gdb: Add default frame methods to gdbarch
[external/binutils.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3    Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h"   /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47    If unwound, it returns the information needed to construct an
48    innermost frame.
49
50    The current frame, which is the innermost frame, can be found at
51    sentinel_frame->prev.  */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object.  */
59
60 enum cached_copy_status
61 {
62   /* Value is unknown.  */
63   CC_UNKNOWN,
64
65   /* We have a value.  */
66   CC_VALUE,
67
68   /* Value was not saved.  */
69   CC_NOT_SAVED,
70
71   /* Value is unavailable.  */
72   CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76    frame_info".  The innermost one gets allocated (in
77    wait_for_inferior) each time the inferior stops; sentinel_frame
78    points to it.  Additional frames get allocated (in get_prev_frame)
79    as needed, and are chained through the next and prev fields.  Any
80    time that the frame cache becomes invalid (most notably when we
81    execute something, but also if we change how we interpret the
82    frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83    which reads new symbols)), we should call reinit_frame_cache.  */
84
85 struct frame_info
86 {
87   /* Level of this frame.  The inner-most (youngest) frame is at level
88      0.  As you move towards the outer-most (oldest) frame, the level
89      increases.  This is a cached value.  It could just as easily be
90      computed by counting back from the selected frame to the inner
91      most frame.  */
92   /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93      reserved to indicate a bogus frame - one that has been created
94      just to keep GDB happy (GDB always needs a frame).  For the
95      moment leave this as speculation.  */
96   int level;
97
98   /* The frame's program space.  */
99   struct program_space *pspace;
100
101   /* The frame's address space.  */
102   const address_space *aspace;
103
104   /* The frame's low-level unwinder and corresponding cache.  The
105      low-level unwinder is responsible for unwinding register values
106      for the previous frame.  The low-level unwind methods are
107      selected based on the presence, or otherwise, of register unwind
108      information such as CFI.  */
109   void *prologue_cache;
110   const struct frame_unwind *unwind;
111
112   /* Cached copy of the previous frame's architecture.  */
113   struct
114   {
115     int p;
116     struct gdbarch *arch;
117   } prev_arch;
118
119   /* Cached copy of the previous frame's resume address.  */
120   struct {
121     enum cached_copy_status status;
122     CORE_ADDR value;
123   } prev_pc;
124   
125   /* Cached copy of the previous frame's function address.  */
126   struct
127   {
128     CORE_ADDR addr;
129     int p;
130   } prev_func;
131   
132   /* This frame's ID.  */
133   struct
134   {
135     int p;
136     struct frame_id value;
137   } this_id;
138   
139   /* The frame's high-level base methods, and corresponding cache.
140      The high level base methods are selected based on the frame's
141      debug info.  */
142   const struct frame_base *base;
143   void *base_cache;
144
145   /* Pointers to the next (down, inner, younger) and previous (up,
146      outer, older) frame_info's in the frame cache.  */
147   struct frame_info *next; /* down, inner, younger */
148   int prev_p;
149   struct frame_info *prev; /* up, outer, older */
150
151   /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152      could.  Only valid when PREV_P is set.  */
153   enum unwind_stop_reason stop_reason;
154
155   /* A frame specific string describing the STOP_REASON in more detail.
156      Only valid when PREV_P is set, but even then may still be NULL.  */
157   const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups.  Create a hash table
161    to stash frames previously accessed from the frame cache for
162    quicker subsequent retrieval.  The hash table is emptied whenever
163    the frame cache is invalidated.  */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168    using as many valid addresses as possible.  Frames below level 0
169    are not stored in the hash table.  */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174   const struct frame_info *frame = (const struct frame_info *) ap;
175   const struct frame_id f_id = frame->this_id.value;
176   hashval_t hash = 0;
177
178   gdb_assert (f_id.stack_status != FID_STACK_INVALID
179               || f_id.code_addr_p
180               || f_id.special_addr_p);
181
182   if (f_id.stack_status == FID_STACK_VALID)
183     hash = iterative_hash (&f_id.stack_addr,
184                            sizeof (f_id.stack_addr), hash);
185   if (f_id.code_addr_p)
186     hash = iterative_hash (&f_id.code_addr,
187                            sizeof (f_id.code_addr), hash);
188   if (f_id.special_addr_p)
189     hash = iterative_hash (&f_id.special_addr,
190                            sizeof (f_id.special_addr), hash);
191
192   return hash;
193 }
194
195 /* Internal equality function for the hash table.  This function
196    defers equality operations to frame_id_eq.  */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201   const struct frame_info *f_entry = (const struct frame_info *) a;
202   const struct frame_info *f_element = (const struct frame_info *) b;
203
204   return frame_id_eq (f_entry->this_id.value,
205                       f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table.  100 seems
209    to be a good compromise to start the hash table at.  */
210
211 static void
212 frame_stash_create (void)
213 {
214   frame_stash = htab_create (100,
215                              frame_addr_hash,
216                              frame_addr_hash_eq,
217                              NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221    Returns false if a frame with the same ID was already stashed, true
222    otherwise.  */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227   struct frame_info **slot;
228
229   /* Do not try to stash the sentinel frame.  */
230   gdb_assert (frame->level >= 0);
231
232   slot = (struct frame_info **) htab_find_slot (frame_stash,
233                                                 frame,
234                                                 INSERT);
235
236   /* If we already have a frame in the stack with the same id, we
237      either have a stack cycle (corrupted stack?), or some bug
238      elsewhere in GDB.  In any case, ignore the duplicate and return
239      an indication to the caller.  */
240   if (*slot != NULL)
241     return 0;
242
243   *slot = frame;
244   return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248    given frame ID.  If found, return that frame.  Otherwise return
249    NULL.  */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254   struct frame_info dummy;
255   struct frame_info *frame;
256
257   dummy.this_id.value = id;
258   frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259   return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263    entries in it.  This only occurs when the frame cache is
264    invalidated.  */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269   htab_empty (frame_stash);
270 }
271
272 /* See frame.h  */
273 scoped_restore_selected_frame::scoped_restore_selected_frame ()
274 {
275   m_fid = get_frame_id (get_selected_frame (NULL));
276 }
277
278 /* See frame.h  */
279 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
280 {
281   frame_info *frame = frame_find_by_id (m_fid);
282   if (frame == NULL)
283     warning (_("Unable to restore previously selected frame."));
284   else
285     select_frame (frame);
286 }
287
288 /* Flag to control debugging.  */
289
290 unsigned int frame_debug;
291 static void
292 show_frame_debug (struct ui_file *file, int from_tty,
293                   struct cmd_list_element *c, const char *value)
294 {
295   fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
296 }
297
298 /* Flag to indicate whether backtraces should stop at main et.al.  */
299
300 static int backtrace_past_main;
301 static void
302 show_backtrace_past_main (struct ui_file *file, int from_tty,
303                           struct cmd_list_element *c, const char *value)
304 {
305   fprintf_filtered (file,
306                     _("Whether backtraces should "
307                       "continue past \"main\" is %s.\n"),
308                     value);
309 }
310
311 static int backtrace_past_entry;
312 static void
313 show_backtrace_past_entry (struct ui_file *file, int from_tty,
314                            struct cmd_list_element *c, const char *value)
315 {
316   fprintf_filtered (file, _("Whether backtraces should continue past the "
317                             "entry point of a program is %s.\n"),
318                     value);
319 }
320
321 static unsigned int backtrace_limit = UINT_MAX;
322 static void
323 show_backtrace_limit (struct ui_file *file, int from_tty,
324                       struct cmd_list_element *c, const char *value)
325 {
326   fprintf_filtered (file,
327                     _("An upper bound on the number "
328                       "of backtrace levels is %s.\n"),
329                     value);
330 }
331
332
333 static void
334 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
335 {
336   if (p)
337     fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
338   else
339     fprintf_unfiltered (file, "!%s", name);
340 }
341
342 void
343 fprint_frame_id (struct ui_file *file, struct frame_id id)
344 {
345   fprintf_unfiltered (file, "{");
346
347   if (id.stack_status == FID_STACK_INVALID)
348     fprintf_unfiltered (file, "!stack");
349   else if (id.stack_status == FID_STACK_UNAVAILABLE)
350     fprintf_unfiltered (file, "stack=<unavailable>");
351   else if (id.stack_status == FID_STACK_SENTINEL)
352     fprintf_unfiltered (file, "stack=<sentinel>");
353   else
354     fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
355   fprintf_unfiltered (file, ",");
356
357   fprint_field (file, "code", id.code_addr_p, id.code_addr);
358   fprintf_unfiltered (file, ",");
359
360   fprint_field (file, "special", id.special_addr_p, id.special_addr);
361
362   if (id.artificial_depth)
363     fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
364
365   fprintf_unfiltered (file, "}");
366 }
367
368 static void
369 fprint_frame_type (struct ui_file *file, enum frame_type type)
370 {
371   switch (type)
372     {
373     case NORMAL_FRAME:
374       fprintf_unfiltered (file, "NORMAL_FRAME");
375       return;
376     case DUMMY_FRAME:
377       fprintf_unfiltered (file, "DUMMY_FRAME");
378       return;
379     case INLINE_FRAME:
380       fprintf_unfiltered (file, "INLINE_FRAME");
381       return;
382     case TAILCALL_FRAME:
383       fprintf_unfiltered (file, "TAILCALL_FRAME");
384       return;
385     case SIGTRAMP_FRAME:
386       fprintf_unfiltered (file, "SIGTRAMP_FRAME");
387       return;
388     case ARCH_FRAME:
389       fprintf_unfiltered (file, "ARCH_FRAME");
390       return;
391     case SENTINEL_FRAME:
392       fprintf_unfiltered (file, "SENTINEL_FRAME");
393       return;
394     default:
395       fprintf_unfiltered (file, "<unknown type>");
396       return;
397     };
398 }
399
400 static void
401 fprint_frame (struct ui_file *file, struct frame_info *fi)
402 {
403   if (fi == NULL)
404     {
405       fprintf_unfiltered (file, "<NULL frame>");
406       return;
407     }
408   fprintf_unfiltered (file, "{");
409   fprintf_unfiltered (file, "level=%d", fi->level);
410   fprintf_unfiltered (file, ",");
411   fprintf_unfiltered (file, "type=");
412   if (fi->unwind != NULL)
413     fprint_frame_type (file, fi->unwind->type);
414   else
415     fprintf_unfiltered (file, "<unknown>");
416   fprintf_unfiltered (file, ",");
417   fprintf_unfiltered (file, "unwind=");
418   if (fi->unwind != NULL)
419     gdb_print_host_address (fi->unwind, file);
420   else
421     fprintf_unfiltered (file, "<unknown>");
422   fprintf_unfiltered (file, ",");
423   fprintf_unfiltered (file, "pc=");
424   if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
425     fprintf_unfiltered (file, "<unknown>");
426   else if (fi->next->prev_pc.status == CC_VALUE)
427     fprintf_unfiltered (file, "%s",
428                         hex_string (fi->next->prev_pc.value));
429   else if (fi->next->prev_pc.status == CC_NOT_SAVED)
430     val_print_not_saved (file);
431   else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
432     val_print_unavailable (file);
433   fprintf_unfiltered (file, ",");
434   fprintf_unfiltered (file, "id=");
435   if (fi->this_id.p)
436     fprint_frame_id (file, fi->this_id.value);
437   else
438     fprintf_unfiltered (file, "<unknown>");
439   fprintf_unfiltered (file, ",");
440   fprintf_unfiltered (file, "func=");
441   if (fi->next != NULL && fi->next->prev_func.p)
442     fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
443   else
444     fprintf_unfiltered (file, "<unknown>");
445   fprintf_unfiltered (file, "}");
446 }
447
448 /* Given FRAME, return the enclosing frame as found in real frames read-in from
449    inferior memory.  Skip any previous frames which were made up by GDB.
450    Return FRAME if FRAME is a non-artificial frame.
451    Return NULL if FRAME is the start of an artificial-only chain.  */
452
453 static struct frame_info *
454 skip_artificial_frames (struct frame_info *frame)
455 {
456   /* Note we use get_prev_frame_always, and not get_prev_frame.  The
457      latter will truncate the frame chain, leading to this function
458      unintentionally returning a null_frame_id (e.g., when the user
459      sets a backtrace limit).
460
461      Note that for record targets we may get a frame chain that consists
462      of artificial frames only.  */
463   while (get_frame_type (frame) == INLINE_FRAME
464          || get_frame_type (frame) == TAILCALL_FRAME)
465     {
466       frame = get_prev_frame_always (frame);
467       if (frame == NULL)
468         break;
469     }
470
471   return frame;
472 }
473
474 struct frame_info *
475 skip_unwritable_frames (struct frame_info *frame)
476 {
477   while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
478     {
479       frame = get_prev_frame (frame);
480       if (frame == NULL)
481         break;
482     }
483
484   return frame;
485 }
486
487 /* See frame.h.  */
488
489 struct frame_info *
490 skip_tailcall_frames (struct frame_info *frame)
491 {
492   while (get_frame_type (frame) == TAILCALL_FRAME)
493     {
494       /* Note that for record targets we may get a frame chain that consists of
495          tailcall frames only.  */
496       frame = get_prev_frame (frame);
497       if (frame == NULL)
498         break;
499     }
500
501   return frame;
502 }
503
504 /* Compute the frame's uniq ID that can be used to, later, re-find the
505    frame.  */
506
507 static void
508 compute_frame_id (struct frame_info *fi)
509 {
510   gdb_assert (!fi->this_id.p);
511
512   if (frame_debug)
513     fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
514                         fi->level);
515   /* Find the unwinder.  */
516   if (fi->unwind == NULL)
517     frame_unwind_find_by_frame (fi, &fi->prologue_cache);
518   /* Find THIS frame's ID.  */
519   /* Default to outermost if no ID is found.  */
520   fi->this_id.value = outer_frame_id;
521   fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
522   gdb_assert (frame_id_p (fi->this_id.value));
523   fi->this_id.p = 1;
524   if (frame_debug)
525     {
526       fprintf_unfiltered (gdb_stdlog, "-> ");
527       fprint_frame_id (gdb_stdlog, fi->this_id.value);
528       fprintf_unfiltered (gdb_stdlog, " }\n");
529     }
530 }
531
532 /* Return a frame uniq ID that can be used to, later, re-find the
533    frame.  */
534
535 struct frame_id
536 get_frame_id (struct frame_info *fi)
537 {
538   if (fi == NULL)
539     return null_frame_id;
540
541   if (!fi->this_id.p)
542     {
543       int stashed;
544
545       /* If we haven't computed the frame id yet, then it must be that
546          this is the current frame.  Compute it now, and stash the
547          result.  The IDs of other frames are computed as soon as
548          they're created, in order to detect cycles.  See
549          get_prev_frame_if_no_cycle.  */
550       gdb_assert (fi->level == 0);
551
552       /* Compute.  */
553       compute_frame_id (fi);
554
555       /* Since this is the first frame in the chain, this should
556          always succeed.  */
557       stashed = frame_stash_add (fi);
558       gdb_assert (stashed);
559     }
560
561   return fi->this_id.value;
562 }
563
564 struct frame_id
565 get_stack_frame_id (struct frame_info *next_frame)
566 {
567   return get_frame_id (skip_artificial_frames (next_frame));
568 }
569
570 struct frame_id
571 frame_unwind_caller_id (struct frame_info *next_frame)
572 {
573   struct frame_info *this_frame;
574
575   /* Use get_prev_frame_always, and not get_prev_frame.  The latter
576      will truncate the frame chain, leading to this function
577      unintentionally returning a null_frame_id (e.g., when a caller
578      requests the frame ID of "main()"s caller.  */
579
580   next_frame = skip_artificial_frames (next_frame);
581   if (next_frame == NULL)
582     return null_frame_id;
583
584   this_frame = get_prev_frame_always (next_frame);
585   if (this_frame)
586     return get_frame_id (skip_artificial_frames (this_frame));
587   else
588     return null_frame_id;
589 }
590
591 const struct frame_id null_frame_id = { 0 }; /* All zeros.  */
592 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
593 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
594
595 struct frame_id
596 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
597                         CORE_ADDR special_addr)
598 {
599   struct frame_id id = null_frame_id;
600
601   id.stack_addr = stack_addr;
602   id.stack_status = FID_STACK_VALID;
603   id.code_addr = code_addr;
604   id.code_addr_p = 1;
605   id.special_addr = special_addr;
606   id.special_addr_p = 1;
607   return id;
608 }
609
610 /* See frame.h.  */
611
612 struct frame_id
613 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
614 {
615   struct frame_id id = null_frame_id;
616
617   id.stack_status = FID_STACK_UNAVAILABLE;
618   id.code_addr = code_addr;
619   id.code_addr_p = 1;
620   return id;
621 }
622
623 /* See frame.h.  */
624
625 struct frame_id
626 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
627                                           CORE_ADDR special_addr)
628 {
629   struct frame_id id = null_frame_id;
630
631   id.stack_status = FID_STACK_UNAVAILABLE;
632   id.code_addr = code_addr;
633   id.code_addr_p = 1;
634   id.special_addr = special_addr;
635   id.special_addr_p = 1;
636   return id;
637 }
638
639 struct frame_id
640 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
641 {
642   struct frame_id id = null_frame_id;
643
644   id.stack_addr = stack_addr;
645   id.stack_status = FID_STACK_VALID;
646   id.code_addr = code_addr;
647   id.code_addr_p = 1;
648   return id;
649 }
650
651 struct frame_id
652 frame_id_build_wild (CORE_ADDR stack_addr)
653 {
654   struct frame_id id = null_frame_id;
655
656   id.stack_addr = stack_addr;
657   id.stack_status = FID_STACK_VALID;
658   return id;
659 }
660
661 int
662 frame_id_p (struct frame_id l)
663 {
664   int p;
665
666   /* The frame is valid iff it has a valid stack address.  */
667   p = l.stack_status != FID_STACK_INVALID;
668   /* outer_frame_id is also valid.  */
669   if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
670     p = 1;
671   if (frame_debug)
672     {
673       fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
674       fprint_frame_id (gdb_stdlog, l);
675       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
676     }
677   return p;
678 }
679
680 int
681 frame_id_artificial_p (struct frame_id l)
682 {
683   if (!frame_id_p (l))
684     return 0;
685
686   return (l.artificial_depth != 0);
687 }
688
689 int
690 frame_id_eq (struct frame_id l, struct frame_id r)
691 {
692   int eq;
693
694   if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
695       && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
696     /* The outermost frame marker is equal to itself.  This is the
697        dodgy thing about outer_frame_id, since between execution steps
698        we might step into another function - from which we can't
699        unwind either.  More thought required to get rid of
700        outer_frame_id.  */
701     eq = 1;
702   else if (l.stack_status == FID_STACK_INVALID
703            || r.stack_status == FID_STACK_INVALID)
704     /* Like a NaN, if either ID is invalid, the result is false.
705        Note that a frame ID is invalid iff it is the null frame ID.  */
706     eq = 0;
707   else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
708     /* If .stack addresses are different, the frames are different.  */
709     eq = 0;
710   else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
711     /* An invalid code addr is a wild card.  If .code addresses are
712        different, the frames are different.  */
713     eq = 0;
714   else if (l.special_addr_p && r.special_addr_p
715            && l.special_addr != r.special_addr)
716     /* An invalid special addr is a wild card (or unused).  Otherwise
717        if special addresses are different, the frames are different.  */
718     eq = 0;
719   else if (l.artificial_depth != r.artificial_depth)
720     /* If artifical depths are different, the frames must be different.  */
721     eq = 0;
722   else
723     /* Frames are equal.  */
724     eq = 1;
725
726   if (frame_debug)
727     {
728       fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
729       fprint_frame_id (gdb_stdlog, l);
730       fprintf_unfiltered (gdb_stdlog, ",r=");
731       fprint_frame_id (gdb_stdlog, r);
732       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
733     }
734   return eq;
735 }
736
737 /* Safety net to check whether frame ID L should be inner to
738    frame ID R, according to their stack addresses.
739
740    This method cannot be used to compare arbitrary frames, as the
741    ranges of valid stack addresses may be discontiguous (e.g. due
742    to sigaltstack).
743
744    However, it can be used as safety net to discover invalid frame
745    IDs in certain circumstances.  Assuming that NEXT is the immediate
746    inner frame to THIS and that NEXT and THIS are both NORMAL frames:
747
748    * The stack address of NEXT must be inner-than-or-equal to the stack
749      address of THIS.
750
751      Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
752      error has occurred.
753
754    * If NEXT and THIS have different stack addresses, no other frame
755      in the frame chain may have a stack address in between.
756
757      Therefore, if frame_id_inner (TEST, THIS) holds, but
758      frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
759      to a valid frame in the frame chain.
760
761    The sanity checks above cannot be performed when a SIGTRAMP frame
762    is involved, because signal handlers might be executed on a different
763    stack than the stack used by the routine that caused the signal
764    to be raised.  This can happen for instance when a thread exceeds
765    its maximum stack size.  In this case, certain compilers implement
766    a stack overflow strategy that cause the handler to be run on a
767    different stack.  */
768
769 static int
770 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
771 {
772   int inner;
773
774   if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
775     /* Like NaN, any operation involving an invalid ID always fails.
776        Likewise if either ID has an unavailable stack address.  */
777     inner = 0;
778   else if (l.artificial_depth > r.artificial_depth
779            && l.stack_addr == r.stack_addr
780            && l.code_addr_p == r.code_addr_p
781            && l.special_addr_p == r.special_addr_p
782            && l.special_addr == r.special_addr)
783     {
784       /* Same function, different inlined functions.  */
785       const struct block *lb, *rb;
786
787       gdb_assert (l.code_addr_p && r.code_addr_p);
788
789       lb = block_for_pc (l.code_addr);
790       rb = block_for_pc (r.code_addr);
791
792       if (lb == NULL || rb == NULL)
793         /* Something's gone wrong.  */
794         inner = 0;
795       else
796         /* This will return true if LB and RB are the same block, or
797            if the block with the smaller depth lexically encloses the
798            block with the greater depth.  */
799         inner = contained_in (lb, rb);
800     }
801   else
802     /* Only return non-zero when strictly inner than.  Note that, per
803        comment in "frame.h", there is some fuzz here.  Frameless
804        functions are not strictly inner than (same .stack but
805        different .code and/or .special address).  */
806     inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
807   if (frame_debug)
808     {
809       fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
810       fprint_frame_id (gdb_stdlog, l);
811       fprintf_unfiltered (gdb_stdlog, ",r=");
812       fprint_frame_id (gdb_stdlog, r);
813       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
814     }
815   return inner;
816 }
817
818 struct frame_info *
819 frame_find_by_id (struct frame_id id)
820 {
821   struct frame_info *frame, *prev_frame;
822
823   /* ZERO denotes the null frame, let the caller decide what to do
824      about it.  Should it instead return get_current_frame()?  */
825   if (!frame_id_p (id))
826     return NULL;
827
828   /* Check for the sentinel frame.  */
829   if (frame_id_eq (id, sentinel_frame_id))
830     return sentinel_frame;
831
832   /* Try using the frame stash first.  Finding it there removes the need
833      to perform the search by looping over all frames, which can be very
834      CPU-intensive if the number of frames is very high (the loop is O(n)
835      and get_prev_frame performs a series of checks that are relatively
836      expensive).  This optimization is particularly useful when this function
837      is called from another function (such as value_fetch_lazy, case
838      VALUE_LVAL (val) == lval_register) which already loops over all frames,
839      making the overall behavior O(n^2).  */
840   frame = frame_stash_find (id);
841   if (frame)
842     return frame;
843
844   for (frame = get_current_frame (); ; frame = prev_frame)
845     {
846       struct frame_id self = get_frame_id (frame);
847
848       if (frame_id_eq (id, self))
849         /* An exact match.  */
850         return frame;
851
852       prev_frame = get_prev_frame (frame);
853       if (!prev_frame)
854         return NULL;
855
856       /* As a safety net to avoid unnecessary backtracing while trying
857          to find an invalid ID, we check for a common situation where
858          we can detect from comparing stack addresses that no other
859          frame in the current frame chain can have this ID.  See the
860          comment at frame_id_inner for details.   */
861       if (get_frame_type (frame) == NORMAL_FRAME
862           && !frame_id_inner (get_frame_arch (frame), id, self)
863           && frame_id_inner (get_frame_arch (prev_frame), id,
864                              get_frame_id (prev_frame)))
865         return NULL;
866     }
867   return NULL;
868 }
869
870 static CORE_ADDR
871 frame_unwind_pc (struct frame_info *this_frame)
872 {
873   if (this_frame->prev_pc.status == CC_UNKNOWN)
874     {
875       struct gdbarch *prev_gdbarch;
876       CORE_ADDR pc = 0;
877       int pc_p = 0;
878
879       /* The right way.  The `pure' way.  The one true way.  This
880          method depends solely on the register-unwind code to
881          determine the value of registers in THIS frame, and hence
882          the value of this frame's PC (resume address).  A typical
883          implementation is no more than:
884
885          frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
886          return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
887
888          Note: this method is very heavily dependent on a correct
889          register-unwind implementation, it pays to fix that
890          method first; this method is frame type agnostic, since
891          it only deals with register values, it works with any
892          frame.  This is all in stark contrast to the old
893          FRAME_SAVED_PC which would try to directly handle all the
894          different ways that a PC could be unwound.  */
895       prev_gdbarch = frame_unwind_arch (this_frame);
896
897       TRY
898         {
899           pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
900           pc_p = 1;
901         }
902       CATCH (ex, RETURN_MASK_ERROR)
903         {
904           if (ex.error == NOT_AVAILABLE_ERROR)
905             {
906               this_frame->prev_pc.status = CC_UNAVAILABLE;
907
908               if (frame_debug)
909                 fprintf_unfiltered (gdb_stdlog,
910                                     "{ frame_unwind_pc (this_frame=%d)"
911                                     " -> <unavailable> }\n",
912                                     this_frame->level);
913             }
914           else if (ex.error == OPTIMIZED_OUT_ERROR)
915             {
916               this_frame->prev_pc.status = CC_NOT_SAVED;
917
918               if (frame_debug)
919                 fprintf_unfiltered (gdb_stdlog,
920                                     "{ frame_unwind_pc (this_frame=%d)"
921                                     " -> <not saved> }\n",
922                                     this_frame->level);
923             }
924           else
925             throw_exception (ex);
926         }
927       END_CATCH
928
929       if (pc_p)
930         {
931           this_frame->prev_pc.value = pc;
932           this_frame->prev_pc.status = CC_VALUE;
933           if (frame_debug)
934             fprintf_unfiltered (gdb_stdlog,
935                                 "{ frame_unwind_pc (this_frame=%d) "
936                                 "-> %s }\n",
937                                 this_frame->level,
938                                 hex_string (this_frame->prev_pc.value));
939         }
940     }
941
942   if (this_frame->prev_pc.status == CC_VALUE)
943     return this_frame->prev_pc.value;
944   else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
945     throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
946   else if (this_frame->prev_pc.status == CC_NOT_SAVED)
947     throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
948   else
949     internal_error (__FILE__, __LINE__,
950                     "unexpected prev_pc status: %d",
951                     (int) this_frame->prev_pc.status);
952 }
953
954 CORE_ADDR
955 frame_unwind_caller_pc (struct frame_info *this_frame)
956 {
957   this_frame = skip_artificial_frames (this_frame);
958
959   /* We must have a non-artificial frame.  The caller is supposed to check
960      the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
961      in this case.  */
962   gdb_assert (this_frame != NULL);
963
964   return frame_unwind_pc (this_frame);
965 }
966
967 int
968 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
969 {
970   struct frame_info *next_frame = this_frame->next;
971
972   if (!next_frame->prev_func.p)
973     {
974       CORE_ADDR addr_in_block;
975
976       /* Make certain that this, and not the adjacent, function is
977          found.  */
978       if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
979         {
980           next_frame->prev_func.p = -1;
981           if (frame_debug)
982             fprintf_unfiltered (gdb_stdlog,
983                                 "{ get_frame_func (this_frame=%d)"
984                                 " -> unavailable }\n",
985                                 this_frame->level);
986         }
987       else
988         {
989           next_frame->prev_func.p = 1;
990           next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
991           if (frame_debug)
992             fprintf_unfiltered (gdb_stdlog,
993                                 "{ get_frame_func (this_frame=%d) -> %s }\n",
994                                 this_frame->level,
995                                 hex_string (next_frame->prev_func.addr));
996         }
997     }
998
999   if (next_frame->prev_func.p < 0)
1000     {
1001       *pc = -1;
1002       return 0;
1003     }
1004   else
1005     {
1006       *pc = next_frame->prev_func.addr;
1007       return 1;
1008     }
1009 }
1010
1011 CORE_ADDR
1012 get_frame_func (struct frame_info *this_frame)
1013 {
1014   CORE_ADDR pc;
1015
1016   if (!get_frame_func_if_available (this_frame, &pc))
1017     throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1018
1019   return pc;
1020 }
1021
1022 std::unique_ptr<readonly_detached_regcache>
1023 frame_save_as_regcache (struct frame_info *this_frame)
1024 {
1025   auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1026     {
1027       if (!deprecated_frame_register_read (this_frame, regnum, buf))
1028         return REG_UNAVAILABLE;
1029       else
1030         return REG_VALID;
1031     };
1032
1033   std::unique_ptr<readonly_detached_regcache> regcache
1034     (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1035
1036   return regcache;
1037 }
1038
1039 void
1040 frame_pop (struct frame_info *this_frame)
1041 {
1042   struct frame_info *prev_frame;
1043
1044   if (get_frame_type (this_frame) == DUMMY_FRAME)
1045     {
1046       /* Popping a dummy frame involves restoring more than just registers.
1047          dummy_frame_pop does all the work.  */
1048       dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1049       return;
1050     }
1051
1052   /* Ensure that we have a frame to pop to.  */
1053   prev_frame = get_prev_frame_always (this_frame);
1054
1055   if (!prev_frame)
1056     error (_("Cannot pop the initial frame."));
1057
1058   /* Ignore TAILCALL_FRAME type frames, they were executed already before
1059      entering THISFRAME.  */
1060   prev_frame = skip_tailcall_frames (prev_frame);
1061
1062   if (prev_frame == NULL)
1063     error (_("Cannot find the caller frame."));
1064
1065   /* Make a copy of all the register values unwound from this frame.
1066      Save them in a scratch buffer so that there isn't a race between
1067      trying to extract the old values from the current regcache while
1068      at the same time writing new values into that same cache.  */
1069   std::unique_ptr<readonly_detached_regcache> scratch
1070     = frame_save_as_regcache (prev_frame);
1071
1072   /* FIXME: cagney/2003-03-16: It should be possible to tell the
1073      target's register cache that it is about to be hit with a burst
1074      register transfer and that the sequence of register writes should
1075      be batched.  The pair target_prepare_to_store() and
1076      target_store_registers() kind of suggest this functionality.
1077      Unfortunately, they don't implement it.  Their lack of a formal
1078      definition can lead to targets writing back bogus values
1079      (arguably a bug in the target code mind).  */
1080   /* Now copy those saved registers into the current regcache.  */
1081   get_current_regcache ()->restore (scratch.get ());
1082
1083   /* We've made right mess of GDB's local state, just discard
1084      everything.  */
1085   reinit_frame_cache ();
1086 }
1087
1088 void
1089 frame_register_unwind (frame_info *next_frame, int regnum,
1090                        int *optimizedp, int *unavailablep,
1091                        enum lval_type *lvalp, CORE_ADDR *addrp,
1092                        int *realnump, gdb_byte *bufferp)
1093 {
1094   struct value *value;
1095
1096   /* Require all but BUFFERP to be valid.  A NULL BUFFERP indicates
1097      that the value proper does not need to be fetched.  */
1098   gdb_assert (optimizedp != NULL);
1099   gdb_assert (lvalp != NULL);
1100   gdb_assert (addrp != NULL);
1101   gdb_assert (realnump != NULL);
1102   /* gdb_assert (bufferp != NULL); */
1103
1104   value = frame_unwind_register_value (next_frame, regnum);
1105
1106   gdb_assert (value != NULL);
1107
1108   *optimizedp = value_optimized_out (value);
1109   *unavailablep = !value_entirely_available (value);
1110   *lvalp = VALUE_LVAL (value);
1111   *addrp = value_address (value);
1112   if (*lvalp == lval_register)
1113     *realnump = VALUE_REGNUM (value);
1114   else
1115     *realnump = -1;
1116
1117   if (bufferp)
1118     {
1119       if (!*optimizedp && !*unavailablep)
1120         memcpy (bufferp, value_contents_all (value),
1121                 TYPE_LENGTH (value_type (value)));
1122       else
1123         memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1124     }
1125
1126   /* Dispose of the new value.  This prevents watchpoints from
1127      trying to watch the saved frame pointer.  */
1128   release_value (value);
1129 }
1130
1131 void
1132 frame_register (struct frame_info *frame, int regnum,
1133                 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1134                 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1135 {
1136   /* Require all but BUFFERP to be valid.  A NULL BUFFERP indicates
1137      that the value proper does not need to be fetched.  */
1138   gdb_assert (optimizedp != NULL);
1139   gdb_assert (lvalp != NULL);
1140   gdb_assert (addrp != NULL);
1141   gdb_assert (realnump != NULL);
1142   /* gdb_assert (bufferp != NULL); */
1143
1144   /* Obtain the register value by unwinding the register from the next
1145      (more inner frame).  */
1146   gdb_assert (frame != NULL && frame->next != NULL);
1147   frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1148                          lvalp, addrp, realnump, bufferp);
1149 }
1150
1151 void
1152 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1153 {
1154   int optimized;
1155   int unavailable;
1156   CORE_ADDR addr;
1157   int realnum;
1158   enum lval_type lval;
1159
1160   frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1161                          &lval, &addr, &realnum, buf);
1162
1163   if (optimized)
1164     throw_error (OPTIMIZED_OUT_ERROR,
1165                  _("Register %d was not saved"), regnum);
1166   if (unavailable)
1167     throw_error (NOT_AVAILABLE_ERROR,
1168                  _("Register %d is not available"), regnum);
1169 }
1170
1171 void
1172 get_frame_register (struct frame_info *frame,
1173                     int regnum, gdb_byte *buf)
1174 {
1175   frame_unwind_register (frame->next, regnum, buf);
1176 }
1177
1178 struct value *
1179 frame_unwind_register_value (frame_info *next_frame, int regnum)
1180 {
1181   struct gdbarch *gdbarch;
1182   struct value *value;
1183
1184   gdb_assert (next_frame != NULL);
1185   gdbarch = frame_unwind_arch (next_frame);
1186
1187   if (frame_debug)
1188     {
1189       fprintf_unfiltered (gdb_stdlog,
1190                           "{ frame_unwind_register_value "
1191                           "(frame=%d,regnum=%d(%s),...) ",
1192                           next_frame->level, regnum,
1193                           user_reg_map_regnum_to_name (gdbarch, regnum));
1194     }
1195
1196   /* Find the unwinder.  */
1197   if (next_frame->unwind == NULL)
1198     frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1199
1200   /* Ask this frame to unwind its register.  */
1201   value = next_frame->unwind->prev_register (next_frame,
1202                                              &next_frame->prologue_cache,
1203                                              regnum);
1204
1205   if (frame_debug)
1206     {
1207       fprintf_unfiltered (gdb_stdlog, "->");
1208       if (value_optimized_out (value))
1209         {
1210           fprintf_unfiltered (gdb_stdlog, " ");
1211           val_print_optimized_out (value, gdb_stdlog);
1212         }
1213       else
1214         {
1215           if (VALUE_LVAL (value) == lval_register)
1216             fprintf_unfiltered (gdb_stdlog, " register=%d",
1217                                 VALUE_REGNUM (value));
1218           else if (VALUE_LVAL (value) == lval_memory)
1219             fprintf_unfiltered (gdb_stdlog, " address=%s",
1220                                 paddress (gdbarch,
1221                                           value_address (value)));
1222           else
1223             fprintf_unfiltered (gdb_stdlog, " computed");
1224
1225           if (value_lazy (value))
1226             fprintf_unfiltered (gdb_stdlog, " lazy");
1227           else
1228             {
1229               int i;
1230               const gdb_byte *buf = value_contents (value);
1231
1232               fprintf_unfiltered (gdb_stdlog, " bytes=");
1233               fprintf_unfiltered (gdb_stdlog, "[");
1234               for (i = 0; i < register_size (gdbarch, regnum); i++)
1235                 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1236               fprintf_unfiltered (gdb_stdlog, "]");
1237             }
1238         }
1239
1240       fprintf_unfiltered (gdb_stdlog, " }\n");
1241     }
1242
1243   return value;
1244 }
1245
1246 struct value *
1247 get_frame_register_value (struct frame_info *frame, int regnum)
1248 {
1249   return frame_unwind_register_value (frame->next, regnum);
1250 }
1251
1252 LONGEST
1253 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1254 {
1255   struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1256   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1257   int size = register_size (gdbarch, regnum);
1258   struct value *value = frame_unwind_register_value (next_frame, regnum);
1259
1260   gdb_assert (value != NULL);
1261
1262   if (value_optimized_out (value))
1263     {
1264       throw_error (OPTIMIZED_OUT_ERROR,
1265                    _("Register %d was not saved"), regnum);
1266     }
1267   if (!value_entirely_available (value))
1268     {
1269       throw_error (NOT_AVAILABLE_ERROR,
1270                    _("Register %d is not available"), regnum);
1271     }
1272
1273   LONGEST r = extract_signed_integer (value_contents_all (value), size,
1274                                       byte_order);
1275
1276   release_value (value);
1277   return r;
1278 }
1279
1280 LONGEST
1281 get_frame_register_signed (struct frame_info *frame, int regnum)
1282 {
1283   return frame_unwind_register_signed (frame->next, regnum);
1284 }
1285
1286 ULONGEST
1287 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1288 {
1289   struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1290   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1291   int size = register_size (gdbarch, regnum);
1292   struct value *value = frame_unwind_register_value (next_frame, regnum);
1293
1294   gdb_assert (value != NULL);
1295
1296   if (value_optimized_out (value))
1297     {
1298       throw_error (OPTIMIZED_OUT_ERROR,
1299                    _("Register %d was not saved"), regnum);
1300     }
1301   if (!value_entirely_available (value))
1302     {
1303       throw_error (NOT_AVAILABLE_ERROR,
1304                    _("Register %d is not available"), regnum);
1305     }
1306
1307   ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1308                                          byte_order);
1309
1310   release_value (value);
1311   return r;
1312 }
1313
1314 ULONGEST
1315 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1316 {
1317   return frame_unwind_register_unsigned (frame->next, regnum);
1318 }
1319
1320 int
1321 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1322                               ULONGEST *val)
1323 {
1324   struct value *regval = get_frame_register_value (frame, regnum);
1325
1326   if (!value_optimized_out (regval)
1327       && value_entirely_available (regval))
1328     {
1329       struct gdbarch *gdbarch = get_frame_arch (frame);
1330       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1331       int size = register_size (gdbarch, VALUE_REGNUM (regval));
1332
1333       *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1334       return 1;
1335     }
1336
1337   return 0;
1338 }
1339
1340 void
1341 put_frame_register (struct frame_info *frame, int regnum,
1342                     const gdb_byte *buf)
1343 {
1344   struct gdbarch *gdbarch = get_frame_arch (frame);
1345   int realnum;
1346   int optim;
1347   int unavail;
1348   enum lval_type lval;
1349   CORE_ADDR addr;
1350
1351   frame_register (frame, regnum, &optim, &unavail,
1352                   &lval, &addr, &realnum, NULL);
1353   if (optim)
1354     error (_("Attempt to assign to a register that was not saved."));
1355   switch (lval)
1356     {
1357     case lval_memory:
1358       {
1359         write_memory (addr, buf, register_size (gdbarch, regnum));
1360         break;
1361       }
1362     case lval_register:
1363       get_current_regcache ()->cooked_write (realnum, buf);
1364       break;
1365     default:
1366       error (_("Attempt to assign to an unmodifiable value."));
1367     }
1368 }
1369
1370 /* This function is deprecated.  Use get_frame_register_value instead,
1371    which provides more accurate information.
1372
1373    Find and return the value of REGNUM for the specified stack frame.
1374    The number of bytes copied is REGISTER_SIZE (REGNUM).
1375
1376    Returns 0 if the register value could not be found.  */
1377
1378 int
1379 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1380                      gdb_byte *myaddr)
1381 {
1382   int optimized;
1383   int unavailable;
1384   enum lval_type lval;
1385   CORE_ADDR addr;
1386   int realnum;
1387
1388   frame_register (frame, regnum, &optimized, &unavailable,
1389                   &lval, &addr, &realnum, myaddr);
1390
1391   return !optimized && !unavailable;
1392 }
1393
1394 int
1395 get_frame_register_bytes (struct frame_info *frame, int regnum,
1396                           CORE_ADDR offset, int len, gdb_byte *myaddr,
1397                           int *optimizedp, int *unavailablep)
1398 {
1399   struct gdbarch *gdbarch = get_frame_arch (frame);
1400   int i;
1401   int maxsize;
1402   int numregs;
1403
1404   /* Skip registers wholly inside of OFFSET.  */
1405   while (offset >= register_size (gdbarch, regnum))
1406     {
1407       offset -= register_size (gdbarch, regnum);
1408       regnum++;
1409     }
1410
1411   /* Ensure that we will not read beyond the end of the register file.
1412      This can only ever happen if the debug information is bad.  */
1413   maxsize = -offset;
1414   numregs = gdbarch_num_cooked_regs (gdbarch);
1415   for (i = regnum; i < numregs; i++)
1416     {
1417       int thissize = register_size (gdbarch, i);
1418
1419       if (thissize == 0)
1420         break;  /* This register is not available on this architecture.  */
1421       maxsize += thissize;
1422     }
1423   if (len > maxsize)
1424     error (_("Bad debug information detected: "
1425              "Attempt to read %d bytes from registers."), len);
1426
1427   /* Copy the data.  */
1428   while (len > 0)
1429     {
1430       int curr_len = register_size (gdbarch, regnum) - offset;
1431
1432       if (curr_len > len)
1433         curr_len = len;
1434
1435       if (curr_len == register_size (gdbarch, regnum))
1436         {
1437           enum lval_type lval;
1438           CORE_ADDR addr;
1439           int realnum;
1440
1441           frame_register (frame, regnum, optimizedp, unavailablep,
1442                           &lval, &addr, &realnum, myaddr);
1443           if (*optimizedp || *unavailablep)
1444             return 0;
1445         }
1446       else
1447         {
1448           struct value *value = frame_unwind_register_value (frame->next,
1449                                                              regnum);
1450           gdb_assert (value != NULL);
1451           *optimizedp = value_optimized_out (value);
1452           *unavailablep = !value_entirely_available (value);
1453
1454           if (*optimizedp || *unavailablep)
1455             {
1456               release_value (value);
1457               return 0;
1458             }
1459           memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1460           release_value (value);
1461         }
1462
1463       myaddr += curr_len;
1464       len -= curr_len;
1465       offset = 0;
1466       regnum++;
1467     }
1468
1469   *optimizedp = 0;
1470   *unavailablep = 0;
1471   return 1;
1472 }
1473
1474 void
1475 put_frame_register_bytes (struct frame_info *frame, int regnum,
1476                           CORE_ADDR offset, int len, const gdb_byte *myaddr)
1477 {
1478   struct gdbarch *gdbarch = get_frame_arch (frame);
1479
1480   /* Skip registers wholly inside of OFFSET.  */
1481   while (offset >= register_size (gdbarch, regnum))
1482     {
1483       offset -= register_size (gdbarch, regnum);
1484       regnum++;
1485     }
1486
1487   /* Copy the data.  */
1488   while (len > 0)
1489     {
1490       int curr_len = register_size (gdbarch, regnum) - offset;
1491
1492       if (curr_len > len)
1493         curr_len = len;
1494
1495       if (curr_len == register_size (gdbarch, regnum))
1496         {
1497           put_frame_register (frame, regnum, myaddr);
1498         }
1499       else
1500         {
1501           struct value *value = frame_unwind_register_value (frame->next,
1502                                                              regnum);
1503           gdb_assert (value != NULL);
1504
1505           memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1506                   curr_len);
1507           put_frame_register (frame, regnum, value_contents_raw (value));
1508           release_value (value);
1509         }
1510
1511       myaddr += curr_len;
1512       len -= curr_len;
1513       offset = 0;
1514       regnum++;
1515     }
1516 }
1517
1518 /* Create a sentinel frame.  */
1519
1520 static struct frame_info *
1521 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1522 {
1523   struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1524
1525   frame->level = -1;
1526   frame->pspace = pspace;
1527   frame->aspace = regcache->aspace ();
1528   /* Explicitly initialize the sentinel frame's cache.  Provide it
1529      with the underlying regcache.  In the future additional
1530      information, such as the frame's thread will be added.  */
1531   frame->prologue_cache = sentinel_frame_cache (regcache);
1532   /* For the moment there is only one sentinel frame implementation.  */
1533   frame->unwind = &sentinel_frame_unwind;
1534   /* Link this frame back to itself.  The frame is self referential
1535      (the unwound PC is the same as the pc), so make it so.  */
1536   frame->next = frame;
1537   /* The sentinel frame has a special ID.  */
1538   frame->this_id.p = 1;
1539   frame->this_id.value = sentinel_frame_id;
1540   if (frame_debug)
1541     {
1542       fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1543       fprint_frame (gdb_stdlog, frame);
1544       fprintf_unfiltered (gdb_stdlog, " }\n");
1545     }
1546   return frame;
1547 }
1548
1549 /* Cache for frame addresses already read by gdb.  Valid only while
1550    inferior is stopped.  Control variables for the frame cache should
1551    be local to this module.  */
1552
1553 static struct obstack frame_cache_obstack;
1554
1555 void *
1556 frame_obstack_zalloc (unsigned long size)
1557 {
1558   void *data = obstack_alloc (&frame_cache_obstack, size);
1559
1560   memset (data, 0, size);
1561   return data;
1562 }
1563
1564 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1565
1566 struct frame_info *
1567 get_current_frame (void)
1568 {
1569   struct frame_info *current_frame;
1570
1571   /* First check, and report, the lack of registers.  Having GDB
1572      report "No stack!" or "No memory" when the target doesn't even
1573      have registers is very confusing.  Besides, "printcmd.exp"
1574      explicitly checks that ``print $pc'' with no registers prints "No
1575      registers".  */
1576   if (!target_has_registers)
1577     error (_("No registers."));
1578   if (!target_has_stack)
1579     error (_("No stack."));
1580   if (!target_has_memory)
1581     error (_("No memory."));
1582   /* Traceframes are effectively a substitute for the live inferior.  */
1583   if (get_traceframe_number () < 0)
1584     validate_registers_access ();
1585
1586   if (sentinel_frame == NULL)
1587     sentinel_frame =
1588       create_sentinel_frame (current_program_space, get_current_regcache ());
1589
1590   /* Set the current frame before computing the frame id, to avoid
1591      recursion inside compute_frame_id, in case the frame's
1592      unwinder decides to do a symbol lookup (which depends on the
1593      selected frame's block).
1594
1595      This call must always succeed.  In particular, nothing inside
1596      get_prev_frame_always_1 should try to unwind from the
1597      sentinel frame, because that could fail/throw, and we always
1598      want to leave with the current frame created and linked in --
1599      we should never end up with the sentinel frame as outermost
1600      frame.  */
1601   current_frame = get_prev_frame_always_1 (sentinel_frame);
1602   gdb_assert (current_frame != NULL);
1603
1604   return current_frame;
1605 }
1606
1607 /* The "selected" stack frame is used by default for local and arg
1608    access.  May be zero, for no selected frame.  */
1609
1610 static struct frame_info *selected_frame;
1611
1612 int
1613 has_stack_frames (void)
1614 {
1615   if (!target_has_registers || !target_has_stack || !target_has_memory)
1616     return 0;
1617
1618   /* Traceframes are effectively a substitute for the live inferior.  */
1619   if (get_traceframe_number () < 0)
1620     {
1621       /* No current inferior, no frame.  */
1622       if (inferior_ptid == null_ptid)
1623         return 0;
1624
1625       thread_info *tp = inferior_thread ();
1626       /* Don't try to read from a dead thread.  */
1627       if (tp->state == THREAD_EXITED)
1628         return 0;
1629
1630       /* ... or from a spinning thread.  */
1631       if (tp->executing)
1632         return 0;
1633     }
1634
1635   return 1;
1636 }
1637
1638 /* Return the selected frame.  Always non-NULL (unless there isn't an
1639    inferior sufficient for creating a frame) in which case an error is
1640    thrown.  */
1641
1642 struct frame_info *
1643 get_selected_frame (const char *message)
1644 {
1645   if (selected_frame == NULL)
1646     {
1647       if (message != NULL && !has_stack_frames ())
1648         error (("%s"), message);
1649       /* Hey!  Don't trust this.  It should really be re-finding the
1650          last selected frame of the currently selected thread.  This,
1651          though, is better than nothing.  */
1652       select_frame (get_current_frame ());
1653     }
1654   /* There is always a frame.  */
1655   gdb_assert (selected_frame != NULL);
1656   return selected_frame;
1657 }
1658
1659 /* If there is a selected frame, return it.  Otherwise, return NULL.  */
1660
1661 struct frame_info *
1662 get_selected_frame_if_set (void)
1663 {
1664   return selected_frame;
1665 }
1666
1667 /* This is a variant of get_selected_frame() which can be called when
1668    the inferior does not have a frame; in that case it will return
1669    NULL instead of calling error().  */
1670
1671 struct frame_info *
1672 deprecated_safe_get_selected_frame (void)
1673 {
1674   if (!has_stack_frames ())
1675     return NULL;
1676   return get_selected_frame (NULL);
1677 }
1678
1679 /* Select frame FI (or NULL - to invalidate the current frame).  */
1680
1681 void
1682 select_frame (struct frame_info *fi)
1683 {
1684   selected_frame = fi;
1685   /* NOTE: cagney/2002-05-04: FI can be NULL.  This occurs when the
1686      frame is being invalidated.  */
1687
1688   /* FIXME: kseitz/2002-08-28: It would be nice to call
1689      selected_frame_level_changed_event() right here, but due to limitations
1690      in the current interfaces, we would end up flooding UIs with events
1691      because select_frame() is used extensively internally.
1692
1693      Once we have frame-parameterized frame (and frame-related) commands,
1694      the event notification can be moved here, since this function will only
1695      be called when the user's selected frame is being changed.  */
1696
1697   /* Ensure that symbols for this frame are read in.  Also, determine the
1698      source language of this frame, and switch to it if desired.  */
1699   if (fi)
1700     {
1701       CORE_ADDR pc;
1702
1703       /* We retrieve the frame's symtab by using the frame PC.
1704          However we cannot use the frame PC as-is, because it usually
1705          points to the instruction following the "call", which is
1706          sometimes the first instruction of another function.  So we
1707          rely on get_frame_address_in_block() which provides us with a
1708          PC which is guaranteed to be inside the frame's code
1709          block.  */
1710       if (get_frame_address_in_block_if_available (fi, &pc))
1711         {
1712           struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1713
1714           if (cust != NULL
1715               && compunit_language (cust) != current_language->la_language
1716               && compunit_language (cust) != language_unknown
1717               && language_mode == language_mode_auto)
1718             set_language (compunit_language (cust));
1719         }
1720     }
1721 }
1722
1723 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1724    Always returns a non-NULL value.  */
1725
1726 struct frame_info *
1727 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1728 {
1729   struct frame_info *fi;
1730
1731   if (frame_debug)
1732     {
1733       fprintf_unfiltered (gdb_stdlog,
1734                           "{ create_new_frame (addr=%s, pc=%s) ",
1735                           hex_string (addr), hex_string (pc));
1736     }
1737
1738   fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1739
1740   fi->next = create_sentinel_frame (current_program_space,
1741                                     get_current_regcache ());
1742
1743   /* Set/update this frame's cached PC value, found in the next frame.
1744      Do this before looking for this frame's unwinder.  A sniffer is
1745      very likely to read this, and the corresponding unwinder is
1746      entitled to rely that the PC doesn't magically change.  */
1747   fi->next->prev_pc.value = pc;
1748   fi->next->prev_pc.status = CC_VALUE;
1749
1750   /* We currently assume that frame chain's can't cross spaces.  */
1751   fi->pspace = fi->next->pspace;
1752   fi->aspace = fi->next->aspace;
1753
1754   /* Select/initialize both the unwind function and the frame's type
1755      based on the PC.  */
1756   frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1757
1758   fi->this_id.p = 1;
1759   fi->this_id.value = frame_id_build (addr, pc);
1760
1761   if (frame_debug)
1762     {
1763       fprintf_unfiltered (gdb_stdlog, "-> ");
1764       fprint_frame (gdb_stdlog, fi);
1765       fprintf_unfiltered (gdb_stdlog, " }\n");
1766     }
1767
1768   return fi;
1769 }
1770
1771 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1772    innermost frame).  Be careful to not fall off the bottom of the
1773    frame chain and onto the sentinel frame.  */
1774
1775 struct frame_info *
1776 get_next_frame (struct frame_info *this_frame)
1777 {
1778   if (this_frame->level > 0)
1779     return this_frame->next;
1780   else
1781     return NULL;
1782 }
1783
1784 /* Return the frame that THIS_FRAME calls.  If THIS_FRAME is the
1785    innermost (i.e. current) frame, return the sentinel frame.  Thus,
1786    unlike get_next_frame(), NULL will never be returned.  */
1787
1788 struct frame_info *
1789 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1790 {
1791   gdb_assert (this_frame != NULL);
1792
1793   /* Note that, due to the manner in which the sentinel frame is
1794      constructed, this_frame->next still works even when this_frame
1795      is the sentinel frame.  But we disallow it here anyway because
1796      calling get_next_frame_sentinel_okay() on the sentinel frame
1797      is likely a coding error.  */
1798   gdb_assert (this_frame != sentinel_frame);
1799
1800   return this_frame->next;
1801 }
1802
1803 /* Observer for the target_changed event.  */
1804
1805 static void
1806 frame_observer_target_changed (struct target_ops *target)
1807 {
1808   reinit_frame_cache ();
1809 }
1810
1811 /* Flush the entire frame cache.  */
1812
1813 void
1814 reinit_frame_cache (void)
1815 {
1816   struct frame_info *fi;
1817
1818   /* Tear down all frame caches.  */
1819   for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1820     {
1821       if (fi->prologue_cache && fi->unwind->dealloc_cache)
1822         fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1823       if (fi->base_cache && fi->base->unwind->dealloc_cache)
1824         fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1825     }
1826
1827   /* Since we can't really be sure what the first object allocated was.  */
1828   obstack_free (&frame_cache_obstack, 0);
1829   obstack_init (&frame_cache_obstack);
1830
1831   if (sentinel_frame != NULL)
1832     annotate_frames_invalid ();
1833
1834   sentinel_frame = NULL;                /* Invalidate cache */
1835   select_frame (NULL);
1836   frame_stash_invalidate ();
1837   if (frame_debug)
1838     fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1839 }
1840
1841 /* Find where a register is saved (in memory or another register).
1842    The result of frame_register_unwind is just where it is saved
1843    relative to this particular frame.  */
1844
1845 static void
1846 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1847                                 int *optimizedp, enum lval_type *lvalp,
1848                                 CORE_ADDR *addrp, int *realnump)
1849 {
1850   gdb_assert (this_frame == NULL || this_frame->level >= 0);
1851
1852   while (this_frame != NULL)
1853     {
1854       int unavailable;
1855
1856       frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1857                              lvalp, addrp, realnump, NULL);
1858
1859       if (*optimizedp)
1860         break;
1861
1862       if (*lvalp != lval_register)
1863         break;
1864
1865       regnum = *realnump;
1866       this_frame = get_next_frame (this_frame);
1867     }
1868 }
1869
1870 /* Get the previous raw frame, and check that it is not identical to
1871    same other frame frame already in the chain.  If it is, there is
1872    most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1873    outermost, with UNWIND_SAME_ID stop reason.  Unlike the other
1874    validity tests, that compare THIS_FRAME and the next frame, we do
1875    this right after creating the previous frame, to avoid ever ending
1876    up with two frames with the same id in the frame chain.  */
1877
1878 static struct frame_info *
1879 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1880 {
1881   struct frame_info *prev_frame;
1882
1883   prev_frame = get_prev_frame_raw (this_frame);
1884
1885   /* Don't compute the frame id of the current frame yet.  Unwinding
1886      the sentinel frame can fail (e.g., if the thread is gone and we
1887      can't thus read its registers).  If we let the cycle detection
1888      code below try to compute a frame ID, then an error thrown from
1889      within the frame ID computation would result in the sentinel
1890      frame as outermost frame, which is bogus.  Instead, we'll compute
1891      the current frame's ID lazily in get_frame_id.  Note that there's
1892      no point in doing cycle detection when there's only one frame, so
1893      nothing is lost here.  */
1894   if (prev_frame->level == 0)
1895     return prev_frame;
1896
1897   TRY
1898     {
1899       compute_frame_id (prev_frame);
1900       if (!frame_stash_add (prev_frame))
1901         {
1902           /* Another frame with the same id was already in the stash.  We just
1903              detected a cycle.  */
1904           if (frame_debug)
1905             {
1906               fprintf_unfiltered (gdb_stdlog, "-> ");
1907               fprint_frame (gdb_stdlog, NULL);
1908               fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1909             }
1910           this_frame->stop_reason = UNWIND_SAME_ID;
1911           /* Unlink.  */
1912           prev_frame->next = NULL;
1913           this_frame->prev = NULL;
1914           prev_frame = NULL;
1915         }
1916     }
1917   CATCH (ex, RETURN_MASK_ALL)
1918     {
1919       prev_frame->next = NULL;
1920       this_frame->prev = NULL;
1921
1922       throw_exception (ex);
1923     }
1924   END_CATCH
1925
1926   return prev_frame;
1927 }
1928
1929 /* Helper function for get_prev_frame_always, this is called inside a
1930    TRY_CATCH block.  Return the frame that called THIS_FRAME or NULL if
1931    there is no such frame.  This may throw an exception.  */
1932
1933 static struct frame_info *
1934 get_prev_frame_always_1 (struct frame_info *this_frame)
1935 {
1936   struct gdbarch *gdbarch;
1937
1938   gdb_assert (this_frame != NULL);
1939   gdbarch = get_frame_arch (this_frame);
1940
1941   if (frame_debug)
1942     {
1943       fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1944       if (this_frame != NULL)
1945         fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1946       else
1947         fprintf_unfiltered (gdb_stdlog, "<NULL>");
1948       fprintf_unfiltered (gdb_stdlog, ") ");
1949     }
1950
1951   /* Only try to do the unwind once.  */
1952   if (this_frame->prev_p)
1953     {
1954       if (frame_debug)
1955         {
1956           fprintf_unfiltered (gdb_stdlog, "-> ");
1957           fprint_frame (gdb_stdlog, this_frame->prev);
1958           fprintf_unfiltered (gdb_stdlog, " // cached \n");
1959         }
1960       return this_frame->prev;
1961     }
1962
1963   /* If the frame unwinder hasn't been selected yet, we must do so
1964      before setting prev_p; otherwise the check for misbehaved
1965      sniffers will think that this frame's sniffer tried to unwind
1966      further (see frame_cleanup_after_sniffer).  */
1967   if (this_frame->unwind == NULL)
1968     frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1969
1970   this_frame->prev_p = 1;
1971   this_frame->stop_reason = UNWIND_NO_REASON;
1972
1973   /* If we are unwinding from an inline frame, all of the below tests
1974      were already performed when we unwound from the next non-inline
1975      frame.  We must skip them, since we can not get THIS_FRAME's ID
1976      until we have unwound all the way down to the previous non-inline
1977      frame.  */
1978   if (get_frame_type (this_frame) == INLINE_FRAME)
1979     return get_prev_frame_if_no_cycle (this_frame);
1980
1981   /* Check that this frame is unwindable.  If it isn't, don't try to
1982      unwind to the prev frame.  */
1983   this_frame->stop_reason
1984     = this_frame->unwind->stop_reason (this_frame,
1985                                        &this_frame->prologue_cache);
1986
1987   if (this_frame->stop_reason != UNWIND_NO_REASON)
1988     {
1989       if (frame_debug)
1990         {
1991           enum unwind_stop_reason reason = this_frame->stop_reason;
1992
1993           fprintf_unfiltered (gdb_stdlog, "-> ");
1994           fprint_frame (gdb_stdlog, NULL);
1995           fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1996                               frame_stop_reason_symbol_string (reason));
1997         }
1998       return NULL;
1999     }
2000
2001   /* Check that this frame's ID isn't inner to (younger, below, next)
2002      the next frame.  This happens when a frame unwind goes backwards.
2003      This check is valid only if this frame and the next frame are NORMAL.
2004      See the comment at frame_id_inner for details.  */
2005   if (get_frame_type (this_frame) == NORMAL_FRAME
2006       && this_frame->next->unwind->type == NORMAL_FRAME
2007       && frame_id_inner (get_frame_arch (this_frame->next),
2008                          get_frame_id (this_frame),
2009                          get_frame_id (this_frame->next)))
2010     {
2011       CORE_ADDR this_pc_in_block;
2012       struct minimal_symbol *morestack_msym;
2013       const char *morestack_name = NULL;
2014       
2015       /* gcc -fsplit-stack __morestack can continue the stack anywhere.  */
2016       this_pc_in_block = get_frame_address_in_block (this_frame);
2017       morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2018       if (morestack_msym)
2019         morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2020       if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2021         {
2022           if (frame_debug)
2023             {
2024               fprintf_unfiltered (gdb_stdlog, "-> ");
2025               fprint_frame (gdb_stdlog, NULL);
2026               fprintf_unfiltered (gdb_stdlog,
2027                                   " // this frame ID is inner }\n");
2028             }
2029           this_frame->stop_reason = UNWIND_INNER_ID;
2030           return NULL;
2031         }
2032     }
2033
2034   /* Check that this and the next frame do not unwind the PC register
2035      to the same memory location.  If they do, then even though they
2036      have different frame IDs, the new frame will be bogus; two
2037      functions can't share a register save slot for the PC.  This can
2038      happen when the prologue analyzer finds a stack adjustment, but
2039      no PC save.
2040
2041      This check does assume that the "PC register" is roughly a
2042      traditional PC, even if the gdbarch_unwind_pc method adjusts
2043      it (we do not rely on the value, only on the unwound PC being
2044      dependent on this value).  A potential improvement would be
2045      to have the frame prev_pc method and the gdbarch unwind_pc
2046      method set the same lval and location information as
2047      frame_register_unwind.  */
2048   if (this_frame->level > 0
2049       && gdbarch_pc_regnum (gdbarch) >= 0
2050       && get_frame_type (this_frame) == NORMAL_FRAME
2051       && (get_frame_type (this_frame->next) == NORMAL_FRAME
2052           || get_frame_type (this_frame->next) == INLINE_FRAME))
2053     {
2054       int optimized, realnum, nrealnum;
2055       enum lval_type lval, nlval;
2056       CORE_ADDR addr, naddr;
2057
2058       frame_register_unwind_location (this_frame,
2059                                       gdbarch_pc_regnum (gdbarch),
2060                                       &optimized, &lval, &addr, &realnum);
2061       frame_register_unwind_location (get_next_frame (this_frame),
2062                                       gdbarch_pc_regnum (gdbarch),
2063                                       &optimized, &nlval, &naddr, &nrealnum);
2064
2065       if ((lval == lval_memory && lval == nlval && addr == naddr)
2066           || (lval == lval_register && lval == nlval && realnum == nrealnum))
2067         {
2068           if (frame_debug)
2069             {
2070               fprintf_unfiltered (gdb_stdlog, "-> ");
2071               fprint_frame (gdb_stdlog, NULL);
2072               fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2073             }
2074
2075           this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2076           this_frame->prev = NULL;
2077           return NULL;
2078         }
2079     }
2080
2081   return get_prev_frame_if_no_cycle (this_frame);
2082 }
2083
2084 /* Return a "struct frame_info" corresponding to the frame that called
2085    THIS_FRAME.  Returns NULL if there is no such frame.
2086
2087    Unlike get_prev_frame, this function always tries to unwind the
2088    frame.  */
2089
2090 struct frame_info *
2091 get_prev_frame_always (struct frame_info *this_frame)
2092 {
2093   struct frame_info *prev_frame = NULL;
2094
2095   TRY
2096     {
2097       prev_frame = get_prev_frame_always_1 (this_frame);
2098     }
2099   CATCH (ex, RETURN_MASK_ERROR)
2100     {
2101       if (ex.error == MEMORY_ERROR)
2102         {
2103           this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2104           if (ex.message != NULL)
2105             {
2106               char *stop_string;
2107               size_t size;
2108
2109               /* The error needs to live as long as the frame does.
2110                  Allocate using stack local STOP_STRING then assign the
2111                  pointer to the frame, this allows the STOP_STRING on the
2112                  frame to be of type 'const char *'.  */
2113               size = strlen (ex.message) + 1;
2114               stop_string = (char *) frame_obstack_zalloc (size);
2115               memcpy (stop_string, ex.message, size);
2116               this_frame->stop_string = stop_string;
2117             }
2118           prev_frame = NULL;
2119         }
2120       else
2121         throw_exception (ex);
2122     }
2123   END_CATCH
2124
2125   return prev_frame;
2126 }
2127
2128 /* Construct a new "struct frame_info" and link it previous to
2129    this_frame.  */
2130
2131 static struct frame_info *
2132 get_prev_frame_raw (struct frame_info *this_frame)
2133 {
2134   struct frame_info *prev_frame;
2135
2136   /* Allocate the new frame but do not wire it in to the frame chain.
2137      Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2138      frame->next to pull some fancy tricks (of course such code is, by
2139      definition, recursive).  Try to prevent it.
2140
2141      There is no reason to worry about memory leaks, should the
2142      remainder of the function fail.  The allocated memory will be
2143      quickly reclaimed when the frame cache is flushed, and the `we've
2144      been here before' check above will stop repeated memory
2145      allocation calls.  */
2146   prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2147   prev_frame->level = this_frame->level + 1;
2148
2149   /* For now, assume we don't have frame chains crossing address
2150      spaces.  */
2151   prev_frame->pspace = this_frame->pspace;
2152   prev_frame->aspace = this_frame->aspace;
2153
2154   /* Don't yet compute ->unwind (and hence ->type).  It is computed
2155      on-demand in get_frame_type, frame_register_unwind, and
2156      get_frame_id.  */
2157
2158   /* Don't yet compute the frame's ID.  It is computed on-demand by
2159      get_frame_id().  */
2160
2161   /* The unwound frame ID is validate at the start of this function,
2162      as part of the logic to decide if that frame should be further
2163      unwound, and not here while the prev frame is being created.
2164      Doing this makes it possible for the user to examine a frame that
2165      has an invalid frame ID.
2166
2167      Some very old VAX code noted: [...]  For the sake of argument,
2168      suppose that the stack is somewhat trashed (which is one reason
2169      that "info frame" exists).  So, return 0 (indicating we don't
2170      know the address of the arglist) if we don't know what frame this
2171      frame calls.  */
2172
2173   /* Link it in.  */
2174   this_frame->prev = prev_frame;
2175   prev_frame->next = this_frame;
2176
2177   if (frame_debug)
2178     {
2179       fprintf_unfiltered (gdb_stdlog, "-> ");
2180       fprint_frame (gdb_stdlog, prev_frame);
2181       fprintf_unfiltered (gdb_stdlog, " }\n");
2182     }
2183
2184   return prev_frame;
2185 }
2186
2187 /* Debug routine to print a NULL frame being returned.  */
2188
2189 static void
2190 frame_debug_got_null_frame (struct frame_info *this_frame,
2191                             const char *reason)
2192 {
2193   if (frame_debug)
2194     {
2195       fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2196       if (this_frame != NULL)
2197         fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2198       else
2199         fprintf_unfiltered (gdb_stdlog, "<NULL>");
2200       fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2201     }
2202 }
2203
2204 /* Is this (non-sentinel) frame in the "main"() function?  */
2205
2206 static int
2207 inside_main_func (struct frame_info *this_frame)
2208 {
2209   struct bound_minimal_symbol msymbol;
2210   CORE_ADDR maddr;
2211
2212   if (symfile_objfile == 0)
2213     return 0;
2214   msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2215   if (msymbol.minsym == NULL)
2216     return 0;
2217   /* Make certain that the code, and not descriptor, address is
2218      returned.  */
2219   maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2220                                               BMSYMBOL_VALUE_ADDRESS (msymbol),
2221                                               current_top_target ());
2222   return maddr == get_frame_func (this_frame);
2223 }
2224
2225 /* Test whether THIS_FRAME is inside the process entry point function.  */
2226
2227 static int
2228 inside_entry_func (struct frame_info *this_frame)
2229 {
2230   CORE_ADDR entry_point;
2231
2232   if (!entry_point_address_query (&entry_point))
2233     return 0;
2234
2235   return get_frame_func (this_frame) == entry_point;
2236 }
2237
2238 /* Return a structure containing various interesting information about
2239    the frame that called THIS_FRAME.  Returns NULL if there is entier
2240    no such frame or the frame fails any of a set of target-independent
2241    condition that should terminate the frame chain (e.g., as unwinding
2242    past main()).
2243
2244    This function should not contain target-dependent tests, such as
2245    checking whether the program-counter is zero.  */
2246
2247 struct frame_info *
2248 get_prev_frame (struct frame_info *this_frame)
2249 {
2250   CORE_ADDR frame_pc;
2251   int frame_pc_p;
2252
2253   /* There is always a frame.  If this assertion fails, suspect that
2254      something should be calling get_selected_frame() or
2255      get_current_frame().  */
2256   gdb_assert (this_frame != NULL);
2257   
2258   /* If this_frame is the current frame, then compute and stash
2259      its frame id prior to fetching and computing the frame id of the
2260      previous frame.  Otherwise, the cycle detection code in
2261      get_prev_frame_if_no_cycle() will not work correctly.  When
2262      get_frame_id() is called later on, an assertion error will
2263      be triggered in the event of a cycle between the current
2264      frame and its previous frame.  */
2265   if (this_frame->level == 0)
2266     get_frame_id (this_frame);
2267
2268   frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2269
2270   /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2271      sense to stop unwinding at a dummy frame.  One place where a dummy
2272      frame may have an address "inside_main_func" is on HPUX.  On HPUX, the
2273      pcsqh register (space register for the instruction at the head of the
2274      instruction queue) cannot be written directly; the only way to set it
2275      is to branch to code that is in the target space.  In order to implement
2276      frame dummies on HPUX, the called function is made to jump back to where 
2277      the inferior was when the user function was called.  If gdb was inside 
2278      the main function when we created the dummy frame, the dummy frame will 
2279      point inside the main function.  */
2280   if (this_frame->level >= 0
2281       && get_frame_type (this_frame) == NORMAL_FRAME
2282       && !backtrace_past_main
2283       && frame_pc_p
2284       && inside_main_func (this_frame))
2285     /* Don't unwind past main().  Note, this is done _before_ the
2286        frame has been marked as previously unwound.  That way if the
2287        user later decides to enable unwinds past main(), that will
2288        automatically happen.  */
2289     {
2290       frame_debug_got_null_frame (this_frame, "inside main func");
2291       return NULL;
2292     }
2293
2294   /* If the user's backtrace limit has been exceeded, stop.  We must
2295      add two to the current level; one of those accounts for backtrace_limit
2296      being 1-based and the level being 0-based, and the other accounts for
2297      the level of the new frame instead of the level of the current
2298      frame.  */
2299   if (this_frame->level + 2 > backtrace_limit)
2300     {
2301       frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2302       return NULL;
2303     }
2304
2305   /* If we're already inside the entry function for the main objfile,
2306      then it isn't valid.  Don't apply this test to a dummy frame -
2307      dummy frame PCs typically land in the entry func.  Don't apply
2308      this test to the sentinel frame.  Sentinel frames should always
2309      be allowed to unwind.  */
2310   /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2311      wasn't checking for "main" in the minimal symbols.  With that
2312      fixed asm-source tests now stop in "main" instead of halting the
2313      backtrace in weird and wonderful ways somewhere inside the entry
2314      file.  Suspect that tests for inside the entry file/func were
2315      added to work around that (now fixed) case.  */
2316   /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2317      suggested having the inside_entry_func test use the
2318      inside_main_func() msymbol trick (along with entry_point_address()
2319      I guess) to determine the address range of the start function.
2320      That should provide a far better stopper than the current
2321      heuristics.  */
2322   /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2323      applied tail-call optimizations to main so that a function called 
2324      from main returns directly to the caller of main.  Since we don't
2325      stop at main, we should at least stop at the entry point of the
2326      application.  */
2327   if (this_frame->level >= 0
2328       && get_frame_type (this_frame) == NORMAL_FRAME
2329       && !backtrace_past_entry
2330       && frame_pc_p
2331       && inside_entry_func (this_frame))
2332     {
2333       frame_debug_got_null_frame (this_frame, "inside entry func");
2334       return NULL;
2335     }
2336
2337   /* Assume that the only way to get a zero PC is through something
2338      like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2339      will never unwind a zero PC.  */
2340   if (this_frame->level > 0
2341       && (get_frame_type (this_frame) == NORMAL_FRAME
2342           || get_frame_type (this_frame) == INLINE_FRAME)
2343       && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2344       && frame_pc_p && frame_pc == 0)
2345     {
2346       frame_debug_got_null_frame (this_frame, "zero PC");
2347       return NULL;
2348     }
2349
2350   return get_prev_frame_always (this_frame);
2351 }
2352
2353 struct frame_id
2354 get_prev_frame_id_by_id (struct frame_id id)
2355 {
2356   struct frame_id prev_id;
2357   struct frame_info *frame;
2358   
2359   frame = frame_find_by_id (id);
2360
2361   if (frame != NULL)
2362     prev_id = get_frame_id (get_prev_frame (frame));
2363   else
2364     prev_id = null_frame_id;
2365
2366   return prev_id;
2367 }
2368
2369 CORE_ADDR
2370 get_frame_pc (struct frame_info *frame)
2371 {
2372   gdb_assert (frame->next != NULL);
2373   return frame_unwind_pc (frame->next);
2374 }
2375
2376 int
2377 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2378 {
2379
2380   gdb_assert (frame->next != NULL);
2381
2382   TRY
2383     {
2384       *pc = frame_unwind_pc (frame->next);
2385     }
2386   CATCH (ex, RETURN_MASK_ERROR)
2387     {
2388       if (ex.error == NOT_AVAILABLE_ERROR)
2389         return 0;
2390       else
2391         throw_exception (ex);
2392     }
2393   END_CATCH
2394
2395   return 1;
2396 }
2397
2398 /* Return an address that falls within THIS_FRAME's code block.  */
2399
2400 CORE_ADDR
2401 get_frame_address_in_block (struct frame_info *this_frame)
2402 {
2403   /* A draft address.  */
2404   CORE_ADDR pc = get_frame_pc (this_frame);
2405
2406   struct frame_info *next_frame = this_frame->next;
2407
2408   /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2409      Normally the resume address is inside the body of the function
2410      associated with THIS_FRAME, but there is a special case: when
2411      calling a function which the compiler knows will never return
2412      (for instance abort), the call may be the very last instruction
2413      in the calling function.  The resume address will point after the
2414      call and may be at the beginning of a different function
2415      entirely.
2416
2417      If THIS_FRAME is a signal frame or dummy frame, then we should
2418      not adjust the unwound PC.  For a dummy frame, GDB pushed the
2419      resume address manually onto the stack.  For a signal frame, the
2420      OS may have pushed the resume address manually and invoked the
2421      handler (e.g. GNU/Linux), or invoked the trampoline which called
2422      the signal handler - but in either case the signal handler is
2423      expected to return to the trampoline.  So in both of these
2424      cases we know that the resume address is executable and
2425      related.  So we only need to adjust the PC if THIS_FRAME
2426      is a normal function.
2427
2428      If the program has been interrupted while THIS_FRAME is current,
2429      then clearly the resume address is inside the associated
2430      function.  There are three kinds of interruption: debugger stop
2431      (next frame will be SENTINEL_FRAME), operating system
2432      signal or exception (next frame will be SIGTRAMP_FRAME),
2433      or debugger-induced function call (next frame will be
2434      DUMMY_FRAME).  So we only need to adjust the PC if
2435      NEXT_FRAME is a normal function.
2436
2437      We check the type of NEXT_FRAME first, since it is already
2438      known; frame type is determined by the unwinder, and since
2439      we have THIS_FRAME we've already selected an unwinder for
2440      NEXT_FRAME.
2441
2442      If the next frame is inlined, we need to keep going until we find
2443      the real function - for instance, if a signal handler is invoked
2444      while in an inlined function, then the code address of the
2445      "calling" normal function should not be adjusted either.  */
2446
2447   while (get_frame_type (next_frame) == INLINE_FRAME)
2448     next_frame = next_frame->next;
2449
2450   if ((get_frame_type (next_frame) == NORMAL_FRAME
2451        || get_frame_type (next_frame) == TAILCALL_FRAME)
2452       && (get_frame_type (this_frame) == NORMAL_FRAME
2453           || get_frame_type (this_frame) == TAILCALL_FRAME
2454           || get_frame_type (this_frame) == INLINE_FRAME))
2455     return pc - 1;
2456
2457   return pc;
2458 }
2459
2460 int
2461 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2462                                          CORE_ADDR *pc)
2463 {
2464
2465   TRY
2466     {
2467       *pc = get_frame_address_in_block (this_frame);
2468     }
2469   CATCH (ex, RETURN_MASK_ERROR)
2470     {
2471       if (ex.error == NOT_AVAILABLE_ERROR)
2472         return 0;
2473       throw_exception (ex);
2474     }
2475   END_CATCH
2476
2477   return 1;
2478 }
2479
2480 symtab_and_line
2481 find_frame_sal (frame_info *frame)
2482 {
2483   struct frame_info *next_frame;
2484   int notcurrent;
2485   CORE_ADDR pc;
2486
2487   /* If the next frame represents an inlined function call, this frame's
2488      sal is the "call site" of that inlined function, which can not
2489      be inferred from get_frame_pc.  */
2490   next_frame = get_next_frame (frame);
2491   if (frame_inlined_callees (frame) > 0)
2492     {
2493       struct symbol *sym;
2494
2495       if (next_frame)
2496         sym = get_frame_function (next_frame);
2497       else
2498         sym = inline_skipped_symbol (inferior_thread ());
2499
2500       /* If frame is inline, it certainly has symbols.  */
2501       gdb_assert (sym);
2502
2503       symtab_and_line sal;
2504       if (SYMBOL_LINE (sym) != 0)
2505         {
2506           sal.symtab = symbol_symtab (sym);
2507           sal.line = SYMBOL_LINE (sym);
2508         }
2509       else
2510         /* If the symbol does not have a location, we don't know where
2511            the call site is.  Do not pretend to.  This is jarring, but
2512            we can't do much better.  */
2513         sal.pc = get_frame_pc (frame);
2514
2515       sal.pspace = get_frame_program_space (frame);
2516       return sal;
2517     }
2518
2519   /* If FRAME is not the innermost frame, that normally means that
2520      FRAME->pc points at the return instruction (which is *after* the
2521      call instruction), and we want to get the line containing the
2522      call (because the call is where the user thinks the program is).
2523      However, if the next frame is either a SIGTRAMP_FRAME or a
2524      DUMMY_FRAME, then the next frame will contain a saved interrupt
2525      PC and such a PC indicates the current (rather than next)
2526      instruction/line, consequently, for such cases, want to get the
2527      line containing fi->pc.  */
2528   if (!get_frame_pc_if_available (frame, &pc))
2529     return {};
2530
2531   notcurrent = (pc != get_frame_address_in_block (frame));
2532   return find_pc_line (pc, notcurrent);
2533 }
2534
2535 /* Per "frame.h", return the ``address'' of the frame.  Code should
2536    really be using get_frame_id().  */
2537 CORE_ADDR
2538 get_frame_base (struct frame_info *fi)
2539 {
2540   return get_frame_id (fi).stack_addr;
2541 }
2542
2543 /* High-level offsets into the frame.  Used by the debug info.  */
2544
2545 CORE_ADDR
2546 get_frame_base_address (struct frame_info *fi)
2547 {
2548   if (get_frame_type (fi) != NORMAL_FRAME)
2549     return 0;
2550   if (fi->base == NULL)
2551     fi->base = frame_base_find_by_frame (fi);
2552   /* Sneaky: If the low-level unwind and high-level base code share a
2553      common unwinder, let them share the prologue cache.  */
2554   if (fi->base->unwind == fi->unwind)
2555     return fi->base->this_base (fi, &fi->prologue_cache);
2556   return fi->base->this_base (fi, &fi->base_cache);
2557 }
2558
2559 CORE_ADDR
2560 get_frame_locals_address (struct frame_info *fi)
2561 {
2562   if (get_frame_type (fi) != NORMAL_FRAME)
2563     return 0;
2564   /* If there isn't a frame address method, find it.  */
2565   if (fi->base == NULL)
2566     fi->base = frame_base_find_by_frame (fi);
2567   /* Sneaky: If the low-level unwind and high-level base code share a
2568      common unwinder, let them share the prologue cache.  */
2569   if (fi->base->unwind == fi->unwind)
2570     return fi->base->this_locals (fi, &fi->prologue_cache);
2571   return fi->base->this_locals (fi, &fi->base_cache);
2572 }
2573
2574 CORE_ADDR
2575 get_frame_args_address (struct frame_info *fi)
2576 {
2577   if (get_frame_type (fi) != NORMAL_FRAME)
2578     return 0;
2579   /* If there isn't a frame address method, find it.  */
2580   if (fi->base == NULL)
2581     fi->base = frame_base_find_by_frame (fi);
2582   /* Sneaky: If the low-level unwind and high-level base code share a
2583      common unwinder, let them share the prologue cache.  */
2584   if (fi->base->unwind == fi->unwind)
2585     return fi->base->this_args (fi, &fi->prologue_cache);
2586   return fi->base->this_args (fi, &fi->base_cache);
2587 }
2588
2589 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2590    otherwise.  */
2591
2592 int
2593 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2594 {
2595   if (fi->unwind == NULL)
2596     frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2597   return fi->unwind == unwinder;
2598 }
2599
2600 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2601    or -1 for a NULL frame.  */
2602
2603 int
2604 frame_relative_level (struct frame_info *fi)
2605 {
2606   if (fi == NULL)
2607     return -1;
2608   else
2609     return fi->level;
2610 }
2611
2612 enum frame_type
2613 get_frame_type (struct frame_info *frame)
2614 {
2615   if (frame->unwind == NULL)
2616     /* Initialize the frame's unwinder because that's what
2617        provides the frame's type.  */
2618     frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2619   return frame->unwind->type;
2620 }
2621
2622 struct program_space *
2623 get_frame_program_space (struct frame_info *frame)
2624 {
2625   return frame->pspace;
2626 }
2627
2628 struct program_space *
2629 frame_unwind_program_space (struct frame_info *this_frame)
2630 {
2631   gdb_assert (this_frame);
2632
2633   /* This is really a placeholder to keep the API consistent --- we
2634      assume for now that we don't have frame chains crossing
2635      spaces.  */
2636   return this_frame->pspace;
2637 }
2638
2639 const address_space *
2640 get_frame_address_space (struct frame_info *frame)
2641 {
2642   return frame->aspace;
2643 }
2644
2645 /* Memory access methods.  */
2646
2647 void
2648 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2649                   gdb_byte *buf, int len)
2650 {
2651   read_memory (addr, buf, len);
2652 }
2653
2654 LONGEST
2655 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2656                          int len)
2657 {
2658   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2659   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2660
2661   return read_memory_integer (addr, len, byte_order);
2662 }
2663
2664 ULONGEST
2665 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2666                            int len)
2667 {
2668   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2669   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2670
2671   return read_memory_unsigned_integer (addr, len, byte_order);
2672 }
2673
2674 int
2675 safe_frame_unwind_memory (struct frame_info *this_frame,
2676                           CORE_ADDR addr, gdb_byte *buf, int len)
2677 {
2678   /* NOTE: target_read_memory returns zero on success!  */
2679   return !target_read_memory (addr, buf, len);
2680 }
2681
2682 /* Architecture methods.  */
2683
2684 struct gdbarch *
2685 get_frame_arch (struct frame_info *this_frame)
2686 {
2687   return frame_unwind_arch (this_frame->next);
2688 }
2689
2690 struct gdbarch *
2691 frame_unwind_arch (struct frame_info *next_frame)
2692 {
2693   if (!next_frame->prev_arch.p)
2694     {
2695       struct gdbarch *arch;
2696
2697       if (next_frame->unwind == NULL)
2698         frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2699
2700       if (next_frame->unwind->prev_arch != NULL)
2701         arch = next_frame->unwind->prev_arch (next_frame,
2702                                               &next_frame->prologue_cache);
2703       else
2704         arch = get_frame_arch (next_frame);
2705
2706       next_frame->prev_arch.arch = arch;
2707       next_frame->prev_arch.p = 1;
2708       if (frame_debug)
2709         fprintf_unfiltered (gdb_stdlog,
2710                             "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2711                             next_frame->level,
2712                             gdbarch_bfd_arch_info (arch)->printable_name);
2713     }
2714
2715   return next_frame->prev_arch.arch;
2716 }
2717
2718 struct gdbarch *
2719 frame_unwind_caller_arch (struct frame_info *next_frame)
2720 {
2721   next_frame = skip_artificial_frames (next_frame);
2722
2723   /* We must have a non-artificial frame.  The caller is supposed to check
2724      the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2725      in this case.  */
2726   gdb_assert (next_frame != NULL);
2727
2728   return frame_unwind_arch (next_frame);
2729 }
2730
2731 /* Gets the language of FRAME.  */
2732
2733 enum language
2734 get_frame_language (struct frame_info *frame)
2735 {
2736   CORE_ADDR pc = 0;
2737   int pc_p = 0;
2738
2739   gdb_assert (frame!= NULL);
2740
2741     /* We determine the current frame language by looking up its
2742        associated symtab.  To retrieve this symtab, we use the frame
2743        PC.  However we cannot use the frame PC as is, because it
2744        usually points to the instruction following the "call", which
2745        is sometimes the first instruction of another function.  So
2746        we rely on get_frame_address_in_block(), it provides us with
2747        a PC that is guaranteed to be inside the frame's code
2748        block.  */
2749
2750   TRY
2751     {
2752       pc = get_frame_address_in_block (frame);
2753       pc_p = 1;
2754     }
2755   CATCH (ex, RETURN_MASK_ERROR)
2756     {
2757       if (ex.error != NOT_AVAILABLE_ERROR)
2758         throw_exception (ex);
2759     }
2760   END_CATCH
2761
2762   if (pc_p)
2763     {
2764       struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2765
2766       if (cust != NULL)
2767         return compunit_language (cust);
2768     }
2769
2770   return language_unknown;
2771 }
2772
2773 /* Stack pointer methods.  */
2774
2775 CORE_ADDR
2776 get_frame_sp (struct frame_info *this_frame)
2777 {
2778   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2779
2780   /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2781      operate on THIS_FRAME now.  */
2782   return gdbarch_unwind_sp (gdbarch, this_frame->next);
2783 }
2784
2785 /* Return the reason why we can't unwind past FRAME.  */
2786
2787 enum unwind_stop_reason
2788 get_frame_unwind_stop_reason (struct frame_info *frame)
2789 {
2790   /* Fill-in STOP_REASON.  */
2791   get_prev_frame_always (frame);
2792   gdb_assert (frame->prev_p);
2793
2794   return frame->stop_reason;
2795 }
2796
2797 /* Return a string explaining REASON.  */
2798
2799 const char *
2800 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2801 {
2802   switch (reason)
2803     {
2804 #define SET(name, description) \
2805     case name: return _(description);
2806 #include "unwind_stop_reasons.def"
2807 #undef SET
2808
2809     default:
2810       internal_error (__FILE__, __LINE__,
2811                       "Invalid frame stop reason");
2812     }
2813 }
2814
2815 const char *
2816 frame_stop_reason_string (struct frame_info *fi)
2817 {
2818   gdb_assert (fi->prev_p);
2819   gdb_assert (fi->prev == NULL);
2820
2821   /* Return the specific string if we have one.  */
2822   if (fi->stop_string != NULL)
2823     return fi->stop_string;
2824
2825   /* Return the generic string if we have nothing better.  */
2826   return unwind_stop_reason_to_string (fi->stop_reason);
2827 }
2828
2829 /* Return the enum symbol name of REASON as a string, to use in debug
2830    output.  */
2831
2832 static const char *
2833 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2834 {
2835   switch (reason)
2836     {
2837 #define SET(name, description) \
2838     case name: return #name;
2839 #include "unwind_stop_reasons.def"
2840 #undef SET
2841
2842     default:
2843       internal_error (__FILE__, __LINE__,
2844                       "Invalid frame stop reason");
2845     }
2846 }
2847
2848 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2849    FRAME.  */
2850
2851 void
2852 frame_cleanup_after_sniffer (struct frame_info *frame)
2853 {
2854   /* The sniffer should not allocate a prologue cache if it did not
2855      match this frame.  */
2856   gdb_assert (frame->prologue_cache == NULL);
2857
2858   /* No sniffer should extend the frame chain; sniff based on what is
2859      already certain.  */
2860   gdb_assert (!frame->prev_p);
2861
2862   /* The sniffer should not check the frame's ID; that's circular.  */
2863   gdb_assert (!frame->this_id.p);
2864
2865   /* Clear cached fields dependent on the unwinder.
2866
2867      The previous PC is independent of the unwinder, but the previous
2868      function is not (see get_frame_address_in_block).  */
2869   frame->prev_func.p = 0;
2870   frame->prev_func.addr = 0;
2871
2872   /* Discard the unwinder last, so that we can easily find it if an assertion
2873      in this function triggers.  */
2874   frame->unwind = NULL;
2875 }
2876
2877 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2878    If sniffing fails, the caller should be sure to call
2879    frame_cleanup_after_sniffer.  */
2880
2881 void
2882 frame_prepare_for_sniffer (struct frame_info *frame,
2883                            const struct frame_unwind *unwind)
2884 {
2885   gdb_assert (frame->unwind == NULL);
2886   frame->unwind = unwind;
2887 }
2888
2889 static struct cmd_list_element *set_backtrace_cmdlist;
2890 static struct cmd_list_element *show_backtrace_cmdlist;
2891
2892 static void
2893 set_backtrace_cmd (const char *args, int from_tty)
2894 {
2895   help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2896              gdb_stdout);
2897 }
2898
2899 static void
2900 show_backtrace_cmd (const char *args, int from_tty)
2901 {
2902   cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2903 }
2904
2905 void
2906 _initialize_frame (void)
2907 {
2908   obstack_init (&frame_cache_obstack);
2909
2910   frame_stash_create ();
2911
2912   gdb::observers::target_changed.attach (frame_observer_target_changed);
2913
2914   add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2915 Set backtrace specific variables.\n\
2916 Configure backtrace variables such as the backtrace limit"),
2917                   &set_backtrace_cmdlist, "set backtrace ",
2918                   0/*allow-unknown*/, &setlist);
2919   add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2920 Show backtrace specific variables\n\
2921 Show backtrace variables such as the backtrace limit"),
2922                   &show_backtrace_cmdlist, "show backtrace ",
2923                   0/*allow-unknown*/, &showlist);
2924
2925   add_setshow_boolean_cmd ("past-main", class_obscure,
2926                            &backtrace_past_main, _("\
2927 Set whether backtraces should continue past \"main\"."), _("\
2928 Show whether backtraces should continue past \"main\"."), _("\
2929 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2930 the backtrace at \"main\".  Set this variable if you need to see the rest\n\
2931 of the stack trace."),
2932                            NULL,
2933                            show_backtrace_past_main,
2934                            &set_backtrace_cmdlist,
2935                            &show_backtrace_cmdlist);
2936
2937   add_setshow_boolean_cmd ("past-entry", class_obscure,
2938                            &backtrace_past_entry, _("\
2939 Set whether backtraces should continue past the entry point of a program."),
2940                            _("\
2941 Show whether backtraces should continue past the entry point of a program."),
2942                            _("\
2943 Normally there are no callers beyond the entry point of a program, so GDB\n\
2944 will terminate the backtrace there.  Set this variable if you need to see\n\
2945 the rest of the stack trace."),
2946                            NULL,
2947                            show_backtrace_past_entry,
2948                            &set_backtrace_cmdlist,
2949                            &show_backtrace_cmdlist);
2950
2951   add_setshow_uinteger_cmd ("limit", class_obscure,
2952                             &backtrace_limit, _("\
2953 Set an upper bound on the number of backtrace levels."), _("\
2954 Show the upper bound on the number of backtrace levels."), _("\
2955 No more than the specified number of frames can be displayed or examined.\n\
2956 Literal \"unlimited\" or zero means no limit."),
2957                             NULL,
2958                             show_backtrace_limit,
2959                             &set_backtrace_cmdlist,
2960                             &show_backtrace_cmdlist);
2961
2962   /* Debug this files internals.  */
2963   add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug,  _("\
2964 Set frame debugging."), _("\
2965 Show frame debugging."), _("\
2966 When non-zero, frame specific internal debugging is enabled."),
2967                              NULL,
2968                              show_frame_debug,
2969                              &setdebuglist, &showdebuglist);
2970 }