class_is_info_p
2115 printf "${returntype}\n"
2116 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2118 printf " gdb_assert (gdbarch != NULL);\n"
2119 printf " if (gdbarch_debug >= 2)\n"
2120 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2121 printf " return gdbarch->${function};\n"
2126 # All the trailing guff
2130 /* Keep a registry of per-architecture data-pointers required by GDB
2137 gdbarch_data_pre_init_ftype *pre_init;
2138 gdbarch_data_post_init_ftype *post_init;
2141 struct gdbarch_data_registration
2143 struct gdbarch_data *data;
2144 struct gdbarch_data_registration *next;
2147 struct gdbarch_data_registry
2150 struct gdbarch_data_registration *registrations;
2153 struct gdbarch_data_registry gdbarch_data_registry =
2158 static struct gdbarch_data *
2159 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2160 gdbarch_data_post_init_ftype *post_init)
2162 struct gdbarch_data_registration **curr;
2164 /* Append the new registration. */
2165 for (curr = &gdbarch_data_registry.registrations;
2167 curr = &(*curr)->next);
2168 (*curr) = XNEW (struct gdbarch_data_registration);
2169 (*curr)->next = NULL;
2170 (*curr)->data = XNEW (struct gdbarch_data);
2171 (*curr)->data->index = gdbarch_data_registry.nr++;
2172 (*curr)->data->pre_init = pre_init;
2173 (*curr)->data->post_init = post_init;
2174 (*curr)->data->init_p = 1;
2175 return (*curr)->data;
2178 struct gdbarch_data *
2179 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2181 return gdbarch_data_register (pre_init, NULL);
2184 struct gdbarch_data *
2185 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2187 return gdbarch_data_register (NULL, post_init);
2190 /* Create/delete the gdbarch data vector. */
2193 alloc_gdbarch_data (struct gdbarch *gdbarch)
2195 gdb_assert (gdbarch->data == NULL);
2196 gdbarch->nr_data = gdbarch_data_registry.nr;
2197 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2200 /* Initialize the current value of the specified per-architecture
2204 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2205 struct gdbarch_data *data,
2208 gdb_assert (data->index < gdbarch->nr_data);
2209 gdb_assert (gdbarch->data[data->index] == NULL);
2210 gdb_assert (data->pre_init == NULL);
2211 gdbarch->data[data->index] = pointer;
2214 /* Return the current value of the specified per-architecture
2218 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2220 gdb_assert (data->index < gdbarch->nr_data);
2221 if (gdbarch->data[data->index] == NULL)
2223 /* The data-pointer isn't initialized, call init() to get a
2225 if (data->pre_init != NULL)
2226 /* Mid architecture creation: pass just the obstack, and not
2227 the entire architecture, as that way it isn't possible for
2228 pre-init code to refer to undefined architecture
2230 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2231 else if (gdbarch->initialized_p
2232 && data->post_init != NULL)
2233 /* Post architecture creation: pass the entire architecture
2234 (as all fields are valid), but be careful to also detect
2235 recursive references. */
2237 gdb_assert (data->init_p);
2239 gdbarch->data[data->index] = data->post_init (gdbarch);
2243 /* The architecture initialization hasn't completed - punt -
2244 hope that the caller knows what they are doing. Once
2245 deprecated_set_gdbarch_data has been initialized, this can be
2246 changed to an internal error. */
2248 gdb_assert (gdbarch->data[data->index] != NULL);
2250 return gdbarch->data[data->index];
2254 /* Keep a registry of the architectures known by GDB. */
2256 struct gdbarch_registration
2258 enum bfd_architecture bfd_architecture;
2259 gdbarch_init_ftype *init;
2260 gdbarch_dump_tdep_ftype *dump_tdep;
2261 struct gdbarch_list *arches;
2262 struct gdbarch_registration *next;
2265 static struct gdbarch_registration *gdbarch_registry = NULL;
2268 append_name (const char ***buf, int *nr, const char *name)
2270 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2276 gdbarch_printable_names (void)
2278 /* Accumulate a list of names based on the registed list of
2281 const char **arches = NULL;
2282 struct gdbarch_registration *rego;
2284 for (rego = gdbarch_registry;
2288 const struct bfd_arch_info *ap;
2289 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2291 internal_error (__FILE__, __LINE__,
2292 _("gdbarch_architecture_names: multi-arch unknown"));
2295 append_name (&arches, &nr_arches, ap->printable_name);
2300 append_name (&arches, &nr_arches, NULL);
2306 gdbarch_register (enum bfd_architecture bfd_architecture,
2307 gdbarch_init_ftype *init,
2308 gdbarch_dump_tdep_ftype *dump_tdep)
2310 struct gdbarch_registration **curr;
2311 const struct bfd_arch_info *bfd_arch_info;
2313 /* Check that BFD recognizes this architecture */
2314 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2315 if (bfd_arch_info == NULL)
2317 internal_error (__FILE__, __LINE__,
2318 _("gdbarch: Attempt to register "
2319 "unknown architecture (%d)"),
2322 /* Check that we haven't seen this architecture before. */
2323 for (curr = &gdbarch_registry;
2325 curr = &(*curr)->next)
2327 if (bfd_architecture == (*curr)->bfd_architecture)
2328 internal_error (__FILE__, __LINE__,
2329 _("gdbarch: Duplicate registration "
2330 "of architecture (%s)"),
2331 bfd_arch_info->printable_name);
2335 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2336 bfd_arch_info->printable_name,
2337 host_address_to_string (init));
2339 (*curr) = XNEW (struct gdbarch_registration);
2340 (*curr)->bfd_architecture = bfd_architecture;
2341 (*curr)->init = init;
2342 (*curr)->dump_tdep = dump_tdep;
2343 (*curr)->arches = NULL;
2344 (*curr)->next = NULL;
2348 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2349 gdbarch_init_ftype *init)
2351 gdbarch_register (bfd_architecture, init, NULL);
2355 /* Look for an architecture using gdbarch_info. */
2357 struct gdbarch_list *
2358 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2359 const struct gdbarch_info *info)
2361 for (; arches != NULL; arches = arches->next)
2363 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2365 if (info->byte_order != arches->gdbarch->byte_order)
2367 if (info->osabi != arches->gdbarch->osabi)
2369 if (info->target_desc != arches->gdbarch->target_desc)
2377 /* Find an architecture that matches the specified INFO. Create a new
2378 architecture if needed. Return that new architecture. */
2381 gdbarch_find_by_info (struct gdbarch_info info)
2383 struct gdbarch *new_gdbarch;
2384 struct gdbarch_registration *rego;
2386 /* Fill in missing parts of the INFO struct using a number of
2387 sources: "set ..."; INFOabfd supplied; and the global
2389 gdbarch_info_fill (&info);
2391 /* Must have found some sort of architecture. */
2392 gdb_assert (info.bfd_arch_info != NULL);
2396 fprintf_unfiltered (gdb_stdlog,
2397 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2398 (info.bfd_arch_info != NULL
2399 ? info.bfd_arch_info->printable_name
2401 fprintf_unfiltered (gdb_stdlog,
2402 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2404 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2405 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2407 fprintf_unfiltered (gdb_stdlog,
2408 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2409 info.osabi, gdbarch_osabi_name (info.osabi));
2410 fprintf_unfiltered (gdb_stdlog,
2411 "gdbarch_find_by_info: info.abfd %s\n",
2412 host_address_to_string (info.abfd));
2413 fprintf_unfiltered (gdb_stdlog,
2414 "gdbarch_find_by_info: info.tdep_info %s\n",
2415 host_address_to_string (info.tdep_info));
2418 /* Find the tdep code that knows about this architecture. */
2419 for (rego = gdbarch_registry;
2422 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2427 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2428 "No matching architecture\n");
2432 /* Ask the tdep code for an architecture that matches "info". */
2433 new_gdbarch = rego->init (info, rego->arches);
2435 /* Did the tdep code like it? No. Reject the change and revert to
2436 the old architecture. */
2437 if (new_gdbarch == NULL)
2440 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2441 "Target rejected architecture\n");
2445 /* Is this a pre-existing architecture (as determined by already
2446 being initialized)? Move it to the front of the architecture
2447 list (keeping the list sorted Most Recently Used). */
2448 if (new_gdbarch->initialized_p)
2450 struct gdbarch_list **list;
2451 struct gdbarch_list *self;
2453 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2454 "Previous architecture %s (%s) selected\n",
2455 host_address_to_string (new_gdbarch),
2456 new_gdbarch->bfd_arch_info->printable_name);
2457 /* Find the existing arch in the list. */
2458 for (list = ®o->arches;
2459 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2460 list = &(*list)->next);
2461 /* It had better be in the list of architectures. */
2462 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2465 (*list) = self->next;
2466 /* Insert SELF at the front. */
2467 self->next = rego->arches;
2468 rego->arches = self;
2473 /* It's a new architecture. */
2475 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2476 "New architecture %s (%s) selected\n",
2477 host_address_to_string (new_gdbarch),
2478 new_gdbarch->bfd_arch_info->printable_name);
2480 /* Insert the new architecture into the front of the architecture
2481 list (keep the list sorted Most Recently Used). */
2483 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2484 self->next = rego->arches;
2485 self->gdbarch = new_gdbarch;
2486 rego->arches = self;
2489 /* Check that the newly installed architecture is valid. Plug in
2490 any post init values. */
2491 new_gdbarch->dump_tdep = rego->dump_tdep;
2492 verify_gdbarch (new_gdbarch);
2493 new_gdbarch->initialized_p = 1;
2496 gdbarch_dump (new_gdbarch, gdb_stdlog);
2501 /* Make the specified architecture current. */
2504 set_target_gdbarch (struct gdbarch *new_gdbarch)
2506 gdb_assert (new_gdbarch != NULL);
2507 gdb_assert (new_gdbarch->initialized_p);
2508 current_inferior ()->gdbarch = new_gdbarch;
2509 observer_notify_architecture_changed (new_gdbarch);
2510 registers_changed ();
2513 /* Return the current inferior's arch. */
2516 target_gdbarch (void)
2518 return current_inferior ()->gdbarch;
2522 _initialize_gdbarch (void)
2524 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2525 Set architecture debugging."), _("\\
2526 Show architecture debugging."), _("\\
2527 When non-zero, architecture debugging is enabled."),
2530 &setdebuglist, &showdebuglist);
2536 #../move-if-change new-gdbarch.c gdbarch.c
2537 compare_new gdbarch.c