2004-08-02 Andrew Cagney <cagney@gnu.org>
[platform/upstream/binutils.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2    Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
3
4    This file is part of GDB.
5
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 2 of the License, or
9    (at your option) any later version.
10
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 59 Temple Place - Suite 330,
19    Boston, MA 02111-1307, USA.  */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "arch-utils.h"
26 #include "regcache.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dis-asm.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h"   /* for the H_SPR_... enums */
36 #include "symtab.h"
37 #include "elf-bfd.h"
38 #include "elf/frv.h"
39 #include "osabi.h"
40 #include "infcall.h"
41 #include "frv-tdep.h"
42
43 extern void _initialize_frv_tdep (void);
44
45 static gdbarch_init_ftype frv_gdbarch_init;
46
47 static gdbarch_register_name_ftype frv_register_name;
48 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
49 static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
50 static gdbarch_skip_prologue_ftype frv_skip_prologue;
51
52
53 struct frv_unwind_cache         /* was struct frame_extra_info */
54   {
55     /* The previous frame's inner-most stack address.  Used as this
56        frame ID's stack_addr.  */
57     CORE_ADDR prev_sp;
58
59     /* The frame's base, optionally used by the high-level debug info.  */
60     CORE_ADDR base;
61
62     /* Table indicating the location of each and every register.  */
63     struct trad_frame_saved_reg *saved_regs;
64   };
65
66 /* A structure describing a particular variant of the FRV.
67    We allocate and initialize one of these structures when we create
68    the gdbarch object for a variant.
69
70    At the moment, all the FR variants we support differ only in which
71    registers are present; the portable code of GDB knows that
72    registers whose names are the empty string don't exist, so the
73    `register_names' array captures all the per-variant information we
74    need.
75
76    in the future, if we need to have per-variant maps for raw size,
77    virtual type, etc., we should replace register_names with an array
78    of structures, each of which gives all the necessary info for one
79    register.  Don't stick parallel arrays in here --- that's so
80    Fortran.  */
81 struct gdbarch_tdep
82 {
83   /* Which ABI is in use?  */
84   enum frv_abi frv_abi;
85
86   /* How many general-purpose registers does this variant have?  */
87   int num_gprs;
88
89   /* How many floating-point registers does this variant have?  */
90   int num_fprs;
91
92   /* How many hardware watchpoints can it support?  */
93   int num_hw_watchpoints;
94
95   /* How many hardware breakpoints can it support?  */
96   int num_hw_breakpoints;
97
98   /* Register names.  */
99   char **register_names;
100 };
101
102 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
103
104 /* Return the FR-V ABI associated with GDBARCH.  */
105 enum frv_abi
106 frv_abi (struct gdbarch *gdbarch)
107 {
108   return gdbarch_tdep (gdbarch)->frv_abi;
109 }
110
111 /* Fetch the interpreter and executable loadmap addresses (for shared
112    library support) for the FDPIC ABI.  Return 0 if successful, -1 if
113    not.  (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.)  */
114 int
115 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
116                              CORE_ADDR *exec_addr)
117 {
118   if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
119     return -1;
120   else
121     {
122       if (interp_addr != NULL)
123         {
124           ULONGEST val;
125           regcache_cooked_read_unsigned (current_regcache,
126                                          fdpic_loadmap_interp_regnum, &val);
127           *interp_addr = val;
128         }
129       if (exec_addr != NULL)
130         {
131           ULONGEST val;
132           regcache_cooked_read_unsigned (current_regcache,
133                                          fdpic_loadmap_exec_regnum, &val);
134           *exec_addr = val;
135         }
136       return 0;
137     }
138 }
139
140 /* Allocate a new variant structure, and set up default values for all
141    the fields.  */
142 static struct gdbarch_tdep *
143 new_variant (void)
144 {
145   struct gdbarch_tdep *var;
146   int r;
147   char buf[20];
148
149   var = xmalloc (sizeof (*var));
150   memset (var, 0, sizeof (*var));
151   
152   var->frv_abi = FRV_ABI_EABI;
153   var->num_gprs = 64;
154   var->num_fprs = 64;
155   var->num_hw_watchpoints = 0;
156   var->num_hw_breakpoints = 0;
157
158   /* By default, don't supply any general-purpose or floating-point
159      register names.  */
160   var->register_names 
161     = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
162                          * sizeof (char *));
163   for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
164     var->register_names[r] = "";
165
166   /* Do, however, supply default names for the known special-purpose
167      registers.  */
168
169   var->register_names[pc_regnum] = "pc";
170   var->register_names[lr_regnum] = "lr";
171   var->register_names[lcr_regnum] = "lcr";
172      
173   var->register_names[psr_regnum] = "psr";
174   var->register_names[ccr_regnum] = "ccr";
175   var->register_names[cccr_regnum] = "cccr";
176   var->register_names[tbr_regnum] = "tbr";
177
178   /* Debug registers.  */
179   var->register_names[brr_regnum] = "brr";
180   var->register_names[dbar0_regnum] = "dbar0";
181   var->register_names[dbar1_regnum] = "dbar1";
182   var->register_names[dbar2_regnum] = "dbar2";
183   var->register_names[dbar3_regnum] = "dbar3";
184
185   /* iacc0 (Only found on MB93405.)  */
186   var->register_names[iacc0h_regnum] = "iacc0h";
187   var->register_names[iacc0l_regnum] = "iacc0l";
188   var->register_names[iacc0_regnum] = "iacc0";
189
190   /* fsr0 (Found on FR555 and FR501.)  */
191   var->register_names[fsr0_regnum] = "fsr0";
192
193   /* acc0 - acc7.  The architecture provides for the possibility of many
194      more (up to 64 total), but we don't want to make that big of a hole
195      in the G packet.  If we need more in the future, we'll add them
196      elsewhere.  */
197   for (r = acc0_regnum; r <= acc7_regnum; r++)
198     {
199       char *buf;
200       buf = xstrprintf ("acc%d", r - acc0_regnum);
201       var->register_names[r] = buf;
202     }
203
204   /* accg0 - accg7: These are one byte registers.  The remote protocol
205      provides the raw values packed four into a slot.  accg0123 and
206      accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
207      We don't provide names for accg0123 and accg4567 since the user will
208      likely not want to see these raw values.  */
209
210   for (r = accg0_regnum; r <= accg7_regnum; r++)
211     {
212       char *buf;
213       buf = xstrprintf ("accg%d", r - accg0_regnum);
214       var->register_names[r] = buf;
215     }
216
217   /* msr0 and msr1.  */
218
219   var->register_names[msr0_regnum] = "msr0";
220   var->register_names[msr1_regnum] = "msr1";
221
222   /* gner and fner registers.  */
223   var->register_names[gner0_regnum] = "gner0";
224   var->register_names[gner1_regnum] = "gner1";
225   var->register_names[fner0_regnum] = "fner0";
226   var->register_names[fner1_regnum] = "fner1";
227
228   return var;
229 }
230
231
232 /* Indicate that the variant VAR has NUM_GPRS general-purpose
233    registers, and fill in the names array appropriately.  */
234 static void
235 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
236 {
237   int r;
238
239   var->num_gprs = num_gprs;
240
241   for (r = 0; r < num_gprs; ++r)
242     {
243       char buf[20];
244
245       sprintf (buf, "gr%d", r);
246       var->register_names[first_gpr_regnum + r] = xstrdup (buf);
247     }
248 }
249
250
251 /* Indicate that the variant VAR has NUM_FPRS floating-point
252    registers, and fill in the names array appropriately.  */
253 static void
254 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
255 {
256   int r;
257
258   var->num_fprs = num_fprs;
259
260   for (r = 0; r < num_fprs; ++r)
261     {
262       char buf[20];
263
264       sprintf (buf, "fr%d", r);
265       var->register_names[first_fpr_regnum + r] = xstrdup (buf);
266     }
267 }
268
269 static void
270 set_variant_abi_fdpic (struct gdbarch_tdep *var)
271 {
272   var->frv_abi = FRV_ABI_FDPIC;
273   var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
274   var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
275 }
276
277 static void
278 set_variant_scratch_registers (struct gdbarch_tdep *var)
279 {
280   var->register_names[scr0_regnum] = xstrdup ("scr0");
281   var->register_names[scr1_regnum] = xstrdup ("scr1");
282   var->register_names[scr2_regnum] = xstrdup ("scr2");
283   var->register_names[scr3_regnum] = xstrdup ("scr3");
284 }
285
286 static const char *
287 frv_register_name (int reg)
288 {
289   if (reg < 0)
290     return "?toosmall?";
291   if (reg >= frv_num_regs + frv_num_pseudo_regs)
292     return "?toolarge?";
293
294   return CURRENT_VARIANT->register_names[reg];
295 }
296
297
298 static struct type *
299 frv_register_type (struct gdbarch *gdbarch, int reg)
300 {
301   if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
302     return builtin_type_float;
303   else if (reg == iacc0_regnum)
304     return builtin_type_int64;
305   else
306     return builtin_type_int32;
307 }
308
309 static void
310 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
311                           int reg, void *buffer)
312 {
313   if (reg == iacc0_regnum)
314     {
315       regcache_raw_read (regcache, iacc0h_regnum, buffer);
316       regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
317     }
318   else if (accg0_regnum <= reg && reg <= accg7_regnum)
319     {
320       /* The accg raw registers have four values in each slot with the
321          lowest register number occupying the first byte.  */
322
323       int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
324       int byte_num = (reg - accg0_regnum) % 4;
325       bfd_byte buf[4];
326
327       regcache_raw_read (regcache, raw_regnum, buf);
328       memset (buffer, 0, 4);
329       /* FR-V is big endian, so put the requested byte in the first byte
330          of the buffer allocated to hold the pseudo-register.  */
331       ((bfd_byte *) buffer)[0] = buf[byte_num];
332     }
333 }
334
335 static void
336 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
337                           int reg, const void *buffer)
338 {
339   if (reg == iacc0_regnum)
340     {
341       regcache_raw_write (regcache, iacc0h_regnum, buffer);
342       regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
343     }
344   else if (accg0_regnum <= reg && reg <= accg7_regnum)
345     {
346       /* The accg raw registers have four values in each slot with the
347          lowest register number occupying the first byte.  */
348
349       int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
350       int byte_num = (reg - accg0_regnum) % 4;
351       char buf[4];
352
353       regcache_raw_read (regcache, raw_regnum, buf);
354       buf[byte_num] = ((bfd_byte *) buffer)[0];
355       regcache_raw_write (regcache, raw_regnum, buf);
356     }
357 }
358
359 static int
360 frv_register_sim_regno (int reg)
361 {
362   static const int spr_map[] =
363     {
364       H_SPR_PSR,                /* psr_regnum */
365       H_SPR_CCR,                /* ccr_regnum */
366       H_SPR_CCCR,               /* cccr_regnum */
367       -1,                       /* fdpic_loadmap_exec_regnum */
368       -1,                       /* fdpic_loadmap_interp_regnum */
369       -1,                       /* 134 */
370       H_SPR_TBR,                /* tbr_regnum */
371       H_SPR_BRR,                /* brr_regnum */
372       H_SPR_DBAR0,              /* dbar0_regnum */
373       H_SPR_DBAR1,              /* dbar1_regnum */
374       H_SPR_DBAR2,              /* dbar2_regnum */
375       H_SPR_DBAR3,              /* dbar3_regnum */
376       H_SPR_SCR0,               /* scr0_regnum */
377       H_SPR_SCR1,               /* scr1_regnum */
378       H_SPR_SCR2,               /* scr2_regnum */
379       H_SPR_SCR3,               /* scr3_regnum */
380       H_SPR_LR,                 /* lr_regnum */
381       H_SPR_LCR,                /* lcr_regnum */
382       H_SPR_IACC0H,             /* iacc0h_regnum */
383       H_SPR_IACC0L,             /* iacc0l_regnum */
384       H_SPR_FSR0,               /* fsr0_regnum */
385       /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs.  */
386       -1,                       /* acc0_regnum */
387       -1,                       /* acc1_regnum */
388       -1,                       /* acc2_regnum */
389       -1,                       /* acc3_regnum */
390       -1,                       /* acc4_regnum */
391       -1,                       /* acc5_regnum */
392       -1,                       /* acc6_regnum */
393       -1,                       /* acc7_regnum */
394       -1,                       /* acc0123_regnum */
395       -1,                       /* acc4567_regnum */
396       H_SPR_MSR0,               /* msr0_regnum */
397       H_SPR_MSR1,               /* msr1_regnum */
398       H_SPR_GNER0,              /* gner0_regnum */
399       H_SPR_GNER1,              /* gner1_regnum */
400       H_SPR_FNER0,              /* fner0_regnum */
401       H_SPR_FNER1,              /* fner1_regnum */
402     };
403
404   gdb_assert (reg >= 0 && reg < NUM_REGS);
405
406   if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
407     return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
408   else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
409     return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
410   else if (pc_regnum == reg)
411     return SIM_FRV_PC_REGNUM;
412   else if (reg >= first_spr_regnum
413            && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
414     {
415       int spr_reg_offset = spr_map[reg - first_spr_regnum];
416
417       if (spr_reg_offset < 0)
418         return SIM_REGNO_DOES_NOT_EXIST;
419       else
420         return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
421     }
422
423   internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
424 }
425
426 static const unsigned char *
427 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
428 {
429   static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
430   *lenp = sizeof (breakpoint);
431   return breakpoint;
432 }
433
434 /* Define the maximum number of instructions which may be packed into a
435    bundle (VLIW instruction).  */
436 static const int max_instrs_per_bundle = 8;
437
438 /* Define the size (in bytes) of an FR-V instruction.  */
439 static const int frv_instr_size = 4;
440
441 /* Adjust a breakpoint's address to account for the FR-V architecture's
442    constraint that a break instruction must not appear as any but the
443    first instruction in the bundle.  */
444 static CORE_ADDR
445 frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
446 {
447   int count = max_instrs_per_bundle;
448   CORE_ADDR addr = bpaddr - frv_instr_size;
449   CORE_ADDR func_start = get_pc_function_start (bpaddr);
450
451   /* Find the end of the previous packing sequence.  This will be indicated
452      by either attempting to access some inaccessible memory or by finding
453      an instruction word whose packing bit is set to one. */
454   while (count-- > 0 && addr >= func_start)
455     {
456       char instr[frv_instr_size];
457       int status;
458
459       status = deprecated_read_memory_nobpt (addr, instr, sizeof instr);
460
461       if (status != 0)
462         break;
463
464       /* This is a big endian architecture, so byte zero will have most
465          significant byte.  The most significant bit of this byte is the
466          packing bit.  */
467       if (instr[0] & 0x80)
468         break;
469
470       addr -= frv_instr_size;
471     }
472
473   if (count > 0)
474     bpaddr = addr + frv_instr_size;
475
476   return bpaddr;
477 }
478
479
480 /* Return true if REG is a caller-saves ("scratch") register,
481    false otherwise.  */
482 static int
483 is_caller_saves_reg (int reg)
484 {
485   return ((4 <= reg && reg <= 7)
486           || (14 <= reg && reg <= 15)
487           || (32 <= reg && reg <= 47));
488 }
489
490
491 /* Return true if REG is a callee-saves register, false otherwise.  */
492 static int
493 is_callee_saves_reg (int reg)
494 {
495   return ((16 <= reg && reg <= 31)
496           || (48 <= reg && reg <= 63));
497 }
498
499
500 /* Return true if REG is an argument register, false otherwise.  */
501 static int
502 is_argument_reg (int reg)
503 {
504   return (8 <= reg && reg <= 13);
505 }
506
507 /* Scan an FR-V prologue, starting at PC, until frame->PC.
508    If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
509    We assume FRAME's saved_regs array has already been allocated and cleared.
510    Return the first PC value after the prologue.
511
512    Note that, for unoptimized code, we almost don't need this function
513    at all; all arguments and locals live on the stack, so we just need
514    the FP to find everything.  The catch: structures passed by value
515    have their addresses living in registers; they're never spilled to
516    the stack.  So if you ever want to be able to get to these
517    arguments in any frame but the top, you'll need to do this serious
518    prologue analysis.  */
519 static CORE_ADDR
520 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
521                       struct frv_unwind_cache *info)
522 {
523   /* When writing out instruction bitpatterns, we use the following
524      letters to label instruction fields:
525      P - The parallel bit.  We don't use this.
526      J - The register number of GRj in the instruction description.
527      K - The register number of GRk in the instruction description.
528      I - The register number of GRi.
529      S - a signed imediate offset.
530      U - an unsigned immediate offset.
531
532      The dots below the numbers indicate where hex digit boundaries
533      fall, to make it easier to check the numbers.  */
534
535   /* Non-zero iff we've seen the instruction that initializes the
536      frame pointer for this function's frame.  */
537   int fp_set = 0;
538
539   /* If fp_set is non_zero, then this is the distance from
540      the stack pointer to frame pointer: fp = sp + fp_offset.  */
541   int fp_offset = 0;
542
543   /* Total size of frame prior to any alloca operations. */
544   int framesize = 0;
545
546   /* Flag indicating if lr has been saved on the stack.  */
547   int lr_saved_on_stack = 0;
548
549   /* The number of the general-purpose register we saved the return
550      address ("link register") in, or -1 if we haven't moved it yet.  */
551   int lr_save_reg = -1;
552
553   /* Offset (from sp) at which lr has been saved on the stack.  */
554
555   int lr_sp_offset = 0;
556
557   /* If gr_saved[i] is non-zero, then we've noticed that general
558      register i has been saved at gr_sp_offset[i] from the stack
559      pointer.  */
560   char gr_saved[64];
561   int gr_sp_offset[64];
562
563   /* The address of the most recently scanned prologue instruction.  */
564   CORE_ADDR last_prologue_pc;
565
566   /* The address of the next instruction. */
567   CORE_ADDR next_pc;
568
569   /* The upper bound to of the pc values to scan.  */
570   CORE_ADDR lim_pc;
571
572   memset (gr_saved, 0, sizeof (gr_saved));
573
574   last_prologue_pc = pc;
575
576   /* Try to compute an upper limit (on how far to scan) based on the
577      line number info.  */
578   lim_pc = skip_prologue_using_sal (pc);
579   /* If there's no line number info, lim_pc will be 0.  In that case,
580      set the limit to be 100 instructions away from pc.  Hopefully, this
581      will be far enough away to account for the entire prologue.  Don't
582      worry about overshooting the end of the function.  The scan loop
583      below contains some checks to avoid scanning unreasonably far.  */
584   if (lim_pc == 0)
585     lim_pc = pc + 400;
586
587   /* If we have a frame, we don't want to scan past the frame's pc.  This
588      will catch those cases where the pc is in the prologue.  */
589   if (next_frame)
590     {
591       CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
592       if (frame_pc < lim_pc)
593         lim_pc = frame_pc;
594     }
595
596   /* Scan the prologue.  */
597   while (pc < lim_pc)
598     {
599       char buf[frv_instr_size];
600       LONGEST op;
601
602       if (target_read_memory (pc, buf, sizeof buf) != 0)
603         break;
604       op = extract_signed_integer (buf, sizeof buf);
605
606       next_pc = pc + 4;
607
608       /* The tests in this chain of ifs should be in order of
609          decreasing selectivity, so that more particular patterns get
610          to fire before less particular patterns.  */
611
612       /* Some sort of control transfer instruction: stop scanning prologue.
613          Integer Conditional Branch:
614           X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
615          Floating-point / media Conditional Branch:
616           X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
617          LCR Conditional Branch to LR
618           X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
619          Integer conditional Branches to LR
620           X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
621           X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
622          Floating-point/Media Branches to LR
623           X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
624           X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
625          Jump and Link
626           X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
627           X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
628          Call
629           X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
630          Return from Trap
631           X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
632          Integer Conditional Trap
633           X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
634           X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
635          Floating-point /media Conditional Trap
636           X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
637           X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
638          Break
639           X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
640          Media Trap
641           X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
642       if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
643           || (op & 0x01f80000) == 0x00300000  /* Jump and Link */
644           || (op & 0x01f80000) == 0x00100000  /* Return from Trap, Trap */
645           || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
646         {
647           /* Stop scanning; not in prologue any longer.  */
648           break;
649         }
650
651       /* Loading something from memory into fp probably means that
652          we're in the epilogue.  Stop scanning the prologue.
653          ld @(GRi, GRk), fp
654          X 000010 0000010 XXXXXX 000100 XXXXXX
655          ldi @(GRi, d12), fp
656          X 000010 0110010 XXXXXX XXXXXXXXXXXX */
657       else if ((op & 0x7ffc0fc0) == 0x04080100
658                || (op & 0x7ffc0000) == 0x04c80000)
659         {
660           break;
661         }
662
663       /* Setting the FP from the SP:
664          ori sp, 0, fp
665          P 000010 0100010 000001 000000000000 = 0x04881000
666          0 111111 1111111 111111 111111111111 = 0x7fffffff
667              .    .   .    .   .    .   .   .
668          We treat this as part of the prologue.  */
669       else if ((op & 0x7fffffff) == 0x04881000)
670         {
671           fp_set = 1;
672           fp_offset = 0;
673           last_prologue_pc = next_pc;
674         }
675
676       /* Move the link register to the scratch register grJ, before saving:
677          movsg lr, grJ
678          P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
679          0 111111 1111111 111111 111111 000000 = 0x7fffffc0
680              .    .   .    .   .    .    .   .
681          We treat this as part of the prologue.  */
682       else if ((op & 0x7fffffc0) == 0x080d01c0)
683         {
684           int gr_j = op & 0x3f;
685
686           /* If we're moving it to a scratch register, that's fine.  */
687           if (is_caller_saves_reg (gr_j))
688             {
689               lr_save_reg = gr_j;
690               last_prologue_pc = next_pc;
691             }
692         }
693
694       /* To save multiple callee-saves registers on the stack, at
695          offset zero:
696
697          std grK,@(sp,gr0)
698          P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
699          0 000000 1111111 111111 111111 111111 = 0x01ffffff
700
701          stq grK,@(sp,gr0)
702          P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
703          0 000000 1111111 111111 111111 111111 = 0x01ffffff
704              .    .   .    .   .    .    .   .
705          We treat this as part of the prologue, and record the register's
706          saved address in the frame structure.  */
707       else if ((op & 0x01ffffff) == 0x000c10c0
708             || (op & 0x01ffffff) == 0x000c1100)
709         {
710           int gr_k = ((op >> 25) & 0x3f);
711           int ope  = ((op >> 6)  & 0x3f);
712           int count;
713           int i;
714
715           /* Is it an std or an stq?  */
716           if (ope == 0x03)
717             count = 2;
718           else
719             count = 4;
720
721           /* Is it really a callee-saves register?  */
722           if (is_callee_saves_reg (gr_k))
723             {
724               for (i = 0; i < count; i++)
725                 {
726                   gr_saved[gr_k + i] = 1;
727                   gr_sp_offset[gr_k + i] = 4 * i;
728                 }
729               last_prologue_pc = next_pc;
730             }
731         }
732
733       /* Adjusting the stack pointer.  (The stack pointer is GR1.)
734          addi sp, S, sp
735          P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
736          0 111111 1111111 111111 000000000000 = 0x7ffff000
737              .    .   .    .   .    .   .   .
738          We treat this as part of the prologue.  */
739       else if ((op & 0x7ffff000) == 0x02401000)
740         {
741           if (framesize == 0)
742             {
743               /* Sign-extend the twelve-bit field.
744                  (Isn't there a better way to do this?)  */
745               int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
746
747               framesize -= s;
748               last_prologue_pc = pc;
749             }
750           else
751             {
752               /* If the prologue is being adjusted again, we've
753                  likely gone too far; i.e. we're probably in the
754                  epilogue.  */
755               break;
756             }
757         }
758
759       /* Setting the FP to a constant distance from the SP:
760          addi sp, S, fp
761          P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
762          0 111111 1111111 111111 000000000000 = 0x7ffff000
763              .    .   .    .   .    .   .   .
764          We treat this as part of the prologue.  */
765       else if ((op & 0x7ffff000) == 0x04401000)
766         {
767           /* Sign-extend the twelve-bit field.
768              (Isn't there a better way to do this?)  */
769           int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
770           fp_set = 1;
771           fp_offset = s;
772           last_prologue_pc = pc;
773         }
774
775       /* To spill an argument register to a scratch register:
776             ori GRi, 0, GRk
777          P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
778          0 000000 1111111 000000 111111111111 = 0x01fc0fff
779              .    .   .    .   .    .   .   .
780          For the time being, we treat this as a prologue instruction,
781          assuming that GRi is an argument register.  This one's kind
782          of suspicious, because it seems like it could be part of a
783          legitimate body instruction.  But we only come here when the
784          source info wasn't helpful, so we have to do the best we can.
785          Hopefully once GCC and GDB agree on how to emit line number
786          info for prologues, then this code will never come into play.  */
787       else if ((op & 0x01fc0fff) == 0x00880000)
788         {
789           int gr_i = ((op >> 12) & 0x3f);
790
791           /* Make sure that the source is an arg register; if it is, we'll
792              treat it as a prologue instruction.  */
793           if (is_argument_reg (gr_i))
794             last_prologue_pc = next_pc;
795         }
796
797       /* To spill 16-bit values to the stack:
798              sthi GRk, @(fp, s)
799          P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
800          0 000000 1111111 111111 000000000000 = 0x01fff000
801              .    .   .    .   .    .   .   . 
802          And for 8-bit values, we use STB instructions.
803              stbi GRk, @(fp, s)
804          P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
805          0 000000 1111111 111111 000000000000 = 0x01fff000
806              .    .   .    .   .    .   .   .
807          We check that GRk is really an argument register, and treat
808          all such as part of the prologue.  */
809       else if (   (op & 0x01fff000) == 0x01442000
810                || (op & 0x01fff000) == 0x01402000)
811         {
812           int gr_k = ((op >> 25) & 0x3f);
813
814           /* Make sure that GRk is really an argument register; treat
815              it as a prologue instruction if so.  */
816           if (is_argument_reg (gr_k))
817             last_prologue_pc = next_pc;
818         }
819
820       /* To save multiple callee-saves register on the stack, at a
821          non-zero offset:
822
823          stdi GRk, @(sp, s)
824          P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
825          0 000000 1111111 111111 000000000000 = 0x01fff000
826              .    .   .    .   .    .   .   .
827          stqi GRk, @(sp, s)
828          P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
829          0 000000 1111111 111111 000000000000 = 0x01fff000
830              .    .   .    .   .    .   .   .
831          We treat this as part of the prologue, and record the register's
832          saved address in the frame structure.  */
833       else if ((op & 0x01fff000) == 0x014c1000
834             || (op & 0x01fff000) == 0x01501000)
835         {
836           int gr_k = ((op >> 25) & 0x3f);
837           int count;
838           int i;
839
840           /* Is it a stdi or a stqi?  */
841           if ((op & 0x01fff000) == 0x014c1000)
842             count = 2;
843           else
844             count = 4;
845
846           /* Is it really a callee-saves register?  */
847           if (is_callee_saves_reg (gr_k))
848             {
849               /* Sign-extend the twelve-bit field.
850                  (Isn't there a better way to do this?)  */
851               int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
852
853               for (i = 0; i < count; i++)
854                 {
855                   gr_saved[gr_k + i] = 1;
856                   gr_sp_offset[gr_k + i] = s + (4 * i);
857                 }
858               last_prologue_pc = next_pc;
859             }
860         }
861
862       /* Storing any kind of integer register at any constant offset
863          from any other register.
864
865          st GRk, @(GRi, gr0)
866          P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
867          0 000000 1111111 000000 111111 111111 = 0x01fc0fff
868              .    .   .    .   .    .    .   .
869          sti GRk, @(GRi, d12)
870          P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
871          0 000000 1111111 000000 000000000000 = 0x01fc0000
872              .    .   .    .   .    .   .   .
873          These could be almost anything, but a lot of prologue
874          instructions fall into this pattern, so let's decode the
875          instruction once, and then work at a higher level.  */
876       else if (((op & 0x01fc0fff) == 0x000c0080)
877             || ((op & 0x01fc0000) == 0x01480000))
878         {
879           int gr_k = ((op >> 25) & 0x3f);
880           int gr_i = ((op >> 12) & 0x3f);
881           int offset;
882
883           /* Are we storing with gr0 as an offset, or using an
884              immediate value?  */
885           if ((op & 0x01fc0fff) == 0x000c0080)
886             offset = 0;
887           else
888             offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
889
890           /* If the address isn't relative to the SP or FP, it's not a
891              prologue instruction.  */
892           if (gr_i != sp_regnum && gr_i != fp_regnum)
893             {
894               /* Do nothing; not a prologue instruction.  */
895             }
896
897           /* Saving the old FP in the new frame (relative to the SP).  */
898           else if (gr_k == fp_regnum && gr_i == sp_regnum)
899             {
900               gr_saved[fp_regnum] = 1;
901               gr_sp_offset[fp_regnum] = offset;
902               last_prologue_pc = next_pc;
903             }
904
905           /* Saving callee-saves register(s) on the stack, relative to
906              the SP.  */
907           else if (gr_i == sp_regnum
908                    && is_callee_saves_reg (gr_k))
909             {
910               gr_saved[gr_k] = 1;
911               if (gr_i == sp_regnum)
912                 gr_sp_offset[gr_k] = offset;
913               else
914                 gr_sp_offset[gr_k] = offset + fp_offset;
915               last_prologue_pc = next_pc;
916             }
917
918           /* Saving the scratch register holding the return address.  */
919           else if (lr_save_reg != -1
920                    && gr_k == lr_save_reg)
921             {
922               lr_saved_on_stack = 1;
923               if (gr_i == sp_regnum)
924                 lr_sp_offset = offset;
925               else
926                 lr_sp_offset = offset + fp_offset;
927               last_prologue_pc = next_pc;
928             }
929
930           /* Spilling int-sized arguments to the stack.  */
931           else if (is_argument_reg (gr_k))
932             last_prologue_pc = next_pc;
933         }
934       pc = next_pc;
935     }
936
937   if (next_frame && info)
938     {
939       int i;
940       ULONGEST this_base;
941
942       /* If we know the relationship between the stack and frame
943          pointers, record the addresses of the registers we noticed.
944          Note that we have to do this as a separate step at the end,
945          because instructions may save relative to the SP, but we need
946          their addresses relative to the FP.  */
947       if (fp_set)
948           frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
949       else
950           frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
951
952       for (i = 0; i < 64; i++)
953         if (gr_saved[i])
954           info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
955
956       info->prev_sp = this_base - fp_offset + framesize;
957       info->base = this_base;
958
959       /* If LR was saved on the stack, record its location.  */
960       if (lr_saved_on_stack)
961         info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
962
963       /* The call instruction moves the caller's PC in the callee's LR.
964          Since this is an unwind, do the reverse.  Copy the location of LR
965          into PC (the address / regnum) so that a request for PC will be
966          converted into a request for the LR.  */
967       info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
968
969       /* Save the previous frame's computed SP value.  */
970       trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
971     }
972
973   return last_prologue_pc;
974 }
975
976
977 static CORE_ADDR
978 frv_skip_prologue (CORE_ADDR pc)
979 {
980   CORE_ADDR func_addr, func_end, new_pc;
981
982   new_pc = pc;
983
984   /* If the line table has entry for a line *within* the function
985      (i.e., not in the prologue, and not past the end), then that's
986      our location.  */
987   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
988     {
989       struct symtab_and_line sal;
990
991       sal = find_pc_line (func_addr, 0);
992
993       if (sal.line != 0 && sal.end < func_end)
994         {
995           new_pc = sal.end;
996         }
997     }
998
999   /* The FR-V prologue is at least five instructions long (twenty bytes).
1000      If we didn't find a real source location past that, then
1001      do a full analysis of the prologue.  */
1002   if (new_pc < pc + 20)
1003     new_pc = frv_analyze_prologue (pc, 0, 0);
1004
1005   return new_pc;
1006 }
1007
1008
1009 static struct frv_unwind_cache *
1010 frv_frame_unwind_cache (struct frame_info *next_frame,
1011                          void **this_prologue_cache)
1012 {
1013   struct gdbarch *gdbarch = get_frame_arch (next_frame);
1014   CORE_ADDR pc;
1015   ULONGEST this_base;
1016   struct frv_unwind_cache *info;
1017
1018   if ((*this_prologue_cache))
1019     return (*this_prologue_cache);
1020
1021   info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1022   (*this_prologue_cache) = info;
1023   info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1024
1025   /* Prologue analysis does the rest...  */
1026   frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
1027
1028   return info;
1029 }
1030
1031 static void
1032 frv_extract_return_value (struct type *type, struct regcache *regcache,
1033                           void *valbuf)
1034 {
1035   int len = TYPE_LENGTH (type);
1036
1037   if (len <= 4)
1038     {
1039       ULONGEST gpr8_val;
1040       regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1041       store_unsigned_integer (valbuf, len, gpr8_val);
1042     }
1043   else if (len == 8)
1044     {
1045       ULONGEST regval;
1046       regcache_cooked_read_unsigned (regcache, 8, &regval);
1047       store_unsigned_integer (valbuf, 4, regval);
1048       regcache_cooked_read_unsigned (regcache, 9, &regval);
1049       store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1050     }
1051   else
1052     internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
1053 }
1054
1055 static CORE_ADDR
1056 frv_extract_struct_value_address (struct regcache *regcache)
1057 {
1058   ULONGEST addr;
1059   regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
1060   return addr;
1061 }
1062
1063 static void
1064 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1065 {
1066   write_register (struct_return_regnum, addr);
1067 }
1068
1069 static CORE_ADDR
1070 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1071 {
1072   /* Require dword alignment.  */
1073   return align_down (sp, 8);
1074 }
1075
1076 static CORE_ADDR
1077 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1078 {
1079   CORE_ADDR descr;
1080   char valbuf[4];
1081
1082   descr = frv_fdpic_find_canonical_descriptor (entry_point);
1083
1084   if (descr != 0)
1085     return descr;
1086
1087   /* Construct a non-canonical descriptor from space allocated on
1088      the stack.  */
1089
1090   descr = value_as_long (value_allocate_space_in_inferior (8));
1091   store_unsigned_integer (valbuf, 4, entry_point);
1092   write_memory (descr, valbuf, 4);
1093   store_unsigned_integer (valbuf, 4,
1094                           frv_fdpic_find_global_pointer (entry_point));
1095   write_memory (descr + 4, valbuf, 4);
1096   return descr;
1097 }
1098
1099 static CORE_ADDR
1100 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1101                                 struct target_ops *targ)
1102 {
1103   CORE_ADDR entry_point;
1104   CORE_ADDR got_address;
1105
1106   entry_point = get_target_memory_unsigned (targ, addr, 4);
1107   got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1108
1109   if (got_address == frv_fdpic_find_global_pointer (entry_point))
1110     return entry_point;
1111   else
1112     return addr;
1113 }
1114
1115 static CORE_ADDR
1116 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1117                      struct regcache *regcache, CORE_ADDR bp_addr,
1118                      int nargs, struct value **args, CORE_ADDR sp,
1119                      int struct_return, CORE_ADDR struct_addr)
1120 {
1121   int argreg;
1122   int argnum;
1123   char *val;
1124   char valbuf[4];
1125   struct value *arg;
1126   struct type *arg_type;
1127   int len;
1128   enum type_code typecode;
1129   CORE_ADDR regval;
1130   int stack_space;
1131   int stack_offset;
1132   enum frv_abi abi = frv_abi (gdbarch);
1133   CORE_ADDR func_addr = find_function_addr (function, NULL);
1134
1135 #if 0
1136   printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1137          nargs, (int) sp, struct_return, struct_addr);
1138 #endif
1139
1140   stack_space = 0;
1141   for (argnum = 0; argnum < nargs; ++argnum)
1142     stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
1143
1144   stack_space -= (6 * 4);
1145   if (stack_space > 0)
1146     sp -= stack_space;
1147
1148   /* Make sure stack is dword aligned. */
1149   sp = align_down (sp, 8);
1150
1151   stack_offset = 0;
1152
1153   argreg = 8;
1154
1155   if (struct_return)
1156     regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1157                                     struct_addr);
1158
1159   for (argnum = 0; argnum < nargs; ++argnum)
1160     {
1161       arg = args[argnum];
1162       arg_type = check_typedef (VALUE_TYPE (arg));
1163       len = TYPE_LENGTH (arg_type);
1164       typecode = TYPE_CODE (arg_type);
1165
1166       if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1167         {
1168           store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1169           typecode = TYPE_CODE_PTR;
1170           len = 4;
1171           val = valbuf;
1172         }
1173       else if (abi == FRV_ABI_FDPIC
1174                && len == 4
1175                && typecode == TYPE_CODE_PTR
1176                && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1177         {
1178           /* The FDPIC ABI requires function descriptors to be passed instead
1179              of entry points.  */
1180           store_unsigned_integer
1181             (valbuf, 4,
1182              find_func_descr (gdbarch,
1183                               extract_unsigned_integer (VALUE_CONTENTS (arg),
1184                                                         4)));
1185           typecode = TYPE_CODE_PTR;
1186           len = 4;
1187           val = valbuf;
1188         }
1189       else
1190         {
1191           val = (char *) VALUE_CONTENTS (arg);
1192         }
1193
1194       while (len > 0)
1195         {
1196           int partial_len = (len < 4 ? len : 4);
1197
1198           if (argreg < 14)
1199             {
1200               regval = extract_unsigned_integer (val, partial_len);
1201 #if 0
1202               printf("  Argnum %d data %x -> reg %d\n",
1203                      argnum, (int) regval, argreg);
1204 #endif
1205               regcache_cooked_write_unsigned (regcache, argreg, regval);
1206               ++argreg;
1207             }
1208           else
1209             {
1210 #if 0
1211               printf("  Argnum %d data %x -> offset %d (%x)\n",
1212                      argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1213 #endif
1214               write_memory (sp + stack_offset, val, partial_len);
1215               stack_offset += align_up (partial_len, 4);
1216             }
1217           len -= partial_len;
1218           val += partial_len;
1219         }
1220     }
1221
1222   /* Set the return address.  For the frv, the return breakpoint is
1223      always at BP_ADDR.  */
1224   regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1225
1226   if (abi == FRV_ABI_FDPIC)
1227     {
1228       /* Set the GOT register for the FDPIC ABI.  */
1229       regcache_cooked_write_unsigned
1230         (regcache, first_gpr_regnum + 15,
1231          frv_fdpic_find_global_pointer (func_addr));
1232     }
1233
1234   /* Finally, update the SP register.  */
1235   regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1236
1237   return sp;
1238 }
1239
1240 static void
1241 frv_store_return_value (struct type *type, struct regcache *regcache,
1242                         const void *valbuf)
1243 {
1244   int len = TYPE_LENGTH (type);
1245
1246   if (len <= 4)
1247     {
1248       bfd_byte val[4];
1249       memset (val, 0, sizeof (val));
1250       memcpy (val + (4 - len), valbuf, len);
1251       regcache_cooked_write (regcache, 8, val);
1252     }
1253   else if (len == 8)
1254     {
1255       regcache_cooked_write (regcache, 8, valbuf);
1256       regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1257     }
1258   else
1259     internal_error (__FILE__, __LINE__,
1260                     "Don't know how to return a %d-byte value.", len);
1261 }
1262
1263
1264 /* Hardware watchpoint / breakpoint support for the FR500
1265    and FR400.  */
1266
1267 int
1268 frv_check_watch_resources (int type, int cnt, int ot)
1269 {
1270   struct gdbarch_tdep *var = CURRENT_VARIANT;
1271
1272   /* Watchpoints not supported on simulator.  */
1273   if (strcmp (target_shortname, "sim") == 0)
1274     return 0;
1275
1276   if (type == bp_hardware_breakpoint)
1277     {
1278       if (var->num_hw_breakpoints == 0)
1279         return 0;
1280       else if (cnt <= var->num_hw_breakpoints)
1281         return 1;
1282     }
1283   else
1284     {
1285       if (var->num_hw_watchpoints == 0)
1286         return 0;
1287       else if (ot)
1288         return -1;
1289       else if (cnt <= var->num_hw_watchpoints)
1290         return 1;
1291     }
1292   return -1;
1293 }
1294
1295
1296 CORE_ADDR
1297 frv_stopped_data_address (void)
1298 {
1299   CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1300
1301   brr = read_register (brr_regnum);
1302   dbar0 = read_register (dbar0_regnum);
1303   dbar1 = read_register (dbar1_regnum);
1304   dbar2 = read_register (dbar2_regnum);
1305   dbar3 = read_register (dbar3_regnum);
1306
1307   if (brr & (1<<11))
1308     return dbar0;
1309   else if (brr & (1<<10))
1310     return dbar1;
1311   else if (brr & (1<<9))
1312     return dbar2;
1313   else if (brr & (1<<8))
1314     return dbar3;
1315   else
1316     return 0;
1317 }
1318
1319 static CORE_ADDR
1320 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1321 {
1322   return frame_unwind_register_unsigned (next_frame, pc_regnum);
1323 }
1324
1325 /* Given a GDB frame, determine the address of the calling function's
1326    frame.  This will be used to create a new GDB frame struct.  */
1327
1328 static void
1329 frv_frame_this_id (struct frame_info *next_frame,
1330                     void **this_prologue_cache, struct frame_id *this_id)
1331 {
1332   struct frv_unwind_cache *info
1333     = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1334   CORE_ADDR base;
1335   CORE_ADDR func;
1336   struct minimal_symbol *msym_stack;
1337   struct frame_id id;
1338
1339   /* The FUNC is easy.  */
1340   func = frame_func_unwind (next_frame);
1341
1342   /* Check if the stack is empty.  */
1343   msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1344   if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1345     return;
1346
1347   /* Hopefully the prologue analysis either correctly determined the
1348      frame's base (which is the SP from the previous frame), or set
1349      that base to "NULL".  */
1350   base = info->prev_sp;
1351   if (base == 0)
1352     return;
1353
1354   id = frame_id_build (base, func);
1355   (*this_id) = id;
1356 }
1357
1358 static void
1359 frv_frame_prev_register (struct frame_info *next_frame,
1360                           void **this_prologue_cache,
1361                           int regnum, int *optimizedp,
1362                           enum lval_type *lvalp, CORE_ADDR *addrp,
1363                           int *realnump, void *bufferp)
1364 {
1365   struct frv_unwind_cache *info
1366     = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1367   trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1368                                 optimizedp, lvalp, addrp, realnump, bufferp);
1369 }
1370
1371 static const struct frame_unwind frv_frame_unwind = {
1372   NORMAL_FRAME,
1373   frv_frame_this_id,
1374   frv_frame_prev_register
1375 };
1376
1377 static const struct frame_unwind *
1378 frv_frame_sniffer (struct frame_info *next_frame)
1379 {
1380   return &frv_frame_unwind;
1381 }
1382
1383 static CORE_ADDR
1384 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1385 {
1386   struct frv_unwind_cache *info
1387     = frv_frame_unwind_cache (next_frame, this_cache);
1388   return info->base;
1389 }
1390
1391 static const struct frame_base frv_frame_base = {
1392   &frv_frame_unwind,
1393   frv_frame_base_address,
1394   frv_frame_base_address,
1395   frv_frame_base_address
1396 };
1397
1398 static CORE_ADDR
1399 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1400 {
1401   return frame_unwind_register_unsigned (next_frame, sp_regnum);
1402 }
1403
1404
1405 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1406    dummy frame.  The frame ID's base needs to match the TOS value
1407    saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1408    breakpoint.  */
1409
1410 static struct frame_id
1411 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1412 {
1413   return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1414                          frame_pc_unwind (next_frame));
1415 }
1416
1417 static struct gdbarch *
1418 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1419 {
1420   struct gdbarch *gdbarch;
1421   struct gdbarch_tdep *var;
1422   int elf_flags = 0;
1423
1424   /* Check to see if we've already built an appropriate architecture
1425      object for this executable.  */
1426   arches = gdbarch_list_lookup_by_info (arches, &info);
1427   if (arches)
1428     return arches->gdbarch;
1429
1430   /* Select the right tdep structure for this variant.  */
1431   var = new_variant ();
1432   switch (info.bfd_arch_info->mach)
1433     {
1434     case bfd_mach_frv:
1435     case bfd_mach_frvsimple:
1436     case bfd_mach_fr500:
1437     case bfd_mach_frvtomcat:
1438     case bfd_mach_fr550:
1439       set_variant_num_gprs (var, 64);
1440       set_variant_num_fprs (var, 64);
1441       break;
1442
1443     case bfd_mach_fr400:
1444     case bfd_mach_fr450:
1445       set_variant_num_gprs (var, 32);
1446       set_variant_num_fprs (var, 32);
1447       break;
1448
1449     default:
1450       /* Never heard of this variant.  */
1451       return 0;
1452     }
1453
1454   /* Extract the ELF flags, if available.  */
1455   if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1456     elf_flags = elf_elfheader (info.abfd)->e_flags;
1457
1458   if (elf_flags & EF_FRV_FDPIC)
1459     set_variant_abi_fdpic (var);
1460
1461   if (elf_flags & EF_FRV_CPU_FR450)
1462     set_variant_scratch_registers (var);
1463
1464   gdbarch = gdbarch_alloc (&info, var);
1465
1466   set_gdbarch_short_bit (gdbarch, 16);
1467   set_gdbarch_int_bit (gdbarch, 32);
1468   set_gdbarch_long_bit (gdbarch, 32);
1469   set_gdbarch_long_long_bit (gdbarch, 64);
1470   set_gdbarch_float_bit (gdbarch, 32);
1471   set_gdbarch_double_bit (gdbarch, 64);
1472   set_gdbarch_long_double_bit (gdbarch, 64);
1473   set_gdbarch_ptr_bit (gdbarch, 32);
1474
1475   set_gdbarch_num_regs (gdbarch, frv_num_regs);
1476   set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1477
1478   set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1479   set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1480   set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1481
1482   set_gdbarch_register_name (gdbarch, frv_register_name);
1483   set_gdbarch_register_type (gdbarch, frv_register_type);
1484   set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1485
1486   set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1487   set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1488
1489   set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1490   set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1491   set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
1492
1493   set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
1494   set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1495
1496   set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1497   set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1498   set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1499
1500   /* Frame stuff.  */
1501   set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1502   set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1503   set_gdbarch_frame_align (gdbarch, frv_frame_align);
1504   frame_base_set_default (gdbarch, &frv_frame_base);
1505   /* We set the sniffer lower down after the OSABI hooks have been
1506      established.  */
1507
1508   /* Settings for calling functions in the inferior.  */
1509   set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1510   set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1511
1512   /* Settings that should be unnecessary.  */
1513   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1514
1515   set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1516
1517   set_gdbarch_remote_translate_xfer_address
1518     (gdbarch, generic_remote_translate_xfer_address);
1519
1520   /* Hardware watchpoint / breakpoint support.  */
1521   switch (info.bfd_arch_info->mach)
1522     {
1523     case bfd_mach_frv:
1524     case bfd_mach_frvsimple:
1525     case bfd_mach_fr500:
1526     case bfd_mach_frvtomcat:
1527       /* fr500-style hardware debugging support.  */
1528       var->num_hw_watchpoints = 4;
1529       var->num_hw_breakpoints = 4;
1530       break;
1531
1532     case bfd_mach_fr400:
1533     case bfd_mach_fr450:
1534       /* fr400-style hardware debugging support.  */
1535       var->num_hw_watchpoints = 2;
1536       var->num_hw_breakpoints = 4;
1537       break;
1538
1539     default:
1540       /* Otherwise, assume we don't have hardware debugging support.  */
1541       var->num_hw_watchpoints = 0;
1542       var->num_hw_breakpoints = 0;
1543       break;
1544     }
1545
1546   set_gdbarch_print_insn (gdbarch, print_insn_frv);
1547   if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1548     set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1549                                             frv_convert_from_func_ptr_addr);
1550
1551   /* Hook in ABI-specific overrides, if they have been registered.  */
1552   gdbarch_init_osabi (info, gdbarch);
1553
1554   /* Set the fallback (prologue based) frame sniffer.  */
1555   frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1556
1557   return gdbarch;
1558 }
1559
1560 void
1561 _initialize_frv_tdep (void)
1562 {
1563   register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1564 }