use do_align () directly in tc-ia64.c
[external/binutils.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program.  If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30     file=$1
31     if test ! -r ${file}
32     then
33         echo "${file} missing? cp new-${file} ${file}" 1>&2
34     elif diff -u ${file} new-${file}
35     then
36         echo "${file} unchanged" 1>&2
37     else
38         echo "${file} has changed? cp new-${file} ${file}" 1>&2
39     fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48     comment=""
49     class=""
50     # On some SH's, 'read' trims leading and trailing whitespace by
51     # default (e.g., bash), while on others (e.g., dash), it doesn't.
52     # Set IFS to empty to disable the trimming everywhere.
53     while IFS='' read line
54     do
55         if test "${line}" = ""
56         then
57             continue
58         elif test "${line}" = "#" -a "${comment}" = ""
59         then
60             continue
61         elif expr "${line}" : "#" > /dev/null
62         then
63             comment="${comment}
64 ${line}"
65         else
66
67             # The semantics of IFS varies between different SH's.  Some
68             # treat ``::' as three fields while some treat it as just too.
69             # Work around this by eliminating ``::'' ....
70             line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72             OFS="${IFS}" ; IFS="[:]"
73             eval read ${read} <<EOF
74 ${line}
75 EOF
76             IFS="${OFS}"
77
78             if test -n "${garbage_at_eol}"
79             then
80                 echo "Garbage at end-of-line in ${line}" 1>&2
81                 kill $$
82                 exit 1
83             fi
84
85             # .... and then going back through each field and strip out those
86             # that ended up with just that space character.
87             for r in ${read}
88             do
89                 if eval test \"\${${r}}\" = \"\ \"
90                 then
91                     eval ${r}=""
92                 fi
93             done
94
95             case "${class}" in
96                 m ) staticdefault="${predefault}" ;;
97                 M ) staticdefault="0" ;;
98                 * ) test "${staticdefault}" || staticdefault=0 ;;
99             esac
100
101             case "${class}" in
102             F | V | M )
103                 case "${invalid_p}" in
104                 "" )
105                     if test -n "${predefault}"
106                     then
107                         #invalid_p="gdbarch->${function} == ${predefault}"
108                         predicate="gdbarch->${function} != ${predefault}"
109                     elif class_is_variable_p
110                     then
111                         predicate="gdbarch->${function} != 0"
112                     elif class_is_function_p
113                     then
114                         predicate="gdbarch->${function} != NULL"
115                     fi
116                     ;;
117                 * )
118                     echo "Predicate function ${function} with invalid_p." 1>&2
119                     kill $$
120                     exit 1
121                     ;;
122                 esac
123             esac
124
125             # PREDEFAULT is a valid fallback definition of MEMBER when
126             # multi-arch is not enabled.  This ensures that the
127             # default value, when multi-arch is the same as the
128             # default value when not multi-arch.  POSTDEFAULT is
129             # always a valid definition of MEMBER as this again
130             # ensures consistency.
131
132             if [ -n "${postdefault}" ]
133             then
134                 fallbackdefault="${postdefault}"
135             elif [ -n "${predefault}" ]
136             then
137                 fallbackdefault="${predefault}"
138             else
139                 fallbackdefault="0"
140             fi
141
142             #NOT YET: See gdbarch.log for basic verification of
143             # database
144
145             break
146         fi
147     done
148     if [ -n "${class}" ]
149     then
150         true
151     else
152         false
153     fi
154 }
155
156
157 fallback_default_p ()
158 {
159     [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160         || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165     case "${class}" in
166         *v* | *V* ) true ;;
167         * ) false ;;
168     esac
169 }
170
171 class_is_function_p ()
172 {
173     case "${class}" in
174         *f* | *F* | *m* | *M* ) true ;;
175         * ) false ;;
176     esac
177 }
178
179 class_is_multiarch_p ()
180 {
181     case "${class}" in
182         *m* | *M* ) true ;;
183         * ) false ;;
184     esac
185 }
186
187 class_is_predicate_p ()
188 {
189     case "${class}" in
190         *F* | *V* | *M* ) true ;;
191         * ) false ;;
192     esac
193 }
194
195 class_is_info_p ()
196 {
197     case "${class}" in
198         *i* ) true ;;
199         * ) false ;;
200     esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207   case ${field} in
208
209     class ) : ;;
210
211         # # -> line disable
212         # f -> function
213         #   hiding a function
214         # F -> function + predicate
215         #   hiding a function + predicate to test function validity
216         # v -> variable
217         #   hiding a variable
218         # V -> variable + predicate
219         #   hiding a variable + predicate to test variables validity
220         # i -> set from info
221         #   hiding something from the ``struct info'' object
222         # m -> multi-arch function
223         #   hiding a multi-arch function (parameterised with the architecture)
224         # M -> multi-arch function + predicate
225         #   hiding a multi-arch function + predicate to test function validity
226
227     returntype ) : ;;
228
229         # For functions, the return type; for variables, the data type
230
231     function ) : ;;
232
233         # For functions, the member function name; for variables, the
234         # variable name.  Member function names are always prefixed with
235         # ``gdbarch_'' for name-space purity.
236
237     formal ) : ;;
238
239         # The formal argument list.  It is assumed that the formal
240         # argument list includes the actual name of each list element.
241         # A function with no arguments shall have ``void'' as the
242         # formal argument list.
243
244     actual ) : ;;
245
246         # The list of actual arguments.  The arguments specified shall
247         # match the FORMAL list given above.  Functions with out
248         # arguments leave this blank.
249
250     staticdefault ) : ;;
251
252         # To help with the GDB startup a static gdbarch object is
253         # created.  STATICDEFAULT is the value to insert into that
254         # static gdbarch object.  Since this a static object only
255         # simple expressions can be used.
256
257         # If STATICDEFAULT is empty, zero is used.
258
259     predefault ) : ;;
260
261         # An initial value to assign to MEMBER of the freshly
262         # malloc()ed gdbarch object.  After initialization, the
263         # freshly malloc()ed object is passed to the target
264         # architecture code for further updates.
265
266         # If PREDEFAULT is empty, zero is used.
267
268         # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269         # INVALID_P are specified, PREDEFAULT will be used as the
270         # default for the non- multi-arch target.
271
272         # A zero PREDEFAULT function will force the fallback to call
273         # internal_error().
274
275         # Variable declarations can refer to ``gdbarch'' which will
276         # contain the current architecture.  Care should be taken.
277
278     postdefault ) : ;;
279
280         # A value to assign to MEMBER of the new gdbarch object should
281         # the target architecture code fail to change the PREDEFAULT
282         # value.
283
284         # If POSTDEFAULT is empty, no post update is performed.
285
286         # If both INVALID_P and POSTDEFAULT are non-empty then
287         # INVALID_P will be used to determine if MEMBER should be
288         # changed to POSTDEFAULT.
289
290         # If a non-empty POSTDEFAULT and a zero INVALID_P are
291         # specified, POSTDEFAULT will be used as the default for the
292         # non- multi-arch target (regardless of the value of
293         # PREDEFAULT).
294
295         # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297         # Variable declarations can refer to ``gdbarch'' which
298         # will contain the current architecture.  Care should be
299         # taken.
300
301     invalid_p ) : ;;
302
303         # A predicate equation that validates MEMBER.  Non-zero is
304         # returned if the code creating the new architecture failed to
305         # initialize MEMBER or the initialized the member is invalid.
306         # If POSTDEFAULT is non-empty then MEMBER will be updated to
307         # that value.  If POSTDEFAULT is empty then internal_error()
308         # is called.
309
310         # If INVALID_P is empty, a check that MEMBER is no longer
311         # equal to PREDEFAULT is used.
312
313         # The expression ``0'' disables the INVALID_P check making
314         # PREDEFAULT a legitimate value.
315
316         # See also PREDEFAULT and POSTDEFAULT.
317
318     print ) : ;;
319
320         # An optional expression that convers MEMBER to a value
321         # suitable for formatting using %s.
322
323         # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324         # or plongest (anything else) is used.
325
326     garbage_at_eol ) : ;;
327
328         # Catches stray fields.
329
330     *)
331         echo "Bad field ${field}"
332         exit 1;;
333   esac
334 done
335
336
337 function_list ()
338 {
339   # See below (DOCO) for description of each field
340   cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such.  Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double".  These bit/format pairs should eventually be combined
373 # into a single object.  For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same".  For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info.  For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value.  Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer.  FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value.  If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate.  If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # Some targets/architectures can do extra processing/display of
450 # segmentation faults.  E.g., Intel MPX boundary faults.
451 # Call the architecture dependent function to handle the fault.
452 # UIOUT is the output stream where the handler will place information.
453 M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
454
455 # GDB's standard (or well known) register numbers.  These can map onto
456 # a real register or a pseudo (computed) register or not be defined at
457 # all (-1).
458 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
459 v:int:sp_regnum:::-1:-1::0
460 v:int:pc_regnum:::-1:-1::0
461 v:int:ps_regnum:::-1:-1::0
462 v:int:fp0_regnum:::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
467 # Convert from an sdb register number to an internal gdb register number.
468 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
469 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
470 # Return -1 for bad REGNUM.  Note: Several targets get this wrong.
471 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
472 m:const char *:register_name:int regnr:regnr::0
473
474 # Return the type of a register specified by the architecture.  Only
475 # the register cache should call this function directly; others should
476 # use "register_type".
477 M:struct type *:register_type:int reg_nr:reg_nr
478
479 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
480 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
481 # deprecated_fp_regnum.
482 v:int:deprecated_fp_regnum:::-1:-1::0
483
484 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
485 v:int:call_dummy_location::::AT_ENTRY_POINT::0
486 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
487
488 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
489 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
490 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
491 # MAP a GDB RAW register number onto a simulator register number.  See
492 # also include/...-sim.h.
493 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
494 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
495 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
496
497 # Determine the address where a longjmp will land and save this address
498 # in PC.  Return nonzero on success.
499 #
500 # FRAME corresponds to the longjmp frame.
501 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
502
503 #
504 v:int:believe_pcc_promotion:::::::
505 #
506 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
507 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
508 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
509 # Construct a value representing the contents of register REGNUM in
510 # frame FRAME_ID, interpreted as type TYPE.  The routine needs to
511 # allocate and return a struct value with all value attributes
512 # (but not the value contents) filled in.
513 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
514 #
515 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
516 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
517 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
518
519 # Return the return-value convention that will be used by FUNCTION
520 # to return a value of type VALTYPE.  FUNCTION may be NULL in which
521 # case the return convention is computed based only on VALTYPE.
522 #
523 # If READBUF is not NULL, extract the return value and save it in this buffer.
524 #
525 # If WRITEBUF is not NULL, it contains a return value which will be
526 # stored into the appropriate register.  This can be used when we want
527 # to force the value returned by a function (see the "return" command
528 # for instance).
529 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
530
531 # Return true if the return value of function is stored in the first hidden
532 # parameter.  In theory, this feature should be language-dependent, specified
533 # by language and its ABI, such as C++.  Unfortunately, compiler may
534 # implement it to a target-dependent feature.  So that we need such hook here
535 # to be aware of this in GDB.
536 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
537
538 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
539 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
540 # On some platforms, a single function may provide multiple entry points,
541 # e.g. one that is used for function-pointer calls and a different one
542 # that is used for direct function calls.
543 # In order to ensure that breakpoints set on the function will trigger
544 # no matter via which entry point the function is entered, a platform
545 # may provide the skip_entrypoint callback.  It is called with IP set
546 # to the main entry point of a function (as determined by the symbol table),
547 # and should return the address of the innermost entry point, where the
548 # actual breakpoint needs to be set.  Note that skip_entrypoint is used
549 # by GDB common code even when debugging optimized code, where skip_prologue
550 # is not used.
551 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
552
553 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
554 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
555 # Return the adjusted address and kind to use for Z0/Z1 packets.
556 # KIND is usually the memory length of the breakpoint, but may have a
557 # different target-specific meaning.
558 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
559 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
560 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
561 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
562 v:CORE_ADDR:decr_pc_after_break:::0:::0
563
564 # A function can be addressed by either it's "pointer" (possibly a
565 # descriptor address) or "entry point" (first executable instruction).
566 # The method "convert_from_func_ptr_addr" converting the former to the
567 # latter.  gdbarch_deprecated_function_start_offset is being used to implement
568 # a simplified subset of that functionality - the function's address
569 # corresponds to the "function pointer" and the function's start
570 # corresponds to the "function entry point" - and hence is redundant.
571
572 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
573
574 # Return the remote protocol register number associated with this
575 # register.  Normally the identity mapping.
576 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
577
578 # Fetch the target specific address used to represent a load module.
579 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
580 #
581 v:CORE_ADDR:frame_args_skip:::0:::0
582 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
583 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
584 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
585 # frame-base.  Enable frame-base before frame-unwind.
586 F:int:frame_num_args:struct frame_info *frame:frame
587 #
588 M:CORE_ADDR:frame_align:CORE_ADDR address:address
589 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
590 v:int:frame_red_zone_size
591 #
592 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
593 # On some machines there are bits in addresses which are not really
594 # part of the address, but are used by the kernel, the hardware, etc.
595 # for special purposes.  gdbarch_addr_bits_remove takes out any such bits so
596 # we get a "real" address such as one would find in a symbol table.
597 # This is used only for addresses of instructions, and even then I'm
598 # not sure it's used in all contexts.  It exists to deal with there
599 # being a few stray bits in the PC which would mislead us, not as some
600 # sort of generic thing to handle alignment or segmentation (it's
601 # possible it should be in TARGET_READ_PC instead).
602 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
603
604 # FIXME/cagney/2001-01-18: This should be split in two.  A target method that
605 # indicates if the target needs software single step.  An ISA method to
606 # implement it.
607 #
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
609 # breakpoints using the breakpoint system instead of blatting memory directly
610 # (as with rs6000).
611 #
612 # FIXME/cagney/2001-01-18: The logic is backwards.  It should be asking if the
613 # target can single step.  If not, then implement single step using breakpoints.
614 #
615 # A return value of 1 means that the software_single_step breakpoints
616 # were inserted; 0 means they were not.
617 F:int:software_single_step:struct frame_info *frame:frame
618
619 # Return non-zero if the processor is executing a delay slot and a
620 # further single-step is needed before the instruction finishes.
621 M:int:single_step_through_delay:struct frame_info *frame:frame
622 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
623 # disassembler.  Perhaps objdump can handle it?
624 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
625 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
626
627
628 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
629 # evaluates non-zero, this is the address where the debugger will place
630 # a step-resume breakpoint to get us past the dynamic linker.
631 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
632 # Some systems also have trampoline code for returning from shared libs.
633 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
634
635 # A target might have problems with watchpoints as soon as the stack
636 # frame of the current function has been destroyed.  This mostly happens
637 # as the first action in a function's epilogue.  stack_frame_destroyed_p()
638 # is defined to return a non-zero value if either the given addr is one
639 # instruction after the stack destroying instruction up to the trailing
640 # return instruction or if we can figure out that the stack frame has
641 # already been invalidated regardless of the value of addr.  Targets
642 # which don't suffer from that problem could just let this functionality
643 # untouched.
644 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
645 # Process an ELF symbol in the minimal symbol table in a backend-specific
646 # way.  Normally this hook is supposed to do nothing, however if required,
647 # then this hook can be used to apply tranformations to symbols that are
648 # considered special in some way.  For example the MIPS backend uses it
649 # to interpret \`st_other' information to mark compressed code symbols so
650 # that they can be treated in the appropriate manner in the processing of
651 # the main symbol table and DWARF-2 records.
652 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
653 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
654 # Process a symbol in the main symbol table in a backend-specific way.
655 # Normally this hook is supposed to do nothing, however if required,
656 # then this hook can be used to apply tranformations to symbols that
657 # are considered special in some way.  This is currently used by the
658 # MIPS backend to make sure compressed code symbols have the ISA bit
659 # set.  This in turn is needed for symbol values seen in GDB to match
660 # the values used at the runtime by the program itself, for function
661 # and label references.
662 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
663 # Adjust the address retrieved from a DWARF-2 record other than a line
664 # entry in a backend-specific way.  Normally this hook is supposed to
665 # return the address passed unchanged, however if that is incorrect for
666 # any reason, then this hook can be used to fix the address up in the
667 # required manner.  This is currently used by the MIPS backend to make
668 # sure addresses in FDE, range records, etc. referring to compressed
669 # code have the ISA bit set, matching line information and the symbol
670 # table.
671 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
672 # Adjust the address updated by a line entry in a backend-specific way.
673 # Normally this hook is supposed to return the address passed unchanged,
674 # however in the case of inconsistencies in these records, this hook can
675 # be used to fix them up in the required manner.  This is currently used
676 # by the MIPS backend to make sure all line addresses in compressed code
677 # are presented with the ISA bit set, which is not always the case.  This
678 # in turn ensures breakpoint addresses are correctly matched against the
679 # stop PC.
680 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
681 v:int:cannot_step_breakpoint:::0:0::0
682 v:int:have_nonsteppable_watchpoint:::0:0::0
683 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
684 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
685
686 # Return the appropriate type_flags for the supplied address class.
687 # This function should return 1 if the address class was recognized and
688 # type_flags was set, zero otherwise.
689 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
690 # Is a register in a group
691 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
692 # Fetch the pointer to the ith function argument.
693 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
694
695 # Iterate over all supported register notes in a core file.  For each
696 # supported register note section, the iterator must call CB and pass
697 # CB_DATA unchanged.  If REGCACHE is not NULL, the iterator can limit
698 # the supported register note sections based on the current register
699 # values.  Otherwise it should enumerate all supported register note
700 # sections.
701 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
702
703 # Create core file notes
704 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
705
706 # The elfcore writer hook to use to write Linux prpsinfo notes to core
707 # files.  Most Linux architectures use the same prpsinfo32 or
708 # prpsinfo64 layouts, and so won't need to provide this hook, as we
709 # call the Linux generic routines in bfd to write prpsinfo notes by
710 # default.
711 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
712
713 # Find core file memory regions
714 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
715
716 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
717 # core file into buffer READBUF with length LEN.  Return the number of bytes read
718 # (zero indicates failure).
719 # failed, otherwise, return the red length of READBUF.
720 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
721
722 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
723 # libraries list from core file into buffer READBUF with length LEN.
724 # Return the number of bytes read (zero indicates failure).
725 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
726
727 # How the core target converts a PTID from a core file to a string.
728 M:char *:core_pid_to_str:ptid_t ptid:ptid
729
730 # How the core target extracts the name of a thread from a core file.
731 M:const char *:core_thread_name:struct thread_info *thr:thr
732
733 # BFD target to use when generating a core file.
734 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
735
736 # If the elements of C++ vtables are in-place function descriptors rather
737 # than normal function pointers (which may point to code or a descriptor),
738 # set this to one.
739 v:int:vtable_function_descriptors:::0:0::0
740
741 # Set if the least significant bit of the delta is used instead of the least
742 # significant bit of the pfn for pointers to virtual member functions.
743 v:int:vbit_in_delta:::0:0::0
744
745 # Advance PC to next instruction in order to skip a permanent breakpoint.
746 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
747
748 # The maximum length of an instruction on this architecture in bytes.
749 V:ULONGEST:max_insn_length:::0:0
750
751 # Copy the instruction at FROM to TO, and make any adjustments
752 # necessary to single-step it at that address.
753 #
754 # REGS holds the state the thread's registers will have before
755 # executing the copied instruction; the PC in REGS will refer to FROM,
756 # not the copy at TO.  The caller should update it to point at TO later.
757 #
758 # Return a pointer to data of the architecture's choice to be passed
759 # to gdbarch_displaced_step_fixup.  Or, return NULL to indicate that
760 # the instruction's effects have been completely simulated, with the
761 # resulting state written back to REGS.
762 #
763 # For a general explanation of displaced stepping and how GDB uses it,
764 # see the comments in infrun.c.
765 #
766 # The TO area is only guaranteed to have space for
767 # gdbarch_max_insn_length (arch) bytes, so this function must not
768 # write more bytes than that to that area.
769 #
770 # If you do not provide this function, GDB assumes that the
771 # architecture does not support displaced stepping.
772 #
773 # If your architecture doesn't need to adjust instructions before
774 # single-stepping them, consider using simple_displaced_step_copy_insn
775 # here.
776 #
777 # If the instruction cannot execute out of line, return NULL.  The
778 # core falls back to stepping past the instruction in-line instead in
779 # that case.
780 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
781
782 # Return true if GDB should use hardware single-stepping to execute
783 # the displaced instruction identified by CLOSURE.  If false,
784 # GDB will simply restart execution at the displaced instruction
785 # location, and it is up to the target to ensure GDB will receive
786 # control again (e.g. by placing a software breakpoint instruction
787 # into the displaced instruction buffer).
788 #
789 # The default implementation returns false on all targets that
790 # provide a gdbarch_software_single_step routine, and true otherwise.
791 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
792
793 # Fix up the state resulting from successfully single-stepping a
794 # displaced instruction, to give the result we would have gotten from
795 # stepping the instruction in its original location.
796 #
797 # REGS is the register state resulting from single-stepping the
798 # displaced instruction.
799 #
800 # CLOSURE is the result from the matching call to
801 # gdbarch_displaced_step_copy_insn.
802 #
803 # If you provide gdbarch_displaced_step_copy_insn.but not this
804 # function, then GDB assumes that no fixup is needed after
805 # single-stepping the instruction.
806 #
807 # For a general explanation of displaced stepping and how GDB uses it,
808 # see the comments in infrun.c.
809 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
810
811 # Free a closure returned by gdbarch_displaced_step_copy_insn.
812 #
813 # If you provide gdbarch_displaced_step_copy_insn, you must provide
814 # this function as well.
815 #
816 # If your architecture uses closures that don't need to be freed, then
817 # you can use simple_displaced_step_free_closure here.
818 #
819 # For a general explanation of displaced stepping and how GDB uses it,
820 # see the comments in infrun.c.
821 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
822
823 # Return the address of an appropriate place to put displaced
824 # instructions while we step over them.  There need only be one such
825 # place, since we're only stepping one thread over a breakpoint at a
826 # time.
827 #
828 # For a general explanation of displaced stepping and how GDB uses it,
829 # see the comments in infrun.c.
830 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
831
832 # Relocate an instruction to execute at a different address.  OLDLOC
833 # is the address in the inferior memory where the instruction to
834 # relocate is currently at.  On input, TO points to the destination
835 # where we want the instruction to be copied (and possibly adjusted)
836 # to.  On output, it points to one past the end of the resulting
837 # instruction(s).  The effect of executing the instruction at TO shall
838 # be the same as if executing it at FROM.  For example, call
839 # instructions that implicitly push the return address on the stack
840 # should be adjusted to return to the instruction after OLDLOC;
841 # relative branches, and other PC-relative instructions need the
842 # offset adjusted; etc.
843 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
844
845 # Refresh overlay mapped state for section OSECT.
846 F:void:overlay_update:struct obj_section *osect:osect
847
848 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
849
850 # Handle special encoding of static variables in stabs debug info.
851 F:const char *:static_transform_name:const char *name:name
852 # Set if the address in N_SO or N_FUN stabs may be zero.
853 v:int:sofun_address_maybe_missing:::0:0::0
854
855 # Parse the instruction at ADDR storing in the record execution log
856 # the registers REGCACHE and memory ranges that will be affected when
857 # the instruction executes, along with their current values.
858 # Return -1 if something goes wrong, 0 otherwise.
859 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
860
861 # Save process state after a signal.
862 # Return -1 if something goes wrong, 0 otherwise.
863 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
864
865 # Signal translation: translate inferior's signal (target's) number
866 # into GDB's representation.  The implementation of this method must
867 # be host independent.  IOW, don't rely on symbols of the NAT_FILE
868 # header (the nm-*.h files), the host <signal.h> header, or similar
869 # headers.  This is mainly used when cross-debugging core files ---
870 # "Live" targets hide the translation behind the target interface
871 # (target_wait, target_resume, etc.).
872 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
873
874 # Signal translation: translate the GDB's internal signal number into
875 # the inferior's signal (target's) representation.  The implementation
876 # of this method must be host independent.  IOW, don't rely on symbols
877 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
878 # header, or similar headers.
879 # Return the target signal number if found, or -1 if the GDB internal
880 # signal number is invalid.
881 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
882
883 # Extra signal info inspection.
884 #
885 # Return a type suitable to inspect extra signal information.
886 M:struct type *:get_siginfo_type:void:
887
888 # Record architecture-specific information from the symbol table.
889 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
890
891 # Function for the 'catch syscall' feature.
892
893 # Get architecture-specific system calls information from registers.
894 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
895
896 # The filename of the XML syscall for this architecture.
897 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
898
899 # Information about system calls from this architecture
900 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
901
902 # SystemTap related fields and functions.
903
904 # A NULL-terminated array of prefixes used to mark an integer constant
905 # on the architecture's assembly.
906 # For example, on x86 integer constants are written as:
907 #
908 #  \$10 ;; integer constant 10
909 #
910 # in this case, this prefix would be the character \`\$\'.
911 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
912
913 # A NULL-terminated array of suffixes used to mark an integer constant
914 # on the architecture's assembly.
915 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
916
917 # A NULL-terminated array of prefixes used to mark a register name on
918 # the architecture's assembly.
919 # For example, on x86 the register name is written as:
920 #
921 #  \%eax ;; register eax
922 #
923 # in this case, this prefix would be the character \`\%\'.
924 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
925
926 # A NULL-terminated array of suffixes used to mark a register name on
927 # the architecture's assembly.
928 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
929
930 # A NULL-terminated array of prefixes used to mark a register
931 # indirection on the architecture's assembly.
932 # For example, on x86 the register indirection is written as:
933 #
934 #  \(\%eax\) ;; indirecting eax
935 #
936 # in this case, this prefix would be the charater \`\(\'.
937 #
938 # Please note that we use the indirection prefix also for register
939 # displacement, e.g., \`4\(\%eax\)\' on x86.
940 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
941
942 # A NULL-terminated array of suffixes used to mark a register
943 # indirection on the architecture's assembly.
944 # For example, on x86 the register indirection is written as:
945 #
946 #  \(\%eax\) ;; indirecting eax
947 #
948 # in this case, this prefix would be the charater \`\)\'.
949 #
950 # Please note that we use the indirection suffix also for register
951 # displacement, e.g., \`4\(\%eax\)\' on x86.
952 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
953
954 # Prefix(es) used to name a register using GDB's nomenclature.
955 #
956 # For example, on PPC a register is represented by a number in the assembly
957 # language (e.g., \`10\' is the 10th general-purpose register).  However,
958 # inside GDB this same register has an \`r\' appended to its name, so the 10th
959 # register would be represented as \`r10\' internally.
960 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
961
962 # Suffix used to name a register using GDB's nomenclature.
963 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
964
965 # Check if S is a single operand.
966 #
967 # Single operands can be:
968 #  \- Literal integers, e.g. \`\$10\' on x86
969 #  \- Register access, e.g. \`\%eax\' on x86
970 #  \- Register indirection, e.g. \`\(\%eax\)\' on x86
971 #  \- Register displacement, e.g. \`4\(\%eax\)\' on x86
972 #
973 # This function should check for these patterns on the string
974 # and return 1 if some were found, or zero otherwise.  Please try to match
975 # as much info as you can from the string, i.e., if you have to match
976 # something like \`\(\%\', do not match just the \`\(\'.
977 M:int:stap_is_single_operand:const char *s:s
978
979 # Function used to handle a "special case" in the parser.
980 #
981 # A "special case" is considered to be an unknown token, i.e., a token
982 # that the parser does not know how to parse.  A good example of special
983 # case would be ARM's register displacement syntax:
984 #
985 #  [R0, #4]  ;; displacing R0 by 4
986 #
987 # Since the parser assumes that a register displacement is of the form:
988 #
989 #  <number> <indirection_prefix> <register_name> <indirection_suffix>
990 #
991 # it means that it will not be able to recognize and parse this odd syntax.
992 # Therefore, we should add a special case function that will handle this token.
993 #
994 # This function should generate the proper expression form of the expression
995 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
996 # and so on).  It should also return 1 if the parsing was successful, or zero
997 # if the token was not recognized as a special token (in this case, returning
998 # zero means that the special parser is deferring the parsing to the generic
999 # parser), and should advance the buffer pointer (p->arg).
1000 M:int:stap_parse_special_token:struct stap_parse_info *p:p
1001
1002 # DTrace related functions.
1003
1004 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1005 # NARG must be >= 0.
1006 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1007
1008 # True if the given ADDR does not contain the instruction sequence
1009 # corresponding to a disabled DTrace is-enabled probe.
1010 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1011
1012 # Enable a DTrace is-enabled probe at ADDR.
1013 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1014
1015 # Disable a DTrace is-enabled probe at ADDR.
1016 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1017
1018 # True if the list of shared libraries is one and only for all
1019 # processes, as opposed to a list of shared libraries per inferior.
1020 # This usually means that all processes, although may or may not share
1021 # an address space, will see the same set of symbols at the same
1022 # addresses.
1023 v:int:has_global_solist:::0:0::0
1024
1025 # On some targets, even though each inferior has its own private
1026 # address space, the debug interface takes care of making breakpoints
1027 # visible to all address spaces automatically.  For such cases,
1028 # this property should be set to true.
1029 v:int:has_global_breakpoints:::0:0::0
1030
1031 # True if inferiors share an address space (e.g., uClinux).
1032 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1033
1034 # True if a fast tracepoint can be set at an address.
1035 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1036
1037 # Guess register state based on tracepoint location.  Used for tracepoints
1038 # where no registers have been collected, but there's only one location,
1039 # allowing us to guess the PC value, and perhaps some other registers.
1040 # On entry, regcache has all registers marked as unavailable.
1041 m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1042
1043 # Return the "auto" target charset.
1044 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1045 # Return the "auto" target wide charset.
1046 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1047
1048 # If non-empty, this is a file extension that will be opened in place
1049 # of the file extension reported by the shared library list.
1050 #
1051 # This is most useful for toolchains that use a post-linker tool,
1052 # where the names of the files run on the target differ in extension
1053 # compared to the names of the files GDB should load for debug info.
1054 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1055
1056 # If true, the target OS has DOS-based file system semantics.  That
1057 # is, absolute paths include a drive name, and the backslash is
1058 # considered a directory separator.
1059 v:int:has_dos_based_file_system:::0:0::0
1060
1061 # Generate bytecodes to collect the return address in a frame.
1062 # Since the bytecodes run on the target, possibly with GDB not even
1063 # connected, the full unwinding machinery is not available, and
1064 # typically this function will issue bytecodes for one or more likely
1065 # places that the return address may be found.
1066 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1067
1068 # Implement the "info proc" command.
1069 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1070
1071 # Implement the "info proc" command for core files.  Noe that there
1072 # are two "info_proc"-like methods on gdbarch -- one for core files,
1073 # one for live targets.
1074 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1075
1076 # Iterate over all objfiles in the order that makes the most sense
1077 # for the architecture to make global symbol searches.
1078 #
1079 # CB is a callback function where OBJFILE is the objfile to be searched,
1080 # and CB_DATA a pointer to user-defined data (the same data that is passed
1081 # when calling this gdbarch method).  The iteration stops if this function
1082 # returns nonzero.
1083 #
1084 # CB_DATA is a pointer to some user-defined data to be passed to
1085 # the callback.
1086 #
1087 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1088 # inspected when the symbol search was requested.
1089 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1090
1091 # Ravenscar arch-dependent ops.
1092 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1093
1094 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1095 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1096
1097 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1098 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1099
1100 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1101 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1102
1103 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1104 # Return 0 if *READPTR is already at the end of the buffer.
1105 # Return -1 if there is insufficient buffer for a whole entry.
1106 # Return 1 if an entry was read into *TYPEP and *VALP.
1107 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1108
1109 # Find the address range of the current inferior's vsyscall/vDSO, and
1110 # write it to *RANGE.  If the vsyscall's length can't be determined, a
1111 # range with zero length is returned.  Returns true if the vsyscall is
1112 # found, false otherwise.
1113 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1114
1115 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1116 # PROT has GDB_MMAP_PROT_* bitmask format.
1117 # Throw an error if it is not possible.  Returned address is always valid.
1118 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1119
1120 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1121 # Print a warning if it is not possible.
1122 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1123
1124 # Return string (caller has to use xfree for it) with options for GCC
1125 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1126 # These options are put before CU's DW_AT_producer compilation options so that
1127 # they can override it.  Method may also return NULL.
1128 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1129
1130 # Return a regular expression that matches names used by this
1131 # architecture in GNU configury triplets.  The result is statically
1132 # allocated and must not be freed.  The default implementation simply
1133 # returns the BFD architecture name, which is correct in nearly every
1134 # case.
1135 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1136
1137 # Return the size in 8-bit bytes of an addressable memory unit on this
1138 # architecture.  This corresponds to the number of 8-bit bytes associated to
1139 # each address in memory.
1140 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1141
1142 EOF
1143 }
1144
1145 #
1146 # The .log file
1147 #
1148 exec > new-gdbarch.log
1149 function_list | while do_read
1150 do
1151     cat <<EOF
1152 ${class} ${returntype} ${function} ($formal)
1153 EOF
1154     for r in ${read}
1155     do
1156         eval echo \"\ \ \ \ ${r}=\${${r}}\"
1157     done
1158     if class_is_predicate_p && fallback_default_p
1159     then
1160         echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1161         kill $$
1162         exit 1
1163     fi
1164     if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1165     then
1166         echo "Error: postdefault is useless when invalid_p=0" 1>&2
1167         kill $$
1168         exit 1
1169     fi
1170     if class_is_multiarch_p
1171     then
1172         if class_is_predicate_p ; then :
1173         elif test "x${predefault}" = "x"
1174         then
1175             echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1176             kill $$
1177             exit 1
1178         fi
1179     fi
1180     echo ""
1181 done
1182
1183 exec 1>&2
1184 compare_new gdbarch.log
1185
1186
1187 copyright ()
1188 {
1189 cat <<EOF
1190 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1191 /* vi:set ro: */
1192
1193 /* Dynamic architecture support for GDB, the GNU debugger.
1194
1195    Copyright (C) 1998-2016 Free Software Foundation, Inc.
1196
1197    This file is part of GDB.
1198
1199    This program is free software; you can redistribute it and/or modify
1200    it under the terms of the GNU General Public License as published by
1201    the Free Software Foundation; either version 3 of the License, or
1202    (at your option) any later version.
1203
1204    This program is distributed in the hope that it will be useful,
1205    but WITHOUT ANY WARRANTY; without even the implied warranty of
1206    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
1207    GNU General Public License for more details.
1208
1209    You should have received a copy of the GNU General Public License
1210    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
1211
1212 /* This file was created with the aid of \`\`gdbarch.sh''.
1213
1214    The Bourne shell script \`\`gdbarch.sh'' creates the files
1215    \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1216    against the existing \`\`gdbarch.[hc]''.  Any differences found
1217    being reported.
1218
1219    If editing this file, please also run gdbarch.sh and merge any
1220    changes into that script. Conversely, when making sweeping changes
1221    to this file, modifying gdbarch.sh and using its output may prove
1222    easier.  */
1223
1224 EOF
1225 }
1226
1227 #
1228 # The .h file
1229 #
1230
1231 exec > new-gdbarch.h
1232 copyright
1233 cat <<EOF
1234 #ifndef GDBARCH_H
1235 #define GDBARCH_H
1236
1237 #include "frame.h"
1238
1239 struct floatformat;
1240 struct ui_file;
1241 struct value;
1242 struct objfile;
1243 struct obj_section;
1244 struct minimal_symbol;
1245 struct regcache;
1246 struct reggroup;
1247 struct regset;
1248 struct disassemble_info;
1249 struct target_ops;
1250 struct obstack;
1251 struct bp_target_info;
1252 struct target_desc;
1253 struct objfile;
1254 struct symbol;
1255 struct displaced_step_closure;
1256 struct syscall;
1257 struct agent_expr;
1258 struct axs_value;
1259 struct stap_parse_info;
1260 struct parser_state;
1261 struct ravenscar_arch_ops;
1262 struct elf_internal_linux_prpsinfo;
1263 struct mem_range;
1264 struct syscalls_info;
1265 struct thread_info;
1266 struct ui_out;
1267
1268 #include "regcache.h"
1269
1270 /* The architecture associated with the inferior through the
1271    connection to the target.
1272
1273    The architecture vector provides some information that is really a
1274    property of the inferior, accessed through a particular target:
1275    ptrace operations; the layout of certain RSP packets; the solib_ops
1276    vector; etc.  To differentiate architecture accesses to
1277    per-inferior/target properties from
1278    per-thread/per-frame/per-objfile properties, accesses to
1279    per-inferior/target properties should be made through this
1280    gdbarch.  */
1281
1282 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'.  */
1283 extern struct gdbarch *target_gdbarch (void);
1284
1285 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1286    gdbarch  method.  */
1287
1288 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1289   (struct objfile *objfile, void *cb_data);
1290
1291 /* Callback type for regset section iterators.  The callback usually
1292    invokes the REGSET's supply or collect method, to which it must
1293    pass a buffer with at least the given SIZE.  SECT_NAME is a BFD
1294    section name, and HUMAN_NAME is used for diagnostic messages.
1295    CB_DATA should have been passed unchanged through the iterator.  */
1296
1297 typedef void (iterate_over_regset_sections_cb)
1298   (const char *sect_name, int size, const struct regset *regset,
1299    const char *human_name, void *cb_data);
1300 EOF
1301
1302 # function typedef's
1303 printf "\n"
1304 printf "\n"
1305 printf "/* The following are pre-initialized by GDBARCH.  */\n"
1306 function_list | while do_read
1307 do
1308     if class_is_info_p
1309     then
1310         printf "\n"
1311         printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1312         printf "/* set_gdbarch_${function}() - not applicable - pre-initialized.  */\n"
1313     fi
1314 done
1315
1316 # function typedef's
1317 printf "\n"
1318 printf "\n"
1319 printf "/* The following are initialized by the target dependent code.  */\n"
1320 function_list | while do_read
1321 do
1322     if [ -n "${comment}" ]
1323     then
1324         echo "${comment}" | sed \
1325             -e '2 s,#,/*,' \
1326             -e '3,$ s,#,  ,' \
1327             -e '$ s,$, */,'
1328     fi
1329
1330     if class_is_predicate_p
1331     then
1332         printf "\n"
1333         printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1334     fi
1335     if class_is_variable_p
1336     then
1337         printf "\n"
1338         printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1339         printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1340     fi
1341     if class_is_function_p
1342     then
1343         printf "\n"
1344         if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1345         then
1346             printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1347         elif class_is_multiarch_p
1348         then
1349             printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1350         else
1351             printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1352         fi
1353         if [ "x${formal}" = "xvoid" ]
1354         then
1355           printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1356         else
1357           printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1358         fi
1359         printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1360     fi
1361 done
1362
1363 # close it off
1364 cat <<EOF
1365
1366 /* Definition for an unknown syscall, used basically in error-cases.  */
1367 #define UNKNOWN_SYSCALL (-1)
1368
1369 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1370
1371
1372 /* Mechanism for co-ordinating the selection of a specific
1373    architecture.
1374
1375    GDB targets (*-tdep.c) can register an interest in a specific
1376    architecture.  Other GDB components can register a need to maintain
1377    per-architecture data.
1378
1379    The mechanisms below ensures that there is only a loose connection
1380    between the set-architecture command and the various GDB
1381    components.  Each component can independently register their need
1382    to maintain architecture specific data with gdbarch.
1383
1384    Pragmatics:
1385
1386    Previously, a single TARGET_ARCHITECTURE_HOOK was provided.  It
1387    didn't scale.
1388
1389    The more traditional mega-struct containing architecture specific
1390    data for all the various GDB components was also considered.  Since
1391    GDB is built from a variable number of (fairly independent)
1392    components it was determined that the global aproach was not
1393    applicable.  */
1394
1395
1396 /* Register a new architectural family with GDB.
1397
1398    Register support for the specified ARCHITECTURE with GDB.  When
1399    gdbarch determines that the specified architecture has been
1400    selected, the corresponding INIT function is called.
1401
1402    --
1403
1404    The INIT function takes two parameters: INFO which contains the
1405    information available to gdbarch about the (possibly new)
1406    architecture; ARCHES which is a list of the previously created
1407    \`\`struct gdbarch'' for this architecture.
1408
1409    The INFO parameter is, as far as possible, be pre-initialized with
1410    information obtained from INFO.ABFD or the global defaults.
1411
1412    The ARCHES parameter is a linked list (sorted most recently used)
1413    of all the previously created architures for this architecture
1414    family.  The (possibly NULL) ARCHES->gdbarch can used to access
1415    values from the previously selected architecture for this
1416    architecture family.
1417
1418    The INIT function shall return any of: NULL - indicating that it
1419    doesn't recognize the selected architecture; an existing \`\`struct
1420    gdbarch'' from the ARCHES list - indicating that the new
1421    architecture is just a synonym for an earlier architecture (see
1422    gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1423    - that describes the selected architecture (see gdbarch_alloc()).
1424
1425    The DUMP_TDEP function shall print out all target specific values.
1426    Care should be taken to ensure that the function works in both the
1427    multi-arch and non- multi-arch cases.  */
1428
1429 struct gdbarch_list
1430 {
1431   struct gdbarch *gdbarch;
1432   struct gdbarch_list *next;
1433 };
1434
1435 struct gdbarch_info
1436 {
1437   /* Use default: NULL (ZERO).  */
1438   const struct bfd_arch_info *bfd_arch_info;
1439
1440   /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO).  */
1441   enum bfd_endian byte_order;
1442
1443   enum bfd_endian byte_order_for_code;
1444
1445   /* Use default: NULL (ZERO).  */
1446   bfd *abfd;
1447
1448   /* Use default: NULL (ZERO).  */
1449   void *tdep_info;
1450
1451   /* Use default: GDB_OSABI_UNINITIALIZED (-1).  */
1452   enum gdb_osabi osabi;
1453
1454   /* Use default: NULL (ZERO).  */
1455   const struct target_desc *target_desc;
1456 };
1457
1458 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1459 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1460
1461 /* DEPRECATED - use gdbarch_register() */
1462 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1463
1464 extern void gdbarch_register (enum bfd_architecture architecture,
1465                               gdbarch_init_ftype *,
1466                               gdbarch_dump_tdep_ftype *);
1467
1468
1469 /* Return a freshly allocated, NULL terminated, array of the valid
1470    architecture names.  Since architectures are registered during the
1471    _initialize phase this function only returns useful information
1472    once initialization has been completed.  */
1473
1474 extern const char **gdbarch_printable_names (void);
1475
1476
1477 /* Helper function.  Search the list of ARCHES for a GDBARCH that
1478    matches the information provided by INFO.  */
1479
1480 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1481
1482
1483 /* Helper function.  Create a preliminary \`\`struct gdbarch''.  Perform
1484    basic initialization using values obtained from the INFO and TDEP
1485    parameters.  set_gdbarch_*() functions are called to complete the
1486    initialization of the object.  */
1487
1488 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1489
1490
1491 /* Helper function.  Free a partially-constructed \`\`struct gdbarch''.
1492    It is assumed that the caller freeds the \`\`struct
1493    gdbarch_tdep''.  */
1494
1495 extern void gdbarch_free (struct gdbarch *);
1496
1497
1498 /* Helper function.  Allocate memory from the \`\`struct gdbarch''
1499    obstack.  The memory is freed when the corresponding architecture
1500    is also freed.  */
1501
1502 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1503 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1504 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1505
1506 /* Duplicate STRING, returning an equivalent string that's allocated on the
1507    obstack associated with GDBARCH.  The string is freed when the corresponding
1508    architecture is also freed.  */
1509
1510 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1511
1512 /* Helper function.  Force an update of the current architecture.
1513
1514    The actual architecture selected is determined by INFO, \`\`(gdb) set
1515    architecture'' et.al., the existing architecture and BFD's default
1516    architecture.  INFO should be initialized to zero and then selected
1517    fields should be updated.
1518
1519    Returns non-zero if the update succeeds.  */
1520
1521 extern int gdbarch_update_p (struct gdbarch_info info);
1522
1523
1524 /* Helper function.  Find an architecture matching info.
1525
1526    INFO should be initialized using gdbarch_info_init, relevant fields
1527    set, and then finished using gdbarch_info_fill.
1528
1529    Returns the corresponding architecture, or NULL if no matching
1530    architecture was found.  */
1531
1532 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1533
1534
1535 /* Helper function.  Set the target gdbarch to "gdbarch".  */
1536
1537 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1538
1539
1540 /* Register per-architecture data-pointer.
1541
1542    Reserve space for a per-architecture data-pointer.  An identifier
1543    for the reserved data-pointer is returned.  That identifer should
1544    be saved in a local static variable.
1545
1546    Memory for the per-architecture data shall be allocated using
1547    gdbarch_obstack_zalloc.  That memory will be deleted when the
1548    corresponding architecture object is deleted.
1549
1550    When a previously created architecture is re-selected, the
1551    per-architecture data-pointer for that previous architecture is
1552    restored.  INIT() is not re-called.
1553
1554    Multiple registrarants for any architecture are allowed (and
1555    strongly encouraged).  */
1556
1557 struct gdbarch_data;
1558
1559 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1560 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1561 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1562 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1563 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1564                                          struct gdbarch_data *data,
1565                                          void *pointer);
1566
1567 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1568
1569
1570 /* Set the dynamic target-system-dependent parameters (architecture,
1571    byte-order, ...) using information found in the BFD.  */
1572
1573 extern void set_gdbarch_from_file (bfd *);
1574
1575
1576 /* Initialize the current architecture to the "first" one we find on
1577    our list.  */
1578
1579 extern void initialize_current_architecture (void);
1580
1581 /* gdbarch trace variable */
1582 extern unsigned int gdbarch_debug;
1583
1584 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1585
1586 #endif
1587 EOF
1588 exec 1>&2
1589 #../move-if-change new-gdbarch.h gdbarch.h
1590 compare_new gdbarch.h
1591
1592
1593 #
1594 # C file
1595 #
1596
1597 exec > new-gdbarch.c
1598 copyright
1599 cat <<EOF
1600
1601 #include "defs.h"
1602 #include "arch-utils.h"
1603
1604 #include "gdbcmd.h"
1605 #include "inferior.h" 
1606 #include "symcat.h"
1607
1608 #include "floatformat.h"
1609 #include "reggroups.h"
1610 #include "osabi.h"
1611 #include "gdb_obstack.h"
1612 #include "observer.h"
1613 #include "regcache.h"
1614 #include "objfiles.h"
1615
1616 /* Static function declarations */
1617
1618 static void alloc_gdbarch_data (struct gdbarch *);
1619
1620 /* Non-zero if we want to trace architecture code.  */
1621
1622 #ifndef GDBARCH_DEBUG
1623 #define GDBARCH_DEBUG 0
1624 #endif
1625 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1626 static void
1627 show_gdbarch_debug (struct ui_file *file, int from_tty,
1628                     struct cmd_list_element *c, const char *value)
1629 {
1630   fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1631 }
1632
1633 static const char *
1634 pformat (const struct floatformat **format)
1635 {
1636   if (format == NULL)
1637     return "(null)";
1638   else
1639     /* Just print out one of them - this is only for diagnostics.  */
1640     return format[0]->name;
1641 }
1642
1643 static const char *
1644 pstring (const char *string)
1645 {
1646   if (string == NULL)
1647     return "(null)";
1648   return string;
1649 }
1650
1651 /* Helper function to print a list of strings, represented as "const
1652    char *const *".  The list is printed comma-separated.  */
1653
1654 static char *
1655 pstring_list (const char *const *list)
1656 {
1657   static char ret[100];
1658   const char *const *p;
1659   size_t offset = 0;
1660
1661   if (list == NULL)
1662     return "(null)";
1663
1664   ret[0] = '\0';
1665   for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1666     {
1667       size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1668       offset += 2 + s;
1669     }
1670
1671   if (offset > 0)
1672     {
1673       gdb_assert (offset - 2 < sizeof (ret));
1674       ret[offset - 2] = '\0';
1675     }
1676
1677   return ret;
1678 }
1679
1680 EOF
1681
1682 # gdbarch open the gdbarch object
1683 printf "\n"
1684 printf "/* Maintain the struct gdbarch object.  */\n"
1685 printf "\n"
1686 printf "struct gdbarch\n"
1687 printf "{\n"
1688 printf "  /* Has this architecture been fully initialized?  */\n"
1689 printf "  int initialized_p;\n"
1690 printf "\n"
1691 printf "  /* An obstack bound to the lifetime of the architecture.  */\n"
1692 printf "  struct obstack *obstack;\n"
1693 printf "\n"
1694 printf "  /* basic architectural information.  */\n"
1695 function_list | while do_read
1696 do
1697     if class_is_info_p
1698     then
1699         printf "  ${returntype} ${function};\n"
1700     fi
1701 done
1702 printf "\n"
1703 printf "  /* target specific vector.  */\n"
1704 printf "  struct gdbarch_tdep *tdep;\n"
1705 printf "  gdbarch_dump_tdep_ftype *dump_tdep;\n"
1706 printf "\n"
1707 printf "  /* per-architecture data-pointers.  */\n"
1708 printf "  unsigned nr_data;\n"
1709 printf "  void **data;\n"
1710 printf "\n"
1711 cat <<EOF
1712   /* Multi-arch values.
1713
1714      When extending this structure you must:
1715
1716      Add the field below.
1717
1718      Declare set/get functions and define the corresponding
1719      macro in gdbarch.h.
1720
1721      gdbarch_alloc(): If zero/NULL is not a suitable default,
1722      initialize the new field.
1723
1724      verify_gdbarch(): Confirm that the target updated the field
1725      correctly.
1726
1727      gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1728      field is dumped out
1729
1730      get_gdbarch(): Implement the set/get functions (probably using
1731      the macro's as shortcuts).
1732
1733      */
1734
1735 EOF
1736 function_list | while do_read
1737 do
1738     if class_is_variable_p
1739     then
1740         printf "  ${returntype} ${function};\n"
1741     elif class_is_function_p
1742     then
1743         printf "  gdbarch_${function}_ftype *${function};\n"
1744     fi
1745 done
1746 printf "};\n"
1747
1748 # Create a new gdbarch struct
1749 cat <<EOF
1750
1751 /* Create a new \`\`struct gdbarch'' based on information provided by
1752    \`\`struct gdbarch_info''.  */
1753 EOF
1754 printf "\n"
1755 cat <<EOF
1756 struct gdbarch *
1757 gdbarch_alloc (const struct gdbarch_info *info,
1758                struct gdbarch_tdep *tdep)
1759 {
1760   struct gdbarch *gdbarch;
1761
1762   /* Create an obstack for allocating all the per-architecture memory,
1763      then use that to allocate the architecture vector.  */
1764   struct obstack *obstack = XNEW (struct obstack);
1765   obstack_init (obstack);
1766   gdbarch = XOBNEW (obstack, struct gdbarch);
1767   memset (gdbarch, 0, sizeof (*gdbarch));
1768   gdbarch->obstack = obstack;
1769
1770   alloc_gdbarch_data (gdbarch);
1771
1772   gdbarch->tdep = tdep;
1773 EOF
1774 printf "\n"
1775 function_list | while do_read
1776 do
1777     if class_is_info_p
1778     then
1779         printf "  gdbarch->${function} = info->${function};\n"
1780     fi
1781 done
1782 printf "\n"
1783 printf "  /* Force the explicit initialization of these.  */\n"
1784 function_list | while do_read
1785 do
1786     if class_is_function_p || class_is_variable_p
1787     then
1788         if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1789         then
1790           printf "  gdbarch->${function} = ${predefault};\n"
1791         fi
1792     fi
1793 done
1794 cat <<EOF
1795   /* gdbarch_alloc() */
1796
1797   return gdbarch;
1798 }
1799 EOF
1800
1801 # Free a gdbarch struct.
1802 printf "\n"
1803 printf "\n"
1804 cat <<EOF
1805 /* Allocate extra space using the per-architecture obstack.  */
1806
1807 void *
1808 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1809 {
1810   void *data = obstack_alloc (arch->obstack, size);
1811
1812   memset (data, 0, size);
1813   return data;
1814 }
1815
1816 /* See gdbarch.h.  */
1817
1818 char *
1819 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1820 {
1821   return obstack_strdup (arch->obstack, string);
1822 }
1823
1824
1825 /* Free a gdbarch struct.  This should never happen in normal
1826    operation --- once you've created a gdbarch, you keep it around.
1827    However, if an architecture's init function encounters an error
1828    building the structure, it may need to clean up a partially
1829    constructed gdbarch.  */
1830
1831 void
1832 gdbarch_free (struct gdbarch *arch)
1833 {
1834   struct obstack *obstack;
1835
1836   gdb_assert (arch != NULL);
1837   gdb_assert (!arch->initialized_p);
1838   obstack = arch->obstack;
1839   obstack_free (obstack, 0); /* Includes the ARCH.  */
1840   xfree (obstack);
1841 }
1842 EOF
1843
1844 # verify a new architecture
1845 cat <<EOF
1846
1847
1848 /* Ensure that all values in a GDBARCH are reasonable.  */
1849
1850 static void
1851 verify_gdbarch (struct gdbarch *gdbarch)
1852 {
1853   struct ui_file *log;
1854   struct cleanup *cleanups;
1855   long length;
1856   char *buf;
1857
1858   log = mem_fileopen ();
1859   cleanups = make_cleanup_ui_file_delete (log);
1860   /* fundamental */
1861   if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1862     fprintf_unfiltered (log, "\n\tbyte-order");
1863   if (gdbarch->bfd_arch_info == NULL)
1864     fprintf_unfiltered (log, "\n\tbfd_arch_info");
1865   /* Check those that need to be defined for the given multi-arch level.  */
1866 EOF
1867 function_list | while do_read
1868 do
1869     if class_is_function_p || class_is_variable_p
1870     then
1871         if [ "x${invalid_p}" = "x0" ]
1872         then
1873             printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1874         elif class_is_predicate_p
1875         then
1876             printf "  /* Skip verify of ${function}, has predicate.  */\n"
1877         # FIXME: See do_read for potential simplification
1878         elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1879         then
1880             printf "  if (${invalid_p})\n"
1881             printf "    gdbarch->${function} = ${postdefault};\n"
1882         elif [ -n "${predefault}" -a -n "${postdefault}" ]
1883         then
1884             printf "  if (gdbarch->${function} == ${predefault})\n"
1885             printf "    gdbarch->${function} = ${postdefault};\n"
1886         elif [ -n "${postdefault}" ]
1887         then
1888             printf "  if (gdbarch->${function} == 0)\n"
1889             printf "    gdbarch->${function} = ${postdefault};\n"
1890         elif [ -n "${invalid_p}" ]
1891         then
1892             printf "  if (${invalid_p})\n"
1893             printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1894         elif [ -n "${predefault}" ]
1895         then
1896             printf "  if (gdbarch->${function} == ${predefault})\n"
1897             printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1898         fi
1899     fi
1900 done
1901 cat <<EOF
1902   buf = ui_file_xstrdup (log, &length);
1903   make_cleanup (xfree, buf);
1904   if (length > 0)
1905     internal_error (__FILE__, __LINE__,
1906                     _("verify_gdbarch: the following are invalid ...%s"),
1907                     buf);
1908   do_cleanups (cleanups);
1909 }
1910 EOF
1911
1912 # dump the structure
1913 printf "\n"
1914 printf "\n"
1915 cat <<EOF
1916 /* Print out the details of the current architecture.  */
1917
1918 void
1919 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1920 {
1921   const char *gdb_nm_file = "<not-defined>";
1922
1923 #if defined (GDB_NM_FILE)
1924   gdb_nm_file = GDB_NM_FILE;
1925 #endif
1926   fprintf_unfiltered (file,
1927                       "gdbarch_dump: GDB_NM_FILE = %s\\n",
1928                       gdb_nm_file);
1929 EOF
1930 function_list | sort -t: -k 3 | while do_read
1931 do
1932     # First the predicate
1933     if class_is_predicate_p
1934     then
1935         printf "  fprintf_unfiltered (file,\n"
1936         printf "                      \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1937         printf "                      gdbarch_${function}_p (gdbarch));\n"
1938     fi
1939     # Print the corresponding value.
1940     if class_is_function_p
1941     then
1942         printf "  fprintf_unfiltered (file,\n"
1943         printf "                      \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1944         printf "                      host_address_to_string (gdbarch->${function}));\n"
1945     else
1946         # It is a variable
1947         case "${print}:${returntype}" in
1948             :CORE_ADDR )
1949                 fmt="%s"
1950                 print="core_addr_to_string_nz (gdbarch->${function})"
1951                 ;;
1952             :* )
1953                 fmt="%s"
1954                 print="plongest (gdbarch->${function})"
1955                 ;;
1956             * )
1957                 fmt="%s"
1958                 ;;
1959         esac
1960         printf "  fprintf_unfiltered (file,\n"
1961         printf "                      \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1962         printf "                      ${print});\n"
1963     fi
1964 done
1965 cat <<EOF
1966   if (gdbarch->dump_tdep != NULL)
1967     gdbarch->dump_tdep (gdbarch, file);
1968 }
1969 EOF
1970
1971
1972 # GET/SET
1973 printf "\n"
1974 cat <<EOF
1975 struct gdbarch_tdep *
1976 gdbarch_tdep (struct gdbarch *gdbarch)
1977 {
1978   if (gdbarch_debug >= 2)
1979     fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1980   return gdbarch->tdep;
1981 }
1982 EOF
1983 printf "\n"
1984 function_list | while do_read
1985 do
1986     if class_is_predicate_p
1987     then
1988         printf "\n"
1989         printf "int\n"
1990         printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1991         printf "{\n"
1992         printf "  gdb_assert (gdbarch != NULL);\n"
1993         printf "  return ${predicate};\n"
1994         printf "}\n"
1995     fi
1996     if class_is_function_p
1997     then
1998         printf "\n"
1999         printf "${returntype}\n"
2000         if [ "x${formal}" = "xvoid" ]
2001         then
2002           printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2003         else
2004           printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2005         fi
2006         printf "{\n"
2007         printf "  gdb_assert (gdbarch != NULL);\n"
2008         printf "  gdb_assert (gdbarch->${function} != NULL);\n"
2009         if class_is_predicate_p && test -n "${predefault}"
2010         then
2011             # Allow a call to a function with a predicate.
2012             printf "  /* Do not check predicate: ${predicate}, allow call.  */\n"
2013         fi
2014         printf "  if (gdbarch_debug >= 2)\n"
2015         printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2016         if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2017         then
2018             if class_is_multiarch_p
2019             then
2020                 params="gdbarch"
2021             else
2022                 params=""
2023             fi
2024         else
2025             if class_is_multiarch_p
2026             then
2027                 params="gdbarch, ${actual}"
2028             else
2029                 params="${actual}"
2030             fi
2031         fi
2032         if [ "x${returntype}" = "xvoid" ]
2033         then
2034           printf "  gdbarch->${function} (${params});\n"
2035         else
2036           printf "  return gdbarch->${function} (${params});\n"
2037         fi
2038         printf "}\n"
2039         printf "\n"
2040         printf "void\n"
2041         printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2042         printf "            `echo ${function} | sed -e 's/./ /g'`  gdbarch_${function}_ftype ${function})\n"
2043         printf "{\n"
2044         printf "  gdbarch->${function} = ${function};\n"
2045         printf "}\n"
2046     elif class_is_variable_p
2047     then
2048         printf "\n"
2049         printf "${returntype}\n"
2050         printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2051         printf "{\n"
2052         printf "  gdb_assert (gdbarch != NULL);\n"
2053         if [ "x${invalid_p}" = "x0" ]
2054         then
2055             printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
2056         elif [ -n "${invalid_p}" ]
2057         then
2058             printf "  /* Check variable is valid.  */\n"
2059             printf "  gdb_assert (!(${invalid_p}));\n"
2060         elif [ -n "${predefault}" ]
2061         then
2062             printf "  /* Check variable changed from pre-default.  */\n"
2063             printf "  gdb_assert (gdbarch->${function} != ${predefault});\n"
2064         fi
2065         printf "  if (gdbarch_debug >= 2)\n"
2066         printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2067         printf "  return gdbarch->${function};\n"
2068         printf "}\n"
2069         printf "\n"
2070         printf "void\n"
2071         printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2072         printf "            `echo ${function} | sed -e 's/./ /g'`  ${returntype} ${function})\n"
2073         printf "{\n"
2074         printf "  gdbarch->${function} = ${function};\n"
2075         printf "}\n"
2076     elif class_is_info_p
2077     then
2078         printf "\n"
2079         printf "${returntype}\n"
2080         printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2081         printf "{\n"
2082         printf "  gdb_assert (gdbarch != NULL);\n"
2083         printf "  if (gdbarch_debug >= 2)\n"
2084         printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2085         printf "  return gdbarch->${function};\n"
2086         printf "}\n"
2087     fi
2088 done
2089
2090 # All the trailing guff
2091 cat <<EOF
2092
2093
2094 /* Keep a registry of per-architecture data-pointers required by GDB
2095    modules.  */
2096
2097 struct gdbarch_data
2098 {
2099   unsigned index;
2100   int init_p;
2101   gdbarch_data_pre_init_ftype *pre_init;
2102   gdbarch_data_post_init_ftype *post_init;
2103 };
2104
2105 struct gdbarch_data_registration
2106 {
2107   struct gdbarch_data *data;
2108   struct gdbarch_data_registration *next;
2109 };
2110
2111 struct gdbarch_data_registry
2112 {
2113   unsigned nr;
2114   struct gdbarch_data_registration *registrations;
2115 };
2116
2117 struct gdbarch_data_registry gdbarch_data_registry =
2118 {
2119   0, NULL,
2120 };
2121
2122 static struct gdbarch_data *
2123 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2124                        gdbarch_data_post_init_ftype *post_init)
2125 {
2126   struct gdbarch_data_registration **curr;
2127
2128   /* Append the new registration.  */
2129   for (curr = &gdbarch_data_registry.registrations;
2130        (*curr) != NULL;
2131        curr = &(*curr)->next);
2132   (*curr) = XNEW (struct gdbarch_data_registration);
2133   (*curr)->next = NULL;
2134   (*curr)->data = XNEW (struct gdbarch_data);
2135   (*curr)->data->index = gdbarch_data_registry.nr++;
2136   (*curr)->data->pre_init = pre_init;
2137   (*curr)->data->post_init = post_init;
2138   (*curr)->data->init_p = 1;
2139   return (*curr)->data;
2140 }
2141
2142 struct gdbarch_data *
2143 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2144 {
2145   return gdbarch_data_register (pre_init, NULL);
2146 }
2147
2148 struct gdbarch_data *
2149 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2150 {
2151   return gdbarch_data_register (NULL, post_init);
2152 }
2153
2154 /* Create/delete the gdbarch data vector.  */
2155
2156 static void
2157 alloc_gdbarch_data (struct gdbarch *gdbarch)
2158 {
2159   gdb_assert (gdbarch->data == NULL);
2160   gdbarch->nr_data = gdbarch_data_registry.nr;
2161   gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2162 }
2163
2164 /* Initialize the current value of the specified per-architecture
2165    data-pointer.  */
2166
2167 void
2168 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2169                              struct gdbarch_data *data,
2170                              void *pointer)
2171 {
2172   gdb_assert (data->index < gdbarch->nr_data);
2173   gdb_assert (gdbarch->data[data->index] == NULL);
2174   gdb_assert (data->pre_init == NULL);
2175   gdbarch->data[data->index] = pointer;
2176 }
2177
2178 /* Return the current value of the specified per-architecture
2179    data-pointer.  */
2180
2181 void *
2182 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2183 {
2184   gdb_assert (data->index < gdbarch->nr_data);
2185   if (gdbarch->data[data->index] == NULL)
2186     {
2187       /* The data-pointer isn't initialized, call init() to get a
2188          value.  */
2189       if (data->pre_init != NULL)
2190         /* Mid architecture creation: pass just the obstack, and not
2191            the entire architecture, as that way it isn't possible for
2192            pre-init code to refer to undefined architecture
2193            fields.  */
2194         gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2195       else if (gdbarch->initialized_p
2196                && data->post_init != NULL)
2197         /* Post architecture creation: pass the entire architecture
2198            (as all fields are valid), but be careful to also detect
2199            recursive references.  */
2200         {
2201           gdb_assert (data->init_p);
2202           data->init_p = 0;
2203           gdbarch->data[data->index] = data->post_init (gdbarch);
2204           data->init_p = 1;
2205         }
2206       else
2207         /* The architecture initialization hasn't completed - punt -
2208          hope that the caller knows what they are doing.  Once
2209          deprecated_set_gdbarch_data has been initialized, this can be
2210          changed to an internal error.  */
2211         return NULL;
2212       gdb_assert (gdbarch->data[data->index] != NULL);
2213     }
2214   return gdbarch->data[data->index];
2215 }
2216
2217
2218 /* Keep a registry of the architectures known by GDB.  */
2219
2220 struct gdbarch_registration
2221 {
2222   enum bfd_architecture bfd_architecture;
2223   gdbarch_init_ftype *init;
2224   gdbarch_dump_tdep_ftype *dump_tdep;
2225   struct gdbarch_list *arches;
2226   struct gdbarch_registration *next;
2227 };
2228
2229 static struct gdbarch_registration *gdbarch_registry = NULL;
2230
2231 static void
2232 append_name (const char ***buf, int *nr, const char *name)
2233 {
2234   *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2235   (*buf)[*nr] = name;
2236   *nr += 1;
2237 }
2238
2239 const char **
2240 gdbarch_printable_names (void)
2241 {
2242   /* Accumulate a list of names based on the registed list of
2243      architectures.  */
2244   int nr_arches = 0;
2245   const char **arches = NULL;
2246   struct gdbarch_registration *rego;
2247
2248   for (rego = gdbarch_registry;
2249        rego != NULL;
2250        rego = rego->next)
2251     {
2252       const struct bfd_arch_info *ap;
2253       ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2254       if (ap == NULL)
2255         internal_error (__FILE__, __LINE__,
2256                         _("gdbarch_architecture_names: multi-arch unknown"));
2257       do
2258         {
2259           append_name (&arches, &nr_arches, ap->printable_name);
2260           ap = ap->next;
2261         }
2262       while (ap != NULL);
2263     }
2264   append_name (&arches, &nr_arches, NULL);
2265   return arches;
2266 }
2267
2268
2269 void
2270 gdbarch_register (enum bfd_architecture bfd_architecture,
2271                   gdbarch_init_ftype *init,
2272                   gdbarch_dump_tdep_ftype *dump_tdep)
2273 {
2274   struct gdbarch_registration **curr;
2275   const struct bfd_arch_info *bfd_arch_info;
2276
2277   /* Check that BFD recognizes this architecture */
2278   bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2279   if (bfd_arch_info == NULL)
2280     {
2281       internal_error (__FILE__, __LINE__,
2282                       _("gdbarch: Attempt to register "
2283                         "unknown architecture (%d)"),
2284                       bfd_architecture);
2285     }
2286   /* Check that we haven't seen this architecture before.  */
2287   for (curr = &gdbarch_registry;
2288        (*curr) != NULL;
2289        curr = &(*curr)->next)
2290     {
2291       if (bfd_architecture == (*curr)->bfd_architecture)
2292         internal_error (__FILE__, __LINE__,
2293                         _("gdbarch: Duplicate registration "
2294                           "of architecture (%s)"),
2295                         bfd_arch_info->printable_name);
2296     }
2297   /* log it */
2298   if (gdbarch_debug)
2299     fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2300                         bfd_arch_info->printable_name,
2301                         host_address_to_string (init));
2302   /* Append it */
2303   (*curr) = XNEW (struct gdbarch_registration);
2304   (*curr)->bfd_architecture = bfd_architecture;
2305   (*curr)->init = init;
2306   (*curr)->dump_tdep = dump_tdep;
2307   (*curr)->arches = NULL;
2308   (*curr)->next = NULL;
2309 }
2310
2311 void
2312 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2313                        gdbarch_init_ftype *init)
2314 {
2315   gdbarch_register (bfd_architecture, init, NULL);
2316 }
2317
2318
2319 /* Look for an architecture using gdbarch_info.  */
2320
2321 struct gdbarch_list *
2322 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2323                              const struct gdbarch_info *info)
2324 {
2325   for (; arches != NULL; arches = arches->next)
2326     {
2327       if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2328         continue;
2329       if (info->byte_order != arches->gdbarch->byte_order)
2330         continue;
2331       if (info->osabi != arches->gdbarch->osabi)
2332         continue;
2333       if (info->target_desc != arches->gdbarch->target_desc)
2334         continue;
2335       return arches;
2336     }
2337   return NULL;
2338 }
2339
2340
2341 /* Find an architecture that matches the specified INFO.  Create a new
2342    architecture if needed.  Return that new architecture.  */
2343
2344 struct gdbarch *
2345 gdbarch_find_by_info (struct gdbarch_info info)
2346 {
2347   struct gdbarch *new_gdbarch;
2348   struct gdbarch_registration *rego;
2349
2350   /* Fill in missing parts of the INFO struct using a number of
2351      sources: "set ..."; INFOabfd supplied; and the global
2352      defaults.  */
2353   gdbarch_info_fill (&info);
2354
2355   /* Must have found some sort of architecture.  */
2356   gdb_assert (info.bfd_arch_info != NULL);
2357
2358   if (gdbarch_debug)
2359     {
2360       fprintf_unfiltered (gdb_stdlog,
2361                           "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2362                           (info.bfd_arch_info != NULL
2363                            ? info.bfd_arch_info->printable_name
2364                            : "(null)"));
2365       fprintf_unfiltered (gdb_stdlog,
2366                           "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2367                           info.byte_order,
2368                           (info.byte_order == BFD_ENDIAN_BIG ? "big"
2369                            : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2370                            : "default"));
2371       fprintf_unfiltered (gdb_stdlog,
2372                           "gdbarch_find_by_info: info.osabi %d (%s)\n",
2373                           info.osabi, gdbarch_osabi_name (info.osabi));
2374       fprintf_unfiltered (gdb_stdlog,
2375                           "gdbarch_find_by_info: info.abfd %s\n",
2376                           host_address_to_string (info.abfd));
2377       fprintf_unfiltered (gdb_stdlog,
2378                           "gdbarch_find_by_info: info.tdep_info %s\n",
2379                           host_address_to_string (info.tdep_info));
2380     }
2381
2382   /* Find the tdep code that knows about this architecture.  */
2383   for (rego = gdbarch_registry;
2384        rego != NULL;
2385        rego = rego->next)
2386     if (rego->bfd_architecture == info.bfd_arch_info->arch)
2387       break;
2388   if (rego == NULL)
2389     {
2390       if (gdbarch_debug)
2391         fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2392                             "No matching architecture\n");
2393       return 0;
2394     }
2395
2396   /* Ask the tdep code for an architecture that matches "info".  */
2397   new_gdbarch = rego->init (info, rego->arches);
2398
2399   /* Did the tdep code like it?  No.  Reject the change and revert to
2400      the old architecture.  */
2401   if (new_gdbarch == NULL)
2402     {
2403       if (gdbarch_debug)
2404         fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2405                             "Target rejected architecture\n");
2406       return NULL;
2407     }
2408
2409   /* Is this a pre-existing architecture (as determined by already
2410      being initialized)?  Move it to the front of the architecture
2411      list (keeping the list sorted Most Recently Used).  */
2412   if (new_gdbarch->initialized_p)
2413     {
2414       struct gdbarch_list **list;
2415       struct gdbarch_list *self;
2416       if (gdbarch_debug)
2417         fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2418                             "Previous architecture %s (%s) selected\n",
2419                             host_address_to_string (new_gdbarch),
2420                             new_gdbarch->bfd_arch_info->printable_name);
2421       /* Find the existing arch in the list.  */
2422       for (list = &rego->arches;
2423            (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2424            list = &(*list)->next);
2425       /* It had better be in the list of architectures.  */
2426       gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2427       /* Unlink SELF.  */
2428       self = (*list);
2429       (*list) = self->next;
2430       /* Insert SELF at the front.  */
2431       self->next = rego->arches;
2432       rego->arches = self;
2433       /* Return it.  */
2434       return new_gdbarch;
2435     }
2436
2437   /* It's a new architecture.  */
2438   if (gdbarch_debug)
2439     fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2440                         "New architecture %s (%s) selected\n",
2441                         host_address_to_string (new_gdbarch),
2442                         new_gdbarch->bfd_arch_info->printable_name);
2443   
2444   /* Insert the new architecture into the front of the architecture
2445      list (keep the list sorted Most Recently Used).  */
2446   {
2447     struct gdbarch_list *self = XNEW (struct gdbarch_list);
2448     self->next = rego->arches;
2449     self->gdbarch = new_gdbarch;
2450     rego->arches = self;
2451   }    
2452
2453   /* Check that the newly installed architecture is valid.  Plug in
2454      any post init values.  */
2455   new_gdbarch->dump_tdep = rego->dump_tdep;
2456   verify_gdbarch (new_gdbarch);
2457   new_gdbarch->initialized_p = 1;
2458
2459   if (gdbarch_debug)
2460     gdbarch_dump (new_gdbarch, gdb_stdlog);
2461
2462   return new_gdbarch;
2463 }
2464
2465 /* Make the specified architecture current.  */
2466
2467 void
2468 set_target_gdbarch (struct gdbarch *new_gdbarch)
2469 {
2470   gdb_assert (new_gdbarch != NULL);
2471   gdb_assert (new_gdbarch->initialized_p);
2472   current_inferior ()->gdbarch = new_gdbarch;
2473   observer_notify_architecture_changed (new_gdbarch);
2474   registers_changed ();
2475 }
2476
2477 /* Return the current inferior's arch.  */
2478
2479 struct gdbarch *
2480 target_gdbarch (void)
2481 {
2482   return current_inferior ()->gdbarch;
2483 }
2484
2485 extern void _initialize_gdbarch (void);
2486
2487 void
2488 _initialize_gdbarch (void)
2489 {
2490   add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2491 Set architecture debugging."), _("\\
2492 Show architecture debugging."), _("\\
2493 When non-zero, architecture debugging is enabled."),
2494                             NULL,
2495                             show_gdbarch_debug,
2496                             &setdebuglist, &showdebuglist);
2497 }
2498 EOF
2499
2500 # close things off
2501 exec 1>&2
2502 #../move-if-change new-gdbarch.c gdbarch.c
2503 compare_new gdbarch.c