1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002, 2003 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include "gdb_string.h"
24 #include "symfile.h" /* for entry_point_address */
26 #include "arch-utils.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
33 #include "gdb_assert.h"
34 #include "sim-regno.h"
35 #include "gdb/sim-frv.h"
36 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
38 extern void _initialize_frv_tdep (void);
40 static gdbarch_init_ftype frv_gdbarch_init;
42 static gdbarch_register_name_ftype frv_register_name;
43 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
44 static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
45 static gdbarch_skip_prologue_ftype frv_skip_prologue;
46 static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
47 static gdbarch_deprecated_push_arguments_ftype frv_push_arguments;
48 static gdbarch_deprecated_saved_pc_after_call_ftype frv_saved_pc_after_call;
50 /* Register numbers. The order in which these appear define the
51 remote protocol, so take care in changing them. */
53 /* Register numbers 0 -- 63 are always reserved for general-purpose
54 registers. The chip at hand may have less. */
58 struct_return_regnum = 3,
61 /* Register numbers 64 -- 127 are always reserved for floating-point
62 registers. The chip at hand may have less. */
63 first_fpr_regnum = 64,
64 last_fpr_regnum = 127,
66 /* The PC register. */
69 /* Register numbers 129 on up are always reserved for special-purpose
71 first_spr_regnum = 129,
85 last_spr_regnum = 148,
87 /* The total number of registers we know exist. */
88 frv_num_regs = last_spr_regnum + 1,
90 /* Pseudo registers */
91 first_pseudo_regnum = frv_num_regs,
93 /* iacc0 - the 64-bit concatenation of iacc0h and iacc0l. */
94 iacc0_regnum = first_pseudo_regnum + 0,
96 last_pseudo_regnum = iacc0_regnum,
97 frv_num_pseudo_regs = last_pseudo_regnum - first_pseudo_regnum + 1,
100 static LONGEST frv_call_dummy_words[] =
104 struct frv_unwind_cache /* was struct frame_extra_info */
106 /* The previous frame's inner-most stack address. Used as this
107 frame ID's stack_addr. */
110 /* The frame's base, optionally used by the high-level debug info. */
113 /* Table indicating the location of each and every register. */
114 struct trad_frame_saved_reg *saved_regs;
118 /* A structure describing a particular variant of the FRV.
119 We allocate and initialize one of these structures when we create
120 the gdbarch object for a variant.
122 At the moment, all the FR variants we support differ only in which
123 registers are present; the portable code of GDB knows that
124 registers whose names are the empty string don't exist, so the
125 `register_names' array captures all the per-variant information we
128 in the future, if we need to have per-variant maps for raw size,
129 virtual type, etc., we should replace register_names with an array
130 of structures, each of which gives all the necessary info for one
131 register. Don't stick parallel arrays in here --- that's so
135 /* How many general-purpose registers does this variant have? */
138 /* How many floating-point registers does this variant have? */
141 /* How many hardware watchpoints can it support? */
142 int num_hw_watchpoints;
144 /* How many hardware breakpoints can it support? */
145 int num_hw_breakpoints;
147 /* Register names. */
148 char **register_names;
151 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
154 /* Allocate a new variant structure, and set up default values for all
156 static struct gdbarch_tdep *
159 struct gdbarch_tdep *var;
163 var = xmalloc (sizeof (*var));
164 memset (var, 0, sizeof (*var));
168 var->num_hw_watchpoints = 0;
169 var->num_hw_breakpoints = 0;
171 /* By default, don't supply any general-purpose or floating-point
174 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
176 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
177 var->register_names[r] = "";
179 /* Do, however, supply default names for the known special-purpose
182 var->register_names[pc_regnum] = "pc";
183 var->register_names[lr_regnum] = "lr";
184 var->register_names[lcr_regnum] = "lcr";
186 var->register_names[psr_regnum] = "psr";
187 var->register_names[ccr_regnum] = "ccr";
188 var->register_names[cccr_regnum] = "cccr";
189 var->register_names[tbr_regnum] = "tbr";
191 /* Debug registers. */
192 var->register_names[brr_regnum] = "brr";
193 var->register_names[dbar0_regnum] = "dbar0";
194 var->register_names[dbar1_regnum] = "dbar1";
195 var->register_names[dbar2_regnum] = "dbar2";
196 var->register_names[dbar3_regnum] = "dbar3";
198 /* iacc0 (Only found on MB93405.) */
199 var->register_names[iacc0h_regnum] = "iacc0h";
200 var->register_names[iacc0l_regnum] = "iacc0l";
201 var->register_names[iacc0_regnum] = "iacc0";
207 /* Indicate that the variant VAR has NUM_GPRS general-purpose
208 registers, and fill in the names array appropriately. */
210 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
214 var->num_gprs = num_gprs;
216 for (r = 0; r < num_gprs; ++r)
220 sprintf (buf, "gr%d", r);
221 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
226 /* Indicate that the variant VAR has NUM_FPRS floating-point
227 registers, and fill in the names array appropriately. */
229 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
233 var->num_fprs = num_fprs;
235 for (r = 0; r < num_fprs; ++r)
239 sprintf (buf, "fr%d", r);
240 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
246 frv_register_name (int reg)
250 if (reg >= frv_num_regs + frv_num_pseudo_regs)
253 return CURRENT_VARIANT->register_names[reg];
258 frv_register_type (struct gdbarch *gdbarch, int reg)
260 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
261 return builtin_type_float;
262 else if (reg == iacc0_regnum)
263 return builtin_type_int64;
265 return builtin_type_int32;
269 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
270 int reg, void *buffer)
272 if (reg == iacc0_regnum)
274 regcache_raw_read (regcache, iacc0h_regnum, buffer);
275 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
280 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
281 int reg, const void *buffer)
283 if (reg == iacc0_regnum)
285 regcache_raw_write (regcache, iacc0h_regnum, buffer);
286 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
291 frv_register_sim_regno (int reg)
293 static const int spr_map[] =
295 H_SPR_PSR, /* psr_regnum */
296 H_SPR_CCR, /* ccr_regnum */
297 H_SPR_CCCR, /* cccr_regnum */
301 H_SPR_TBR, /* tbr_regnum */
302 H_SPR_BRR, /* brr_regnum */
303 H_SPR_DBAR0, /* dbar0_regnum */
304 H_SPR_DBAR1, /* dbar1_regnum */
305 H_SPR_DBAR2, /* dbar2_regnum */
306 H_SPR_DBAR3, /* dbar3_regnum */
311 H_SPR_LR, /* lr_regnum */
312 H_SPR_LCR, /* lcr_regnum */
313 H_SPR_IACC0H, /* iacc0h_regnum */
314 H_SPR_IACC0L /* iacc0l_regnum */
317 gdb_assert (reg >= 0 && reg < NUM_REGS);
319 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
320 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
321 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
322 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
323 else if (pc_regnum == reg)
324 return SIM_FRV_PC_REGNUM;
325 else if (reg >= first_spr_regnum
326 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
328 int spr_reg_offset = spr_map[reg - first_spr_regnum];
330 if (spr_reg_offset < 0)
331 return SIM_REGNO_DOES_NOT_EXIST;
333 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
336 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
339 static const unsigned char *
340 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
342 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
343 *lenp = sizeof (breakpoint);
347 /* Define the maximum number of instructions which may be packed into a
348 bundle (VLIW instruction). */
349 static const int max_instrs_per_bundle = 8;
351 /* Define the size (in bytes) of an FR-V instruction. */
352 static const int frv_instr_size = 4;
354 /* Adjust a breakpoint's address to account for the FR-V architecture's
355 constraint that a break instruction must not appear as any but the
356 first instruction in the bundle. */
358 frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
360 int count = max_instrs_per_bundle;
361 CORE_ADDR addr = bpaddr - frv_instr_size;
362 CORE_ADDR func_start = get_pc_function_start (bpaddr);
364 /* Find the end of the previous packing sequence. This will be indicated
365 by either attempting to access some inaccessible memory or by finding
366 an instruction word whose packing bit is set to one. */
367 while (count-- > 0 && addr >= func_start)
369 char instr[frv_instr_size];
372 status = read_memory_nobpt (addr, instr, sizeof instr);
377 /* This is a big endian architecture, so byte zero will have most
378 significant byte. The most significant bit of this byte is the
383 addr -= frv_instr_size;
387 bpaddr = addr + frv_instr_size;
393 /* Return true if REG is a caller-saves ("scratch") register,
396 is_caller_saves_reg (int reg)
398 return ((4 <= reg && reg <= 7)
399 || (14 <= reg && reg <= 15)
400 || (32 <= reg && reg <= 47));
404 /* Return true if REG is a callee-saves register, false otherwise. */
406 is_callee_saves_reg (int reg)
408 return ((16 <= reg && reg <= 31)
409 || (48 <= reg && reg <= 63));
413 /* Return true if REG is an argument register, false otherwise. */
415 is_argument_reg (int reg)
417 return (8 <= reg && reg <= 13);
421 /* Scan an FR-V prologue, starting at PC, until frame->PC.
422 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
423 We assume FRAME's saved_regs array has already been allocated and cleared.
424 Return the first PC value after the prologue.
426 Note that, for unoptimized code, we almost don't need this function
427 at all; all arguments and locals live on the stack, so we just need
428 the FP to find everything. The catch: structures passed by value
429 have their addresses living in registers; they're never spilled to
430 the stack. So if you ever want to be able to get to these
431 arguments in any frame but the top, you'll need to do this serious
432 prologue analysis. */
434 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
435 struct frv_unwind_cache *info)
437 /* When writing out instruction bitpatterns, we use the following
438 letters to label instruction fields:
439 P - The parallel bit. We don't use this.
440 J - The register number of GRj in the instruction description.
441 K - The register number of GRk in the instruction description.
442 I - The register number of GRi.
443 S - a signed imediate offset.
444 U - an unsigned immediate offset.
446 The dots below the numbers indicate where hex digit boundaries
447 fall, to make it easier to check the numbers. */
449 /* Non-zero iff we've seen the instruction that initializes the
450 frame pointer for this function's frame. */
453 /* If fp_set is non_zero, then this is the distance from
454 the stack pointer to frame pointer: fp = sp + fp_offset. */
457 /* Total size of frame prior to any alloca operations. */
460 /* Flag indicating if lr has been saved on the stack. */
461 int lr_saved_on_stack = 0;
463 /* The number of the general-purpose register we saved the return
464 address ("link register") in, or -1 if we haven't moved it yet. */
465 int lr_save_reg = -1;
467 /* Offset (from sp) at which lr has been saved on the stack. */
469 int lr_sp_offset = 0;
471 /* If gr_saved[i] is non-zero, then we've noticed that general
472 register i has been saved at gr_sp_offset[i] from the stack
475 int gr_sp_offset[64];
477 memset (gr_saved, 0, sizeof (gr_saved));
479 while (! next_frame || pc < frame_pc_unwind (next_frame))
481 LONGEST op = read_memory_integer (pc, 4);
483 /* The tests in this chain of ifs should be in order of
484 decreasing selectivity, so that more particular patterns get
485 to fire before less particular patterns. */
487 /* Setting the FP from the SP:
489 P 000010 0100010 000001 000000000000 = 0x04881000
490 0 111111 1111111 111111 111111111111 = 0x7fffffff
492 We treat this as part of the prologue. */
493 if ((op & 0x7fffffff) == 0x04881000)
499 /* Move the link register to the scratch register grJ, before saving:
501 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
502 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
504 We treat this as part of the prologue. */
505 else if ((op & 0x7fffffc0) == 0x080d01c0)
507 int gr_j = op & 0x3f;
509 /* If we're moving it to a scratch register, that's fine. */
510 if (is_caller_saves_reg (gr_j))
512 /* Otherwise it's not a prologue instruction that we
518 /* To save multiple callee-saves registers on the stack, at
522 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
523 0 000000 1111111 111111 111111 111111 = 0x01ffffff
526 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
527 0 000000 1111111 111111 111111 111111 = 0x01ffffff
529 We treat this as part of the prologue, and record the register's
530 saved address in the frame structure. */
531 else if ((op & 0x01ffffff) == 0x000c10c0
532 || (op & 0x01ffffff) == 0x000c1100)
534 int gr_k = ((op >> 25) & 0x3f);
535 int ope = ((op >> 6) & 0x3f);
539 /* Is it an std or an stq? */
545 /* Is it really a callee-saves register? */
546 if (is_callee_saves_reg (gr_k))
548 for (i = 0; i < count; i++)
550 gr_saved[gr_k + i] = 1;
551 gr_sp_offset[gr_k + i] = 4 * i;
555 /* It's not a prologue instruction. */
559 /* Adjusting the stack pointer. (The stack pointer is GR1.)
561 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
562 0 111111 1111111 111111 000000000000 = 0x7ffff000
564 We treat this as part of the prologue. */
565 else if ((op & 0x7ffff000) == 0x02401000)
567 /* Sign-extend the twelve-bit field.
568 (Isn't there a better way to do this?) */
569 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
574 /* Setting the FP to a constant distance from the SP:
576 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
577 0 111111 1111111 111111 000000000000 = 0x7ffff000
579 We treat this as part of the prologue. */
580 else if ((op & 0x7ffff000) == 0x04401000)
582 /* Sign-extend the twelve-bit field.
583 (Isn't there a better way to do this?) */
584 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
589 /* To spill an argument register to a scratch register:
591 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
592 0 000000 1111111 000000 111111111111 = 0x01fc0fff
594 For the time being, we treat this as a prologue instruction,
595 assuming that GRi is an argument register. This one's kind
596 of suspicious, because it seems like it could be part of a
597 legitimate body instruction. But we only come here when the
598 source info wasn't helpful, so we have to do the best we can.
599 Hopefully once GCC and GDB agree on how to emit line number
600 info for prologues, then this code will never come into play. */
601 else if ((op & 0x01fc0fff) == 0x00880000)
603 int gr_i = ((op >> 12) & 0x3f);
605 /* If the source isn't an arg register, then this isn't a
606 prologue instruction. */
607 if (! is_argument_reg (gr_i))
611 /* To spill 16-bit values to the stack:
613 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
614 0 000000 1111111 111111 000000000000 = 0x01fff000
616 And for 8-bit values, we use STB instructions.
618 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
619 0 000000 1111111 111111 000000000000 = 0x01fff000
621 We check that GRk is really an argument register, and treat
622 all such as part of the prologue. */
623 else if ( (op & 0x01fff000) == 0x01442000
624 || (op & 0x01fff000) == 0x01402000)
626 int gr_k = ((op >> 25) & 0x3f);
628 if (! is_argument_reg (gr_k))
629 break; /* Source isn't an arg register. */
632 /* To save multiple callee-saves register on the stack, at a
636 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
637 0 000000 1111111 111111 000000000000 = 0x01fff000
640 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
641 0 000000 1111111 111111 000000000000 = 0x01fff000
643 We treat this as part of the prologue, and record the register's
644 saved address in the frame structure. */
645 else if ((op & 0x01fff000) == 0x014c1000
646 || (op & 0x01fff000) == 0x01501000)
648 int gr_k = ((op >> 25) & 0x3f);
652 /* Is it a stdi or a stqi? */
653 if ((op & 0x01fff000) == 0x014c1000)
658 /* Is it really a callee-saves register? */
659 if (is_callee_saves_reg (gr_k))
661 /* Sign-extend the twelve-bit field.
662 (Isn't there a better way to do this?) */
663 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
665 for (i = 0; i < count; i++)
667 gr_saved[gr_k + i] = 1;
668 gr_sp_offset[gr_k + i] = s + (4 * i);
672 /* It's not a prologue instruction. */
676 /* Storing any kind of integer register at any constant offset
677 from any other register.
680 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
681 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
684 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
685 0 000000 1111111 000000 000000000000 = 0x01fc0000
687 These could be almost anything, but a lot of prologue
688 instructions fall into this pattern, so let's decode the
689 instruction once, and then work at a higher level. */
690 else if (((op & 0x01fc0fff) == 0x000c0080)
691 || ((op & 0x01fc0000) == 0x01480000))
693 int gr_k = ((op >> 25) & 0x3f);
694 int gr_i = ((op >> 12) & 0x3f);
697 /* Are we storing with gr0 as an offset, or using an
699 if ((op & 0x01fc0fff) == 0x000c0080)
702 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
704 /* If the address isn't relative to the SP or FP, it's not a
705 prologue instruction. */
706 if (gr_i != sp_regnum && gr_i != fp_regnum)
709 /* Saving the old FP in the new frame (relative to the SP). */
710 if (gr_k == fp_regnum && gr_i == sp_regnum)
712 gr_saved[fp_regnum] = 1;
713 gr_sp_offset[fp_regnum] = offset;
716 /* Saving callee-saves register(s) on the stack, relative to
718 else if (gr_i == sp_regnum
719 && is_callee_saves_reg (gr_k))
722 if (gr_i == sp_regnum)
723 gr_sp_offset[gr_k] = offset;
725 gr_sp_offset[gr_k] = offset + fp_offset;
728 /* Saving the scratch register holding the return address. */
729 else if (lr_save_reg != -1
730 && gr_k == lr_save_reg)
732 lr_saved_on_stack = 1;
733 if (gr_i == sp_regnum)
734 lr_sp_offset = offset;
736 lr_sp_offset = offset + fp_offset;
739 /* Spilling int-sized arguments to the stack. */
740 else if (is_argument_reg (gr_k))
743 /* It's not a store instruction we recognize, so this must
744 be the end of the prologue. */
749 /* It's not any instruction we recognize, so this must be the end
757 if (next_frame && info)
762 /* If we know the relationship between the stack and frame
763 pointers, record the addresses of the registers we noticed.
764 Note that we have to do this as a separate step at the end,
765 because instructions may save relative to the SP, but we need
766 their addresses relative to the FP. */
768 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
770 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
772 for (i = 0; i < 64; i++)
774 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
776 info->prev_sp = this_base - fp_offset + framesize;
777 info->base = this_base;
779 /* If LR was saved on the stack, record its location. */
780 if (lr_saved_on_stack)
781 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
783 /* The call instruction moves the caller's PC in the callee's LR.
784 Since this is an unwind, do the reverse. Copy the location of LR
785 into PC (the address / regnum) so that a request for PC will be
786 converted into a request for the LR. */
787 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
789 /* Save the previous frame's computed SP value. */
790 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
798 frv_skip_prologue (CORE_ADDR pc)
800 CORE_ADDR func_addr, func_end, new_pc;
804 /* If the line table has entry for a line *within* the function
805 (i.e., not in the prologue, and not past the end), then that's
807 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
809 struct symtab_and_line sal;
811 sal = find_pc_line (func_addr, 0);
813 if (sal.line != 0 && sal.end < func_end)
819 /* The FR-V prologue is at least five instructions long (twenty bytes).
820 If we didn't find a real source location past that, then
821 do a full analysis of the prologue. */
822 if (new_pc < pc + 20)
823 new_pc = frv_analyze_prologue (pc, 0, 0);
829 static struct frv_unwind_cache *
830 frv_frame_unwind_cache (struct frame_info *next_frame,
831 void **this_prologue_cache)
833 struct gdbarch *gdbarch = get_frame_arch (next_frame);
837 struct frv_unwind_cache *info;
839 if ((*this_prologue_cache))
840 return (*this_prologue_cache);
842 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
843 (*this_prologue_cache) = info;
844 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
846 /* Prologue analysis does the rest... */
847 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
853 frv_extract_return_value (struct type *type, struct regcache *regcache,
856 int len = TYPE_LENGTH (type);
861 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
862 store_unsigned_integer (valbuf, len, gpr8_val);
867 regcache_cooked_read_unsigned (regcache, 8, ®val);
868 store_unsigned_integer (valbuf, 4, regval);
869 regcache_cooked_read_unsigned (regcache, 9, ®val);
870 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
873 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
877 frv_extract_struct_value_address (struct regcache *regcache)
880 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
885 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
887 write_register (struct_return_regnum, addr);
891 frv_frameless_function_invocation (struct frame_info *frame)
893 return frameless_look_for_prologue (frame);
897 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
899 /* Require dword alignment. */
900 return align_down (sp, 8);
904 frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
905 struct regcache *regcache, CORE_ADDR bp_addr,
906 int nargs, struct value **args, CORE_ADDR sp,
907 int struct_return, CORE_ADDR struct_addr)
914 struct type *arg_type;
916 enum type_code typecode;
922 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
923 nargs, (int) sp, struct_return, struct_addr);
927 for (argnum = 0; argnum < nargs; ++argnum)
928 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
930 stack_space -= (6 * 4);
934 /* Make sure stack is dword aligned. */
935 sp = align_down (sp, 8);
942 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
945 for (argnum = 0; argnum < nargs; ++argnum)
948 arg_type = check_typedef (VALUE_TYPE (arg));
949 len = TYPE_LENGTH (arg_type);
950 typecode = TYPE_CODE (arg_type);
952 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
954 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
955 typecode = TYPE_CODE_PTR;
961 val = (char *) VALUE_CONTENTS (arg);
966 int partial_len = (len < 4 ? len : 4);
970 regval = extract_unsigned_integer (val, partial_len);
972 printf(" Argnum %d data %x -> reg %d\n",
973 argnum, (int) regval, argreg);
975 regcache_cooked_write_unsigned (regcache, argreg, regval);
981 printf(" Argnum %d data %x -> offset %d (%x)\n",
982 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
984 write_memory (sp + stack_offset, val, partial_len);
985 stack_offset += align_up (partial_len, 4);
992 /* Set the return address. For the frv, the return breakpoint is
993 always at BP_ADDR. */
994 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
996 /* Finally, update the SP register. */
997 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1003 frv_store_return_value (struct type *type, struct regcache *regcache,
1006 int len = TYPE_LENGTH (type);
1011 memset (val, 0, sizeof (val));
1012 memcpy (val + (4 - len), valbuf, len);
1013 regcache_cooked_write (regcache, 8, val);
1017 regcache_cooked_write (regcache, 8, valbuf);
1018 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1021 internal_error (__FILE__, __LINE__,
1022 "Don't know how to return a %d-byte value.", len);
1026 /* Hardware watchpoint / breakpoint support for the FR500
1030 frv_check_watch_resources (int type, int cnt, int ot)
1032 struct gdbarch_tdep *var = CURRENT_VARIANT;
1034 /* Watchpoints not supported on simulator. */
1035 if (strcmp (target_shortname, "sim") == 0)
1038 if (type == bp_hardware_breakpoint)
1040 if (var->num_hw_breakpoints == 0)
1042 else if (cnt <= var->num_hw_breakpoints)
1047 if (var->num_hw_watchpoints == 0)
1051 else if (cnt <= var->num_hw_watchpoints)
1059 frv_stopped_data_address (void)
1061 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1063 brr = read_register (brr_regnum);
1064 dbar0 = read_register (dbar0_regnum);
1065 dbar1 = read_register (dbar1_regnum);
1066 dbar2 = read_register (dbar2_regnum);
1067 dbar3 = read_register (dbar3_regnum);
1071 else if (brr & (1<<10))
1073 else if (brr & (1<<9))
1075 else if (brr & (1<<8))
1082 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1084 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1087 /* Given a GDB frame, determine the address of the calling function's
1088 frame. This will be used to create a new GDB frame struct. */
1091 frv_frame_this_id (struct frame_info *next_frame,
1092 void **this_prologue_cache, struct frame_id *this_id)
1094 struct frv_unwind_cache *info
1095 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1098 struct minimal_symbol *msym_stack;
1101 /* The FUNC is easy. */
1102 func = frame_func_unwind (next_frame);
1104 /* This is meant to halt the backtrace at "_start". Make sure we
1105 don't halt it at a generic dummy frame. */
1106 if (inside_entry_func (func))
1109 /* Check if the stack is empty. */
1110 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1111 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1114 /* Hopefully the prologue analysis either correctly determined the
1115 frame's base (which is the SP from the previous frame), or set
1116 that base to "NULL". */
1117 base = info->prev_sp;
1121 id = frame_id_build (base, func);
1123 /* Check that we're not going round in circles with the same frame
1124 ID (but avoid applying the test to sentinel frames which do go
1125 round in circles). Can't use frame_id_eq() as that doesn't yet
1126 compare the frame's PC value. */
1127 if (frame_relative_level (next_frame) >= 0
1128 && get_frame_type (next_frame) != DUMMY_FRAME
1129 && frame_id_eq (get_frame_id (next_frame), id))
1136 frv_frame_prev_register (struct frame_info *next_frame,
1137 void **this_prologue_cache,
1138 int regnum, int *optimizedp,
1139 enum lval_type *lvalp, CORE_ADDR *addrp,
1140 int *realnump, void *bufferp)
1142 struct frv_unwind_cache *info
1143 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1144 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1145 optimizedp, lvalp, addrp, realnump, bufferp);
1148 static const struct frame_unwind frv_frame_unwind = {
1151 frv_frame_prev_register
1154 static const struct frame_unwind *
1155 frv_frame_sniffer (struct frame_info *next_frame)
1157 return &frv_frame_unwind;
1161 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1163 struct frv_unwind_cache *info
1164 = frv_frame_unwind_cache (next_frame, this_cache);
1168 static const struct frame_base frv_frame_base = {
1170 frv_frame_base_address,
1171 frv_frame_base_address,
1172 frv_frame_base_address
1176 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1178 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1182 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1183 dummy frame. The frame ID's base needs to match the TOS value
1184 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1187 static struct frame_id
1188 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1190 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1191 frame_pc_unwind (next_frame));
1195 static struct gdbarch *
1196 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1198 struct gdbarch *gdbarch;
1199 struct gdbarch_tdep *var;
1201 /* Check to see if we've already built an appropriate architecture
1202 object for this executable. */
1203 arches = gdbarch_list_lookup_by_info (arches, &info);
1205 return arches->gdbarch;
1207 /* Select the right tdep structure for this variant. */
1208 var = new_variant ();
1209 switch (info.bfd_arch_info->mach)
1212 case bfd_mach_frvsimple:
1213 case bfd_mach_fr500:
1214 case bfd_mach_frvtomcat:
1215 set_variant_num_gprs (var, 64);
1216 set_variant_num_fprs (var, 64);
1219 case bfd_mach_fr400:
1220 set_variant_num_gprs (var, 32);
1221 set_variant_num_fprs (var, 32);
1225 /* Never heard of this variant. */
1229 gdbarch = gdbarch_alloc (&info, var);
1231 set_gdbarch_short_bit (gdbarch, 16);
1232 set_gdbarch_int_bit (gdbarch, 32);
1233 set_gdbarch_long_bit (gdbarch, 32);
1234 set_gdbarch_long_long_bit (gdbarch, 64);
1235 set_gdbarch_float_bit (gdbarch, 32);
1236 set_gdbarch_double_bit (gdbarch, 64);
1237 set_gdbarch_long_double_bit (gdbarch, 64);
1238 set_gdbarch_ptr_bit (gdbarch, 32);
1240 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1241 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1243 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1244 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1245 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1247 set_gdbarch_register_name (gdbarch, frv_register_name);
1248 set_gdbarch_register_type (gdbarch, frv_register_type);
1249 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1251 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1252 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1254 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1255 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1256 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
1258 set_gdbarch_frame_args_skip (gdbarch, 0);
1259 set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1261 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1262 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1264 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1265 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1266 set_gdbarch_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1269 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1270 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1271 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1272 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1273 frame_base_set_default (gdbarch, &frv_frame_base);
1275 /* Settings for calling functions in the inferior. */
1276 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1277 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1279 /* Settings that should be unnecessary. */
1280 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1282 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1284 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1285 set_gdbarch_function_start_offset (gdbarch, 0);
1287 set_gdbarch_remote_translate_xfer_address
1288 (gdbarch, generic_remote_translate_xfer_address);
1290 /* Hardware watchpoint / breakpoint support. */
1291 switch (info.bfd_arch_info->mach)
1294 case bfd_mach_frvsimple:
1295 case bfd_mach_fr500:
1296 case bfd_mach_frvtomcat:
1297 /* fr500-style hardware debugging support. */
1298 var->num_hw_watchpoints = 4;
1299 var->num_hw_breakpoints = 4;
1302 case bfd_mach_fr400:
1303 /* fr400-style hardware debugging support. */
1304 var->num_hw_watchpoints = 2;
1305 var->num_hw_breakpoints = 4;
1309 /* Otherwise, assume we don't have hardware debugging support. */
1310 var->num_hw_watchpoints = 0;
1311 var->num_hw_breakpoints = 0;
1315 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1321 _initialize_frv_tdep (void)
1323 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);