32bcf47d5e45415094d6e80283d46ccc502ae937
[external/binutils.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33     file=$1
34     if test ! -r ${file}
35     then
36         echo "${file} missing? cp new-${file} ${file}" 1>&2
37     elif diff -u ${file} new-${file}
38     then
39         echo "${file} unchanged" 1>&2
40     else
41         echo "${file} has changed? cp new-${file} ${file}" 1>&2
42     fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51     comment=""
52     class=""
53     while read line
54     do
55         if test "${line}" = ""
56         then
57             continue
58         elif test "${line}" = "#" -a "${comment}" = ""
59         then
60             continue
61         elif expr "${line}" : "#" > /dev/null
62         then
63             comment="${comment}
64 ${line}"
65         else
66
67             # The semantics of IFS varies between different SH's.  Some
68             # treat ``::' as three fields while some treat it as just too.
69             # Work around this by eliminating ``::'' ....
70             line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72             OFS="${IFS}" ; IFS="[:]"
73             eval read ${read} <<EOF
74 ${line}
75 EOF
76             IFS="${OFS}"
77
78             # .... and then going back through each field and strip out those
79             # that ended up with just that space character.
80             for r in ${read}
81             do
82                 if eval test \"\${${r}}\" = \"\ \"
83                 then
84                     eval ${r}=""
85                 fi
86             done
87
88             case "${level}" in
89                 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90                 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91                 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92                 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93             esac
94
95             case "${class}" in
96                 m ) staticdefault="${predefault}" ;;
97                 M ) staticdefault="0" ;;
98                 * ) test "${staticdefault}" || staticdefault=0 ;;
99             esac
100
101             # come up with a format, use a few guesses for variables
102             case ":${class}:${fmt}:${print}:" in
103                 :[vV]::: )
104                     if [ "${returntype}" = int ]
105                     then
106                         fmt="%d"
107                         print="${macro}"
108                     elif [ "${returntype}" = long ]
109                     then
110                         fmt="%ld"
111                         print="${macro}"
112                     fi
113                     ;;
114             esac
115             test "${fmt}" || fmt="%ld"
116             test "${print}" || print="(long) ${macro}"
117
118             case "${class}" in
119             F | V | M )
120                 case "${invalid_p}" in
121                 "" )
122                     if test -n "${predefault}"
123                     then
124                         #invalid_p="gdbarch->${function} == ${predefault}"
125                         predicate="gdbarch->${function} != ${predefault}"
126                     elif class_is_variable_p
127                     then
128                         predicate="gdbarch->${function} != 0"
129                     elif class_is_function_p
130                     then
131                         predicate="gdbarch->${function} != NULL"
132                     fi
133                     ;;
134                 * )
135                     echo "Predicate function ${function} with invalid_p." 1>&2
136                     kill $$
137                     exit 1
138                     ;;
139                 esac
140             esac
141
142             # PREDEFAULT is a valid fallback definition of MEMBER when
143             # multi-arch is not enabled.  This ensures that the
144             # default value, when multi-arch is the same as the
145             # default value when not multi-arch.  POSTDEFAULT is
146             # always a valid definition of MEMBER as this again
147             # ensures consistency.
148
149             if [ -n "${postdefault}" ]
150             then
151                 fallbackdefault="${postdefault}"
152             elif [ -n "${predefault}" ]
153             then
154                 fallbackdefault="${predefault}"
155             else
156                 fallbackdefault="0"
157             fi
158
159             #NOT YET: See gdbarch.log for basic verification of
160             # database
161
162             break
163         fi
164     done
165     if [ -n "${class}" ]
166     then
167         true
168     else
169         false
170     fi
171 }
172
173
174 fallback_default_p ()
175 {
176     [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177         || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182     case "${class}" in
183         *v* | *V* ) true ;;
184         * ) false ;;
185     esac
186 }
187
188 class_is_function_p ()
189 {
190     case "${class}" in
191         *f* | *F* | *m* | *M* ) true ;;
192         * ) false ;;
193     esac
194 }
195
196 class_is_multiarch_p ()
197 {
198     case "${class}" in
199         *m* | *M* ) true ;;
200         * ) false ;;
201     esac
202 }
203
204 class_is_predicate_p ()
205 {
206     case "${class}" in
207         *F* | *V* | *M* ) true ;;
208         * ) false ;;
209     esac
210 }
211
212 class_is_info_p ()
213 {
214     case "${class}" in
215         *i* ) true ;;
216         * ) false ;;
217     esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224   case ${field} in
225
226     class ) : ;;
227
228         # # -> line disable
229         # f -> function
230         #   hiding a function
231         # F -> function + predicate
232         #   hiding a function + predicate to test function validity
233         # v -> variable
234         #   hiding a variable
235         # V -> variable + predicate
236         #   hiding a variable + predicate to test variables validity
237         # i -> set from info
238         #   hiding something from the ``struct info'' object
239         # m -> multi-arch function
240         #   hiding a multi-arch function (parameterised with the architecture)
241         # M -> multi-arch function + predicate
242         #   hiding a multi-arch function + predicate to test function validity
243
244     level ) : ;;
245
246         # See GDB_MULTI_ARCH description.  Having GDB_MULTI_ARCH >=
247         # LEVEL is a predicate on checking that a given method is
248         # initialized (using INVALID_P).
249
250     macro ) : ;;
251
252         # The name of the MACRO that this method is to be accessed by.
253
254     returntype ) : ;;
255
256         # For functions, the return type; for variables, the data type
257
258     function ) : ;;
259
260         # For functions, the member function name; for variables, the
261         # variable name.  Member function names are always prefixed with
262         # ``gdbarch_'' for name-space purity.
263
264     formal ) : ;;
265
266         # The formal argument list.  It is assumed that the formal
267         # argument list includes the actual name of each list element.
268         # A function with no arguments shall have ``void'' as the
269         # formal argument list.
270
271     actual ) : ;;
272
273         # The list of actual arguments.  The arguments specified shall
274         # match the FORMAL list given above.  Functions with out
275         # arguments leave this blank.
276
277     attrib ) : ;;
278
279         # Any GCC attributes that should be attached to the function
280         # declaration.  At present this field is unused.
281
282     staticdefault ) : ;;
283
284         # To help with the GDB startup a static gdbarch object is
285         # created.  STATICDEFAULT is the value to insert into that
286         # static gdbarch object.  Since this a static object only
287         # simple expressions can be used.
288
289         # If STATICDEFAULT is empty, zero is used.
290
291     predefault ) : ;;
292
293         # An initial value to assign to MEMBER of the freshly
294         # malloc()ed gdbarch object.  After initialization, the
295         # freshly malloc()ed object is passed to the target
296         # architecture code for further updates.
297
298         # If PREDEFAULT is empty, zero is used.
299
300         # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301         # INVALID_P are specified, PREDEFAULT will be used as the
302         # default for the non- multi-arch target.
303
304         # A zero PREDEFAULT function will force the fallback to call
305         # internal_error().
306
307         # Variable declarations can refer to ``gdbarch'' which will
308         # contain the current architecture.  Care should be taken.
309
310     postdefault ) : ;;
311
312         # A value to assign to MEMBER of the new gdbarch object should
313         # the target architecture code fail to change the PREDEFAULT
314         # value.
315
316         # If POSTDEFAULT is empty, no post update is performed.
317
318         # If both INVALID_P and POSTDEFAULT are non-empty then
319         # INVALID_P will be used to determine if MEMBER should be
320         # changed to POSTDEFAULT.
321
322         # If a non-empty POSTDEFAULT and a zero INVALID_P are
323         # specified, POSTDEFAULT will be used as the default for the
324         # non- multi-arch target (regardless of the value of
325         # PREDEFAULT).
326
327         # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329         # Variable declarations can refer to ``current_gdbarch'' which
330         # will contain the current architecture.  Care should be
331         # taken.
332
333     invalid_p ) : ;;
334
335         # A predicate equation that validates MEMBER.  Non-zero is
336         # returned if the code creating the new architecture failed to
337         # initialize MEMBER or the initialized the member is invalid.
338         # If POSTDEFAULT is non-empty then MEMBER will be updated to
339         # that value.  If POSTDEFAULT is empty then internal_error()
340         # is called.
341
342         # If INVALID_P is empty, a check that MEMBER is no longer
343         # equal to PREDEFAULT is used.
344
345         # The expression ``0'' disables the INVALID_P check making
346         # PREDEFAULT a legitimate value.
347
348         # See also PREDEFAULT and POSTDEFAULT.
349
350     fmt ) : ;;
351
352         # printf style format string that can be used to print out the
353         # MEMBER.  Sometimes "%s" is useful.  For functions, this is
354         # ignored and the function address is printed.
355
356         # If FMT is empty, ``%ld'' is used.  
357
358     print ) : ;;
359
360         # An optional equation that casts MEMBER to a value suitable
361         # for formatting by FMT.
362
363         # If PRINT is empty, ``(long)'' is used.
364
365     print_p ) : ;;
366
367         # An optional indicator for any predicte to wrap around the
368         # print member code.
369
370         #   () -> Call a custom function to do the dump.
371         #   exp -> Wrap print up in ``if (${print_p}) ...
372         #   ``'' -> No predicate
373
374         # If PRINT_P is empty, ``1'' is always used.
375
376     description ) : ;;
377
378         # Currently unused.
379
380     *)
381         echo "Bad field ${field}"
382         exit 1;;
383   esac
384 done
385
386
387 function_list ()
388 {
389   # See below (DOCO) for description of each field
390   cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same".  For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer.  FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers.  These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted.  The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted.  See: maint print registers.  NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value.  As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works.  This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted.  See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted.  See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted.  It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted.  It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo.  See infcall.c.  New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # Implement PUSH_RETURN_ADDRESS, and then merge in
521 # DEPRECATED_PUSH_RETURN_ADDRESS.
522 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
523 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
524 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
525 # DEPRECATED_REGISTER_SIZE can be deleted.
526 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
527 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
528 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
529 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
530 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
532 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
533 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
534 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
535 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
536 # DEPRECATED_FIX_CALL_DUMMY can be deleted.  For the SPARC, implement
537 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
538 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
539 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
540 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
541 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
542 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
543
544 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
545 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
546 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
547 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
548 # MAP a GDB RAW register number onto a simulator register number.  See
549 # also include/...-sim.h.
550 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
551 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
552 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
553 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
554 # setjmp/longjmp support.
555 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
556 # NOTE: cagney/2002-11-24: This function with predicate has a valid
557 # (callable) initial value.  As a consequence, even when the predicate
558 # is false, the corresponding function works.  This simplifies the
559 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
560 # doesn't need to be modified.
561 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::deprecated_pc_in_call_dummy:deprecated_pc_in_call_dummy
562 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
563 #
564 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
565 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
566 #
567 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
568 # For raw <-> cooked register conversions, replaced by pseudo registers.
569 F::DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr
570 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
571 # For raw <-> cooked register conversions, replaced by pseudo registers.
572 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
573 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
574 # For raw <-> cooked register conversions, replaced by pseudo registers.
575 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
576 #
577 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
578 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
579 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
580 #
581 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
582 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
583 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
584 #
585 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
586 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
587 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
588
589 # It has been suggested that this, well actually its predecessor,
590 # should take the type/value of the function to be called and not the
591 # return type.  This is left as an exercise for the reader.
592
593 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
594
595 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
596 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
597 # into RETURN_VALUE.
598
599 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
600 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
601 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
602 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
603 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
604 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
605
606 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
607 # ABI suitable for the implementation of a robust extract
608 # struct-convention return-value address method (the sparc saves the
609 # address in the callers frame).  All the other cases so far examined,
610 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
611 # erreneous - the code was incorrectly assuming that the return-value
612 # address, stored in a register, was preserved across the entire
613 # function call.
614
615 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
616 # the ABIs that are still to be analyzed - perhaps this should simply
617 # be deleted.  The commented out extract_returned_value_address method
618 # is provided as a starting point for the 32-bit SPARC.  It, or
619 # something like it, along with changes to both infcmd.c and stack.c
620 # will be needed for that case to work.  NB: It is passed the callers
621 # frame since it is only after the callee has returned that this
622 # function is used.
623
624 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
625 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
626
627 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
628 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
629 #
630 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
631 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
632 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
633 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
634 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
635 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
636 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
637 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
638 #
639 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
640 #
641 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
642 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed.  The new
643 # frame code works regardless of the type of frame - frameless,
644 # stackless, or normal.
645 F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
646 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
647 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
648 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC.  Please
649 # note, per UNWIND_PC's doco, that while the two have similar
650 # interfaces they have very different underlying implementations.
651 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
652 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
653 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
654 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
655 # frame-base.  Enable frame-base before frame-unwind.
656 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
657 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
658 # frame-base.  Enable frame-base before frame-unwind.
659 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
660 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
661 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
662 #
663 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
664 # to frame_align and the requirement that methods such as
665 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
666 # alignment.
667 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
668 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
669 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
670 # stabs_argument_has_addr.
671 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
672 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
673 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
674 #
675 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
676 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
677 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
678 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
679 # On some machines there are bits in addresses which are not really
680 # part of the address, but are used by the kernel, the hardware, etc.
681 # for special purposes.  ADDR_BITS_REMOVE takes out any such bits so
682 # we get a "real" address such as one would find in a symbol table.
683 # This is used only for addresses of instructions, and even then I'm
684 # not sure it's used in all contexts.  It exists to deal with there
685 # being a few stray bits in the PC which would mislead us, not as some
686 # sort of generic thing to handle alignment or segmentation (it's
687 # possible it should be in TARGET_READ_PC instead).
688 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
689 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
690 # ADDR_BITS_REMOVE.
691 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
692 # FIXME/cagney/2001-01-18: This should be split in two.  A target method that indicates if
693 # the target needs software single step.  An ISA method to implement it.
694 #
695 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
696 # using the breakpoint system instead of blatting memory directly (as with rs6000).
697 #
698 # FIXME/cagney/2001-01-18: The logic is backwards.  It should be asking if the target can
699 # single step.  If not, then implement single step using breakpoints.
700 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
701 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
702 # disassembler.  Perhaphs objdump can handle it?
703 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
704 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
705
706
707 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
708 # evaluates non-zero, this is the address where the debugger will place
709 # a step-resume breakpoint to get us past the dynamic linker.
710 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
711 # For SVR4 shared libraries, each call goes through a small piece of
712 # trampoline code in the ".plt" section.  IN_SOLIB_CALL_TRAMPOLINE evaluates
713 # to nonzero if we are currently stopped in one of these.
714 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
715
716 # Some systems also have trampoline code for returning from shared libs.
717 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
718
719 # A target might have problems with watchpoints as soon as the stack
720 # frame of the current function has been destroyed.  This mostly happens
721 # as the first action in a funtion's epilogue.  in_function_epilogue_p()
722 # is defined to return a non-zero value if either the given addr is one
723 # instruction after the stack destroying instruction up to the trailing
724 # return instruction or if we can figure out that the stack frame has
725 # already been invalidated regardless of the value of addr.  Targets
726 # which don't suffer from that problem could just let this functionality
727 # untouched.
728 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
729 # Given a vector of command-line arguments, return a newly allocated
730 # string which, when passed to the create_inferior function, will be
731 # parsed (on Unix systems, by the shell) to yield the same vector.
732 # This function should call error() if the argument vector is not
733 # representable for this target or if this target does not support
734 # command-line arguments.
735 # ARGC is the number of elements in the vector.
736 # ARGV is an array of strings, one per argument.
737 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
738 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
739 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
740 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
741 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
742 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
743 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
744 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
745 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
746 # Is a register in a group
747 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
748 # Fetch the pointer to the ith function argument.
749 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
750
751 # Return the appropriate register set for a core file section with
752 # name SECT_NAME and size SECT_SIZE.
753 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
754 EOF
755 }
756
757 #
758 # The .log file
759 #
760 exec > new-gdbarch.log
761 function_list | while do_read
762 do
763     cat <<EOF
764 ${class} ${macro}(${actual})
765   ${returntype} ${function} ($formal)${attrib}
766 EOF
767     for r in ${read}
768     do
769         eval echo \"\ \ \ \ ${r}=\${${r}}\"
770     done
771     if class_is_predicate_p && fallback_default_p
772     then
773         echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
774         kill $$
775         exit 1
776     fi
777     if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
778     then
779         echo "Error: postdefault is useless when invalid_p=0" 1>&2
780         kill $$
781         exit 1
782     fi
783     if class_is_multiarch_p
784     then
785         if class_is_predicate_p ; then :
786         elif test "x${predefault}" = "x"
787         then
788             echo "Error: pure multi-arch function must have a predefault" 1>&2
789             kill $$
790             exit 1
791         fi
792     fi
793     echo ""
794 done
795
796 exec 1>&2
797 compare_new gdbarch.log
798
799
800 copyright ()
801 {
802 cat <<EOF
803 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
804
805 /* Dynamic architecture support for GDB, the GNU debugger.
806
807    Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
808    Software Foundation, Inc.
809
810    This file is part of GDB.
811
812    This program is free software; you can redistribute it and/or modify
813    it under the terms of the GNU General Public License as published by
814    the Free Software Foundation; either version 2 of the License, or
815    (at your option) any later version.
816
817    This program is distributed in the hope that it will be useful,
818    but WITHOUT ANY WARRANTY; without even the implied warranty of
819    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
820    GNU General Public License for more details.
821
822    You should have received a copy of the GNU General Public License
823    along with this program; if not, write to the Free Software
824    Foundation, Inc., 59 Temple Place - Suite 330,
825    Boston, MA 02111-1307, USA.  */
826
827 /* This file was created with the aid of \`\`gdbarch.sh''.
828
829    The Bourne shell script \`\`gdbarch.sh'' creates the files
830    \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
831    against the existing \`\`gdbarch.[hc]''.  Any differences found
832    being reported.
833
834    If editing this file, please also run gdbarch.sh and merge any
835    changes into that script. Conversely, when making sweeping changes
836    to this file, modifying gdbarch.sh and using its output may prove
837    easier. */
838
839 EOF
840 }
841
842 #
843 # The .h file
844 #
845
846 exec > new-gdbarch.h
847 copyright
848 cat <<EOF
849 #ifndef GDBARCH_H
850 #define GDBARCH_H
851
852 struct floatformat;
853 struct ui_file;
854 struct frame_info;
855 struct value;
856 struct objfile;
857 struct minimal_symbol;
858 struct regcache;
859 struct reggroup;
860 struct regset;
861 struct disassemble_info;
862 struct target_ops;
863 struct obstack;
864
865 extern struct gdbarch *current_gdbarch;
866
867 /* If any of the following are defined, the target wasn't correctly
868    converted. */
869
870 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
871 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
872 #endif
873 EOF
874
875 # function typedef's
876 printf "\n"
877 printf "\n"
878 printf "/* The following are pre-initialized by GDBARCH. */\n"
879 function_list | while do_read
880 do
881     if class_is_info_p
882     then
883         printf "\n"
884         printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
885         printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
886         printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
887         printf "#error \"Non multi-arch definition of ${macro}\"\n"
888         printf "#endif\n"
889         printf "#if !defined (${macro})\n"
890         printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
891         printf "#endif\n"
892     fi
893 done
894
895 # function typedef's
896 printf "\n"
897 printf "\n"
898 printf "/* The following are initialized by the target dependent code. */\n"
899 function_list | while do_read
900 do
901     if [ -n "${comment}" ]
902     then
903         echo "${comment}" | sed \
904             -e '2 s,#,/*,' \
905             -e '3,$ s,#,  ,' \
906             -e '$ s,$, */,'
907     fi
908     if class_is_multiarch_p
909     then
910         if class_is_predicate_p
911         then
912             printf "\n"
913             printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
914         fi
915     else
916         if class_is_predicate_p
917         then
918             printf "\n"
919             printf "#if defined (${macro})\n"
920             printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
921             #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
922             printf "#if !defined (${macro}_P)\n"
923             printf "#define ${macro}_P() (1)\n"
924             printf "#endif\n"
925             printf "#endif\n"
926             printf "\n"
927             printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
928             printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
929             printf "#error \"Non multi-arch definition of ${macro}\"\n"
930             printf "#endif\n"
931             printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
932             printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
933             printf "#endif\n"
934         fi
935     fi
936     if class_is_variable_p
937     then
938         printf "\n"
939         printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
940         printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
941         printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
942         printf "#error \"Non multi-arch definition of ${macro}\"\n"
943         printf "#endif\n"
944         printf "#if !defined (${macro})\n"
945         printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
946         printf "#endif\n"
947     fi
948     if class_is_function_p
949     then
950         printf "\n"
951         if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
952         then
953             printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
954         elif class_is_multiarch_p
955         then
956             printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
957         else
958             printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
959         fi
960         if [ "x${formal}" = "xvoid" ]
961         then
962           printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
963         else
964           printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
965         fi
966         printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
967         if class_is_multiarch_p ; then :
968         else
969             printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
970             printf "#error \"Non multi-arch definition of ${macro}\"\n"
971             printf "#endif\n"
972             if [ "x${actual}" = "x" ]
973             then
974                 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
975             elif [ "x${actual}" = "x-" ]
976             then
977                 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
978             else
979                 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
980             fi
981             printf "#if !defined (${macro})\n"
982             if [ "x${actual}" = "x" ]
983             then
984                 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
985             elif [ "x${actual}" = "x-" ]
986             then
987                 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
988             else
989                 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
990             fi
991             printf "#endif\n"
992         fi
993     fi
994 done
995
996 # close it off
997 cat <<EOF
998
999 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1000
1001
1002 /* Mechanism for co-ordinating the selection of a specific
1003    architecture.
1004
1005    GDB targets (*-tdep.c) can register an interest in a specific
1006    architecture.  Other GDB components can register a need to maintain
1007    per-architecture data.
1008
1009    The mechanisms below ensures that there is only a loose connection
1010    between the set-architecture command and the various GDB
1011    components.  Each component can independently register their need
1012    to maintain architecture specific data with gdbarch.
1013
1014    Pragmatics:
1015
1016    Previously, a single TARGET_ARCHITECTURE_HOOK was provided.  It
1017    didn't scale.
1018
1019    The more traditional mega-struct containing architecture specific
1020    data for all the various GDB components was also considered.  Since
1021    GDB is built from a variable number of (fairly independent)
1022    components it was determined that the global aproach was not
1023    applicable. */
1024
1025
1026 /* Register a new architectural family with GDB.
1027
1028    Register support for the specified ARCHITECTURE with GDB.  When
1029    gdbarch determines that the specified architecture has been
1030    selected, the corresponding INIT function is called.
1031
1032    --
1033
1034    The INIT function takes two parameters: INFO which contains the
1035    information available to gdbarch about the (possibly new)
1036    architecture; ARCHES which is a list of the previously created
1037    \`\`struct gdbarch'' for this architecture.
1038
1039    The INFO parameter is, as far as possible, be pre-initialized with
1040    information obtained from INFO.ABFD or the previously selected
1041    architecture.
1042
1043    The ARCHES parameter is a linked list (sorted most recently used)
1044    of all the previously created architures for this architecture
1045    family.  The (possibly NULL) ARCHES->gdbarch can used to access
1046    values from the previously selected architecture for this
1047    architecture family.  The global \`\`current_gdbarch'' shall not be
1048    used.
1049
1050    The INIT function shall return any of: NULL - indicating that it
1051    doesn't recognize the selected architecture; an existing \`\`struct
1052    gdbarch'' from the ARCHES list - indicating that the new
1053    architecture is just a synonym for an earlier architecture (see
1054    gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1055    - that describes the selected architecture (see gdbarch_alloc()).
1056
1057    The DUMP_TDEP function shall print out all target specific values.
1058    Care should be taken to ensure that the function works in both the
1059    multi-arch and non- multi-arch cases. */
1060
1061 struct gdbarch_list
1062 {
1063   struct gdbarch *gdbarch;
1064   struct gdbarch_list *next;
1065 };
1066
1067 struct gdbarch_info
1068 {
1069   /* Use default: NULL (ZERO). */
1070   const struct bfd_arch_info *bfd_arch_info;
1071
1072   /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO).  */
1073   int byte_order;
1074
1075   /* Use default: NULL (ZERO). */
1076   bfd *abfd;
1077
1078   /* Use default: NULL (ZERO). */
1079   struct gdbarch_tdep_info *tdep_info;
1080
1081   /* Use default: GDB_OSABI_UNINITIALIZED (-1).  */
1082   enum gdb_osabi osabi;
1083 };
1084
1085 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1086 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1087
1088 /* DEPRECATED - use gdbarch_register() */
1089 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1090
1091 extern void gdbarch_register (enum bfd_architecture architecture,
1092                               gdbarch_init_ftype *,
1093                               gdbarch_dump_tdep_ftype *);
1094
1095
1096 /* Return a freshly allocated, NULL terminated, array of the valid
1097    architecture names.  Since architectures are registered during the
1098    _initialize phase this function only returns useful information
1099    once initialization has been completed. */
1100
1101 extern const char **gdbarch_printable_names (void);
1102
1103
1104 /* Helper function.  Search the list of ARCHES for a GDBARCH that
1105    matches the information provided by INFO. */
1106
1107 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches,  const struct gdbarch_info *info);
1108
1109
1110 /* Helper function.  Create a preliminary \`\`struct gdbarch''.  Perform
1111    basic initialization using values obtained from the INFO andTDEP
1112    parameters.  set_gdbarch_*() functions are called to complete the
1113    initialization of the object. */
1114
1115 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1116
1117
1118 /* Helper function.  Free a partially-constructed \`\`struct gdbarch''.
1119    It is assumed that the caller freeds the \`\`struct
1120    gdbarch_tdep''. */
1121
1122 extern void gdbarch_free (struct gdbarch *);
1123
1124
1125 /* Helper function.  Allocate memory from the \`\`struct gdbarch''
1126    obstack.  The memory is freed when the corresponding architecture
1127    is also freed.  */
1128
1129 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1130 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1131 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1132
1133
1134 /* Helper function. Force an update of the current architecture.
1135
1136    The actual architecture selected is determined by INFO, \`\`(gdb) set
1137    architecture'' et.al., the existing architecture and BFD's default
1138    architecture.  INFO should be initialized to zero and then selected
1139    fields should be updated.
1140
1141    Returns non-zero if the update succeeds */
1142
1143 extern int gdbarch_update_p (struct gdbarch_info info);
1144
1145
1146 /* Helper function.  Find an architecture matching info.
1147
1148    INFO should be initialized using gdbarch_info_init, relevant fields
1149    set, and then finished using gdbarch_info_fill.
1150
1151    Returns the corresponding architecture, or NULL if no matching
1152    architecture was found.  "current_gdbarch" is not updated.  */
1153
1154 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1155
1156
1157 /* Helper function.  Set the global "current_gdbarch" to "gdbarch".
1158
1159    FIXME: kettenis/20031124: Of the functions that follow, only
1160    gdbarch_from_bfd is supposed to survive.  The others will
1161    dissappear since in the future GDB will (hopefully) be truly
1162    multi-arch.  However, for now we're still stuck with the concept of
1163    a single active architecture.  */
1164
1165 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1166
1167
1168 /* Register per-architecture data-pointer.
1169
1170    Reserve space for a per-architecture data-pointer.  An identifier
1171    for the reserved data-pointer is returned.  That identifer should
1172    be saved in a local static variable.
1173
1174    Memory for the per-architecture data shall be allocated using
1175    gdbarch_obstack_zalloc.  That memory will be deleted when the
1176    corresponding architecture object is deleted.
1177
1178    When a previously created architecture is re-selected, the
1179    per-architecture data-pointer for that previous architecture is
1180    restored.  INIT() is not re-called.
1181
1182    Multiple registrarants for any architecture are allowed (and
1183    strongly encouraged).  */
1184
1185 struct gdbarch_data;
1186
1187 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1188 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1189 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1190 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1191 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1192                                          struct gdbarch_data *data,
1193                                          void *pointer);
1194
1195 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1196
1197
1198
1199 /* Register per-architecture memory region.
1200
1201    Provide a memory-region swap mechanism.  Per-architecture memory
1202    region are created.  These memory regions are swapped whenever the
1203    architecture is changed.  For a new architecture, the memory region
1204    is initialized with zero (0) and the INIT function is called.
1205
1206    Memory regions are swapped / initialized in the order that they are
1207    registered.  NULL DATA and/or INIT values can be specified.
1208
1209    New code should use gdbarch_data_register_*(). */
1210
1211 typedef void (gdbarch_swap_ftype) (void);
1212 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1213 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1214
1215
1216
1217 /* Set the dynamic target-system-dependent parameters (architecture,
1218    byte-order, ...) using information found in the BFD */
1219
1220 extern void set_gdbarch_from_file (bfd *);
1221
1222
1223 /* Initialize the current architecture to the "first" one we find on
1224    our list.  */
1225
1226 extern void initialize_current_architecture (void);
1227
1228 /* gdbarch trace variable */
1229 extern int gdbarch_debug;
1230
1231 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1232
1233 #endif
1234 EOF
1235 exec 1>&2
1236 #../move-if-change new-gdbarch.h gdbarch.h
1237 compare_new gdbarch.h
1238
1239
1240 #
1241 # C file
1242 #
1243
1244 exec > new-gdbarch.c
1245 copyright
1246 cat <<EOF
1247
1248 #include "defs.h"
1249 #include "arch-utils.h"
1250
1251 #include "gdbcmd.h"
1252 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1253 #include "symcat.h"
1254
1255 #include "floatformat.h"
1256
1257 #include "gdb_assert.h"
1258 #include "gdb_string.h"
1259 #include "gdb-events.h"
1260 #include "reggroups.h"
1261 #include "osabi.h"
1262 #include "gdb_obstack.h"
1263
1264 /* Static function declarations */
1265
1266 static void alloc_gdbarch_data (struct gdbarch *);
1267
1268 /* Non-zero if we want to trace architecture code.  */
1269
1270 #ifndef GDBARCH_DEBUG
1271 #define GDBARCH_DEBUG 0
1272 #endif
1273 int gdbarch_debug = GDBARCH_DEBUG;
1274
1275 EOF
1276
1277 # gdbarch open the gdbarch object
1278 printf "\n"
1279 printf "/* Maintain the struct gdbarch object */\n"
1280 printf "\n"
1281 printf "struct gdbarch\n"
1282 printf "{\n"
1283 printf "  /* Has this architecture been fully initialized?  */\n"
1284 printf "  int initialized_p;\n"
1285 printf "\n"
1286 printf "  /* An obstack bound to the lifetime of the architecture.  */\n"
1287 printf "  struct obstack *obstack;\n"
1288 printf "\n"
1289 printf "  /* basic architectural information */\n"
1290 function_list | while do_read
1291 do
1292     if class_is_info_p
1293     then
1294         printf "  ${returntype} ${function};\n"
1295     fi
1296 done
1297 printf "\n"
1298 printf "  /* target specific vector. */\n"
1299 printf "  struct gdbarch_tdep *tdep;\n"
1300 printf "  gdbarch_dump_tdep_ftype *dump_tdep;\n"
1301 printf "\n"
1302 printf "  /* per-architecture data-pointers */\n"
1303 printf "  unsigned nr_data;\n"
1304 printf "  void **data;\n"
1305 printf "\n"
1306 printf "  /* per-architecture swap-regions */\n"
1307 printf "  struct gdbarch_swap *swap;\n"
1308 printf "\n"
1309 cat <<EOF
1310   /* Multi-arch values.
1311
1312      When extending this structure you must:
1313
1314      Add the field below.
1315
1316      Declare set/get functions and define the corresponding
1317      macro in gdbarch.h.
1318
1319      gdbarch_alloc(): If zero/NULL is not a suitable default,
1320      initialize the new field.
1321
1322      verify_gdbarch(): Confirm that the target updated the field
1323      correctly.
1324
1325      gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1326      field is dumped out
1327
1328      \`\`startup_gdbarch()'': Append an initial value to the static
1329      variable (base values on the host's c-type system).
1330
1331      get_gdbarch(): Implement the set/get functions (probably using
1332      the macro's as shortcuts).
1333
1334      */
1335
1336 EOF
1337 function_list | while do_read
1338 do
1339     if class_is_variable_p
1340     then
1341         printf "  ${returntype} ${function};\n"
1342     elif class_is_function_p
1343     then
1344         printf "  gdbarch_${function}_ftype *${function}${attrib};\n"
1345     fi
1346 done
1347 printf "};\n"
1348
1349 # A pre-initialized vector
1350 printf "\n"
1351 printf "\n"
1352 cat <<EOF
1353 /* The default architecture uses host values (for want of a better
1354    choice). */
1355 EOF
1356 printf "\n"
1357 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1358 printf "\n"
1359 printf "struct gdbarch startup_gdbarch =\n"
1360 printf "{\n"
1361 printf "  1, /* Always initialized.  */\n"
1362 printf "  NULL, /* The obstack.  */\n"
1363 printf "  /* basic architecture information */\n"
1364 function_list | while do_read
1365 do
1366     if class_is_info_p
1367     then
1368         printf "  ${staticdefault},  /* ${function} */\n"
1369     fi
1370 done
1371 cat <<EOF
1372   /* target specific vector and its dump routine */
1373   NULL, NULL,
1374   /*per-architecture data-pointers and swap regions */
1375   0, NULL, NULL,
1376   /* Multi-arch values */
1377 EOF
1378 function_list | while do_read
1379 do
1380     if class_is_function_p || class_is_variable_p
1381     then
1382         printf "  ${staticdefault},  /* ${function} */\n"
1383     fi
1384 done
1385 cat <<EOF
1386   /* startup_gdbarch() */
1387 };
1388
1389 struct gdbarch *current_gdbarch = &startup_gdbarch;
1390 EOF
1391
1392 # Create a new gdbarch struct
1393 cat <<EOF
1394
1395 /* Create a new \`\`struct gdbarch'' based on information provided by
1396    \`\`struct gdbarch_info''. */
1397 EOF
1398 printf "\n"
1399 cat <<EOF
1400 struct gdbarch *
1401 gdbarch_alloc (const struct gdbarch_info *info,
1402                struct gdbarch_tdep *tdep)
1403 {
1404   /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1405      so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1406      the current local architecture and not the previous global
1407      architecture.  This ensures that the new architectures initial
1408      values are not influenced by the previous architecture.  Once
1409      everything is parameterised with gdbarch, this will go away.  */
1410   struct gdbarch *current_gdbarch;
1411
1412   /* Create an obstack for allocating all the per-architecture memory,
1413      then use that to allocate the architecture vector.  */
1414   struct obstack *obstack = XMALLOC (struct obstack);
1415   obstack_init (obstack);
1416   current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1417   memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1418   current_gdbarch->obstack = obstack;
1419
1420   alloc_gdbarch_data (current_gdbarch);
1421
1422   current_gdbarch->tdep = tdep;
1423 EOF
1424 printf "\n"
1425 function_list | while do_read
1426 do
1427     if class_is_info_p
1428     then
1429         printf "  current_gdbarch->${function} = info->${function};\n"
1430     fi
1431 done
1432 printf "\n"
1433 printf "  /* Force the explicit initialization of these. */\n"
1434 function_list | while do_read
1435 do
1436     if class_is_function_p || class_is_variable_p
1437     then
1438         if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1439         then
1440           printf "  current_gdbarch->${function} = ${predefault};\n"
1441         fi
1442     fi
1443 done
1444 cat <<EOF
1445   /* gdbarch_alloc() */
1446
1447   return current_gdbarch;
1448 }
1449 EOF
1450
1451 # Free a gdbarch struct.
1452 printf "\n"
1453 printf "\n"
1454 cat <<EOF
1455 /* Allocate extra space using the per-architecture obstack.  */
1456
1457 void *
1458 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1459 {
1460   void *data = obstack_alloc (arch->obstack, size);
1461   memset (data, 0, size);
1462   return data;
1463 }
1464
1465
1466 /* Free a gdbarch struct.  This should never happen in normal
1467    operation --- once you've created a gdbarch, you keep it around.
1468    However, if an architecture's init function encounters an error
1469    building the structure, it may need to clean up a partially
1470    constructed gdbarch.  */
1471
1472 void
1473 gdbarch_free (struct gdbarch *arch)
1474 {
1475   struct obstack *obstack;
1476   gdb_assert (arch != NULL);
1477   gdb_assert (!arch->initialized_p);
1478   obstack = arch->obstack;
1479   obstack_free (obstack, 0); /* Includes the ARCH.  */
1480   xfree (obstack);
1481 }
1482 EOF
1483
1484 # verify a new architecture
1485 cat <<EOF
1486
1487
1488 /* Ensure that all values in a GDBARCH are reasonable.  */
1489
1490 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1491    just happens to match the global variable \`\`current_gdbarch''.  That
1492    way macros refering to that variable get the local and not the global
1493    version - ulgh.  Once everything is parameterised with gdbarch, this
1494    will go away. */
1495
1496 static void
1497 verify_gdbarch (struct gdbarch *current_gdbarch)
1498 {
1499   struct ui_file *log;
1500   struct cleanup *cleanups;
1501   long dummy;
1502   char *buf;
1503   log = mem_fileopen ();
1504   cleanups = make_cleanup_ui_file_delete (log);
1505   /* fundamental */
1506   if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1507     fprintf_unfiltered (log, "\n\tbyte-order");
1508   if (current_gdbarch->bfd_arch_info == NULL)
1509     fprintf_unfiltered (log, "\n\tbfd_arch_info");
1510   /* Check those that need to be defined for the given multi-arch level. */
1511 EOF
1512 function_list | while do_read
1513 do
1514     if class_is_function_p || class_is_variable_p
1515     then
1516         if [ "x${invalid_p}" = "x0" ]
1517         then
1518             printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1519         elif class_is_predicate_p
1520         then
1521             printf "  /* Skip verify of ${function}, has predicate */\n"
1522         # FIXME: See do_read for potential simplification
1523         elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1524         then
1525             printf "  if (${invalid_p})\n"
1526             printf "    current_gdbarch->${function} = ${postdefault};\n"
1527         elif [ -n "${predefault}" -a -n "${postdefault}" ]
1528         then
1529             printf "  if (current_gdbarch->${function} == ${predefault})\n"
1530             printf "    current_gdbarch->${function} = ${postdefault};\n"
1531         elif [ -n "${postdefault}" ]
1532         then
1533             printf "  if (current_gdbarch->${function} == 0)\n"
1534             printf "    current_gdbarch->${function} = ${postdefault};\n"
1535         elif [ -n "${invalid_p}" ]
1536         then
1537             printf "  if ((GDB_MULTI_ARCH ${gt_level})\n"
1538             printf "      && (${invalid_p}))\n"
1539             printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1540         elif [ -n "${predefault}" ]
1541         then
1542             printf "  if ((GDB_MULTI_ARCH ${gt_level})\n"
1543             printf "      && (current_gdbarch->${function} == ${predefault}))\n"
1544             printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1545         fi
1546     fi
1547 done
1548 cat <<EOF
1549   buf = ui_file_xstrdup (log, &dummy);
1550   make_cleanup (xfree, buf);
1551   if (strlen (buf) > 0)
1552     internal_error (__FILE__, __LINE__,
1553                     "verify_gdbarch: the following are invalid ...%s",
1554                     buf);
1555   do_cleanups (cleanups);
1556 }
1557 EOF
1558
1559 # dump the structure
1560 printf "\n"
1561 printf "\n"
1562 cat <<EOF
1563 /* Print out the details of the current architecture. */
1564
1565 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1566    just happens to match the global variable \`\`current_gdbarch''.  That
1567    way macros refering to that variable get the local and not the global
1568    version - ulgh.  Once everything is parameterised with gdbarch, this
1569    will go away. */
1570
1571 void
1572 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1573 {
1574   fprintf_unfiltered (file,
1575                       "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1576                       GDB_MULTI_ARCH);
1577 EOF
1578 function_list | sort -t: -k 3 | while do_read
1579 do
1580     # First the predicate
1581     if class_is_predicate_p
1582     then
1583         if class_is_multiarch_p
1584         then
1585             printf "  fprintf_unfiltered (file,\n"
1586             printf "                      \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1587             printf "                      gdbarch_${function}_p (current_gdbarch));\n"
1588         else
1589             printf "#ifdef ${macro}_P\n"
1590             printf "  fprintf_unfiltered (file,\n"
1591             printf "                      \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1592             printf "                      \"${macro}_P()\",\n"
1593             printf "                      XSTRING (${macro}_P ()));\n"
1594             printf "  fprintf_unfiltered (file,\n"
1595             printf "                      \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1596             printf "                      ${macro}_P ());\n"
1597             printf "#endif\n"
1598         fi
1599     fi
1600     # multiarch functions don't have macros.
1601     if class_is_multiarch_p
1602     then
1603         printf "  fprintf_unfiltered (file,\n"
1604         printf "                      \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1605         printf "                      (long) current_gdbarch->${function});\n"
1606         continue
1607     fi
1608     # Print the macro definition.
1609     printf "#ifdef ${macro}\n"
1610     if class_is_function_p
1611     then
1612         printf "  fprintf_unfiltered (file,\n"
1613         printf "                      \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1614         printf "                      \"${macro}(${actual})\",\n"
1615         printf "                      XSTRING (${macro} (${actual})));\n"
1616     else
1617         printf "  fprintf_unfiltered (file,\n"
1618         printf "                      \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1619         printf "                      XSTRING (${macro}));\n"
1620     fi
1621     if [ "x${print_p}" = "x()" ]
1622     then
1623         printf "  gdbarch_dump_${function} (current_gdbarch);\n"
1624     elif [ "x${print_p}" = "x0" ]
1625     then
1626         printf "  /* skip print of ${macro}, print_p == 0. */\n"
1627     elif [ -n "${print_p}" ]
1628     then
1629         printf "  if (${print_p})\n"
1630         printf "    fprintf_unfiltered (file,\n"
1631         printf "                        \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1632         printf "                        ${print});\n"
1633     elif class_is_function_p
1634     then
1635         printf "  fprintf_unfiltered (file,\n"
1636         printf "                      \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1637         printf "                      (long) current_gdbarch->${function}\n"
1638         printf "                      /*${macro} ()*/);\n"
1639     else
1640         printf "  fprintf_unfiltered (file,\n"
1641         printf "                      \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1642         printf "                      ${print});\n"
1643     fi
1644     printf "#endif\n"
1645 done
1646 cat <<EOF
1647   if (current_gdbarch->dump_tdep != NULL)
1648     current_gdbarch->dump_tdep (current_gdbarch, file);
1649 }
1650 EOF
1651
1652
1653 # GET/SET
1654 printf "\n"
1655 cat <<EOF
1656 struct gdbarch_tdep *
1657 gdbarch_tdep (struct gdbarch *gdbarch)
1658 {
1659   if (gdbarch_debug >= 2)
1660     fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1661   return gdbarch->tdep;
1662 }
1663 EOF
1664 printf "\n"
1665 function_list | while do_read
1666 do
1667     if class_is_predicate_p
1668     then
1669         printf "\n"
1670         printf "int\n"
1671         printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1672         printf "{\n"
1673         printf "  gdb_assert (gdbarch != NULL);\n"
1674         printf "  return ${predicate};\n"
1675         printf "}\n"
1676     fi
1677     if class_is_function_p
1678     then
1679         printf "\n"
1680         printf "${returntype}\n"
1681         if [ "x${formal}" = "xvoid" ]
1682         then
1683           printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1684         else
1685           printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1686         fi
1687         printf "{\n"
1688         printf "  gdb_assert (gdbarch != NULL);\n"
1689         printf "  gdb_assert (gdbarch->${function} != NULL);\n"
1690         if class_is_predicate_p && test -n "${predefault}"
1691         then
1692             # Allow a call to a function with a predicate.
1693             printf "  /* Do not check predicate: ${predicate}, allow call.  */\n"
1694         fi
1695         printf "  if (gdbarch_debug >= 2)\n"
1696         printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1697         if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1698         then
1699             if class_is_multiarch_p
1700             then
1701                 params="gdbarch"
1702             else
1703                 params=""
1704             fi
1705         else
1706             if class_is_multiarch_p
1707             then
1708                 params="gdbarch, ${actual}"
1709             else
1710                 params="${actual}"
1711             fi
1712         fi
1713         if [ "x${returntype}" = "xvoid" ]
1714         then
1715           printf "  gdbarch->${function} (${params});\n"
1716         else
1717           printf "  return gdbarch->${function} (${params});\n"
1718         fi
1719         printf "}\n"
1720         printf "\n"
1721         printf "void\n"
1722         printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1723         printf "            `echo ${function} | sed -e 's/./ /g'`  gdbarch_${function}_ftype ${function})\n"
1724         printf "{\n"
1725         printf "  gdbarch->${function} = ${function};\n"
1726         printf "}\n"
1727     elif class_is_variable_p
1728     then
1729         printf "\n"
1730         printf "${returntype}\n"
1731         printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1732         printf "{\n"
1733         printf "  gdb_assert (gdbarch != NULL);\n"
1734         if [ "x${invalid_p}" = "x0" ]
1735         then
1736             printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1737         elif [ -n "${invalid_p}" ]
1738         then
1739             printf "  /* Check variable is valid.  */\n"
1740             printf "  gdb_assert (!(${invalid_p}));\n"
1741         elif [ -n "${predefault}" ]
1742         then
1743             printf "  /* Check variable changed from pre-default.  */\n"
1744             printf "  gdb_assert (gdbarch->${function} != ${predefault});\n"
1745         fi
1746         printf "  if (gdbarch_debug >= 2)\n"
1747         printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1748         printf "  return gdbarch->${function};\n"
1749         printf "}\n"
1750         printf "\n"
1751         printf "void\n"
1752         printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1753         printf "            `echo ${function} | sed -e 's/./ /g'`  ${returntype} ${function})\n"
1754         printf "{\n"
1755         printf "  gdbarch->${function} = ${function};\n"
1756         printf "}\n"
1757     elif class_is_info_p
1758     then
1759         printf "\n"
1760         printf "${returntype}\n"
1761         printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1762         printf "{\n"
1763         printf "  gdb_assert (gdbarch != NULL);\n"
1764         printf "  if (gdbarch_debug >= 2)\n"
1765         printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1766         printf "  return gdbarch->${function};\n"
1767         printf "}\n"
1768     fi
1769 done
1770
1771 # All the trailing guff
1772 cat <<EOF
1773
1774
1775 /* Keep a registry of per-architecture data-pointers required by GDB
1776    modules. */
1777
1778 struct gdbarch_data
1779 {
1780   unsigned index;
1781   int init_p;
1782   gdbarch_data_pre_init_ftype *pre_init;
1783   gdbarch_data_post_init_ftype *post_init;
1784 };
1785
1786 struct gdbarch_data_registration
1787 {
1788   struct gdbarch_data *data;
1789   struct gdbarch_data_registration *next;
1790 };
1791
1792 struct gdbarch_data_registry
1793 {
1794   unsigned nr;
1795   struct gdbarch_data_registration *registrations;
1796 };
1797
1798 struct gdbarch_data_registry gdbarch_data_registry =
1799 {
1800   0, NULL,
1801 };
1802
1803 static struct gdbarch_data *
1804 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1805                        gdbarch_data_post_init_ftype *post_init)
1806 {
1807   struct gdbarch_data_registration **curr;
1808   /* Append the new registraration.  */
1809   for (curr = &gdbarch_data_registry.registrations;
1810        (*curr) != NULL;
1811        curr = &(*curr)->next);
1812   (*curr) = XMALLOC (struct gdbarch_data_registration);
1813   (*curr)->next = NULL;
1814   (*curr)->data = XMALLOC (struct gdbarch_data);
1815   (*curr)->data->index = gdbarch_data_registry.nr++;
1816   (*curr)->data->pre_init = pre_init;
1817   (*curr)->data->post_init = post_init;
1818   (*curr)->data->init_p = 1;
1819   return (*curr)->data;
1820 }
1821
1822 struct gdbarch_data *
1823 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1824 {
1825   return gdbarch_data_register (pre_init, NULL);
1826 }
1827
1828 struct gdbarch_data *
1829 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1830 {
1831   return gdbarch_data_register (NULL, post_init);
1832 }
1833
1834 /* Create/delete the gdbarch data vector. */
1835
1836 static void
1837 alloc_gdbarch_data (struct gdbarch *gdbarch)
1838 {
1839   gdb_assert (gdbarch->data == NULL);
1840   gdbarch->nr_data = gdbarch_data_registry.nr;
1841   gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1842 }
1843
1844 /* Initialize the current value of the specified per-architecture
1845    data-pointer. */
1846
1847 void
1848 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1849                              struct gdbarch_data *data,
1850                              void *pointer)
1851 {
1852   gdb_assert (data->index < gdbarch->nr_data);
1853   gdb_assert (gdbarch->data[data->index] == NULL);
1854   gdb_assert (data->pre_init == NULL);
1855   gdbarch->data[data->index] = pointer;
1856 }
1857
1858 /* Return the current value of the specified per-architecture
1859    data-pointer. */
1860
1861 void *
1862 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1863 {
1864   gdb_assert (data->index < gdbarch->nr_data);
1865   if (gdbarch->data[data->index] == NULL)
1866     {
1867       /* The data-pointer isn't initialized, call init() to get a
1868          value.  */
1869       if (data->pre_init != NULL)
1870         /* Mid architecture creation: pass just the obstack, and not
1871            the entire architecture, as that way it isn't possible for
1872            pre-init code to refer to undefined architecture
1873            fields.  */
1874         gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1875       else if (gdbarch->initialized_p
1876                && data->post_init != NULL)
1877         /* Post architecture creation: pass the entire architecture
1878            (as all fields are valid), but be careful to also detect
1879            recursive references.  */
1880         {
1881           gdb_assert (data->init_p);
1882           data->init_p = 0;
1883           gdbarch->data[data->index] = data->post_init (gdbarch);
1884           data->init_p = 1;
1885         }
1886       else
1887         /* The architecture initialization hasn't completed - punt -
1888          hope that the caller knows what they are doing.  Once
1889          deprecated_set_gdbarch_data has been initialized, this can be
1890          changed to an internal error.  */
1891         return NULL;
1892       gdb_assert (gdbarch->data[data->index] != NULL);
1893     }
1894   return gdbarch->data[data->index];
1895 }
1896
1897
1898
1899 /* Keep a registry of swapped data required by GDB modules. */
1900
1901 struct gdbarch_swap
1902 {
1903   void *swap;
1904   struct gdbarch_swap_registration *source;
1905   struct gdbarch_swap *next;
1906 };
1907
1908 struct gdbarch_swap_registration
1909 {
1910   void *data;
1911   unsigned long sizeof_data;
1912   gdbarch_swap_ftype *init;
1913   struct gdbarch_swap_registration *next;
1914 };
1915
1916 struct gdbarch_swap_registry
1917 {
1918   int nr;
1919   struct gdbarch_swap_registration *registrations;
1920 };
1921
1922 struct gdbarch_swap_registry gdbarch_swap_registry = 
1923 {
1924   0, NULL,
1925 };
1926
1927 void
1928 deprecated_register_gdbarch_swap (void *data,
1929                                   unsigned long sizeof_data,
1930                                   gdbarch_swap_ftype *init)
1931 {
1932   struct gdbarch_swap_registration **rego;
1933   for (rego = &gdbarch_swap_registry.registrations;
1934        (*rego) != NULL;
1935        rego = &(*rego)->next);
1936   (*rego) = XMALLOC (struct gdbarch_swap_registration);
1937   (*rego)->next = NULL;
1938   (*rego)->init = init;
1939   (*rego)->data = data;
1940   (*rego)->sizeof_data = sizeof_data;
1941 }
1942
1943 static void
1944 current_gdbarch_swap_init_hack (void)
1945 {
1946   struct gdbarch_swap_registration *rego;
1947   struct gdbarch_swap **curr = &current_gdbarch->swap;
1948   for (rego = gdbarch_swap_registry.registrations;
1949        rego != NULL;
1950        rego = rego->next)
1951     {
1952       if (rego->data != NULL)
1953         {
1954           (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1955                                             struct gdbarch_swap);
1956           (*curr)->source = rego;
1957           (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1958                                                   rego->sizeof_data);
1959           (*curr)->next = NULL;
1960           curr = &(*curr)->next;
1961         }
1962       if (rego->init != NULL)
1963         rego->init ();
1964     }
1965 }
1966
1967 static struct gdbarch *
1968 current_gdbarch_swap_out_hack (void)
1969 {
1970   struct gdbarch *old_gdbarch = current_gdbarch;
1971   struct gdbarch_swap *curr;
1972
1973   gdb_assert (old_gdbarch != NULL);
1974   for (curr = old_gdbarch->swap;
1975        curr != NULL;
1976        curr = curr->next)
1977     {
1978       memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1979       memset (curr->source->data, 0, curr->source->sizeof_data);
1980     }
1981   current_gdbarch = NULL;
1982   return old_gdbarch;
1983 }
1984
1985 static void
1986 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1987 {
1988   struct gdbarch_swap *curr;
1989
1990   gdb_assert (current_gdbarch == NULL);
1991   for (curr = new_gdbarch->swap;
1992        curr != NULL;
1993        curr = curr->next)
1994     memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1995   current_gdbarch = new_gdbarch;
1996 }
1997
1998
1999 /* Keep a registry of the architectures known by GDB. */
2000
2001 struct gdbarch_registration
2002 {
2003   enum bfd_architecture bfd_architecture;
2004   gdbarch_init_ftype *init;
2005   gdbarch_dump_tdep_ftype *dump_tdep;
2006   struct gdbarch_list *arches;
2007   struct gdbarch_registration *next;
2008 };
2009
2010 static struct gdbarch_registration *gdbarch_registry = NULL;
2011
2012 static void
2013 append_name (const char ***buf, int *nr, const char *name)
2014 {
2015   *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2016   (*buf)[*nr] = name;
2017   *nr += 1;
2018 }
2019
2020 const char **
2021 gdbarch_printable_names (void)
2022 {
2023   /* Accumulate a list of names based on the registed list of
2024      architectures. */
2025   enum bfd_architecture a;
2026   int nr_arches = 0;
2027   const char **arches = NULL;
2028   struct gdbarch_registration *rego;
2029   for (rego = gdbarch_registry;
2030        rego != NULL;
2031        rego = rego->next)
2032     {
2033       const struct bfd_arch_info *ap;
2034       ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2035       if (ap == NULL)
2036         internal_error (__FILE__, __LINE__,
2037                         "gdbarch_architecture_names: multi-arch unknown");
2038       do
2039         {
2040           append_name (&arches, &nr_arches, ap->printable_name);
2041           ap = ap->next;
2042         }
2043       while (ap != NULL);
2044     }
2045   append_name (&arches, &nr_arches, NULL);
2046   return arches;
2047 }
2048
2049
2050 void
2051 gdbarch_register (enum bfd_architecture bfd_architecture,
2052                   gdbarch_init_ftype *init,
2053                   gdbarch_dump_tdep_ftype *dump_tdep)
2054 {
2055   struct gdbarch_registration **curr;
2056   const struct bfd_arch_info *bfd_arch_info;
2057   /* Check that BFD recognizes this architecture */
2058   bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2059   if (bfd_arch_info == NULL)
2060     {
2061       internal_error (__FILE__, __LINE__,
2062                       "gdbarch: Attempt to register unknown architecture (%d)",
2063                       bfd_architecture);
2064     }
2065   /* Check that we haven't seen this architecture before */
2066   for (curr = &gdbarch_registry;
2067        (*curr) != NULL;
2068        curr = &(*curr)->next)
2069     {
2070       if (bfd_architecture == (*curr)->bfd_architecture)
2071         internal_error (__FILE__, __LINE__,
2072                         "gdbarch: Duplicate registraration of architecture (%s)",
2073                         bfd_arch_info->printable_name);
2074     }
2075   /* log it */
2076   if (gdbarch_debug)
2077     fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2078                         bfd_arch_info->printable_name,
2079                         (long) init);
2080   /* Append it */
2081   (*curr) = XMALLOC (struct gdbarch_registration);
2082   (*curr)->bfd_architecture = bfd_architecture;
2083   (*curr)->init = init;
2084   (*curr)->dump_tdep = dump_tdep;
2085   (*curr)->arches = NULL;
2086   (*curr)->next = NULL;
2087 }
2088
2089 void
2090 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2091                        gdbarch_init_ftype *init)
2092 {
2093   gdbarch_register (bfd_architecture, init, NULL);
2094 }
2095
2096
2097 /* Look for an architecture using gdbarch_info.  Base search on only
2098    BFD_ARCH_INFO and BYTE_ORDER. */
2099
2100 struct gdbarch_list *
2101 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2102                              const struct gdbarch_info *info)
2103 {
2104   for (; arches != NULL; arches = arches->next)
2105     {
2106       if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2107         continue;
2108       if (info->byte_order != arches->gdbarch->byte_order)
2109         continue;
2110       if (info->osabi != arches->gdbarch->osabi)
2111         continue;
2112       return arches;
2113     }
2114   return NULL;
2115 }
2116
2117
2118 /* Find an architecture that matches the specified INFO.  Create a new
2119    architecture if needed.  Return that new architecture.  Assumes
2120    that there is no current architecture.  */
2121
2122 static struct gdbarch *
2123 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2124 {
2125   struct gdbarch *new_gdbarch;
2126   struct gdbarch_registration *rego;
2127
2128   /* The existing architecture has been swapped out - all this code
2129      works from a clean slate.  */
2130   gdb_assert (current_gdbarch == NULL);
2131
2132   /* Fill in missing parts of the INFO struct using a number of
2133      sources: "set ..."; INFOabfd supplied; and the existing
2134      architecture.  */
2135   gdbarch_info_fill (old_gdbarch, &info);
2136
2137   /* Must have found some sort of architecture. */
2138   gdb_assert (info.bfd_arch_info != NULL);
2139
2140   if (gdbarch_debug)
2141     {
2142       fprintf_unfiltered (gdb_stdlog,
2143                           "find_arch_by_info: info.bfd_arch_info %s\n",
2144                           (info.bfd_arch_info != NULL
2145                            ? info.bfd_arch_info->printable_name
2146                            : "(null)"));
2147       fprintf_unfiltered (gdb_stdlog,
2148                           "find_arch_by_info: info.byte_order %d (%s)\n",
2149                           info.byte_order,
2150                           (info.byte_order == BFD_ENDIAN_BIG ? "big"
2151                            : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2152                            : "default"));
2153       fprintf_unfiltered (gdb_stdlog,
2154                           "find_arch_by_info: info.osabi %d (%s)\n",
2155                           info.osabi, gdbarch_osabi_name (info.osabi));
2156       fprintf_unfiltered (gdb_stdlog,
2157                           "find_arch_by_info: info.abfd 0x%lx\n",
2158                           (long) info.abfd);
2159       fprintf_unfiltered (gdb_stdlog,
2160                           "find_arch_by_info: info.tdep_info 0x%lx\n",
2161                           (long) info.tdep_info);
2162     }
2163
2164   /* Find the tdep code that knows about this architecture.  */
2165   for (rego = gdbarch_registry;
2166        rego != NULL;
2167        rego = rego->next)
2168     if (rego->bfd_architecture == info.bfd_arch_info->arch)
2169       break;
2170   if (rego == NULL)
2171     {
2172       if (gdbarch_debug)
2173         fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2174                             "No matching architecture\n");
2175       return 0;
2176     }
2177
2178   /* Ask the tdep code for an architecture that matches "info".  */
2179   new_gdbarch = rego->init (info, rego->arches);
2180
2181   /* Did the tdep code like it?  No.  Reject the change and revert to
2182      the old architecture.  */
2183   if (new_gdbarch == NULL)
2184     {
2185       if (gdbarch_debug)
2186         fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2187                             "Target rejected architecture\n");
2188       return NULL;
2189     }
2190
2191   /* Is this a pre-existing architecture (as determined by already
2192      being initialized)?  Move it to the front of the architecture
2193      list (keeping the list sorted Most Recently Used).  */
2194   if (new_gdbarch->initialized_p)
2195     {
2196       struct gdbarch_list **list;
2197       struct gdbarch_list *this;
2198       if (gdbarch_debug)
2199         fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2200                             "Previous architecture 0x%08lx (%s) selected\n",
2201                             (long) new_gdbarch,
2202                             new_gdbarch->bfd_arch_info->printable_name);
2203       /* Find the existing arch in the list.  */
2204       for (list = &rego->arches;
2205            (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2206            list = &(*list)->next);
2207       /* It had better be in the list of architectures.  */
2208       gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2209       /* Unlink THIS.  */
2210       this = (*list);
2211       (*list) = this->next;
2212       /* Insert THIS at the front.  */
2213       this->next = rego->arches;
2214       rego->arches = this;
2215       /* Return it.  */
2216       return new_gdbarch;
2217     }
2218
2219   /* It's a new architecture.  */
2220   if (gdbarch_debug)
2221     fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2222                         "New architecture 0x%08lx (%s) selected\n",
2223                         (long) new_gdbarch,
2224                         new_gdbarch->bfd_arch_info->printable_name);
2225   
2226   /* Insert the new architecture into the front of the architecture
2227      list (keep the list sorted Most Recently Used).  */
2228   {
2229     struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2230     this->next = rego->arches;
2231     this->gdbarch = new_gdbarch;
2232     rego->arches = this;
2233   }    
2234
2235   /* Check that the newly installed architecture is valid.  Plug in
2236      any post init values.  */
2237   new_gdbarch->dump_tdep = rego->dump_tdep;
2238   verify_gdbarch (new_gdbarch);
2239   new_gdbarch->initialized_p = 1;
2240
2241   /* Initialize any per-architecture swap areas.  This phase requires
2242      a valid global CURRENT_GDBARCH.  Set it momentarially, and then
2243      swap the entire architecture out.  */
2244   current_gdbarch = new_gdbarch;
2245   current_gdbarch_swap_init_hack ();
2246   current_gdbarch_swap_out_hack ();
2247
2248   if (gdbarch_debug)
2249     gdbarch_dump (new_gdbarch, gdb_stdlog);
2250
2251   return new_gdbarch;
2252 }
2253
2254 struct gdbarch *
2255 gdbarch_find_by_info (struct gdbarch_info info)
2256 {
2257   /* Save the previously selected architecture, setting the global to
2258      NULL.  This stops things like gdbarch->init() trying to use the
2259      previous architecture's configuration.  The previous architecture
2260      may not even be of the same architecture family.  The most recent
2261      architecture of the same family is found at the head of the
2262      rego->arches list.  */
2263   struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2264
2265   /* Find the specified architecture.  */
2266   struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2267
2268   /* Restore the existing architecture.  */
2269   gdb_assert (current_gdbarch == NULL);
2270   current_gdbarch_swap_in_hack (old_gdbarch);
2271
2272   return new_gdbarch;
2273 }
2274
2275 /* Make the specified architecture current, swapping the existing one
2276    out.  */
2277
2278 void
2279 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2280 {
2281   gdb_assert (new_gdbarch != NULL);
2282   gdb_assert (current_gdbarch != NULL);
2283   gdb_assert (new_gdbarch->initialized_p);
2284   current_gdbarch_swap_out_hack ();
2285   current_gdbarch_swap_in_hack (new_gdbarch);
2286   architecture_changed_event ();
2287 }
2288
2289 extern void _initialize_gdbarch (void);
2290
2291 void
2292 _initialize_gdbarch (void)
2293 {
2294   struct cmd_list_element *c;
2295
2296   add_show_from_set (add_set_cmd ("arch",
2297                                   class_maintenance,
2298                                   var_zinteger,
2299                                   (char *)&gdbarch_debug,
2300                                   "Set architecture debugging.\\n\\
2301 When non-zero, architecture debugging is enabled.", &setdebuglist),
2302                      &showdebuglist);
2303   c = add_set_cmd ("archdebug",
2304                    class_maintenance,
2305                    var_zinteger,
2306                    (char *)&gdbarch_debug,
2307                    "Set architecture debugging.\\n\\
2308 When non-zero, architecture debugging is enabled.", &setlist);
2309
2310   deprecate_cmd (c, "set debug arch");
2311   deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2312 }
2313 EOF
2314
2315 # close things off
2316 exec 1>&2
2317 #../move-if-change new-gdbarch.c gdbarch.c
2318 compare_new gdbarch.c