1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "gdb_string.h"
25 #include "arch-utils.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
44 extern void _initialize_frv_tdep (void);
46 struct frv_unwind_cache /* was struct frame_extra_info */
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
52 /* The frame's base, optionally used by the high-level debug info. */
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
59 /* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
76 /* Which ABI is in use? */
79 /* How many general-purpose registers does this variant have? */
82 /* How many floating-point registers does this variant have? */
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
92 char **register_names;
95 /* Return the FR-V ABI associated with GDBARCH. */
97 frv_abi (struct gdbarch *gdbarch)
99 return gdbarch_tdep (gdbarch)->frv_abi;
102 /* Fetch the interpreter and executable loadmap addresses (for shared
103 library support) for the FDPIC ABI. Return 0 if successful, -1 if
104 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
106 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
107 CORE_ADDR *exec_addr)
109 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
113 struct regcache *regcache = get_current_regcache ();
115 if (interp_addr != NULL)
118 regcache_cooked_read_unsigned (regcache,
119 fdpic_loadmap_interp_regnum, &val);
122 if (exec_addr != NULL)
125 regcache_cooked_read_unsigned (regcache,
126 fdpic_loadmap_exec_regnum, &val);
133 /* Allocate a new variant structure, and set up default values for all
135 static struct gdbarch_tdep *
138 struct gdbarch_tdep *var;
142 var = xmalloc (sizeof (*var));
143 memset (var, 0, sizeof (*var));
145 var->frv_abi = FRV_ABI_EABI;
148 var->num_hw_watchpoints = 0;
149 var->num_hw_breakpoints = 0;
151 /* By default, don't supply any general-purpose or floating-point
154 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
156 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
157 var->register_names[r] = "";
159 /* Do, however, supply default names for the known special-purpose
162 var->register_names[pc_regnum] = "pc";
163 var->register_names[lr_regnum] = "lr";
164 var->register_names[lcr_regnum] = "lcr";
166 var->register_names[psr_regnum] = "psr";
167 var->register_names[ccr_regnum] = "ccr";
168 var->register_names[cccr_regnum] = "cccr";
169 var->register_names[tbr_regnum] = "tbr";
171 /* Debug registers. */
172 var->register_names[brr_regnum] = "brr";
173 var->register_names[dbar0_regnum] = "dbar0";
174 var->register_names[dbar1_regnum] = "dbar1";
175 var->register_names[dbar2_regnum] = "dbar2";
176 var->register_names[dbar3_regnum] = "dbar3";
178 /* iacc0 (Only found on MB93405.) */
179 var->register_names[iacc0h_regnum] = "iacc0h";
180 var->register_names[iacc0l_regnum] = "iacc0l";
181 var->register_names[iacc0_regnum] = "iacc0";
183 /* fsr0 (Found on FR555 and FR501.) */
184 var->register_names[fsr0_regnum] = "fsr0";
186 /* acc0 - acc7. The architecture provides for the possibility of many
187 more (up to 64 total), but we don't want to make that big of a hole
188 in the G packet. If we need more in the future, we'll add them
190 for (r = acc0_regnum; r <= acc7_regnum; r++)
193 buf = xstrprintf ("acc%d", r - acc0_regnum);
194 var->register_names[r] = buf;
197 /* accg0 - accg7: These are one byte registers. The remote protocol
198 provides the raw values packed four into a slot. accg0123 and
199 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
200 We don't provide names for accg0123 and accg4567 since the user will
201 likely not want to see these raw values. */
203 for (r = accg0_regnum; r <= accg7_regnum; r++)
206 buf = xstrprintf ("accg%d", r - accg0_regnum);
207 var->register_names[r] = buf;
212 var->register_names[msr0_regnum] = "msr0";
213 var->register_names[msr1_regnum] = "msr1";
215 /* gner and fner registers. */
216 var->register_names[gner0_regnum] = "gner0";
217 var->register_names[gner1_regnum] = "gner1";
218 var->register_names[fner0_regnum] = "fner0";
219 var->register_names[fner1_regnum] = "fner1";
225 /* Indicate that the variant VAR has NUM_GPRS general-purpose
226 registers, and fill in the names array appropriately. */
228 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
232 var->num_gprs = num_gprs;
234 for (r = 0; r < num_gprs; ++r)
238 sprintf (buf, "gr%d", r);
239 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
244 /* Indicate that the variant VAR has NUM_FPRS floating-point
245 registers, and fill in the names array appropriately. */
247 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
251 var->num_fprs = num_fprs;
253 for (r = 0; r < num_fprs; ++r)
257 sprintf (buf, "fr%d", r);
258 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
263 set_variant_abi_fdpic (struct gdbarch_tdep *var)
265 var->frv_abi = FRV_ABI_FDPIC;
266 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
267 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
271 set_variant_scratch_registers (struct gdbarch_tdep *var)
273 var->register_names[scr0_regnum] = xstrdup ("scr0");
274 var->register_names[scr1_regnum] = xstrdup ("scr1");
275 var->register_names[scr2_regnum] = xstrdup ("scr2");
276 var->register_names[scr3_regnum] = xstrdup ("scr3");
280 frv_register_name (struct gdbarch *gdbarch, int reg)
284 if (reg >= frv_num_regs + frv_num_pseudo_regs)
287 return gdbarch_tdep (gdbarch)->register_names[reg];
292 frv_register_type (struct gdbarch *gdbarch, int reg)
294 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
295 return builtin_type (gdbarch)->builtin_float;
296 else if (reg == iacc0_regnum)
297 return builtin_type_int64;
299 return builtin_type_int32;
303 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
304 int reg, gdb_byte *buffer)
306 if (reg == iacc0_regnum)
308 regcache_raw_read (regcache, iacc0h_regnum, buffer);
309 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
320 regcache_raw_read (regcache, raw_regnum, buf);
321 memset (buffer, 0, 4);
322 /* FR-V is big endian, so put the requested byte in the first byte
323 of the buffer allocated to hold the pseudo-register. */
324 ((bfd_byte *) buffer)[0] = buf[byte_num];
329 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
330 int reg, const gdb_byte *buffer)
332 if (reg == iacc0_regnum)
334 regcache_raw_write (regcache, iacc0h_regnum, buffer);
335 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
337 else if (accg0_regnum <= reg && reg <= accg7_regnum)
339 /* The accg raw registers have four values in each slot with the
340 lowest register number occupying the first byte. */
342 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
343 int byte_num = (reg - accg0_regnum) % 4;
346 regcache_raw_read (regcache, raw_regnum, buf);
347 buf[byte_num] = ((bfd_byte *) buffer)[0];
348 regcache_raw_write (regcache, raw_regnum, buf);
353 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
355 static const int spr_map[] =
357 H_SPR_PSR, /* psr_regnum */
358 H_SPR_CCR, /* ccr_regnum */
359 H_SPR_CCCR, /* cccr_regnum */
360 -1, /* fdpic_loadmap_exec_regnum */
361 -1, /* fdpic_loadmap_interp_regnum */
363 H_SPR_TBR, /* tbr_regnum */
364 H_SPR_BRR, /* brr_regnum */
365 H_SPR_DBAR0, /* dbar0_regnum */
366 H_SPR_DBAR1, /* dbar1_regnum */
367 H_SPR_DBAR2, /* dbar2_regnum */
368 H_SPR_DBAR3, /* dbar3_regnum */
369 H_SPR_SCR0, /* scr0_regnum */
370 H_SPR_SCR1, /* scr1_regnum */
371 H_SPR_SCR2, /* scr2_regnum */
372 H_SPR_SCR3, /* scr3_regnum */
373 H_SPR_LR, /* lr_regnum */
374 H_SPR_LCR, /* lcr_regnum */
375 H_SPR_IACC0H, /* iacc0h_regnum */
376 H_SPR_IACC0L, /* iacc0l_regnum */
377 H_SPR_FSR0, /* fsr0_regnum */
378 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
379 -1, /* acc0_regnum */
380 -1, /* acc1_regnum */
381 -1, /* acc2_regnum */
382 -1, /* acc3_regnum */
383 -1, /* acc4_regnum */
384 -1, /* acc5_regnum */
385 -1, /* acc6_regnum */
386 -1, /* acc7_regnum */
387 -1, /* acc0123_regnum */
388 -1, /* acc4567_regnum */
389 H_SPR_MSR0, /* msr0_regnum */
390 H_SPR_MSR1, /* msr1_regnum */
391 H_SPR_GNER0, /* gner0_regnum */
392 H_SPR_GNER1, /* gner1_regnum */
393 H_SPR_FNER0, /* fner0_regnum */
394 H_SPR_FNER1, /* fner1_regnum */
397 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
399 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
400 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
401 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
402 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
403 else if (pc_regnum == reg)
404 return SIM_FRV_PC_REGNUM;
405 else if (reg >= first_spr_regnum
406 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
408 int spr_reg_offset = spr_map[reg - first_spr_regnum];
410 if (spr_reg_offset < 0)
411 return SIM_REGNO_DOES_NOT_EXIST;
413 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
416 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
419 static const unsigned char *
420 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
422 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
423 *lenp = sizeof (breakpoint);
427 /* Define the maximum number of instructions which may be packed into a
428 bundle (VLIW instruction). */
429 static const int max_instrs_per_bundle = 8;
431 /* Define the size (in bytes) of an FR-V instruction. */
432 static const int frv_instr_size = 4;
434 /* Adjust a breakpoint's address to account for the FR-V architecture's
435 constraint that a break instruction must not appear as any but the
436 first instruction in the bundle. */
438 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
440 int count = max_instrs_per_bundle;
441 CORE_ADDR addr = bpaddr - frv_instr_size;
442 CORE_ADDR func_start = get_pc_function_start (bpaddr);
444 /* Find the end of the previous packing sequence. This will be indicated
445 by either attempting to access some inaccessible memory or by finding
446 an instruction word whose packing bit is set to one. */
447 while (count-- > 0 && addr >= func_start)
449 char instr[frv_instr_size];
452 status = target_read_memory (addr, instr, sizeof instr);
457 /* This is a big endian architecture, so byte zero will have most
458 significant byte. The most significant bit of this byte is the
463 addr -= frv_instr_size;
467 bpaddr = addr + frv_instr_size;
473 /* Return true if REG is a caller-saves ("scratch") register,
476 is_caller_saves_reg (int reg)
478 return ((4 <= reg && reg <= 7)
479 || (14 <= reg && reg <= 15)
480 || (32 <= reg && reg <= 47));
484 /* Return true if REG is a callee-saves register, false otherwise. */
486 is_callee_saves_reg (int reg)
488 return ((16 <= reg && reg <= 31)
489 || (48 <= reg && reg <= 63));
493 /* Return true if REG is an argument register, false otherwise. */
495 is_argument_reg (int reg)
497 return (8 <= reg && reg <= 13);
500 /* Scan an FR-V prologue, starting at PC, until frame->PC.
501 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502 We assume FRAME's saved_regs array has already been allocated and cleared.
503 Return the first PC value after the prologue.
505 Note that, for unoptimized code, we almost don't need this function
506 at all; all arguments and locals live on the stack, so we just need
507 the FP to find everything. The catch: structures passed by value
508 have their addresses living in registers; they're never spilled to
509 the stack. So if you ever want to be able to get to these
510 arguments in any frame but the top, you'll need to do this serious
511 prologue analysis. */
513 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
514 struct frame_info *this_frame,
515 struct frv_unwind_cache *info)
517 /* When writing out instruction bitpatterns, we use the following
518 letters to label instruction fields:
519 P - The parallel bit. We don't use this.
520 J - The register number of GRj in the instruction description.
521 K - The register number of GRk in the instruction description.
522 I - The register number of GRi.
523 S - a signed imediate offset.
524 U - an unsigned immediate offset.
526 The dots below the numbers indicate where hex digit boundaries
527 fall, to make it easier to check the numbers. */
529 /* Non-zero iff we've seen the instruction that initializes the
530 frame pointer for this function's frame. */
533 /* If fp_set is non_zero, then this is the distance from
534 the stack pointer to frame pointer: fp = sp + fp_offset. */
537 /* Total size of frame prior to any alloca operations. */
540 /* Flag indicating if lr has been saved on the stack. */
541 int lr_saved_on_stack = 0;
543 /* The number of the general-purpose register we saved the return
544 address ("link register") in, or -1 if we haven't moved it yet. */
545 int lr_save_reg = -1;
547 /* Offset (from sp) at which lr has been saved on the stack. */
549 int lr_sp_offset = 0;
551 /* If gr_saved[i] is non-zero, then we've noticed that general
552 register i has been saved at gr_sp_offset[i] from the stack
555 int gr_sp_offset[64];
557 /* The address of the most recently scanned prologue instruction. */
558 CORE_ADDR last_prologue_pc;
560 /* The address of the next instruction. */
563 /* The upper bound to of the pc values to scan. */
566 memset (gr_saved, 0, sizeof (gr_saved));
568 last_prologue_pc = pc;
570 /* Try to compute an upper limit (on how far to scan) based on the
572 lim_pc = skip_prologue_using_sal (gdbarch, pc);
573 /* If there's no line number info, lim_pc will be 0. In that case,
574 set the limit to be 100 instructions away from pc. Hopefully, this
575 will be far enough away to account for the entire prologue. Don't
576 worry about overshooting the end of the function. The scan loop
577 below contains some checks to avoid scanning unreasonably far. */
581 /* If we have a frame, we don't want to scan past the frame's pc. This
582 will catch those cases where the pc is in the prologue. */
585 CORE_ADDR frame_pc = get_frame_pc (this_frame);
586 if (frame_pc < lim_pc)
590 /* Scan the prologue. */
593 char buf[frv_instr_size];
596 if (target_read_memory (pc, buf, sizeof buf) != 0)
598 op = extract_signed_integer (buf, sizeof buf);
602 /* The tests in this chain of ifs should be in order of
603 decreasing selectivity, so that more particular patterns get
604 to fire before less particular patterns. */
606 /* Some sort of control transfer instruction: stop scanning prologue.
607 Integer Conditional Branch:
608 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
609 Floating-point / media Conditional Branch:
610 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
611 LCR Conditional Branch to LR
612 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
613 Integer conditional Branches to LR
614 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
615 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
616 Floating-point/Media Branches to LR
617 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
618 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
620 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
621 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
623 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
625 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
626 Integer Conditional Trap
627 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
628 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
629 Floating-point /media Conditional Trap
630 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
631 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
633 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
635 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
636 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
637 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
638 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
639 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
641 /* Stop scanning; not in prologue any longer. */
645 /* Loading something from memory into fp probably means that
646 we're in the epilogue. Stop scanning the prologue.
648 X 000010 0000010 XXXXXX 000100 XXXXXX
650 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
651 else if ((op & 0x7ffc0fc0) == 0x04080100
652 || (op & 0x7ffc0000) == 0x04c80000)
657 /* Setting the FP from the SP:
659 P 000010 0100010 000001 000000000000 = 0x04881000
660 0 111111 1111111 111111 111111111111 = 0x7fffffff
662 We treat this as part of the prologue. */
663 else if ((op & 0x7fffffff) == 0x04881000)
667 last_prologue_pc = next_pc;
670 /* Move the link register to the scratch register grJ, before saving:
672 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
673 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
675 We treat this as part of the prologue. */
676 else if ((op & 0x7fffffc0) == 0x080d01c0)
678 int gr_j = op & 0x3f;
680 /* If we're moving it to a scratch register, that's fine. */
681 if (is_caller_saves_reg (gr_j))
684 last_prologue_pc = next_pc;
688 /* To save multiple callee-saves registers on the stack, at
692 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
693 0 000000 1111111 111111 111111 111111 = 0x01ffffff
696 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
697 0 000000 1111111 111111 111111 111111 = 0x01ffffff
699 We treat this as part of the prologue, and record the register's
700 saved address in the frame structure. */
701 else if ((op & 0x01ffffff) == 0x000c10c0
702 || (op & 0x01ffffff) == 0x000c1100)
704 int gr_k = ((op >> 25) & 0x3f);
705 int ope = ((op >> 6) & 0x3f);
709 /* Is it an std or an stq? */
715 /* Is it really a callee-saves register? */
716 if (is_callee_saves_reg (gr_k))
718 for (i = 0; i < count; i++)
720 gr_saved[gr_k + i] = 1;
721 gr_sp_offset[gr_k + i] = 4 * i;
723 last_prologue_pc = next_pc;
727 /* Adjusting the stack pointer. (The stack pointer is GR1.)
729 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
730 0 111111 1111111 111111 000000000000 = 0x7ffff000
732 We treat this as part of the prologue. */
733 else if ((op & 0x7ffff000) == 0x02401000)
737 /* Sign-extend the twelve-bit field.
738 (Isn't there a better way to do this?) */
739 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
742 last_prologue_pc = pc;
746 /* If the prologue is being adjusted again, we've
747 likely gone too far; i.e. we're probably in the
753 /* Setting the FP to a constant distance from the SP:
755 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
756 0 111111 1111111 111111 000000000000 = 0x7ffff000
758 We treat this as part of the prologue. */
759 else if ((op & 0x7ffff000) == 0x04401000)
761 /* Sign-extend the twelve-bit field.
762 (Isn't there a better way to do this?) */
763 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
766 last_prologue_pc = pc;
769 /* To spill an argument register to a scratch register:
771 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
772 0 000000 1111111 000000 111111111111 = 0x01fc0fff
774 For the time being, we treat this as a prologue instruction,
775 assuming that GRi is an argument register. This one's kind
776 of suspicious, because it seems like it could be part of a
777 legitimate body instruction. But we only come here when the
778 source info wasn't helpful, so we have to do the best we can.
779 Hopefully once GCC and GDB agree on how to emit line number
780 info for prologues, then this code will never come into play. */
781 else if ((op & 0x01fc0fff) == 0x00880000)
783 int gr_i = ((op >> 12) & 0x3f);
785 /* Make sure that the source is an arg register; if it is, we'll
786 treat it as a prologue instruction. */
787 if (is_argument_reg (gr_i))
788 last_prologue_pc = next_pc;
791 /* To spill 16-bit values to the stack:
793 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
794 0 000000 1111111 111111 000000000000 = 0x01fff000
796 And for 8-bit values, we use STB instructions.
798 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
799 0 000000 1111111 111111 000000000000 = 0x01fff000
801 We check that GRk is really an argument register, and treat
802 all such as part of the prologue. */
803 else if ( (op & 0x01fff000) == 0x01442000
804 || (op & 0x01fff000) == 0x01402000)
806 int gr_k = ((op >> 25) & 0x3f);
808 /* Make sure that GRk is really an argument register; treat
809 it as a prologue instruction if so. */
810 if (is_argument_reg (gr_k))
811 last_prologue_pc = next_pc;
814 /* To save multiple callee-saves register on the stack, at a
818 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
819 0 000000 1111111 111111 000000000000 = 0x01fff000
822 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
823 0 000000 1111111 111111 000000000000 = 0x01fff000
825 We treat this as part of the prologue, and record the register's
826 saved address in the frame structure. */
827 else if ((op & 0x01fff000) == 0x014c1000
828 || (op & 0x01fff000) == 0x01501000)
830 int gr_k = ((op >> 25) & 0x3f);
834 /* Is it a stdi or a stqi? */
835 if ((op & 0x01fff000) == 0x014c1000)
840 /* Is it really a callee-saves register? */
841 if (is_callee_saves_reg (gr_k))
843 /* Sign-extend the twelve-bit field.
844 (Isn't there a better way to do this?) */
845 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
847 for (i = 0; i < count; i++)
849 gr_saved[gr_k + i] = 1;
850 gr_sp_offset[gr_k + i] = s + (4 * i);
852 last_prologue_pc = next_pc;
856 /* Storing any kind of integer register at any constant offset
857 from any other register.
860 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
861 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
864 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
865 0 000000 1111111 000000 000000000000 = 0x01fc0000
867 These could be almost anything, but a lot of prologue
868 instructions fall into this pattern, so let's decode the
869 instruction once, and then work at a higher level. */
870 else if (((op & 0x01fc0fff) == 0x000c0080)
871 || ((op & 0x01fc0000) == 0x01480000))
873 int gr_k = ((op >> 25) & 0x3f);
874 int gr_i = ((op >> 12) & 0x3f);
877 /* Are we storing with gr0 as an offset, or using an
879 if ((op & 0x01fc0fff) == 0x000c0080)
882 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
884 /* If the address isn't relative to the SP or FP, it's not a
885 prologue instruction. */
886 if (gr_i != sp_regnum && gr_i != fp_regnum)
888 /* Do nothing; not a prologue instruction. */
891 /* Saving the old FP in the new frame (relative to the SP). */
892 else if (gr_k == fp_regnum && gr_i == sp_regnum)
894 gr_saved[fp_regnum] = 1;
895 gr_sp_offset[fp_regnum] = offset;
896 last_prologue_pc = next_pc;
899 /* Saving callee-saves register(s) on the stack, relative to
901 else if (gr_i == sp_regnum
902 && is_callee_saves_reg (gr_k))
905 if (gr_i == sp_regnum)
906 gr_sp_offset[gr_k] = offset;
908 gr_sp_offset[gr_k] = offset + fp_offset;
909 last_prologue_pc = next_pc;
912 /* Saving the scratch register holding the return address. */
913 else if (lr_save_reg != -1
914 && gr_k == lr_save_reg)
916 lr_saved_on_stack = 1;
917 if (gr_i == sp_regnum)
918 lr_sp_offset = offset;
920 lr_sp_offset = offset + fp_offset;
921 last_prologue_pc = next_pc;
924 /* Spilling int-sized arguments to the stack. */
925 else if (is_argument_reg (gr_k))
926 last_prologue_pc = next_pc;
931 if (this_frame && info)
936 /* If we know the relationship between the stack and frame
937 pointers, record the addresses of the registers we noticed.
938 Note that we have to do this as a separate step at the end,
939 because instructions may save relative to the SP, but we need
940 their addresses relative to the FP. */
942 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
944 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
946 for (i = 0; i < 64; i++)
948 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
950 info->prev_sp = this_base - fp_offset + framesize;
951 info->base = this_base;
953 /* If LR was saved on the stack, record its location. */
954 if (lr_saved_on_stack)
955 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
957 /* The call instruction moves the caller's PC in the callee's LR.
958 Since this is an unwind, do the reverse. Copy the location of LR
959 into PC (the address / regnum) so that a request for PC will be
960 converted into a request for the LR. */
961 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
963 /* Save the previous frame's computed SP value. */
964 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
967 return last_prologue_pc;
972 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
974 CORE_ADDR func_addr, func_end, new_pc;
978 /* If the line table has entry for a line *within* the function
979 (i.e., not in the prologue, and not past the end), then that's
981 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
983 struct symtab_and_line sal;
985 sal = find_pc_line (func_addr, 0);
987 if (sal.line != 0 && sal.end < func_end)
993 /* The FR-V prologue is at least five instructions long (twenty bytes).
994 If we didn't find a real source location past that, then
995 do a full analysis of the prologue. */
996 if (new_pc < pc + 20)
997 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1003 /* Examine the instruction pointed to by PC. If it corresponds to
1004 a call to __main, return the address of the next instruction.
1005 Otherwise, return PC. */
1008 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1012 CORE_ADDR orig_pc = pc;
1014 if (target_read_memory (pc, buf, 4))
1016 op = extract_unsigned_integer (buf, 4);
1018 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1019 to the call instruction.
1021 Skip over this instruction if present. It won't be present in
1022 non-PIC code, and even in PIC code, it might not be present.
1023 (This is due to the fact that GR15, the FDPIC register, already
1024 contains the correct value.)
1026 The general form of the LDI is given first, followed by the
1027 specific instruction with the GRi and GRk filled in as FP and
1030 ldi @(GRi, d12), GRk
1031 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1032 0 000000 1111111 000000 000000000000 = 0x01fc0000
1034 ldi @(FP, d12), GR15
1035 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1036 0 001111 1111111 000010 000000000000 = 0x7ffff000
1039 if ((op & 0x7ffff000) == 0x1ec82000)
1042 if (target_read_memory (pc, buf, 4))
1044 op = extract_unsigned_integer (buf, 4);
1047 /* The format of an FRV CALL instruction is as follows:
1050 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1051 0 000000 1111111 000000000000000000 = 0x01fc0000
1054 where label24 is constructed by concatenating the H bits with the
1055 L bits. The call target is PC + (4 * sign_ext(label24)). */
1057 if ((op & 0x01fc0000) == 0x003c0000)
1060 CORE_ADDR call_dest;
1061 struct minimal_symbol *s;
1063 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1064 if ((displ & 0x00800000) != 0)
1065 displ |= ~((LONGEST) 0x00ffffff);
1067 call_dest = pc + 4 * displ;
1068 s = lookup_minimal_symbol_by_pc (call_dest);
1071 && SYMBOL_LINKAGE_NAME (s) != NULL
1072 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1082 static struct frv_unwind_cache *
1083 frv_frame_unwind_cache (struct frame_info *this_frame,
1084 void **this_prologue_cache)
1086 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1089 struct frv_unwind_cache *info;
1091 if ((*this_prologue_cache))
1092 return (*this_prologue_cache);
1094 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1095 (*this_prologue_cache) = info;
1096 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1098 /* Prologue analysis does the rest... */
1099 frv_analyze_prologue (gdbarch,
1100 get_frame_func (this_frame), this_frame, info);
1106 frv_extract_return_value (struct type *type, struct regcache *regcache,
1109 int len = TYPE_LENGTH (type);
1114 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1115 store_unsigned_integer (valbuf, len, gpr8_val);
1120 regcache_cooked_read_unsigned (regcache, 8, ®val);
1121 store_unsigned_integer (valbuf, 4, regval);
1122 regcache_cooked_read_unsigned (regcache, 9, ®val);
1123 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1126 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
1130 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1132 /* Require dword alignment. */
1133 return align_down (sp, 8);
1137 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1141 CORE_ADDR start_addr;
1143 /* If we can't find the function in the symbol table, then we assume
1144 that the function address is already in descriptor form. */
1145 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1146 || entry_point != start_addr)
1149 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1154 /* Construct a non-canonical descriptor from space allocated on
1157 descr = value_as_long (value_allocate_space_in_inferior (8));
1158 store_unsigned_integer (valbuf, 4, entry_point);
1159 write_memory (descr, valbuf, 4);
1160 store_unsigned_integer (valbuf, 4,
1161 frv_fdpic_find_global_pointer (entry_point));
1162 write_memory (descr + 4, valbuf, 4);
1167 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1168 struct target_ops *targ)
1170 CORE_ADDR entry_point;
1171 CORE_ADDR got_address;
1173 entry_point = get_target_memory_unsigned (targ, addr, 4);
1174 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1176 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1183 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1184 struct regcache *regcache, CORE_ADDR bp_addr,
1185 int nargs, struct value **args, CORE_ADDR sp,
1186 int struct_return, CORE_ADDR struct_addr)
1193 struct type *arg_type;
1195 enum type_code typecode;
1199 enum frv_abi abi = frv_abi (gdbarch);
1200 CORE_ADDR func_addr = find_function_addr (function, NULL);
1203 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1204 nargs, (int) sp, struct_return, struct_addr);
1208 for (argnum = 0; argnum < nargs; ++argnum)
1209 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1211 stack_space -= (6 * 4);
1212 if (stack_space > 0)
1215 /* Make sure stack is dword aligned. */
1216 sp = align_down (sp, 8);
1223 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1226 for (argnum = 0; argnum < nargs; ++argnum)
1229 arg_type = check_typedef (value_type (arg));
1230 len = TYPE_LENGTH (arg_type);
1231 typecode = TYPE_CODE (arg_type);
1233 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1235 store_unsigned_integer (valbuf, 4, value_address (arg));
1236 typecode = TYPE_CODE_PTR;
1240 else if (abi == FRV_ABI_FDPIC
1242 && typecode == TYPE_CODE_PTR
1243 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1245 /* The FDPIC ABI requires function descriptors to be passed instead
1247 store_unsigned_integer
1249 find_func_descr (gdbarch,
1250 extract_unsigned_integer (value_contents (arg),
1252 typecode = TYPE_CODE_PTR;
1258 val = (char *) value_contents (arg);
1263 int partial_len = (len < 4 ? len : 4);
1267 regval = extract_unsigned_integer (val, partial_len);
1269 printf(" Argnum %d data %x -> reg %d\n",
1270 argnum, (int) regval, argreg);
1272 regcache_cooked_write_unsigned (regcache, argreg, regval);
1278 printf(" Argnum %d data %x -> offset %d (%x)\n",
1279 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1281 write_memory (sp + stack_offset, val, partial_len);
1282 stack_offset += align_up (partial_len, 4);
1289 /* Set the return address. For the frv, the return breakpoint is
1290 always at BP_ADDR. */
1291 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1293 if (abi == FRV_ABI_FDPIC)
1295 /* Set the GOT register for the FDPIC ABI. */
1296 regcache_cooked_write_unsigned
1297 (regcache, first_gpr_regnum + 15,
1298 frv_fdpic_find_global_pointer (func_addr));
1301 /* Finally, update the SP register. */
1302 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1308 frv_store_return_value (struct type *type, struct regcache *regcache,
1309 const gdb_byte *valbuf)
1311 int len = TYPE_LENGTH (type);
1316 memset (val, 0, sizeof (val));
1317 memcpy (val + (4 - len), valbuf, len);
1318 regcache_cooked_write (regcache, 8, val);
1322 regcache_cooked_write (regcache, 8, valbuf);
1323 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1326 internal_error (__FILE__, __LINE__,
1327 _("Don't know how to return a %d-byte value."), len);
1330 static enum return_value_convention
1331 frv_return_value (struct gdbarch *gdbarch, struct type *func_type,
1332 struct type *valtype, struct regcache *regcache,
1333 gdb_byte *readbuf, const gdb_byte *writebuf)
1335 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1336 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1337 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1339 if (writebuf != NULL)
1341 gdb_assert (!struct_return);
1342 frv_store_return_value (valtype, regcache, writebuf);
1345 if (readbuf != NULL)
1347 gdb_assert (!struct_return);
1348 frv_extract_return_value (valtype, regcache, readbuf);
1352 return RETURN_VALUE_STRUCT_CONVENTION;
1354 return RETURN_VALUE_REGISTER_CONVENTION;
1358 /* Hardware watchpoint / breakpoint support for the FR500
1362 frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
1364 struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
1366 /* Watchpoints not supported on simulator. */
1367 if (strcmp (target_shortname, "sim") == 0)
1370 if (type == bp_hardware_breakpoint)
1372 if (var->num_hw_breakpoints == 0)
1374 else if (cnt <= var->num_hw_breakpoints)
1379 if (var->num_hw_watchpoints == 0)
1383 else if (cnt <= var->num_hw_watchpoints)
1391 frv_stopped_data_address (CORE_ADDR *addr_p)
1393 struct frame_info *frame = get_current_frame ();
1394 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1396 brr = get_frame_register_unsigned (frame, brr_regnum);
1397 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1398 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1399 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1400 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
1404 else if (brr & (1<<10))
1406 else if (brr & (1<<9))
1408 else if (brr & (1<<8))
1417 frv_have_stopped_data_address (void)
1420 return frv_stopped_data_address (&addr);
1424 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1426 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1429 /* Given a GDB frame, determine the address of the calling function's
1430 frame. This will be used to create a new GDB frame struct. */
1433 frv_frame_this_id (struct frame_info *this_frame,
1434 void **this_prologue_cache, struct frame_id *this_id)
1436 struct frv_unwind_cache *info
1437 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1440 struct minimal_symbol *msym_stack;
1443 /* The FUNC is easy. */
1444 func = get_frame_func (this_frame);
1446 /* Check if the stack is empty. */
1447 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1448 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1451 /* Hopefully the prologue analysis either correctly determined the
1452 frame's base (which is the SP from the previous frame), or set
1453 that base to "NULL". */
1454 base = info->prev_sp;
1458 id = frame_id_build (base, func);
1462 static struct value *
1463 frv_frame_prev_register (struct frame_info *this_frame,
1464 void **this_prologue_cache, int regnum)
1466 struct frv_unwind_cache *info
1467 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1468 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1471 static const struct frame_unwind frv_frame_unwind = {
1474 frv_frame_prev_register,
1476 default_frame_sniffer
1480 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1482 struct frv_unwind_cache *info
1483 = frv_frame_unwind_cache (this_frame, this_cache);
1487 static const struct frame_base frv_frame_base = {
1489 frv_frame_base_address,
1490 frv_frame_base_address,
1491 frv_frame_base_address
1495 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1497 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1501 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1502 frame. The frame ID's base needs to match the TOS value saved by
1503 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1505 static struct frame_id
1506 frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1508 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1509 return frame_id_build (sp, get_frame_pc (this_frame));
1512 static struct gdbarch *
1513 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1515 struct gdbarch *gdbarch;
1516 struct gdbarch_tdep *var;
1519 /* Check to see if we've already built an appropriate architecture
1520 object for this executable. */
1521 arches = gdbarch_list_lookup_by_info (arches, &info);
1523 return arches->gdbarch;
1525 /* Select the right tdep structure for this variant. */
1526 var = new_variant ();
1527 switch (info.bfd_arch_info->mach)
1530 case bfd_mach_frvsimple:
1531 case bfd_mach_fr500:
1532 case bfd_mach_frvtomcat:
1533 case bfd_mach_fr550:
1534 set_variant_num_gprs (var, 64);
1535 set_variant_num_fprs (var, 64);
1538 case bfd_mach_fr400:
1539 case bfd_mach_fr450:
1540 set_variant_num_gprs (var, 32);
1541 set_variant_num_fprs (var, 32);
1545 /* Never heard of this variant. */
1549 /* Extract the ELF flags, if available. */
1550 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1551 elf_flags = elf_elfheader (info.abfd)->e_flags;
1553 if (elf_flags & EF_FRV_FDPIC)
1554 set_variant_abi_fdpic (var);
1556 if (elf_flags & EF_FRV_CPU_FR450)
1557 set_variant_scratch_registers (var);
1559 gdbarch = gdbarch_alloc (&info, var);
1561 set_gdbarch_short_bit (gdbarch, 16);
1562 set_gdbarch_int_bit (gdbarch, 32);
1563 set_gdbarch_long_bit (gdbarch, 32);
1564 set_gdbarch_long_long_bit (gdbarch, 64);
1565 set_gdbarch_float_bit (gdbarch, 32);
1566 set_gdbarch_double_bit (gdbarch, 64);
1567 set_gdbarch_long_double_bit (gdbarch, 64);
1568 set_gdbarch_ptr_bit (gdbarch, 32);
1570 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1571 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1573 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1574 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1575 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1577 set_gdbarch_register_name (gdbarch, frv_register_name);
1578 set_gdbarch_register_type (gdbarch, frv_register_type);
1579 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1581 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1582 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1584 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1585 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1586 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1587 set_gdbarch_adjust_breakpoint_address
1588 (gdbarch, frv_adjust_breakpoint_address);
1590 set_gdbarch_return_value (gdbarch, frv_return_value);
1593 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1594 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1595 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1596 frame_base_set_default (gdbarch, &frv_frame_base);
1597 /* We set the sniffer lower down after the OSABI hooks have been
1600 /* Settings for calling functions in the inferior. */
1601 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1602 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
1604 /* Settings that should be unnecessary. */
1605 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1607 /* Hardware watchpoint / breakpoint support. */
1608 switch (info.bfd_arch_info->mach)
1611 case bfd_mach_frvsimple:
1612 case bfd_mach_fr500:
1613 case bfd_mach_frvtomcat:
1614 /* fr500-style hardware debugging support. */
1615 var->num_hw_watchpoints = 4;
1616 var->num_hw_breakpoints = 4;
1619 case bfd_mach_fr400:
1620 case bfd_mach_fr450:
1621 /* fr400-style hardware debugging support. */
1622 var->num_hw_watchpoints = 2;
1623 var->num_hw_breakpoints = 4;
1627 /* Otherwise, assume we don't have hardware debugging support. */
1628 var->num_hw_watchpoints = 0;
1629 var->num_hw_breakpoints = 0;
1633 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1634 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1635 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1636 frv_convert_from_func_ptr_addr);
1638 set_solib_ops (gdbarch, &frv_so_ops);
1640 /* Hook in ABI-specific overrides, if they have been registered. */
1641 gdbarch_init_osabi (info, gdbarch);
1643 /* Set the fallback (prologue based) frame sniffer. */
1644 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1646 /* Enable TLS support. */
1647 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1648 frv_fetch_objfile_link_map);
1654 _initialize_frv_tdep (void)
1656 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);