1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002, 2003 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
23 #include "symfile.h" /* for entry_point_address */
25 #include "arch-utils.h"
28 extern void _initialize_frv_tdep (void);
30 static gdbarch_init_ftype frv_gdbarch_init;
32 static gdbarch_register_name_ftype frv_register_name;
33 static gdbarch_register_raw_size_ftype frv_register_raw_size;
34 static gdbarch_register_virtual_size_ftype frv_register_virtual_size;
35 static gdbarch_register_virtual_type_ftype frv_register_virtual_type;
36 static gdbarch_register_byte_ftype frv_register_byte;
37 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
38 static gdbarch_skip_prologue_ftype frv_skip_prologue;
39 static gdbarch_deprecated_extract_return_value_ftype frv_extract_return_value;
40 static gdbarch_deprecated_extract_struct_value_address_ftype frv_extract_struct_value_address;
41 static gdbarch_use_struct_convention_ftype frv_use_struct_convention;
42 static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
43 static gdbarch_init_extra_frame_info_ftype stupid_useless_init_extra_frame_info;
44 static gdbarch_push_arguments_ftype frv_push_arguments;
45 static gdbarch_saved_pc_after_call_ftype frv_saved_pc_after_call;
47 static void frv_pop_frame_regular (struct frame_info *frame);
49 /* Register numbers. You can change these as needed, but don't forget
50 to update the simulator accordingly. */
52 /* The total number of registers we know exist. */
55 /* Register numbers 0 -- 63 are always reserved for general-purpose
56 registers. The chip at hand may have less. */
60 struct_return_regnum = 3,
63 /* Register numbers 64 -- 127 are always reserved for floating-point
64 registers. The chip at hand may have less. */
65 first_fpr_regnum = 64,
66 last_fpr_regnum = 127,
68 /* Register numbers 128 on up are always reserved for special-purpose
70 first_spr_regnum = 128,
86 static LONGEST frv_call_dummy_words[] =
90 /* The contents of this structure can only be trusted after we've
91 frv_frame_init_saved_regs on the frame. */
92 struct frame_extra_info
94 /* The offset from our frame pointer to our caller's stack
96 int fp_to_callers_sp_offset;
98 /* Non-zero if we've saved our return address on the stack yet.
99 Zero if it's still sitting in the link register. */
100 int lr_saved_on_stack;
104 /* A structure describing a particular variant of the FRV.
105 We allocate and initialize one of these structures when we create
106 the gdbarch object for a variant.
108 At the moment, all the FR variants we support differ only in which
109 registers are present; the portable code of GDB knows that
110 registers whose names are the empty string don't exist, so the
111 `register_names' array captures all the per-variant information we
114 in the future, if we need to have per-variant maps for raw size,
115 virtual type, etc., we should replace register_names with an array
116 of structures, each of which gives all the necessary info for one
117 register. Don't stick parallel arrays in here --- that's so
121 /* How many general-purpose registers does this variant have? */
124 /* How many floating-point registers does this variant have? */
127 /* How many hardware watchpoints can it support? */
128 int num_hw_watchpoints;
130 /* How many hardware breakpoints can it support? */
131 int num_hw_breakpoints;
133 /* Register names. */
134 char **register_names;
137 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
140 /* Allocate a new variant structure, and set up default values for all
142 static struct gdbarch_tdep *
145 struct gdbarch_tdep *var;
149 var = xmalloc (sizeof (*var));
150 memset (var, 0, sizeof (*var));
154 var->num_hw_watchpoints = 0;
155 var->num_hw_breakpoints = 0;
157 /* By default, don't supply any general-purpose or floating-point
159 var->register_names = (char **) xmalloc (frv_num_regs * sizeof (char *));
160 for (r = 0; r < frv_num_regs; r++)
161 var->register_names[r] = "";
163 /* Do, however, supply default names for the special-purpose
165 for (r = first_spr_regnum; r <= last_spr_regnum; ++r)
167 sprintf (buf, "x%d", r);
168 var->register_names[r] = xstrdup (buf);
171 var->register_names[pc_regnum] = "pc";
172 var->register_names[lr_regnum] = "lr";
173 var->register_names[lcr_regnum] = "lcr";
175 var->register_names[psr_regnum] = "psr";
176 var->register_names[ccr_regnum] = "ccr";
177 var->register_names[cccr_regnum] = "cccr";
178 var->register_names[tbr_regnum] = "tbr";
180 /* Debug registers. */
181 var->register_names[brr_regnum] = "brr";
182 var->register_names[dbar0_regnum] = "dbar0";
183 var->register_names[dbar1_regnum] = "dbar1";
184 var->register_names[dbar2_regnum] = "dbar2";
185 var->register_names[dbar3_regnum] = "dbar3";
191 /* Indicate that the variant VAR has NUM_GPRS general-purpose
192 registers, and fill in the names array appropriately. */
194 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
198 var->num_gprs = num_gprs;
200 for (r = 0; r < num_gprs; ++r)
204 sprintf (buf, "gr%d", r);
205 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
210 /* Indicate that the variant VAR has NUM_FPRS floating-point
211 registers, and fill in the names array appropriately. */
213 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
217 var->num_fprs = num_fprs;
219 for (r = 0; r < num_fprs; ++r)
223 sprintf (buf, "fr%d", r);
224 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
230 frv_register_name (int reg)
234 if (reg >= frv_num_regs)
237 return CURRENT_VARIANT->register_names[reg];
242 frv_register_raw_size (int reg)
248 frv_register_virtual_size (int reg)
254 frv_register_virtual_type (int reg)
256 if (reg >= 64 && reg <= 127)
257 return builtin_type_float;
259 return builtin_type_int;
263 frv_register_byte (int reg)
268 static const unsigned char *
269 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
271 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
272 *lenp = sizeof (breakpoint);
277 frv_frame_chain (struct frame_info *frame)
279 CORE_ADDR saved_fp_addr;
281 if (frame->saved_regs && frame->saved_regs[fp_regnum] != 0)
282 saved_fp_addr = frame->saved_regs[fp_regnum];
284 /* Just assume it was saved in the usual place. */
285 saved_fp_addr = frame->frame;
287 return read_memory_integer (saved_fp_addr, 4);
291 frv_frame_saved_pc (struct frame_info *frame)
293 frv_frame_init_saved_regs (frame);
295 /* Perhaps the prologue analyzer recorded where it was stored.
296 (As of 14 Oct 2001, it never does.) */
297 if (frame->saved_regs && frame->saved_regs[pc_regnum] != 0)
298 return read_memory_integer (frame->saved_regs[pc_regnum], 4);
300 /* If the prologue analyzer tells us the link register was saved on
301 the stack, get it from there. */
302 if (frame->extra_info->lr_saved_on_stack)
303 return read_memory_integer (frame->frame + 8, 4);
305 /* Otherwise, it's still in LR.
306 However, if FRAME isn't the youngest frame, this is kind of
307 suspicious --- if this frame called somebody else, then its LR
308 has certainly been overwritten. */
310 return read_register (lr_regnum);
312 /* By default, assume it's saved in the standard place, relative to
313 the frame pointer. */
314 return read_memory_integer (frame->frame + 8, 4);
318 /* Return true if REG is a caller-saves ("scratch") register,
321 is_caller_saves_reg (int reg)
323 return ((4 <= reg && reg <= 7)
324 || (14 <= reg && reg <= 15)
325 || (32 <= reg && reg <= 47));
329 /* Return true if REG is a callee-saves register, false otherwise. */
331 is_callee_saves_reg (int reg)
333 return ((16 <= reg && reg <= 31)
334 || (48 <= reg && reg <= 63));
338 /* Return true if REG is an argument register, false otherwise. */
340 is_argument_reg (int reg)
342 return (8 <= reg && reg <= 13);
346 /* Scan an FR-V prologue, starting at PC, until frame->PC.
347 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
348 We assume FRAME's saved_regs array has already been allocated and cleared.
349 Return the first PC value after the prologue.
351 Note that, for unoptimized code, we almost don't need this function
352 at all; all arguments and locals live on the stack, so we just need
353 the FP to find everything. The catch: structures passed by value
354 have their addresses living in registers; they're never spilled to
355 the stack. So if you ever want to be able to get to these
356 arguments in any frame but the top, you'll need to do this serious
357 prologue analysis. */
359 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *frame)
361 /* When writing out instruction bitpatterns, we use the following
362 letters to label instruction fields:
363 P - The parallel bit. We don't use this.
364 J - The register number of GRj in the instruction description.
365 K - The register number of GRk in the instruction description.
366 I - The register number of GRi.
367 S - a signed imediate offset.
368 U - an unsigned immediate offset.
370 The dots below the numbers indicate where hex digit boundaries
371 fall, to make it easier to check the numbers. */
373 /* Non-zero iff we've seen the instruction that initializes the
374 frame pointer for this function's frame. */
377 /* If fp_set is non_zero, then this is the distance from
378 the stack pointer to frame pointer: fp = sp + fp_offset. */
381 /* Total size of frame prior to any alloca operations. */
384 /* The number of the general-purpose register we saved the return
385 address ("link register") in, or -1 if we haven't moved it yet. */
386 int lr_save_reg = -1;
388 /* Non-zero iff we've saved the LR onto the stack. */
389 int lr_saved_on_stack = 0;
391 /* If gr_saved[i] is non-zero, then we've noticed that general
392 register i has been saved at gr_sp_offset[i] from the stack
395 int gr_sp_offset[64];
397 memset (gr_saved, 0, sizeof (gr_saved));
399 while (! frame || pc < frame->pc)
401 LONGEST op = read_memory_integer (pc, 4);
403 /* The tests in this chain of ifs should be in order of
404 decreasing selectivity, so that more particular patterns get
405 to fire before less particular patterns. */
407 /* Setting the FP from the SP:
409 P 000010 0100010 000001 000000000000 = 0x04881000
410 0 111111 1111111 111111 111111111111 = 0x7fffffff
412 We treat this as part of the prologue. */
413 if ((op & 0x7fffffff) == 0x04881000)
419 /* Move the link register to the scratch register grJ, before saving:
421 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
422 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
424 We treat this as part of the prologue. */
425 else if ((op & 0x7fffffc0) == 0x080d01c0)
427 int gr_j = op & 0x3f;
429 /* If we're moving it to a scratch register, that's fine. */
430 if (is_caller_saves_reg (gr_j))
432 /* Otherwise it's not a prologue instruction that we
438 /* To save multiple callee-saves registers on the stack, at
442 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
443 0 000000 1111111 111111 111111 111111 = 0x01ffffff
446 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
447 0 000000 1111111 111111 111111 111111 = 0x01ffffff
449 We treat this as part of the prologue, and record the register's
450 saved address in the frame structure. */
451 else if ((op & 0x01ffffff) == 0x000c10c0
452 || (op & 0x01ffffff) == 0x000c1100)
454 int gr_k = ((op >> 25) & 0x3f);
455 int ope = ((op >> 6) & 0x3f);
459 /* Is it an std or an stq? */
465 /* Is it really a callee-saves register? */
466 if (is_callee_saves_reg (gr_k))
468 for (i = 0; i < count; i++)
470 gr_saved[gr_k + i] = 1;
471 gr_sp_offset[gr_k + i] = 4 * i;
475 /* It's not a prologue instruction. */
479 /* Adjusting the stack pointer. (The stack pointer is GR1.)
481 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
482 0 111111 1111111 111111 000000000000 = 0x7ffff000
484 We treat this as part of the prologue. */
485 else if ((op & 0x7ffff000) == 0x02401000)
487 /* Sign-extend the twelve-bit field.
488 (Isn't there a better way to do this?) */
489 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
494 /* Setting the FP to a constant distance from the SP:
496 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
497 0 111111 1111111 111111 000000000000 = 0x7ffff000
499 We treat this as part of the prologue. */
500 else if ((op & 0x7ffff000) == 0x04401000)
502 /* Sign-extend the twelve-bit field.
503 (Isn't there a better way to do this?) */
504 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
509 /* To spill an argument register to a scratch register:
511 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
512 0 000000 1111111 000000 111111111111 = 0x01fc0fff
514 For the time being, we treat this as a prologue instruction,
515 assuming that GRi is an argument register. This one's kind
516 of suspicious, because it seems like it could be part of a
517 legitimate body instruction. But we only come here when the
518 source info wasn't helpful, so we have to do the best we can.
519 Hopefully once GCC and GDB agree on how to emit line number
520 info for prologues, then this code will never come into play. */
521 else if ((op & 0x01fc0fff) == 0x00880000)
523 int gr_i = ((op >> 12) & 0x3f);
525 /* If the source isn't an arg register, then this isn't a
526 prologue instruction. */
527 if (! is_argument_reg (gr_i))
531 /* To spill 16-bit values to the stack:
533 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
534 0 000000 1111111 111111 000000000000 = 0x01fff000
536 And for 8-bit values, we use STB instructions.
538 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
539 0 000000 1111111 111111 000000000000 = 0x01fff000
541 We check that GRk is really an argument register, and treat
542 all such as part of the prologue. */
543 else if ( (op & 0x01fff000) == 0x01442000
544 || (op & 0x01fff000) == 0x01402000)
546 int gr_k = ((op >> 25) & 0x3f);
548 if (! is_argument_reg (gr_k))
549 break; /* Source isn't an arg register. */
552 /* To save multiple callee-saves register on the stack, at a
556 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
557 0 000000 1111111 111111 000000000000 = 0x01fff000
560 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
561 0 000000 1111111 111111 000000000000 = 0x01fff000
563 We treat this as part of the prologue, and record the register's
564 saved address in the frame structure. */
565 else if ((op & 0x01fff000) == 0x014c1000
566 || (op & 0x01fff000) == 0x01501000)
568 int gr_k = ((op >> 25) & 0x3f);
572 /* Is it a stdi or a stqi? */
573 if ((op & 0x01fff000) == 0x014c1000)
578 /* Is it really a callee-saves register? */
579 if (is_callee_saves_reg (gr_k))
581 /* Sign-extend the twelve-bit field.
582 (Isn't there a better way to do this?) */
583 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
585 for (i = 0; i < count; i++)
587 gr_saved[gr_k + i] = 1;
588 gr_sp_offset[gr_k + i] = s + (4 * i);
592 /* It's not a prologue instruction. */
596 /* Storing any kind of integer register at any constant offset
597 from any other register.
600 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
601 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
604 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
605 0 000000 1111111 000000 000000000000 = 0x01fc0000
607 These could be almost anything, but a lot of prologue
608 instructions fall into this pattern, so let's decode the
609 instruction once, and then work at a higher level. */
610 else if (((op & 0x01fc0fff) == 0x000c0080)
611 || ((op & 0x01fc0000) == 0x01480000))
613 int gr_k = ((op >> 25) & 0x3f);
614 int gr_i = ((op >> 12) & 0x3f);
617 /* Are we storing with gr0 as an offset, or using an
619 if ((op & 0x01fc0fff) == 0x000c0080)
622 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
624 /* If the address isn't relative to the SP or FP, it's not a
625 prologue instruction. */
626 if (gr_i != sp_regnum && gr_i != fp_regnum)
629 /* Saving the old FP in the new frame (relative to the SP). */
630 if (gr_k == fp_regnum && gr_i == sp_regnum)
633 /* Saving callee-saves register(s) on the stack, relative to
635 else if (gr_i == sp_regnum
636 && is_callee_saves_reg (gr_k))
639 gr_sp_offset[gr_k] = offset;
642 /* Saving the scratch register holding the return address. */
643 else if (lr_save_reg != -1
644 && gr_k == lr_save_reg)
645 lr_saved_on_stack = 1;
647 /* Spilling int-sized arguments to the stack. */
648 else if (is_argument_reg (gr_k))
651 /* It's not a store instruction we recognize, so this must
652 be the end of the prologue. */
657 /* It's not any instruction we recognize, so this must be the end
667 frame->extra_info->lr_saved_on_stack = lr_saved_on_stack;
669 /* If we know the relationship between the stack and frame
670 pointers, record the addresses of the registers we noticed.
671 Note that we have to do this as a separate step at the end,
672 because instructions may save relative to the SP, but we need
673 their addresses relative to the FP. */
678 for (i = 0; i < 64; i++)
680 frame->saved_regs[i] = (frame->frame
681 - fp_offset + gr_sp_offset[i]);
683 frame->extra_info->fp_to_callers_sp_offset = framesize - fp_offset;
692 frv_skip_prologue (CORE_ADDR pc)
694 CORE_ADDR func_addr, func_end, new_pc;
698 /* If the line table has entry for a line *within* the function
699 (i.e., not in the prologue, and not past the end), then that's
701 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
703 struct symtab_and_line sal;
705 sal = find_pc_line (func_addr, 0);
707 if (sal.line != 0 && sal.end < func_end)
713 /* The FR-V prologue is at least five instructions long (twenty bytes).
714 If we didn't find a real source location past that, then
715 do a full analysis of the prologue. */
716 if (new_pc < pc + 20)
717 new_pc = frv_analyze_prologue (pc, 0);
723 frv_frame_init_saved_regs (struct frame_info *frame)
725 if (frame->saved_regs)
728 frame_saved_regs_zalloc (frame);
729 frame->saved_regs[fp_regnum] = frame->frame;
731 /* Find the beginning of this function, so we can analyze its
734 CORE_ADDR func_addr, func_end;
736 if (find_pc_partial_function (frame->pc, NULL, &func_addr, &func_end))
737 frv_analyze_prologue (func_addr, frame);
741 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
742 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
743 and TYPE is the type (which is known to be struct, union or array).
745 The frv returns all structs in memory. */
748 frv_use_struct_convention (int gcc_p, struct type *type)
754 frv_extract_return_value (struct type *type, char *regbuf, char *valbuf)
756 memcpy (valbuf, (regbuf
757 + frv_register_byte (8)
758 + (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0)),
763 frv_extract_struct_value_address (char *regbuf)
765 return extract_unsigned_integer (regbuf + frv_register_byte (struct_return_regnum),
770 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
772 write_register (struct_return_regnum, addr);
776 frv_frameless_function_invocation (struct frame_info *frame)
778 return frameless_look_for_prologue (frame);
782 frv_saved_pc_after_call (struct frame_info *frame)
784 return read_register (lr_regnum);
788 frv_init_extra_frame_info (int fromleaf, struct frame_info *frame)
790 frame_extra_info_zalloc (frame, sizeof (struct frame_extra_info));
791 frame->extra_info->fp_to_callers_sp_offset = 0;
792 frame->extra_info->lr_saved_on_stack = 0;
795 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
796 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
799 frv_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
800 int struct_return, CORE_ADDR struct_addr)
807 struct type *arg_type;
809 enum type_code typecode;
815 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
816 nargs, (int) sp, struct_return, struct_addr);
820 for (argnum = 0; argnum < nargs; ++argnum)
821 stack_space += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
823 stack_space -= (6 * 4);
827 /* Make sure stack is dword aligned. */
828 sp = ROUND_DOWN (sp, 8);
835 write_register (struct_return_regnum, struct_addr);
837 for (argnum = 0; argnum < nargs; ++argnum)
840 arg_type = check_typedef (VALUE_TYPE (arg));
841 len = TYPE_LENGTH (arg_type);
842 typecode = TYPE_CODE (arg_type);
844 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
846 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
847 typecode = TYPE_CODE_PTR;
853 val = (char *) VALUE_CONTENTS (arg);
858 int partial_len = (len < 4 ? len : 4);
862 regval = extract_unsigned_integer (val, partial_len);
864 printf(" Argnum %d data %x -> reg %d\n",
865 argnum, (int) regval, argreg);
867 write_register (argreg, regval);
873 printf(" Argnum %d data %x -> offset %d (%x)\n",
874 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
876 write_memory (sp + stack_offset, val, partial_len);
877 stack_offset += ROUND_UP(partial_len, 4);
887 frv_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
889 write_register (lr_regnum, CALL_DUMMY_ADDRESS ());
894 frv_store_return_value (struct type *type, char *valbuf)
896 int length = TYPE_LENGTH (type);
897 int reg8_offset = frv_register_byte (8);
900 deprecated_write_register_bytes (reg8_offset + (4 - length), valbuf,
902 else if (length == 8)
903 deprecated_write_register_bytes (reg8_offset, valbuf, length);
905 internal_error (__FILE__, __LINE__,
906 "Don't know how to return a %d-byte value.", length);
912 generic_pop_current_frame (frv_pop_frame_regular);
916 frv_pop_frame_regular (struct frame_info *frame)
923 frv_frame_init_saved_regs (frame);
925 write_register (pc_regnum, frv_frame_saved_pc (frame));
926 for (regno = 0; regno < frv_num_regs; ++regno)
928 if (frame->saved_regs[regno]
929 && regno != pc_regnum
930 && regno != sp_regnum)
932 write_register (regno,
933 read_memory_integer (frame->saved_regs[regno], 4));
936 write_register (sp_regnum, fp + frame->extra_info->fp_to_callers_sp_offset);
937 flush_cached_frames ();
942 frv_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
943 CORE_ADDR *targ_addr, int *targ_len)
945 *targ_addr = memaddr;
946 *targ_len = nr_bytes;
950 /* Hardware watchpoint / breakpoint support for the FR500
954 frv_check_watch_resources (int type, int cnt, int ot)
956 struct gdbarch_tdep *var = CURRENT_VARIANT;
958 /* Watchpoints not supported on simulator. */
959 if (strcmp (target_shortname, "sim") == 0)
962 if (type == bp_hardware_breakpoint)
964 if (var->num_hw_breakpoints == 0)
966 else if (cnt <= var->num_hw_breakpoints)
971 if (var->num_hw_watchpoints == 0)
975 else if (cnt <= var->num_hw_watchpoints)
983 frv_stopped_data_address (void)
985 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
987 brr = read_register (brr_regnum);
988 dbar0 = read_register (dbar0_regnum);
989 dbar1 = read_register (dbar1_regnum);
990 dbar2 = read_register (dbar2_regnum);
991 dbar3 = read_register (dbar3_regnum);
995 else if (brr & (1<<10))
997 else if (brr & (1<<9))
999 else if (brr & (1<<8))
1005 static struct gdbarch *
1006 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1008 struct gdbarch *gdbarch;
1009 struct gdbarch_tdep *var;
1011 /* Check to see if we've already built an appropriate architecture
1012 object for this executable. */
1013 arches = gdbarch_list_lookup_by_info (arches, &info);
1015 return arches->gdbarch;
1017 /* Select the right tdep structure for this variant. */
1018 var = new_variant ();
1019 switch (info.bfd_arch_info->mach)
1022 case bfd_mach_frvsimple:
1023 case bfd_mach_fr500:
1024 case bfd_mach_frvtomcat:
1025 set_variant_num_gprs (var, 64);
1026 set_variant_num_fprs (var, 64);
1029 case bfd_mach_fr400:
1030 set_variant_num_gprs (var, 32);
1031 set_variant_num_fprs (var, 32);
1035 /* Never heard of this variant. */
1039 gdbarch = gdbarch_alloc (&info, var);
1041 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1042 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1043 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1045 set_gdbarch_short_bit (gdbarch, 16);
1046 set_gdbarch_int_bit (gdbarch, 32);
1047 set_gdbarch_long_bit (gdbarch, 32);
1048 set_gdbarch_long_long_bit (gdbarch, 64);
1049 set_gdbarch_float_bit (gdbarch, 32);
1050 set_gdbarch_double_bit (gdbarch, 64);
1051 set_gdbarch_long_double_bit (gdbarch, 64);
1052 set_gdbarch_ptr_bit (gdbarch, 32);
1054 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1055 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1056 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1057 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1059 set_gdbarch_register_name (gdbarch, frv_register_name);
1060 set_gdbarch_deprecated_register_size (gdbarch, 4);
1061 set_gdbarch_deprecated_register_bytes (gdbarch, frv_num_regs * 4);
1062 set_gdbarch_register_byte (gdbarch, frv_register_byte);
1063 set_gdbarch_register_raw_size (gdbarch, frv_register_raw_size);
1064 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
1065 set_gdbarch_register_virtual_size (gdbarch, frv_register_virtual_size);
1066 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
1067 set_gdbarch_register_virtual_type (gdbarch, frv_register_virtual_type);
1069 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1070 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1072 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1073 set_gdbarch_frame_args_skip (gdbarch, 0);
1074 set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1076 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, frv_saved_pc_after_call);
1078 set_gdbarch_deprecated_frame_chain (gdbarch, frv_frame_chain);
1079 set_gdbarch_deprecated_frame_saved_pc (gdbarch, frv_frame_saved_pc);
1081 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, frv_frame_init_saved_regs);
1083 set_gdbarch_use_struct_convention (gdbarch, frv_use_struct_convention);
1084 set_gdbarch_deprecated_extract_return_value (gdbarch, frv_extract_return_value);
1086 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1087 set_gdbarch_deprecated_store_return_value (gdbarch, frv_store_return_value);
1088 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1090 /* Settings for calling functions in the inferior. */
1091 set_gdbarch_deprecated_push_arguments (gdbarch, frv_push_arguments);
1092 set_gdbarch_deprecated_push_return_address (gdbarch, frv_push_return_address);
1093 set_gdbarch_deprecated_pop_frame (gdbarch, frv_pop_frame);
1095 set_gdbarch_deprecated_call_dummy_words (gdbarch, frv_call_dummy_words);
1096 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (frv_call_dummy_words));
1097 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, frv_init_extra_frame_info);
1099 /* Settings that should be unnecessary. */
1100 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1102 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1103 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
1105 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1107 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1108 set_gdbarch_function_start_offset (gdbarch, 0);
1110 set_gdbarch_remote_translate_xfer_address
1111 (gdbarch, frv_remote_translate_xfer_address);
1113 /* Hardware watchpoint / breakpoint support. */
1114 switch (info.bfd_arch_info->mach)
1117 case bfd_mach_frvsimple:
1118 case bfd_mach_fr500:
1119 case bfd_mach_frvtomcat:
1120 /* fr500-style hardware debugging support. */
1121 var->num_hw_watchpoints = 4;
1122 var->num_hw_breakpoints = 4;
1125 case bfd_mach_fr400:
1126 /* fr400-style hardware debugging support. */
1127 var->num_hw_watchpoints = 2;
1128 var->num_hw_breakpoints = 4;
1132 /* Otherwise, assume we don't have hardware debugging support. */
1133 var->num_hw_watchpoints = 0;
1134 var->num_hw_breakpoints = 0;
1142 _initialize_frv_tdep (void)
1144 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1146 deprecated_tm_print_insn = print_insn_frv;