1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include "gdb_string.h"
25 #include "arch-utils.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
43 extern void _initialize_frv_tdep (void);
45 static gdbarch_init_ftype frv_gdbarch_init;
47 static gdbarch_register_name_ftype frv_register_name;
48 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
49 static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
50 static gdbarch_skip_prologue_ftype frv_skip_prologue;
53 struct frv_unwind_cache /* was struct frame_extra_info */
55 /* The previous frame's inner-most stack address. Used as this
56 frame ID's stack_addr. */
59 /* The frame's base, optionally used by the high-level debug info. */
62 /* Table indicating the location of each and every register. */
63 struct trad_frame_saved_reg *saved_regs;
66 /* A structure describing a particular variant of the FRV.
67 We allocate and initialize one of these structures when we create
68 the gdbarch object for a variant.
70 At the moment, all the FR variants we support differ only in which
71 registers are present; the portable code of GDB knows that
72 registers whose names are the empty string don't exist, so the
73 `register_names' array captures all the per-variant information we
76 in the future, if we need to have per-variant maps for raw size,
77 virtual type, etc., we should replace register_names with an array
78 of structures, each of which gives all the necessary info for one
79 register. Don't stick parallel arrays in here --- that's so
83 /* Which ABI is in use? */
86 /* How many general-purpose registers does this variant have? */
89 /* How many floating-point registers does this variant have? */
92 /* How many hardware watchpoints can it support? */
93 int num_hw_watchpoints;
95 /* How many hardware breakpoints can it support? */
96 int num_hw_breakpoints;
99 char **register_names;
102 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
104 /* Return the FR-V ABI associated with GDBARCH. */
106 frv_abi (struct gdbarch *gdbarch)
108 return gdbarch_tdep (gdbarch)->frv_abi;
111 /* Fetch the interpreter and executable loadmap addresses (for shared
112 library support) for the FDPIC ABI. Return 0 if successful, -1 if
113 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
115 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
116 CORE_ADDR *exec_addr)
118 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
122 if (interp_addr != NULL)
125 regcache_cooked_read_unsigned (current_regcache,
126 fdpic_loadmap_interp_regnum, &val);
129 if (exec_addr != NULL)
132 regcache_cooked_read_unsigned (current_regcache,
133 fdpic_loadmap_exec_regnum, &val);
140 /* Allocate a new variant structure, and set up default values for all
142 static struct gdbarch_tdep *
145 struct gdbarch_tdep *var;
149 var = xmalloc (sizeof (*var));
150 memset (var, 0, sizeof (*var));
152 var->frv_abi = FRV_ABI_EABI;
155 var->num_hw_watchpoints = 0;
156 var->num_hw_breakpoints = 0;
158 /* By default, don't supply any general-purpose or floating-point
161 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
163 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
164 var->register_names[r] = "";
166 /* Do, however, supply default names for the known special-purpose
169 var->register_names[pc_regnum] = "pc";
170 var->register_names[lr_regnum] = "lr";
171 var->register_names[lcr_regnum] = "lcr";
173 var->register_names[psr_regnum] = "psr";
174 var->register_names[ccr_regnum] = "ccr";
175 var->register_names[cccr_regnum] = "cccr";
176 var->register_names[tbr_regnum] = "tbr";
178 /* Debug registers. */
179 var->register_names[brr_regnum] = "brr";
180 var->register_names[dbar0_regnum] = "dbar0";
181 var->register_names[dbar1_regnum] = "dbar1";
182 var->register_names[dbar2_regnum] = "dbar2";
183 var->register_names[dbar3_regnum] = "dbar3";
185 /* iacc0 (Only found on MB93405.) */
186 var->register_names[iacc0h_regnum] = "iacc0h";
187 var->register_names[iacc0l_regnum] = "iacc0l";
188 var->register_names[iacc0_regnum] = "iacc0";
190 /* fsr0 (Found on FR555 and FR501.) */
191 var->register_names[fsr0_regnum] = "fsr0";
193 /* acc0 - acc7. The architecture provides for the possibility of many
194 more (up to 64 total), but we don't want to make that big of a hole
195 in the G packet. If we need more in the future, we'll add them
197 for (r = acc0_regnum; r <= acc7_regnum; r++)
200 buf = xstrprintf ("acc%d", r - acc0_regnum);
201 var->register_names[r] = buf;
204 /* accg0 - accg7: These are one byte registers. The remote protocol
205 provides the raw values packed four into a slot. accg0123 and
206 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
207 We don't provide names for accg0123 and accg4567 since the user will
208 likely not want to see these raw values. */
210 for (r = accg0_regnum; r <= accg7_regnum; r++)
213 buf = xstrprintf ("accg%d", r - accg0_regnum);
214 var->register_names[r] = buf;
219 var->register_names[msr0_regnum] = "msr0";
220 var->register_names[msr1_regnum] = "msr1";
222 /* gner and fner registers. */
223 var->register_names[gner0_regnum] = "gner0";
224 var->register_names[gner1_regnum] = "gner1";
225 var->register_names[fner0_regnum] = "fner0";
226 var->register_names[fner1_regnum] = "fner1";
232 /* Indicate that the variant VAR has NUM_GPRS general-purpose
233 registers, and fill in the names array appropriately. */
235 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
239 var->num_gprs = num_gprs;
241 for (r = 0; r < num_gprs; ++r)
245 sprintf (buf, "gr%d", r);
246 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
251 /* Indicate that the variant VAR has NUM_FPRS floating-point
252 registers, and fill in the names array appropriately. */
254 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
258 var->num_fprs = num_fprs;
260 for (r = 0; r < num_fprs; ++r)
264 sprintf (buf, "fr%d", r);
265 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
270 set_variant_abi_fdpic (struct gdbarch_tdep *var)
272 var->frv_abi = FRV_ABI_FDPIC;
273 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
274 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
278 set_variant_scratch_registers (struct gdbarch_tdep *var)
280 var->register_names[scr0_regnum] = xstrdup ("scr0");
281 var->register_names[scr1_regnum] = xstrdup ("scr1");
282 var->register_names[scr2_regnum] = xstrdup ("scr2");
283 var->register_names[scr3_regnum] = xstrdup ("scr3");
287 frv_register_name (int reg)
291 if (reg >= frv_num_regs + frv_num_pseudo_regs)
294 return CURRENT_VARIANT->register_names[reg];
299 frv_register_type (struct gdbarch *gdbarch, int reg)
301 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
302 return builtin_type_float;
303 else if (reg == iacc0_regnum)
304 return builtin_type_int64;
306 return builtin_type_int32;
310 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
311 int reg, void *buffer)
313 if (reg == iacc0_regnum)
315 regcache_raw_read (regcache, iacc0h_regnum, buffer);
316 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
318 else if (accg0_regnum <= reg && reg <= accg7_regnum)
320 /* The accg raw registers have four values in each slot with the
321 lowest register number occupying the first byte. */
323 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
324 int byte_num = (reg - accg0_regnum) % 4;
327 regcache_raw_read (regcache, raw_regnum, buf);
328 memset (buffer, 0, 4);
329 /* FR-V is big endian, so put the requested byte in the first byte
330 of the buffer allocated to hold the pseudo-register. */
331 ((bfd_byte *) buffer)[0] = buf[byte_num];
336 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
337 int reg, const void *buffer)
339 if (reg == iacc0_regnum)
341 regcache_raw_write (regcache, iacc0h_regnum, buffer);
342 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
344 else if (accg0_regnum <= reg && reg <= accg7_regnum)
346 /* The accg raw registers have four values in each slot with the
347 lowest register number occupying the first byte. */
349 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
350 int byte_num = (reg - accg0_regnum) % 4;
353 regcache_raw_read (regcache, raw_regnum, buf);
354 buf[byte_num] = ((bfd_byte *) buffer)[0];
355 regcache_raw_write (regcache, raw_regnum, buf);
360 frv_register_sim_regno (int reg)
362 static const int spr_map[] =
364 H_SPR_PSR, /* psr_regnum */
365 H_SPR_CCR, /* ccr_regnum */
366 H_SPR_CCCR, /* cccr_regnum */
367 -1, /* fdpic_loadmap_exec_regnum */
368 -1, /* fdpic_loadmap_interp_regnum */
370 H_SPR_TBR, /* tbr_regnum */
371 H_SPR_BRR, /* brr_regnum */
372 H_SPR_DBAR0, /* dbar0_regnum */
373 H_SPR_DBAR1, /* dbar1_regnum */
374 H_SPR_DBAR2, /* dbar2_regnum */
375 H_SPR_DBAR3, /* dbar3_regnum */
376 H_SPR_SCR0, /* scr0_regnum */
377 H_SPR_SCR1, /* scr1_regnum */
378 H_SPR_SCR2, /* scr2_regnum */
379 H_SPR_SCR3, /* scr3_regnum */
380 H_SPR_LR, /* lr_regnum */
381 H_SPR_LCR, /* lcr_regnum */
382 H_SPR_IACC0H, /* iacc0h_regnum */
383 H_SPR_IACC0L, /* iacc0l_regnum */
384 H_SPR_FSR0, /* fsr0_regnum */
385 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
386 -1, /* acc0_regnum */
387 -1, /* acc1_regnum */
388 -1, /* acc2_regnum */
389 -1, /* acc3_regnum */
390 -1, /* acc4_regnum */
391 -1, /* acc5_regnum */
392 -1, /* acc6_regnum */
393 -1, /* acc7_regnum */
394 -1, /* acc0123_regnum */
395 -1, /* acc4567_regnum */
396 H_SPR_MSR0, /* msr0_regnum */
397 H_SPR_MSR1, /* msr1_regnum */
398 H_SPR_GNER0, /* gner0_regnum */
399 H_SPR_GNER1, /* gner1_regnum */
400 H_SPR_FNER0, /* fner0_regnum */
401 H_SPR_FNER1, /* fner1_regnum */
404 gdb_assert (reg >= 0 && reg < NUM_REGS);
406 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
407 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
408 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
409 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
410 else if (pc_regnum == reg)
411 return SIM_FRV_PC_REGNUM;
412 else if (reg >= first_spr_regnum
413 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
415 int spr_reg_offset = spr_map[reg - first_spr_regnum];
417 if (spr_reg_offset < 0)
418 return SIM_REGNO_DOES_NOT_EXIST;
420 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
423 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
426 static const unsigned char *
427 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
429 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
430 *lenp = sizeof (breakpoint);
434 /* Define the maximum number of instructions which may be packed into a
435 bundle (VLIW instruction). */
436 static const int max_instrs_per_bundle = 8;
438 /* Define the size (in bytes) of an FR-V instruction. */
439 static const int frv_instr_size = 4;
441 /* Adjust a breakpoint's address to account for the FR-V architecture's
442 constraint that a break instruction must not appear as any but the
443 first instruction in the bundle. */
445 frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
447 int count = max_instrs_per_bundle;
448 CORE_ADDR addr = bpaddr - frv_instr_size;
449 CORE_ADDR func_start = get_pc_function_start (bpaddr);
451 /* Find the end of the previous packing sequence. This will be indicated
452 by either attempting to access some inaccessible memory or by finding
453 an instruction word whose packing bit is set to one. */
454 while (count-- > 0 && addr >= func_start)
456 char instr[frv_instr_size];
459 status = deprecated_read_memory_nobpt (addr, instr, sizeof instr);
464 /* This is a big endian architecture, so byte zero will have most
465 significant byte. The most significant bit of this byte is the
470 addr -= frv_instr_size;
474 bpaddr = addr + frv_instr_size;
480 /* Return true if REG is a caller-saves ("scratch") register,
483 is_caller_saves_reg (int reg)
485 return ((4 <= reg && reg <= 7)
486 || (14 <= reg && reg <= 15)
487 || (32 <= reg && reg <= 47));
491 /* Return true if REG is a callee-saves register, false otherwise. */
493 is_callee_saves_reg (int reg)
495 return ((16 <= reg && reg <= 31)
496 || (48 <= reg && reg <= 63));
500 /* Return true if REG is an argument register, false otherwise. */
502 is_argument_reg (int reg)
504 return (8 <= reg && reg <= 13);
507 /* Scan an FR-V prologue, starting at PC, until frame->PC.
508 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
509 We assume FRAME's saved_regs array has already been allocated and cleared.
510 Return the first PC value after the prologue.
512 Note that, for unoptimized code, we almost don't need this function
513 at all; all arguments and locals live on the stack, so we just need
514 the FP to find everything. The catch: structures passed by value
515 have their addresses living in registers; they're never spilled to
516 the stack. So if you ever want to be able to get to these
517 arguments in any frame but the top, you'll need to do this serious
518 prologue analysis. */
520 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
521 struct frv_unwind_cache *info)
523 /* When writing out instruction bitpatterns, we use the following
524 letters to label instruction fields:
525 P - The parallel bit. We don't use this.
526 J - The register number of GRj in the instruction description.
527 K - The register number of GRk in the instruction description.
528 I - The register number of GRi.
529 S - a signed imediate offset.
530 U - an unsigned immediate offset.
532 The dots below the numbers indicate where hex digit boundaries
533 fall, to make it easier to check the numbers. */
535 /* Non-zero iff we've seen the instruction that initializes the
536 frame pointer for this function's frame. */
539 /* If fp_set is non_zero, then this is the distance from
540 the stack pointer to frame pointer: fp = sp + fp_offset. */
543 /* Total size of frame prior to any alloca operations. */
546 /* Flag indicating if lr has been saved on the stack. */
547 int lr_saved_on_stack = 0;
549 /* The number of the general-purpose register we saved the return
550 address ("link register") in, or -1 if we haven't moved it yet. */
551 int lr_save_reg = -1;
553 /* Offset (from sp) at which lr has been saved on the stack. */
555 int lr_sp_offset = 0;
557 /* If gr_saved[i] is non-zero, then we've noticed that general
558 register i has been saved at gr_sp_offset[i] from the stack
561 int gr_sp_offset[64];
563 /* The address of the most recently scanned prologue instruction. */
564 CORE_ADDR last_prologue_pc;
566 /* The address of the next instruction. */
569 /* The upper bound to of the pc values to scan. */
572 memset (gr_saved, 0, sizeof (gr_saved));
574 last_prologue_pc = pc;
576 /* Try to compute an upper limit (on how far to scan) based on the
578 lim_pc = skip_prologue_using_sal (pc);
579 /* If there's no line number info, lim_pc will be 0. In that case,
580 set the limit to be 100 instructions away from pc. Hopefully, this
581 will be far enough away to account for the entire prologue. Don't
582 worry about overshooting the end of the function. The scan loop
583 below contains some checks to avoid scanning unreasonably far. */
587 /* If we have a frame, we don't want to scan past the frame's pc. This
588 will catch those cases where the pc is in the prologue. */
591 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
592 if (frame_pc < lim_pc)
596 /* Scan the prologue. */
599 char buf[frv_instr_size];
602 if (target_read_memory (pc, buf, sizeof buf) != 0)
604 op = extract_signed_integer (buf, sizeof buf);
608 /* The tests in this chain of ifs should be in order of
609 decreasing selectivity, so that more particular patterns get
610 to fire before less particular patterns. */
612 /* Some sort of control transfer instruction: stop scanning prologue.
613 Integer Conditional Branch:
614 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
615 Floating-point / media Conditional Branch:
616 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
617 LCR Conditional Branch to LR
618 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
619 Integer conditional Branches to LR
620 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
621 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
622 Floating-point/Media Branches to LR
623 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
624 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
626 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
627 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
629 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
631 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
632 Integer Conditional Trap
633 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
634 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
635 Floating-point /media Conditional Trap
636 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
637 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
639 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
641 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
642 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
643 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
644 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
645 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
647 /* Stop scanning; not in prologue any longer. */
651 /* Loading something from memory into fp probably means that
652 we're in the epilogue. Stop scanning the prologue.
654 X 000010 0000010 XXXXXX 000100 XXXXXX
656 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
657 else if ((op & 0x7ffc0fc0) == 0x04080100
658 || (op & 0x7ffc0000) == 0x04c80000)
663 /* Setting the FP from the SP:
665 P 000010 0100010 000001 000000000000 = 0x04881000
666 0 111111 1111111 111111 111111111111 = 0x7fffffff
668 We treat this as part of the prologue. */
669 else if ((op & 0x7fffffff) == 0x04881000)
673 last_prologue_pc = next_pc;
676 /* Move the link register to the scratch register grJ, before saving:
678 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
679 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
681 We treat this as part of the prologue. */
682 else if ((op & 0x7fffffc0) == 0x080d01c0)
684 int gr_j = op & 0x3f;
686 /* If we're moving it to a scratch register, that's fine. */
687 if (is_caller_saves_reg (gr_j))
690 last_prologue_pc = next_pc;
694 /* To save multiple callee-saves registers on the stack, at
698 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
699 0 000000 1111111 111111 111111 111111 = 0x01ffffff
702 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
703 0 000000 1111111 111111 111111 111111 = 0x01ffffff
705 We treat this as part of the prologue, and record the register's
706 saved address in the frame structure. */
707 else if ((op & 0x01ffffff) == 0x000c10c0
708 || (op & 0x01ffffff) == 0x000c1100)
710 int gr_k = ((op >> 25) & 0x3f);
711 int ope = ((op >> 6) & 0x3f);
715 /* Is it an std or an stq? */
721 /* Is it really a callee-saves register? */
722 if (is_callee_saves_reg (gr_k))
724 for (i = 0; i < count; i++)
726 gr_saved[gr_k + i] = 1;
727 gr_sp_offset[gr_k + i] = 4 * i;
729 last_prologue_pc = next_pc;
733 /* Adjusting the stack pointer. (The stack pointer is GR1.)
735 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
736 0 111111 1111111 111111 000000000000 = 0x7ffff000
738 We treat this as part of the prologue. */
739 else if ((op & 0x7ffff000) == 0x02401000)
743 /* Sign-extend the twelve-bit field.
744 (Isn't there a better way to do this?) */
745 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
748 last_prologue_pc = pc;
752 /* If the prologue is being adjusted again, we've
753 likely gone too far; i.e. we're probably in the
759 /* Setting the FP to a constant distance from the SP:
761 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
762 0 111111 1111111 111111 000000000000 = 0x7ffff000
764 We treat this as part of the prologue. */
765 else if ((op & 0x7ffff000) == 0x04401000)
767 /* Sign-extend the twelve-bit field.
768 (Isn't there a better way to do this?) */
769 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
772 last_prologue_pc = pc;
775 /* To spill an argument register to a scratch register:
777 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
778 0 000000 1111111 000000 111111111111 = 0x01fc0fff
780 For the time being, we treat this as a prologue instruction,
781 assuming that GRi is an argument register. This one's kind
782 of suspicious, because it seems like it could be part of a
783 legitimate body instruction. But we only come here when the
784 source info wasn't helpful, so we have to do the best we can.
785 Hopefully once GCC and GDB agree on how to emit line number
786 info for prologues, then this code will never come into play. */
787 else if ((op & 0x01fc0fff) == 0x00880000)
789 int gr_i = ((op >> 12) & 0x3f);
791 /* Make sure that the source is an arg register; if it is, we'll
792 treat it as a prologue instruction. */
793 if (is_argument_reg (gr_i))
794 last_prologue_pc = next_pc;
797 /* To spill 16-bit values to the stack:
799 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
800 0 000000 1111111 111111 000000000000 = 0x01fff000
802 And for 8-bit values, we use STB instructions.
804 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
805 0 000000 1111111 111111 000000000000 = 0x01fff000
807 We check that GRk is really an argument register, and treat
808 all such as part of the prologue. */
809 else if ( (op & 0x01fff000) == 0x01442000
810 || (op & 0x01fff000) == 0x01402000)
812 int gr_k = ((op >> 25) & 0x3f);
814 /* Make sure that GRk is really an argument register; treat
815 it as a prologue instruction if so. */
816 if (is_argument_reg (gr_k))
817 last_prologue_pc = next_pc;
820 /* To save multiple callee-saves register on the stack, at a
824 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
825 0 000000 1111111 111111 000000000000 = 0x01fff000
828 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
829 0 000000 1111111 111111 000000000000 = 0x01fff000
831 We treat this as part of the prologue, and record the register's
832 saved address in the frame structure. */
833 else if ((op & 0x01fff000) == 0x014c1000
834 || (op & 0x01fff000) == 0x01501000)
836 int gr_k = ((op >> 25) & 0x3f);
840 /* Is it a stdi or a stqi? */
841 if ((op & 0x01fff000) == 0x014c1000)
846 /* Is it really a callee-saves register? */
847 if (is_callee_saves_reg (gr_k))
849 /* Sign-extend the twelve-bit field.
850 (Isn't there a better way to do this?) */
851 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
853 for (i = 0; i < count; i++)
855 gr_saved[gr_k + i] = 1;
856 gr_sp_offset[gr_k + i] = s + (4 * i);
858 last_prologue_pc = next_pc;
862 /* Storing any kind of integer register at any constant offset
863 from any other register.
866 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
867 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
870 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
871 0 000000 1111111 000000 000000000000 = 0x01fc0000
873 These could be almost anything, but a lot of prologue
874 instructions fall into this pattern, so let's decode the
875 instruction once, and then work at a higher level. */
876 else if (((op & 0x01fc0fff) == 0x000c0080)
877 || ((op & 0x01fc0000) == 0x01480000))
879 int gr_k = ((op >> 25) & 0x3f);
880 int gr_i = ((op >> 12) & 0x3f);
883 /* Are we storing with gr0 as an offset, or using an
885 if ((op & 0x01fc0fff) == 0x000c0080)
888 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
890 /* If the address isn't relative to the SP or FP, it's not a
891 prologue instruction. */
892 if (gr_i != sp_regnum && gr_i != fp_regnum)
894 /* Do nothing; not a prologue instruction. */
897 /* Saving the old FP in the new frame (relative to the SP). */
898 else if (gr_k == fp_regnum && gr_i == sp_regnum)
900 gr_saved[fp_regnum] = 1;
901 gr_sp_offset[fp_regnum] = offset;
902 last_prologue_pc = next_pc;
905 /* Saving callee-saves register(s) on the stack, relative to
907 else if (gr_i == sp_regnum
908 && is_callee_saves_reg (gr_k))
911 if (gr_i == sp_regnum)
912 gr_sp_offset[gr_k] = offset;
914 gr_sp_offset[gr_k] = offset + fp_offset;
915 last_prologue_pc = next_pc;
918 /* Saving the scratch register holding the return address. */
919 else if (lr_save_reg != -1
920 && gr_k == lr_save_reg)
922 lr_saved_on_stack = 1;
923 if (gr_i == sp_regnum)
924 lr_sp_offset = offset;
926 lr_sp_offset = offset + fp_offset;
927 last_prologue_pc = next_pc;
930 /* Spilling int-sized arguments to the stack. */
931 else if (is_argument_reg (gr_k))
932 last_prologue_pc = next_pc;
937 if (next_frame && info)
942 /* If we know the relationship between the stack and frame
943 pointers, record the addresses of the registers we noticed.
944 Note that we have to do this as a separate step at the end,
945 because instructions may save relative to the SP, but we need
946 their addresses relative to the FP. */
948 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
950 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
952 for (i = 0; i < 64; i++)
954 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
956 info->prev_sp = this_base - fp_offset + framesize;
957 info->base = this_base;
959 /* If LR was saved on the stack, record its location. */
960 if (lr_saved_on_stack)
961 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
963 /* The call instruction moves the caller's PC in the callee's LR.
964 Since this is an unwind, do the reverse. Copy the location of LR
965 into PC (the address / regnum) so that a request for PC will be
966 converted into a request for the LR. */
967 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
969 /* Save the previous frame's computed SP value. */
970 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
973 return last_prologue_pc;
978 frv_skip_prologue (CORE_ADDR pc)
980 CORE_ADDR func_addr, func_end, new_pc;
984 /* If the line table has entry for a line *within* the function
985 (i.e., not in the prologue, and not past the end), then that's
987 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
989 struct symtab_and_line sal;
991 sal = find_pc_line (func_addr, 0);
993 if (sal.line != 0 && sal.end < func_end)
999 /* The FR-V prologue is at least five instructions long (twenty bytes).
1000 If we didn't find a real source location past that, then
1001 do a full analysis of the prologue. */
1002 if (new_pc < pc + 20)
1003 new_pc = frv_analyze_prologue (pc, 0, 0);
1009 static struct frv_unwind_cache *
1010 frv_frame_unwind_cache (struct frame_info *next_frame,
1011 void **this_prologue_cache)
1013 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1016 struct frv_unwind_cache *info;
1018 if ((*this_prologue_cache))
1019 return (*this_prologue_cache);
1021 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1022 (*this_prologue_cache) = info;
1023 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1025 /* Prologue analysis does the rest... */
1026 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
1032 frv_extract_return_value (struct type *type, struct regcache *regcache,
1035 int len = TYPE_LENGTH (type);
1040 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1041 store_unsigned_integer (valbuf, len, gpr8_val);
1046 regcache_cooked_read_unsigned (regcache, 8, ®val);
1047 store_unsigned_integer (valbuf, 4, regval);
1048 regcache_cooked_read_unsigned (regcache, 9, ®val);
1049 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1052 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
1056 frv_extract_struct_value_address (struct regcache *regcache)
1059 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
1064 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1066 write_register (struct_return_regnum, addr);
1070 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1072 /* Require dword alignment. */
1073 return align_down (sp, 8);
1077 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1082 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1087 /* Construct a non-canonical descriptor from space allocated on
1090 descr = value_as_long (value_allocate_space_in_inferior (8));
1091 store_unsigned_integer (valbuf, 4, entry_point);
1092 write_memory (descr, valbuf, 4);
1093 store_unsigned_integer (valbuf, 4,
1094 frv_fdpic_find_global_pointer (entry_point));
1095 write_memory (descr + 4, valbuf, 4);
1100 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1101 struct target_ops *targ)
1103 CORE_ADDR entry_point;
1104 CORE_ADDR got_address;
1106 entry_point = get_target_memory_unsigned (targ, addr, 4);
1107 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1109 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1116 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1117 struct regcache *regcache, CORE_ADDR bp_addr,
1118 int nargs, struct value **args, CORE_ADDR sp,
1119 int struct_return, CORE_ADDR struct_addr)
1126 struct type *arg_type;
1128 enum type_code typecode;
1132 enum frv_abi abi = frv_abi (gdbarch);
1133 CORE_ADDR func_addr = find_function_addr (function, NULL);
1136 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1137 nargs, (int) sp, struct_return, struct_addr);
1141 for (argnum = 0; argnum < nargs; ++argnum)
1142 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
1144 stack_space -= (6 * 4);
1145 if (stack_space > 0)
1148 /* Make sure stack is dword aligned. */
1149 sp = align_down (sp, 8);
1156 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1159 for (argnum = 0; argnum < nargs; ++argnum)
1162 arg_type = check_typedef (VALUE_TYPE (arg));
1163 len = TYPE_LENGTH (arg_type);
1164 typecode = TYPE_CODE (arg_type);
1166 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1168 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1169 typecode = TYPE_CODE_PTR;
1173 else if (abi == FRV_ABI_FDPIC
1175 && typecode == TYPE_CODE_PTR
1176 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1178 /* The FDPIC ABI requires function descriptors to be passed instead
1180 store_unsigned_integer
1182 find_func_descr (gdbarch,
1183 extract_unsigned_integer (VALUE_CONTENTS (arg),
1185 typecode = TYPE_CODE_PTR;
1191 val = (char *) VALUE_CONTENTS (arg);
1196 int partial_len = (len < 4 ? len : 4);
1200 regval = extract_unsigned_integer (val, partial_len);
1202 printf(" Argnum %d data %x -> reg %d\n",
1203 argnum, (int) regval, argreg);
1205 regcache_cooked_write_unsigned (regcache, argreg, regval);
1211 printf(" Argnum %d data %x -> offset %d (%x)\n",
1212 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1214 write_memory (sp + stack_offset, val, partial_len);
1215 stack_offset += align_up (partial_len, 4);
1222 /* Set the return address. For the frv, the return breakpoint is
1223 always at BP_ADDR. */
1224 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1226 if (abi == FRV_ABI_FDPIC)
1228 /* Set the GOT register for the FDPIC ABI. */
1229 regcache_cooked_write_unsigned
1230 (regcache, first_gpr_regnum + 15,
1231 frv_fdpic_find_global_pointer (func_addr));
1234 /* Finally, update the SP register. */
1235 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1241 frv_store_return_value (struct type *type, struct regcache *regcache,
1244 int len = TYPE_LENGTH (type);
1249 memset (val, 0, sizeof (val));
1250 memcpy (val + (4 - len), valbuf, len);
1251 regcache_cooked_write (regcache, 8, val);
1255 regcache_cooked_write (regcache, 8, valbuf);
1256 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1259 internal_error (__FILE__, __LINE__,
1260 "Don't know how to return a %d-byte value.", len);
1264 /* Hardware watchpoint / breakpoint support for the FR500
1268 frv_check_watch_resources (int type, int cnt, int ot)
1270 struct gdbarch_tdep *var = CURRENT_VARIANT;
1272 /* Watchpoints not supported on simulator. */
1273 if (strcmp (target_shortname, "sim") == 0)
1276 if (type == bp_hardware_breakpoint)
1278 if (var->num_hw_breakpoints == 0)
1280 else if (cnt <= var->num_hw_breakpoints)
1285 if (var->num_hw_watchpoints == 0)
1289 else if (cnt <= var->num_hw_watchpoints)
1297 frv_stopped_data_address (CORE_ADDR *addr_p)
1299 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1301 brr = read_register (brr_regnum);
1302 dbar0 = read_register (dbar0_regnum);
1303 dbar1 = read_register (dbar1_regnum);
1304 dbar2 = read_register (dbar2_regnum);
1305 dbar3 = read_register (dbar3_regnum);
1309 else if (brr & (1<<10))
1311 else if (brr & (1<<9))
1313 else if (brr & (1<<8))
1322 frv_have_stopped_data_address (void)
1325 return frv_stopped_data_address (&addr);
1329 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1331 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1334 /* Given a GDB frame, determine the address of the calling function's
1335 frame. This will be used to create a new GDB frame struct. */
1338 frv_frame_this_id (struct frame_info *next_frame,
1339 void **this_prologue_cache, struct frame_id *this_id)
1341 struct frv_unwind_cache *info
1342 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1345 struct minimal_symbol *msym_stack;
1348 /* The FUNC is easy. */
1349 func = frame_func_unwind (next_frame);
1351 /* Check if the stack is empty. */
1352 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1353 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1356 /* Hopefully the prologue analysis either correctly determined the
1357 frame's base (which is the SP from the previous frame), or set
1358 that base to "NULL". */
1359 base = info->prev_sp;
1363 id = frame_id_build (base, func);
1368 frv_frame_prev_register (struct frame_info *next_frame,
1369 void **this_prologue_cache,
1370 int regnum, int *optimizedp,
1371 enum lval_type *lvalp, CORE_ADDR *addrp,
1372 int *realnump, void *bufferp)
1374 struct frv_unwind_cache *info
1375 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1376 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1377 optimizedp, lvalp, addrp, realnump, bufferp);
1380 static const struct frame_unwind frv_frame_unwind = {
1383 frv_frame_prev_register
1386 static const struct frame_unwind *
1387 frv_frame_sniffer (struct frame_info *next_frame)
1389 return &frv_frame_unwind;
1393 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1395 struct frv_unwind_cache *info
1396 = frv_frame_unwind_cache (next_frame, this_cache);
1400 static const struct frame_base frv_frame_base = {
1402 frv_frame_base_address,
1403 frv_frame_base_address,
1404 frv_frame_base_address
1408 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1410 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1414 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1415 dummy frame. The frame ID's base needs to match the TOS value
1416 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1419 static struct frame_id
1420 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1422 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1423 frame_pc_unwind (next_frame));
1426 static struct gdbarch *
1427 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1429 struct gdbarch *gdbarch;
1430 struct gdbarch_tdep *var;
1433 /* Check to see if we've already built an appropriate architecture
1434 object for this executable. */
1435 arches = gdbarch_list_lookup_by_info (arches, &info);
1437 return arches->gdbarch;
1439 /* Select the right tdep structure for this variant. */
1440 var = new_variant ();
1441 switch (info.bfd_arch_info->mach)
1444 case bfd_mach_frvsimple:
1445 case bfd_mach_fr500:
1446 case bfd_mach_frvtomcat:
1447 case bfd_mach_fr550:
1448 set_variant_num_gprs (var, 64);
1449 set_variant_num_fprs (var, 64);
1452 case bfd_mach_fr400:
1453 case bfd_mach_fr450:
1454 set_variant_num_gprs (var, 32);
1455 set_variant_num_fprs (var, 32);
1459 /* Never heard of this variant. */
1463 /* Extract the ELF flags, if available. */
1464 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1465 elf_flags = elf_elfheader (info.abfd)->e_flags;
1467 if (elf_flags & EF_FRV_FDPIC)
1468 set_variant_abi_fdpic (var);
1470 if (elf_flags & EF_FRV_CPU_FR450)
1471 set_variant_scratch_registers (var);
1473 gdbarch = gdbarch_alloc (&info, var);
1475 set_gdbarch_short_bit (gdbarch, 16);
1476 set_gdbarch_int_bit (gdbarch, 32);
1477 set_gdbarch_long_bit (gdbarch, 32);
1478 set_gdbarch_long_long_bit (gdbarch, 64);
1479 set_gdbarch_float_bit (gdbarch, 32);
1480 set_gdbarch_double_bit (gdbarch, 64);
1481 set_gdbarch_long_double_bit (gdbarch, 64);
1482 set_gdbarch_ptr_bit (gdbarch, 32);
1484 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1485 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1487 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1488 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1489 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1491 set_gdbarch_register_name (gdbarch, frv_register_name);
1492 set_gdbarch_register_type (gdbarch, frv_register_type);
1493 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1495 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1496 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1498 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1499 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1500 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
1502 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
1503 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1505 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1506 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1507 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1510 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1511 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1512 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1513 frame_base_set_default (gdbarch, &frv_frame_base);
1514 /* We set the sniffer lower down after the OSABI hooks have been
1517 /* Settings for calling functions in the inferior. */
1518 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1519 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1521 /* Settings that should be unnecessary. */
1522 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1524 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1526 set_gdbarch_remote_translate_xfer_address
1527 (gdbarch, generic_remote_translate_xfer_address);
1529 /* Hardware watchpoint / breakpoint support. */
1530 switch (info.bfd_arch_info->mach)
1533 case bfd_mach_frvsimple:
1534 case bfd_mach_fr500:
1535 case bfd_mach_frvtomcat:
1536 /* fr500-style hardware debugging support. */
1537 var->num_hw_watchpoints = 4;
1538 var->num_hw_breakpoints = 4;
1541 case bfd_mach_fr400:
1542 case bfd_mach_fr450:
1543 /* fr400-style hardware debugging support. */
1544 var->num_hw_watchpoints = 2;
1545 var->num_hw_breakpoints = 4;
1549 /* Otherwise, assume we don't have hardware debugging support. */
1550 var->num_hw_watchpoints = 0;
1551 var->num_hw_breakpoints = 0;
1555 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1556 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1557 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1558 frv_convert_from_func_ptr_addr);
1560 /* Hook in ABI-specific overrides, if they have been registered. */
1561 gdbarch_init_osabi (info, gdbarch);
1563 /* Set the fallback (prologue based) frame sniffer. */
1564 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1570 _initialize_frv_tdep (void)
1572 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);