3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
7 # This file is part of GDB.
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22 # Make certain that the script is not running in an internationalized
25 LC_ALL=C ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
103 case "${invalid_p}" in
105 if test -n "${predefault}"
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
114 predicate="gdbarch->${function} != NULL"
118 echo "Predicate function ${function} with invalid_p." 1>&2
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
132 if [ -n "${postdefault}" ]
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
137 fallbackdefault="${predefault}"
142 #NOT YET: See gdbarch.log for basic verification of
157 fallback_default_p ()
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 class_is_variable_p ()
171 class_is_function_p ()
174 *f* | *F* | *m* | *M* ) true ;;
179 class_is_multiarch_p ()
187 class_is_predicate_p ()
190 *F* | *V* | *M* ) true ;;
204 # dump out/verify the doco
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
229 # For functions, the return type; for variables, the data type
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
257 # If STATICDEFAULT is empty, zero is used.
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
266 # If PREDEFAULT is empty, zero is used.
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
272 # A zero PREDEFAULT function will force the fallback to call
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
284 # If POSTDEFAULT is empty, no post update is performed.
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
316 # See also PREDEFAULT and POSTDEFAULT.
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
326 garbage_at_eol ) : ;;
328 # Catches stray fields.
331 echo "Bad field ${field}"
339 # See below (DOCO) for description of each field
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
497 v:int:believe_pcc_promotion:::::::
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
654 # Return the appropriate register set for a core file section with
655 # name SECT_NAME and size SECT_SIZE.
656 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
658 # Supported register notes in a core file.
659 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
661 # Create core file notes
662 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
664 # The elfcore writer hook to use to write Linux prpsinfo notes to core
665 # files. Most Linux architectures use the same prpsinfo32 or
666 # prpsinfo64 layouts, and so won't need to provide this hook, as we
667 # call the Linux generic routines in bfd to write prpsinfo notes by
669 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
671 # Find core file memory regions
672 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
674 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
675 # core file into buffer READBUF with length LEN. Return the number of bytes read
676 # (zero indicates failure).
677 # failed, otherwise, return the red length of READBUF.
678 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
680 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
681 # libraries list from core file into buffer READBUF with length LEN.
682 # Return the number of bytes read (zero indicates failure).
683 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
685 # How the core target converts a PTID from a core file to a string.
686 M:char *:core_pid_to_str:ptid_t ptid:ptid
688 # BFD target to use when generating a core file.
689 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
691 # If the elements of C++ vtables are in-place function descriptors rather
692 # than normal function pointers (which may point to code or a descriptor),
694 v:int:vtable_function_descriptors:::0:0::0
696 # Set if the least significant bit of the delta is used instead of the least
697 # significant bit of the pfn for pointers to virtual member functions.
698 v:int:vbit_in_delta:::0:0::0
700 # Advance PC to next instruction in order to skip a permanent breakpoint.
701 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
703 # The maximum length of an instruction on this architecture in bytes.
704 V:ULONGEST:max_insn_length:::0:0
706 # Copy the instruction at FROM to TO, and make any adjustments
707 # necessary to single-step it at that address.
709 # REGS holds the state the thread's registers will have before
710 # executing the copied instruction; the PC in REGS will refer to FROM,
711 # not the copy at TO. The caller should update it to point at TO later.
713 # Return a pointer to data of the architecture's choice to be passed
714 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
715 # the instruction's effects have been completely simulated, with the
716 # resulting state written back to REGS.
718 # For a general explanation of displaced stepping and how GDB uses it,
719 # see the comments in infrun.c.
721 # The TO area is only guaranteed to have space for
722 # gdbarch_max_insn_length (arch) bytes, so this function must not
723 # write more bytes than that to that area.
725 # If you do not provide this function, GDB assumes that the
726 # architecture does not support displaced stepping.
728 # If your architecture doesn't need to adjust instructions before
729 # single-stepping them, consider using simple_displaced_step_copy_insn
731 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
733 # Return true if GDB should use hardware single-stepping to execute
734 # the displaced instruction identified by CLOSURE. If false,
735 # GDB will simply restart execution at the displaced instruction
736 # location, and it is up to the target to ensure GDB will receive
737 # control again (e.g. by placing a software breakpoint instruction
738 # into the displaced instruction buffer).
740 # The default implementation returns false on all targets that
741 # provide a gdbarch_software_single_step routine, and true otherwise.
742 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
744 # Fix up the state resulting from successfully single-stepping a
745 # displaced instruction, to give the result we would have gotten from
746 # stepping the instruction in its original location.
748 # REGS is the register state resulting from single-stepping the
749 # displaced instruction.
751 # CLOSURE is the result from the matching call to
752 # gdbarch_displaced_step_copy_insn.
754 # If you provide gdbarch_displaced_step_copy_insn.but not this
755 # function, then GDB assumes that no fixup is needed after
756 # single-stepping the instruction.
758 # For a general explanation of displaced stepping and how GDB uses it,
759 # see the comments in infrun.c.
760 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
762 # Free a closure returned by gdbarch_displaced_step_copy_insn.
764 # If you provide gdbarch_displaced_step_copy_insn, you must provide
765 # this function as well.
767 # If your architecture uses closures that don't need to be freed, then
768 # you can use simple_displaced_step_free_closure here.
770 # For a general explanation of displaced stepping and how GDB uses it,
771 # see the comments in infrun.c.
772 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
774 # Return the address of an appropriate place to put displaced
775 # instructions while we step over them. There need only be one such
776 # place, since we're only stepping one thread over a breakpoint at a
779 # For a general explanation of displaced stepping and how GDB uses it,
780 # see the comments in infrun.c.
781 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
783 # Relocate an instruction to execute at a different address. OLDLOC
784 # is the address in the inferior memory where the instruction to
785 # relocate is currently at. On input, TO points to the destination
786 # where we want the instruction to be copied (and possibly adjusted)
787 # to. On output, it points to one past the end of the resulting
788 # instruction(s). The effect of executing the instruction at TO shall
789 # be the same as if executing it at FROM. For example, call
790 # instructions that implicitly push the return address on the stack
791 # should be adjusted to return to the instruction after OLDLOC;
792 # relative branches, and other PC-relative instructions need the
793 # offset adjusted; etc.
794 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
796 # Refresh overlay mapped state for section OSECT.
797 F:void:overlay_update:struct obj_section *osect:osect
799 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
801 # Handle special encoding of static variables in stabs debug info.
802 F:const char *:static_transform_name:const char *name:name
803 # Set if the address in N_SO or N_FUN stabs may be zero.
804 v:int:sofun_address_maybe_missing:::0:0::0
806 # Parse the instruction at ADDR storing in the record execution log
807 # the registers REGCACHE and memory ranges that will be affected when
808 # the instruction executes, along with their current values.
809 # Return -1 if something goes wrong, 0 otherwise.
810 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
812 # Save process state after a signal.
813 # Return -1 if something goes wrong, 0 otherwise.
814 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
816 # Signal translation: translate inferior's signal (target's) number
817 # into GDB's representation. The implementation of this method must
818 # be host independent. IOW, don't rely on symbols of the NAT_FILE
819 # header (the nm-*.h files), the host <signal.h> header, or similar
820 # headers. This is mainly used when cross-debugging core files ---
821 # "Live" targets hide the translation behind the target interface
822 # (target_wait, target_resume, etc.).
823 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
825 # Signal translation: translate the GDB's internal signal number into
826 # the inferior's signal (target's) representation. The implementation
827 # of this method must be host independent. IOW, don't rely on symbols
828 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
829 # header, or similar headers.
830 # Return the target signal number if found, or -1 if the GDB internal
831 # signal number is invalid.
832 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
834 # Extra signal info inspection.
836 # Return a type suitable to inspect extra signal information.
837 M:struct type *:get_siginfo_type:void:
839 # Record architecture-specific information from the symbol table.
840 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
842 # Function for the 'catch syscall' feature.
844 # Get architecture-specific system calls information from registers.
845 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
847 # SystemTap related fields and functions.
849 # A NULL-terminated array of prefixes used to mark an integer constant
850 # on the architecture's assembly.
851 # For example, on x86 integer constants are written as:
853 # \$10 ;; integer constant 10
855 # in this case, this prefix would be the character \`\$\'.
856 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
858 # A NULL-terminated array of suffixes used to mark an integer constant
859 # on the architecture's assembly.
860 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
862 # A NULL-terminated array of prefixes used to mark a register name on
863 # the architecture's assembly.
864 # For example, on x86 the register name is written as:
866 # \%eax ;; register eax
868 # in this case, this prefix would be the character \`\%\'.
869 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
871 # A NULL-terminated array of suffixes used to mark a register name on
872 # the architecture's assembly.
873 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
875 # A NULL-terminated array of prefixes used to mark a register
876 # indirection on the architecture's assembly.
877 # For example, on x86 the register indirection is written as:
879 # \(\%eax\) ;; indirecting eax
881 # in this case, this prefix would be the charater \`\(\'.
883 # Please note that we use the indirection prefix also for register
884 # displacement, e.g., \`4\(\%eax\)\' on x86.
885 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
887 # A NULL-terminated array of suffixes used to mark a register
888 # indirection on the architecture's assembly.
889 # For example, on x86 the register indirection is written as:
891 # \(\%eax\) ;; indirecting eax
893 # in this case, this prefix would be the charater \`\)\'.
895 # Please note that we use the indirection suffix also for register
896 # displacement, e.g., \`4\(\%eax\)\' on x86.
897 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
899 # Prefix(es) used to name a register using GDB's nomenclature.
901 # For example, on PPC a register is represented by a number in the assembly
902 # language (e.g., \`10\' is the 10th general-purpose register). However,
903 # inside GDB this same register has an \`r\' appended to its name, so the 10th
904 # register would be represented as \`r10\' internally.
905 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
907 # Suffix used to name a register using GDB's nomenclature.
908 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
910 # Check if S is a single operand.
912 # Single operands can be:
913 # \- Literal integers, e.g. \`\$10\' on x86
914 # \- Register access, e.g. \`\%eax\' on x86
915 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
916 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
918 # This function should check for these patterns on the string
919 # and return 1 if some were found, or zero otherwise. Please try to match
920 # as much info as you can from the string, i.e., if you have to match
921 # something like \`\(\%\', do not match just the \`\(\'.
922 M:int:stap_is_single_operand:const char *s:s
924 # Function used to handle a "special case" in the parser.
926 # A "special case" is considered to be an unknown token, i.e., a token
927 # that the parser does not know how to parse. A good example of special
928 # case would be ARM's register displacement syntax:
930 # [R0, #4] ;; displacing R0 by 4
932 # Since the parser assumes that a register displacement is of the form:
934 # <number> <indirection_prefix> <register_name> <indirection_suffix>
936 # it means that it will not be able to recognize and parse this odd syntax.
937 # Therefore, we should add a special case function that will handle this token.
939 # This function should generate the proper expression form of the expression
940 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
941 # and so on). It should also return 1 if the parsing was successful, or zero
942 # if the token was not recognized as a special token (in this case, returning
943 # zero means that the special parser is deferring the parsing to the generic
944 # parser), and should advance the buffer pointer (p->arg).
945 M:int:stap_parse_special_token:struct stap_parse_info *p:p
948 # True if the list of shared libraries is one and only for all
949 # processes, as opposed to a list of shared libraries per inferior.
950 # This usually means that all processes, although may or may not share
951 # an address space, will see the same set of symbols at the same
953 v:int:has_global_solist:::0:0::0
955 # On some targets, even though each inferior has its own private
956 # address space, the debug interface takes care of making breakpoints
957 # visible to all address spaces automatically. For such cases,
958 # this property should be set to true.
959 v:int:has_global_breakpoints:::0:0::0
961 # True if inferiors share an address space (e.g., uClinux).
962 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
964 # True if a fast tracepoint can be set at an address.
965 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
967 # Return the "auto" target charset.
968 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
969 # Return the "auto" target wide charset.
970 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
972 # If non-empty, this is a file extension that will be opened in place
973 # of the file extension reported by the shared library list.
975 # This is most useful for toolchains that use a post-linker tool,
976 # where the names of the files run on the target differ in extension
977 # compared to the names of the files GDB should load for debug info.
978 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
980 # If true, the target OS has DOS-based file system semantics. That
981 # is, absolute paths include a drive name, and the backslash is
982 # considered a directory separator.
983 v:int:has_dos_based_file_system:::0:0::0
985 # Generate bytecodes to collect the return address in a frame.
986 # Since the bytecodes run on the target, possibly with GDB not even
987 # connected, the full unwinding machinery is not available, and
988 # typically this function will issue bytecodes for one or more likely
989 # places that the return address may be found.
990 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
992 # Implement the "info proc" command.
993 M:void:info_proc:const char *args, enum info_proc_what what:args, what
995 # Implement the "info proc" command for core files. Noe that there
996 # are two "info_proc"-like methods on gdbarch -- one for core files,
997 # one for live targets.
998 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1000 # Iterate over all objfiles in the order that makes the most sense
1001 # for the architecture to make global symbol searches.
1003 # CB is a callback function where OBJFILE is the objfile to be searched,
1004 # and CB_DATA a pointer to user-defined data (the same data that is passed
1005 # when calling this gdbarch method). The iteration stops if this function
1008 # CB_DATA is a pointer to some user-defined data to be passed to
1011 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1012 # inspected when the symbol search was requested.
1013 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1015 # Ravenscar arch-dependent ops.
1016 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1018 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1019 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1021 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1022 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1024 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1025 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1027 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1028 # Return 0 if *READPTR is already at the end of the buffer.
1029 # Return -1 if there is insufficient buffer for a whole entry.
1030 # Return 1 if an entry was read into *TYPEP and *VALP.
1031 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1038 exec > new-gdbarch.log
1039 function_list | while do_read
1042 ${class} ${returntype} ${function} ($formal)
1046 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1048 if class_is_predicate_p && fallback_default_p
1050 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1054 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1056 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1060 if class_is_multiarch_p
1062 if class_is_predicate_p ; then :
1063 elif test "x${predefault}" = "x"
1065 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1074 compare_new gdbarch.log
1080 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1083 /* Dynamic architecture support for GDB, the GNU debugger.
1085 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1087 This file is part of GDB.
1089 This program is free software; you can redistribute it and/or modify
1090 it under the terms of the GNU General Public License as published by
1091 the Free Software Foundation; either version 3 of the License, or
1092 (at your option) any later version.
1094 This program is distributed in the hope that it will be useful,
1095 but WITHOUT ANY WARRANTY; without even the implied warranty of
1096 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1097 GNU General Public License for more details.
1099 You should have received a copy of the GNU General Public License
1100 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1102 /* This file was created with the aid of \`\`gdbarch.sh''.
1104 The Bourne shell script \`\`gdbarch.sh'' creates the files
1105 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1106 against the existing \`\`gdbarch.[hc]''. Any differences found
1109 If editing this file, please also run gdbarch.sh and merge any
1110 changes into that script. Conversely, when making sweeping changes
1111 to this file, modifying gdbarch.sh and using its output may prove
1121 exec > new-gdbarch.h
1133 struct minimal_symbol;
1137 struct disassemble_info;
1140 struct bp_target_info;
1142 struct displaced_step_closure;
1143 struct core_regset_section;
1147 struct stap_parse_info;
1148 struct ravenscar_arch_ops;
1149 struct elf_internal_linux_prpsinfo;
1151 /* The architecture associated with the inferior through the
1152 connection to the target.
1154 The architecture vector provides some information that is really a
1155 property of the inferior, accessed through a particular target:
1156 ptrace operations; the layout of certain RSP packets; the solib_ops
1157 vector; etc. To differentiate architecture accesses to
1158 per-inferior/target properties from
1159 per-thread/per-frame/per-objfile properties, accesses to
1160 per-inferior/target properties should be made through this
1163 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1164 extern struct gdbarch *target_gdbarch (void);
1166 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1169 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1170 (struct objfile *objfile, void *cb_data);
1173 # function typedef's
1176 printf "/* The following are pre-initialized by GDBARCH. */\n"
1177 function_list | while do_read
1182 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1183 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1187 # function typedef's
1190 printf "/* The following are initialized by the target dependent code. */\n"
1191 function_list | while do_read
1193 if [ -n "${comment}" ]
1195 echo "${comment}" | sed \
1201 if class_is_predicate_p
1204 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1206 if class_is_variable_p
1209 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1210 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1212 if class_is_function_p
1215 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1217 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1218 elif class_is_multiarch_p
1220 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1222 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1224 if [ "x${formal}" = "xvoid" ]
1226 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1228 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1230 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1237 /* Definition for an unknown syscall, used basically in error-cases. */
1238 #define UNKNOWN_SYSCALL (-1)
1240 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1243 /* Mechanism for co-ordinating the selection of a specific
1246 GDB targets (*-tdep.c) can register an interest in a specific
1247 architecture. Other GDB components can register a need to maintain
1248 per-architecture data.
1250 The mechanisms below ensures that there is only a loose connection
1251 between the set-architecture command and the various GDB
1252 components. Each component can independently register their need
1253 to maintain architecture specific data with gdbarch.
1257 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1260 The more traditional mega-struct containing architecture specific
1261 data for all the various GDB components was also considered. Since
1262 GDB is built from a variable number of (fairly independent)
1263 components it was determined that the global aproach was not
1267 /* Register a new architectural family with GDB.
1269 Register support for the specified ARCHITECTURE with GDB. When
1270 gdbarch determines that the specified architecture has been
1271 selected, the corresponding INIT function is called.
1275 The INIT function takes two parameters: INFO which contains the
1276 information available to gdbarch about the (possibly new)
1277 architecture; ARCHES which is a list of the previously created
1278 \`\`struct gdbarch'' for this architecture.
1280 The INFO parameter is, as far as possible, be pre-initialized with
1281 information obtained from INFO.ABFD or the global defaults.
1283 The ARCHES parameter is a linked list (sorted most recently used)
1284 of all the previously created architures for this architecture
1285 family. The (possibly NULL) ARCHES->gdbarch can used to access
1286 values from the previously selected architecture for this
1287 architecture family.
1289 The INIT function shall return any of: NULL - indicating that it
1290 doesn't recognize the selected architecture; an existing \`\`struct
1291 gdbarch'' from the ARCHES list - indicating that the new
1292 architecture is just a synonym for an earlier architecture (see
1293 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1294 - that describes the selected architecture (see gdbarch_alloc()).
1296 The DUMP_TDEP function shall print out all target specific values.
1297 Care should be taken to ensure that the function works in both the
1298 multi-arch and non- multi-arch cases. */
1302 struct gdbarch *gdbarch;
1303 struct gdbarch_list *next;
1308 /* Use default: NULL (ZERO). */
1309 const struct bfd_arch_info *bfd_arch_info;
1311 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1312 enum bfd_endian byte_order;
1314 enum bfd_endian byte_order_for_code;
1316 /* Use default: NULL (ZERO). */
1319 /* Use default: NULL (ZERO). */
1320 struct gdbarch_tdep_info *tdep_info;
1322 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1323 enum gdb_osabi osabi;
1325 /* Use default: NULL (ZERO). */
1326 const struct target_desc *target_desc;
1329 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1330 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1332 /* DEPRECATED - use gdbarch_register() */
1333 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1335 extern void gdbarch_register (enum bfd_architecture architecture,
1336 gdbarch_init_ftype *,
1337 gdbarch_dump_tdep_ftype *);
1340 /* Return a freshly allocated, NULL terminated, array of the valid
1341 architecture names. Since architectures are registered during the
1342 _initialize phase this function only returns useful information
1343 once initialization has been completed. */
1345 extern const char **gdbarch_printable_names (void);
1348 /* Helper function. Search the list of ARCHES for a GDBARCH that
1349 matches the information provided by INFO. */
1351 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1354 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1355 basic initialization using values obtained from the INFO and TDEP
1356 parameters. set_gdbarch_*() functions are called to complete the
1357 initialization of the object. */
1359 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1362 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1363 It is assumed that the caller freeds the \`\`struct
1366 extern void gdbarch_free (struct gdbarch *);
1369 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1370 obstack. The memory is freed when the corresponding architecture
1373 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1374 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1375 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1378 /* Helper function. Force an update of the current architecture.
1380 The actual architecture selected is determined by INFO, \`\`(gdb) set
1381 architecture'' et.al., the existing architecture and BFD's default
1382 architecture. INFO should be initialized to zero and then selected
1383 fields should be updated.
1385 Returns non-zero if the update succeeds. */
1387 extern int gdbarch_update_p (struct gdbarch_info info);
1390 /* Helper function. Find an architecture matching info.
1392 INFO should be initialized using gdbarch_info_init, relevant fields
1393 set, and then finished using gdbarch_info_fill.
1395 Returns the corresponding architecture, or NULL if no matching
1396 architecture was found. */
1398 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1401 /* Helper function. Set the target gdbarch to "gdbarch". */
1403 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1406 /* Register per-architecture data-pointer.
1408 Reserve space for a per-architecture data-pointer. An identifier
1409 for the reserved data-pointer is returned. That identifer should
1410 be saved in a local static variable.
1412 Memory for the per-architecture data shall be allocated using
1413 gdbarch_obstack_zalloc. That memory will be deleted when the
1414 corresponding architecture object is deleted.
1416 When a previously created architecture is re-selected, the
1417 per-architecture data-pointer for that previous architecture is
1418 restored. INIT() is not re-called.
1420 Multiple registrarants for any architecture are allowed (and
1421 strongly encouraged). */
1423 struct gdbarch_data;
1425 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1426 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1427 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1428 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1429 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1430 struct gdbarch_data *data,
1433 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1436 /* Set the dynamic target-system-dependent parameters (architecture,
1437 byte-order, ...) using information found in the BFD. */
1439 extern void set_gdbarch_from_file (bfd *);
1442 /* Initialize the current architecture to the "first" one we find on
1445 extern void initialize_current_architecture (void);
1447 /* gdbarch trace variable */
1448 extern unsigned int gdbarch_debug;
1450 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1455 #../move-if-change new-gdbarch.h gdbarch.h
1456 compare_new gdbarch.h
1463 exec > new-gdbarch.c
1468 #include "arch-utils.h"
1471 #include "inferior.h"
1474 #include "floatformat.h"
1476 #include "gdb_assert.h"
1478 #include "reggroups.h"
1480 #include "gdb_obstack.h"
1481 #include "observer.h"
1482 #include "regcache.h"
1483 #include "objfiles.h"
1485 /* Static function declarations */
1487 static void alloc_gdbarch_data (struct gdbarch *);
1489 /* Non-zero if we want to trace architecture code. */
1491 #ifndef GDBARCH_DEBUG
1492 #define GDBARCH_DEBUG 0
1494 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1496 show_gdbarch_debug (struct ui_file *file, int from_tty,
1497 struct cmd_list_element *c, const char *value)
1499 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1503 pformat (const struct floatformat **format)
1508 /* Just print out one of them - this is only for diagnostics. */
1509 return format[0]->name;
1513 pstring (const char *string)
1520 /* Helper function to print a list of strings, represented as "const
1521 char *const *". The list is printed comma-separated. */
1524 pstring_list (const char *const *list)
1526 static char ret[100];
1527 const char *const *p;
1534 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1536 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1542 gdb_assert (offset - 2 < sizeof (ret));
1543 ret[offset - 2] = '\0';
1551 # gdbarch open the gdbarch object
1553 printf "/* Maintain the struct gdbarch object. */\n"
1555 printf "struct gdbarch\n"
1557 printf " /* Has this architecture been fully initialized? */\n"
1558 printf " int initialized_p;\n"
1560 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1561 printf " struct obstack *obstack;\n"
1563 printf " /* basic architectural information. */\n"
1564 function_list | while do_read
1568 printf " ${returntype} ${function};\n"
1572 printf " /* target specific vector. */\n"
1573 printf " struct gdbarch_tdep *tdep;\n"
1574 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1576 printf " /* per-architecture data-pointers. */\n"
1577 printf " unsigned nr_data;\n"
1578 printf " void **data;\n"
1581 /* Multi-arch values.
1583 When extending this structure you must:
1585 Add the field below.
1587 Declare set/get functions and define the corresponding
1590 gdbarch_alloc(): If zero/NULL is not a suitable default,
1591 initialize the new field.
1593 verify_gdbarch(): Confirm that the target updated the field
1596 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1599 get_gdbarch(): Implement the set/get functions (probably using
1600 the macro's as shortcuts).
1605 function_list | while do_read
1607 if class_is_variable_p
1609 printf " ${returntype} ${function};\n"
1610 elif class_is_function_p
1612 printf " gdbarch_${function}_ftype *${function};\n"
1617 # Create a new gdbarch struct
1620 /* Create a new \`\`struct gdbarch'' based on information provided by
1621 \`\`struct gdbarch_info''. */
1626 gdbarch_alloc (const struct gdbarch_info *info,
1627 struct gdbarch_tdep *tdep)
1629 struct gdbarch *gdbarch;
1631 /* Create an obstack for allocating all the per-architecture memory,
1632 then use that to allocate the architecture vector. */
1633 struct obstack *obstack = XNEW (struct obstack);
1634 obstack_init (obstack);
1635 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1636 memset (gdbarch, 0, sizeof (*gdbarch));
1637 gdbarch->obstack = obstack;
1639 alloc_gdbarch_data (gdbarch);
1641 gdbarch->tdep = tdep;
1644 function_list | while do_read
1648 printf " gdbarch->${function} = info->${function};\n"
1652 printf " /* Force the explicit initialization of these. */\n"
1653 function_list | while do_read
1655 if class_is_function_p || class_is_variable_p
1657 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1659 printf " gdbarch->${function} = ${predefault};\n"
1664 /* gdbarch_alloc() */
1670 # Free a gdbarch struct.
1674 /* Allocate extra space using the per-architecture obstack. */
1677 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1679 void *data = obstack_alloc (arch->obstack, size);
1681 memset (data, 0, size);
1686 /* Free a gdbarch struct. This should never happen in normal
1687 operation --- once you've created a gdbarch, you keep it around.
1688 However, if an architecture's init function encounters an error
1689 building the structure, it may need to clean up a partially
1690 constructed gdbarch. */
1693 gdbarch_free (struct gdbarch *arch)
1695 struct obstack *obstack;
1697 gdb_assert (arch != NULL);
1698 gdb_assert (!arch->initialized_p);
1699 obstack = arch->obstack;
1700 obstack_free (obstack, 0); /* Includes the ARCH. */
1705 # verify a new architecture
1709 /* Ensure that all values in a GDBARCH are reasonable. */
1712 verify_gdbarch (struct gdbarch *gdbarch)
1714 struct ui_file *log;
1715 struct cleanup *cleanups;
1719 log = mem_fileopen ();
1720 cleanups = make_cleanup_ui_file_delete (log);
1722 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1723 fprintf_unfiltered (log, "\n\tbyte-order");
1724 if (gdbarch->bfd_arch_info == NULL)
1725 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1726 /* Check those that need to be defined for the given multi-arch level. */
1728 function_list | while do_read
1730 if class_is_function_p || class_is_variable_p
1732 if [ "x${invalid_p}" = "x0" ]
1734 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1735 elif class_is_predicate_p
1737 printf " /* Skip verify of ${function}, has predicate. */\n"
1738 # FIXME: See do_read for potential simplification
1739 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1741 printf " if (${invalid_p})\n"
1742 printf " gdbarch->${function} = ${postdefault};\n"
1743 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1745 printf " if (gdbarch->${function} == ${predefault})\n"
1746 printf " gdbarch->${function} = ${postdefault};\n"
1747 elif [ -n "${postdefault}" ]
1749 printf " if (gdbarch->${function} == 0)\n"
1750 printf " gdbarch->${function} = ${postdefault};\n"
1751 elif [ -n "${invalid_p}" ]
1753 printf " if (${invalid_p})\n"
1754 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1755 elif [ -n "${predefault}" ]
1757 printf " if (gdbarch->${function} == ${predefault})\n"
1758 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1763 buf = ui_file_xstrdup (log, &length);
1764 make_cleanup (xfree, buf);
1766 internal_error (__FILE__, __LINE__,
1767 _("verify_gdbarch: the following are invalid ...%s"),
1769 do_cleanups (cleanups);
1773 # dump the structure
1777 /* Print out the details of the current architecture. */
1780 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1782 const char *gdb_nm_file = "<not-defined>";
1784 #if defined (GDB_NM_FILE)
1785 gdb_nm_file = GDB_NM_FILE;
1787 fprintf_unfiltered (file,
1788 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1791 function_list | sort -t: -k 3 | while do_read
1793 # First the predicate
1794 if class_is_predicate_p
1796 printf " fprintf_unfiltered (file,\n"
1797 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1798 printf " gdbarch_${function}_p (gdbarch));\n"
1800 # Print the corresponding value.
1801 if class_is_function_p
1803 printf " fprintf_unfiltered (file,\n"
1804 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1805 printf " host_address_to_string (gdbarch->${function}));\n"
1808 case "${print}:${returntype}" in
1811 print="core_addr_to_string_nz (gdbarch->${function})"
1815 print="plongest (gdbarch->${function})"
1821 printf " fprintf_unfiltered (file,\n"
1822 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1823 printf " ${print});\n"
1827 if (gdbarch->dump_tdep != NULL)
1828 gdbarch->dump_tdep (gdbarch, file);
1836 struct gdbarch_tdep *
1837 gdbarch_tdep (struct gdbarch *gdbarch)
1839 if (gdbarch_debug >= 2)
1840 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1841 return gdbarch->tdep;
1845 function_list | while do_read
1847 if class_is_predicate_p
1851 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1853 printf " gdb_assert (gdbarch != NULL);\n"
1854 printf " return ${predicate};\n"
1857 if class_is_function_p
1860 printf "${returntype}\n"
1861 if [ "x${formal}" = "xvoid" ]
1863 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1865 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1868 printf " gdb_assert (gdbarch != NULL);\n"
1869 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1870 if class_is_predicate_p && test -n "${predefault}"
1872 # Allow a call to a function with a predicate.
1873 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1875 printf " if (gdbarch_debug >= 2)\n"
1876 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1877 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1879 if class_is_multiarch_p
1886 if class_is_multiarch_p
1888 params="gdbarch, ${actual}"
1893 if [ "x${returntype}" = "xvoid" ]
1895 printf " gdbarch->${function} (${params});\n"
1897 printf " return gdbarch->${function} (${params});\n"
1902 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1903 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1905 printf " gdbarch->${function} = ${function};\n"
1907 elif class_is_variable_p
1910 printf "${returntype}\n"
1911 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1913 printf " gdb_assert (gdbarch != NULL);\n"
1914 if [ "x${invalid_p}" = "x0" ]
1916 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1917 elif [ -n "${invalid_p}" ]
1919 printf " /* Check variable is valid. */\n"
1920 printf " gdb_assert (!(${invalid_p}));\n"
1921 elif [ -n "${predefault}" ]
1923 printf " /* Check variable changed from pre-default. */\n"
1924 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1926 printf " if (gdbarch_debug >= 2)\n"
1927 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1928 printf " return gdbarch->${function};\n"
1932 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1933 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1935 printf " gdbarch->${function} = ${function};\n"
1937 elif class_is_info_p
1940 printf "${returntype}\n"
1941 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1943 printf " gdb_assert (gdbarch != NULL);\n"
1944 printf " if (gdbarch_debug >= 2)\n"
1945 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1946 printf " return gdbarch->${function};\n"
1951 # All the trailing guff
1955 /* Keep a registry of per-architecture data-pointers required by GDB
1962 gdbarch_data_pre_init_ftype *pre_init;
1963 gdbarch_data_post_init_ftype *post_init;
1966 struct gdbarch_data_registration
1968 struct gdbarch_data *data;
1969 struct gdbarch_data_registration *next;
1972 struct gdbarch_data_registry
1975 struct gdbarch_data_registration *registrations;
1978 struct gdbarch_data_registry gdbarch_data_registry =
1983 static struct gdbarch_data *
1984 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1985 gdbarch_data_post_init_ftype *post_init)
1987 struct gdbarch_data_registration **curr;
1989 /* Append the new registration. */
1990 for (curr = &gdbarch_data_registry.registrations;
1992 curr = &(*curr)->next);
1993 (*curr) = XNEW (struct gdbarch_data_registration);
1994 (*curr)->next = NULL;
1995 (*curr)->data = XNEW (struct gdbarch_data);
1996 (*curr)->data->index = gdbarch_data_registry.nr++;
1997 (*curr)->data->pre_init = pre_init;
1998 (*curr)->data->post_init = post_init;
1999 (*curr)->data->init_p = 1;
2000 return (*curr)->data;
2003 struct gdbarch_data *
2004 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2006 return gdbarch_data_register (pre_init, NULL);
2009 struct gdbarch_data *
2010 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2012 return gdbarch_data_register (NULL, post_init);
2015 /* Create/delete the gdbarch data vector. */
2018 alloc_gdbarch_data (struct gdbarch *gdbarch)
2020 gdb_assert (gdbarch->data == NULL);
2021 gdbarch->nr_data = gdbarch_data_registry.nr;
2022 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2025 /* Initialize the current value of the specified per-architecture
2029 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2030 struct gdbarch_data *data,
2033 gdb_assert (data->index < gdbarch->nr_data);
2034 gdb_assert (gdbarch->data[data->index] == NULL);
2035 gdb_assert (data->pre_init == NULL);
2036 gdbarch->data[data->index] = pointer;
2039 /* Return the current value of the specified per-architecture
2043 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2045 gdb_assert (data->index < gdbarch->nr_data);
2046 if (gdbarch->data[data->index] == NULL)
2048 /* The data-pointer isn't initialized, call init() to get a
2050 if (data->pre_init != NULL)
2051 /* Mid architecture creation: pass just the obstack, and not
2052 the entire architecture, as that way it isn't possible for
2053 pre-init code to refer to undefined architecture
2055 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2056 else if (gdbarch->initialized_p
2057 && data->post_init != NULL)
2058 /* Post architecture creation: pass the entire architecture
2059 (as all fields are valid), but be careful to also detect
2060 recursive references. */
2062 gdb_assert (data->init_p);
2064 gdbarch->data[data->index] = data->post_init (gdbarch);
2068 /* The architecture initialization hasn't completed - punt -
2069 hope that the caller knows what they are doing. Once
2070 deprecated_set_gdbarch_data has been initialized, this can be
2071 changed to an internal error. */
2073 gdb_assert (gdbarch->data[data->index] != NULL);
2075 return gdbarch->data[data->index];
2079 /* Keep a registry of the architectures known by GDB. */
2081 struct gdbarch_registration
2083 enum bfd_architecture bfd_architecture;
2084 gdbarch_init_ftype *init;
2085 gdbarch_dump_tdep_ftype *dump_tdep;
2086 struct gdbarch_list *arches;
2087 struct gdbarch_registration *next;
2090 static struct gdbarch_registration *gdbarch_registry = NULL;
2093 append_name (const char ***buf, int *nr, const char *name)
2095 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2101 gdbarch_printable_names (void)
2103 /* Accumulate a list of names based on the registed list of
2106 const char **arches = NULL;
2107 struct gdbarch_registration *rego;
2109 for (rego = gdbarch_registry;
2113 const struct bfd_arch_info *ap;
2114 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2116 internal_error (__FILE__, __LINE__,
2117 _("gdbarch_architecture_names: multi-arch unknown"));
2120 append_name (&arches, &nr_arches, ap->printable_name);
2125 append_name (&arches, &nr_arches, NULL);
2131 gdbarch_register (enum bfd_architecture bfd_architecture,
2132 gdbarch_init_ftype *init,
2133 gdbarch_dump_tdep_ftype *dump_tdep)
2135 struct gdbarch_registration **curr;
2136 const struct bfd_arch_info *bfd_arch_info;
2138 /* Check that BFD recognizes this architecture */
2139 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2140 if (bfd_arch_info == NULL)
2142 internal_error (__FILE__, __LINE__,
2143 _("gdbarch: Attempt to register "
2144 "unknown architecture (%d)"),
2147 /* Check that we haven't seen this architecture before. */
2148 for (curr = &gdbarch_registry;
2150 curr = &(*curr)->next)
2152 if (bfd_architecture == (*curr)->bfd_architecture)
2153 internal_error (__FILE__, __LINE__,
2154 _("gdbarch: Duplicate registration "
2155 "of architecture (%s)"),
2156 bfd_arch_info->printable_name);
2160 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2161 bfd_arch_info->printable_name,
2162 host_address_to_string (init));
2164 (*curr) = XNEW (struct gdbarch_registration);
2165 (*curr)->bfd_architecture = bfd_architecture;
2166 (*curr)->init = init;
2167 (*curr)->dump_tdep = dump_tdep;
2168 (*curr)->arches = NULL;
2169 (*curr)->next = NULL;
2173 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2174 gdbarch_init_ftype *init)
2176 gdbarch_register (bfd_architecture, init, NULL);
2180 /* Look for an architecture using gdbarch_info. */
2182 struct gdbarch_list *
2183 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2184 const struct gdbarch_info *info)
2186 for (; arches != NULL; arches = arches->next)
2188 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2190 if (info->byte_order != arches->gdbarch->byte_order)
2192 if (info->osabi != arches->gdbarch->osabi)
2194 if (info->target_desc != arches->gdbarch->target_desc)
2202 /* Find an architecture that matches the specified INFO. Create a new
2203 architecture if needed. Return that new architecture. */
2206 gdbarch_find_by_info (struct gdbarch_info info)
2208 struct gdbarch *new_gdbarch;
2209 struct gdbarch_registration *rego;
2211 /* Fill in missing parts of the INFO struct using a number of
2212 sources: "set ..."; INFOabfd supplied; and the global
2214 gdbarch_info_fill (&info);
2216 /* Must have found some sort of architecture. */
2217 gdb_assert (info.bfd_arch_info != NULL);
2221 fprintf_unfiltered (gdb_stdlog,
2222 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2223 (info.bfd_arch_info != NULL
2224 ? info.bfd_arch_info->printable_name
2226 fprintf_unfiltered (gdb_stdlog,
2227 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2229 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2230 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2232 fprintf_unfiltered (gdb_stdlog,
2233 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2234 info.osabi, gdbarch_osabi_name (info.osabi));
2235 fprintf_unfiltered (gdb_stdlog,
2236 "gdbarch_find_by_info: info.abfd %s\n",
2237 host_address_to_string (info.abfd));
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_find_by_info: info.tdep_info %s\n",
2240 host_address_to_string (info.tdep_info));
2243 /* Find the tdep code that knows about this architecture. */
2244 for (rego = gdbarch_registry;
2247 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2252 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2253 "No matching architecture\n");
2257 /* Ask the tdep code for an architecture that matches "info". */
2258 new_gdbarch = rego->init (info, rego->arches);
2260 /* Did the tdep code like it? No. Reject the change and revert to
2261 the old architecture. */
2262 if (new_gdbarch == NULL)
2265 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2266 "Target rejected architecture\n");
2270 /* Is this a pre-existing architecture (as determined by already
2271 being initialized)? Move it to the front of the architecture
2272 list (keeping the list sorted Most Recently Used). */
2273 if (new_gdbarch->initialized_p)
2275 struct gdbarch_list **list;
2276 struct gdbarch_list *this;
2278 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2279 "Previous architecture %s (%s) selected\n",
2280 host_address_to_string (new_gdbarch),
2281 new_gdbarch->bfd_arch_info->printable_name);
2282 /* Find the existing arch in the list. */
2283 for (list = ®o->arches;
2284 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2285 list = &(*list)->next);
2286 /* It had better be in the list of architectures. */
2287 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2290 (*list) = this->next;
2291 /* Insert THIS at the front. */
2292 this->next = rego->arches;
2293 rego->arches = this;
2298 /* It's a new architecture. */
2300 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2301 "New architecture %s (%s) selected\n",
2302 host_address_to_string (new_gdbarch),
2303 new_gdbarch->bfd_arch_info->printable_name);
2305 /* Insert the new architecture into the front of the architecture
2306 list (keep the list sorted Most Recently Used). */
2308 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2309 this->next = rego->arches;
2310 this->gdbarch = new_gdbarch;
2311 rego->arches = this;
2314 /* Check that the newly installed architecture is valid. Plug in
2315 any post init values. */
2316 new_gdbarch->dump_tdep = rego->dump_tdep;
2317 verify_gdbarch (new_gdbarch);
2318 new_gdbarch->initialized_p = 1;
2321 gdbarch_dump (new_gdbarch, gdb_stdlog);
2326 /* Make the specified architecture current. */
2329 set_target_gdbarch (struct gdbarch *new_gdbarch)
2331 gdb_assert (new_gdbarch != NULL);
2332 gdb_assert (new_gdbarch->initialized_p);
2333 current_inferior ()->gdbarch = new_gdbarch;
2334 observer_notify_architecture_changed (new_gdbarch);
2335 registers_changed ();
2338 /* Return the current inferior's arch. */
2341 target_gdbarch (void)
2343 return current_inferior ()->gdbarch;
2346 extern void _initialize_gdbarch (void);
2349 _initialize_gdbarch (void)
2351 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2352 Set architecture debugging."), _("\\
2353 Show architecture debugging."), _("\\
2354 When non-zero, architecture debugging is enabled."),
2357 &setdebuglist, &showdebuglist);
2363 #../move-if-change new-gdbarch.c gdbarch.c
2364 compare_new gdbarch.c